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ABSTRACT

Mounting evidences implicate mechanical properties of the substrates, upon

which the cells adhere, to influence critical biological functions including cell

fate decisions in mesenchymal stem cells. However, how embryonic stem

cells respond to forces or underlying substrates is not clear at this time. The

work presented here examines how mouse embryonic stem cells (mESCs) re-

spond to externally applied forces and underlying substrates. We examined

if mESCs can be directed to differentiate by external local forces through

integrin mediated pathway. Surprisingly, we found that cyclic loading of the

same stress amplitude can induce cell spreading in mouse embryonic stem

cells but not in ∼10 times stiffer differentiated cells. The stress induced

spreading response was dictated by cell softness, suggesting that it is the

intracellular deformation of the cytoskeleton that dictates cell spreading re-

sponse. A local stress via focal adhesions alone can induce embryonic stem

cells to differentiate, in the absence of soluble differentiation factors.

Now that we see that mESCs can be directed to differentiation solely by

external mechanical forces, we next examined if mESCs can be kept in their

pluripotent state by culturing them on soft substrates. We found that soft

substrates that match the intrinsic stiffness of the cell can maintain popu-

lations of mESC culture homogeneously in an undifferentiated state. The

underlying biophysical mechanism is to match matrix substrate stiffness to

that of the mESCs which in turn generates low cell-matrix tractions and low

colony stiffness correlating well with compact and round colony morphology,

expressed high levels of OCT3/4, NANOG, and the Alkaline Phosphatase ac-

tivity, even in the absence of Leukemia Inhibitory Factor (LIF). The mESCs

on the soft substrates formed more efficient embryoid bodies and teratomas

than those on rigid substrates. Collectively, these results strongly suggest

that mechanics is indispensable in physiological functions of embryonic stem

cells.
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CHAPTER 1

INTRODUCTION

1.1 Soluble factors influence pluripotency and

differentiation

Stem cells isolated from the embryonic stages of development can self re-

new in culture and holds a promising future for therapeutic applications.

However adapting them to in vitro culture system encounters an unrelenting

challenge of keeping them undifferentiated and directing their differentiation

ever since the first isolation of mouse embryonic stem cells (mESCs) in 1981

[1]. Fairly a large amount of studies have been dedicated to understand how

soluble factors like cytokines, hormones, growth factors, and animal sera can

influence these cell types in terms of self renewal or cell-lineage specification

[2-7]. Maintenance of mESCs was originally accomplished by using feeder

layers or exogenous supply of soluble factor called leukemia inhibitory factor

(LIF) together with serum or other soluble growth factors called bone mor-

phogenic proteins which acts through the LIFR/gp130 complex to maintain

pluripotency [3, 8]. Recently, the ground state of self renewal and pluripo-

tency for embryonic stem cells has been described that eliminate the need

for exogenous chemical stimuli like LIF for maintaining pluripotency simply

by suppression of differentiation-inducing signaling from mitogen-activated

protein kinase and glycogen synthase kinase (two inhibitors: 2i conditions)

[9]. Interestingly however, maximal self-renewal is achieved by the combi-

natorial use of LIF and 2i validating LIF/STAT3 signaling as an essential

component of self-renewal in ESCs [10]. Similar to mESCs, soluble factors

have been shown to regulate pluripotency genes necessary to support long-

term self-renewal and undifferentiated proliferation of human embryonic stem

cells (hESCs). These soluble factors like basic FGF (bFGF) [11, 12], TGF-β

[13], and insulin-like growth factor 1 [14] stabilizes a network of transcription
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factors including OCT3/4, SOX2, and NANOG. More recently, it has been

shown that the signals from the soluble factors are incorporated by intracel-

lular molecules, such as mammalian target of rapamycin (mTOR) [15], to

suppress differentiation activities and promote proliferation and survival of

hESCs.

Library of small molecules are also being constantly screened to identify

potential soluble factors that direct cells into particular lineages. To name

a few, soluble growth factors like bone morphogenic proteins [16] was shown

to inhibit ectodermal lineage differentiation. Conversely, retinoic acid [17]

was shown to promote ectodermal lineage differentiation. Recently it was re-

ported that the synergistic affect of salvianolic acid B and vitamin C induces

cardiac differentiation programs [18].

More proprietary chemicals, natural products, and endogenous factors are

screened and reported for the self-renewal or cell-lineage specification of em-

bryonic stem cells or induced pluripotent stem cells (iPSCs). The use of small

molecules have been successfully utilized in replacing some of the transgenic

factors of Yamanaka cocktail (OCT3/4, SOX2, KLF4, C-MYC). For example,

Melton et al. [19] reported that a small molecule valproic acid successfully

increased the efficiencies of reprogramming with all four factors or replaced

KLF4 and C-MYC altogether. In a similar fashion Eggan et al. [20] demon-

strated that Repsox, a small-molecule inhibitor of TGF- signaling replaces

SOX2 in the reprogramming process.

1.2 Does mechanics matter in the life of stem cells?

The conventional wisdom suggests that chemical signaling alone drive cell

physiology. This current dogma was reshaped during the last decade from the

convergence of studies involving engineers, physicists, and biologists. Conse-

quently, in addition to soluble factors, the importance of physical microen-

vironment and mechanical stimuli became increasingly accepted as potent

regulators of self-renewal or differentiation in both embryonic and adult stem

cells [21-29]. These overwhelming evidences suggest that stem cells respond

to different forms of mechanical cues like externally applied forces; multi-

axial strains; passive microenvironment properties like change in substrate

stiffness, geometric restrictions, and topography which ultimately regulate
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cellular form and function. These results strongly suggest that mechanics

is indispensable in stem cell physiology. Nevertheless, the mechanisms have

not been fully understood yet. This is no trivial issue and remains a current

challenge in the field. Unlike chemical signaling, which has been well studied

and characterized, very little is known about mechanical signaling cascades.

Recent findings show that downstream of the initial activation site on the

cell surface, mechanical signaling is very much different from a growth factor

induced signaling [30, 31]. Future studies may enable us to dissect out the

essential pathways of mechanical signaling.

1.2.1 Mechanical factors and Mesenchymal stem cells (MSCs)

Mechanical and physical factors have been shown to regulate gene expres-

sion and fate determination of adult stem cells. Mechanical strains have been

shown to control MSC gene expression as reported by Kurpinski et al [23].

Here they used a micropattened strip to align the MSCs along the direction

of the uniaxial strain. Following the loading of strain the expression of a

smooth muscle cell marker, calponin 1, was increased while cartilage matrix

marker expression was decreased. However, when the strain was loaded in

the perpendicular direction to the aligned cells, the changes in gene expres-

sion were diminished. These results strongly suggest that mechanical strain

alone has a significant impact on MSC gene expression. MacBeath et al. [21]

reported that changes in cell shape could regulate MSCs lineage determina-

tion. MSCs when allowed to spread on small micropatterned islands tend

to differentiate preferentially into adipocytes while those allowed to spread

on larger micropatterned islands differentiate into osteoblasts. Engler et al.

[22] led the way to show the effect of substrate stiffness on the fate of MSCs.

MSCs plated on soft (0.1-1 kPa) substrates (mimicking brain) differentiated

preferentially into neurons, while those plated on intermediate (8-17 kPa)

and rigid (25-40 kPa) substrates with stiffness similar to muscle and bone

tissue underwent myogenic and osteogenic differentiation respectively. More

recently, matrix stiffness alone was shown to maintain stemness of in muscle

stem cells. Gilbert et al. [28] showed that muscle stem cells (MuSCs) when

cultured on substrates that mimics the elasticity of muscle (12 kPa) greatly

retained their regenerative potential.
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1.2.2 Mechanical forces and ESCs

Although MSCs and other adult stem cell population hold a promising fu-

ture in biomedical research and cell based therapies, they are downstream in

cell-lineage specifications in comparison to ESCs. Additionally, ESCs offer

an excellent in vitro tool to study development. Importantly, the effect of

the mechanical forces and physical environment on ESCs has not been well

investigated. We speculate mechanical perturbations are very much relevant

in development as cells are exposed to both chemical and mechanical cues

during gastrulation and during this crucial dynamic cellular rearrangement

process they generate and experience tension, compression and shear forces

[32]. Understanding the fundamental processes by which ESCs respond to

mechanical forces is a key to understanding the mechanisms of development

and lineage determination. Therefore, we focus on truly pluripotent ESCs to

investigate how these cells would respond to physical and mechanical cues.

1.3 Topics covered in this dissertation

In chapter 2, we investigated the mechanosensitivity of ESCs by applying

small amount of mechanical forces. Surprisingly, we found that ESCs are

very sensitive to small mechanical forces. They start to spread in response

to the applied forces and eventually differentiate. We also reveal the un-

derlying mechanism for this behavior. This is exclusively due their intrinsic

softness compared to other differentiated cells types. Consequently, for a

given applied stress level, the resulting strain reaches a much higher value

in ESCs than in other differentiated cell types. This resulting strain when

reaches a certain strain threshold, the ESCs start to spread and eventually

differentiate. The work presented in this chapter shows that ESCs can be

differentiated into other cell types solely based on external mechanical forces.

The work presented in chapter 3 originates during the study carried out

in chapter 2. Earlier we found that ESCs has an optimal baseline spreading

on 0.6 kPa substrates which coincidentally happened to be their own intrin-

sic stiffness [33]. This is consistent to the fact that cell-substrate stiffness

matching is crucial for normal cell functions [34]. This led to the investi-

gation, addressing a long-standing problem in the field of stem cell biology,

whether we can keep ESCs in an undifferentiated state of growth by manip-
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ulating their local microenvironment. ESCs are adapted to in vitro culture

condition by plating them on rigid plastic dishes which is ∼million times

stiffer (in the order of GPa range, [28]) than their inherent stiffness. Conse-

quently, the ESCs respond to the substrate stiffness by fluctuating expression

of pluripotent and differentiated genes and the culture results in a hetero-

geneous cell population. This also hinders the induction of differentiation

processes as precursor materials (ESCs) are non-homogeneous. Therefore,

we hypothesized that culturing them on a substrate with similar stiffness as

their intrinsic stiffness would be the key to this problem. Importantly, we

showed the mechanism by which our novel method can keep these ESCs in

an unlimited self-renewal state. This is solely due to the downregulation of

cell-matrix traction generated by these cells. When we started elevate cell-

matrix tractions, the ESCs began to lose self-renewal and pluripotency and

started to differentiate.

In chapter 4, conclusions and future directions are discussed.
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CHAPTER 2

MECHANICAL FORCE INDUCED
SPREADING AND DIFFERENTIATION OF

EMBRYONIC STEM CELLS

Adapted from Chowdhury et al. (2008) Biophysical Journal 95: 5719- 5727

and Chowdhury et al. (2010) Nature Materials 9: 82- 88

2.1 Abstract

Increasing evidences suggest that physical microenvironments and mechani-

cal stresses, in addition to soluble factors, help direct mesenchymal stem cell

fate. However, biological responses to a local force in ESCs remain unclear.

Here we show that a local cyclic stress via focal adhesions induces spreading

in mouse ES (mES) cells but not in mES cell-differentiated (ESD) cells that

were 10-fold stiffer. This response was solely dictated by the intrinsic cell

material property (cell softness), suggesting that reaching a threshold cellu-

lar strain is the key setpoint for triggering spreading responses. Cell-matrix

traction quantification, pharmacological, and shRNA intervention indicated

that myosin II contractility, F-actin, Src, or Cdc42 were essential in the

spreading response. Following the application of the stress induced spread-

ing; expression of OCT3/4 gene was found to be downregulated in these mES

cells. These findings strongly demonstrate that cell softness dictates cellular

sensitivity to force, implicating local small forces to play far more important

roles in early developments of soft embryos than previously anticipated.

Key words: cell rheology, mechanotransduction, prestress, gene expres-

sion, strain

2.2 Introduction

Embryonic stem cells are one of the major focuses in biology because of

their pluripotency and potential therapeutic applications [1-3]. Although it
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is known that soluble factors are critical in stem cell differentiation [4, 5],

recent evidence shows that the physical microenvironment of the cells (e.g.,

shape constraint or substrate stiffness) helps direct the fate of mesenchy-

mal stem cells [6, 7]. These cells, however, are downstream in cell lineage

specifications, and have limited self-renewal and differentiation capacities

in comparison to ES cells. We focus on pluripotent ES cells since little is

known about how these cells respond to mechanical forces. Understanding

the fundamental processes by which ES cells respond to force is crucial in elu-

cidating mechanisms of lineage determination and development as these cells

are derived from the inner cell mass of blastocysts prior to gastrulation that

initiates dynamic cellular rearrangements. It is known that living cells alter

their shapes and functions in respond to mechanical forces. For example,

unidirectional laminar shear flow stresses over a whole endothelial cell facil-

itate cell spreading and elongation in the direction of the flow [8]. Uniaxial

stretching of a vascular smooth muscle cell elongates the cell in the direc-

tion of stretching [9]. Cyclic uniaxial stretching of whole mesenchymal stem

cells increases cell proliferation and expression of smooth muscle cell markers

[10]. Recently, it is reported that fluid shear stress over whole hematopoietic

progenitor cells promotes embryonic hematopoiesis [11]. However, whether

and how ES cells respond to a localized mechanical stress remain elusive.

During the last decade or so, the importance of substrate rigidity in cell

functions is becoming increasingly clear [7, 12-14]. The physical and me-

chanical cues of the extracellular matrix are transduced into intracellular

rheological and biochemical changes via unknown mechanisms, but likely via

conformational changes or unfolding of focal adhesion-based proteins [15]

and other proteins. On the other hand, several researchers have proposed

that intracellular rheological properties are critical in understanding cellular

behaviors [16-18]. Therefore, it is suggested that intrinsic intracellular mate-

rial mechanical properties govern cellular behaviors and functions. However,

no experimental data are available to unequivocally show that intrinsic in-

tracellular rheological properties of living cells are fundamentally important

in cellular biological responses to force and in biological functions, despite

recent discoveries at the molecular level on the unfolding of focal adhesion

protein talin in vitro by force [15], on integrin activation by force in living

endothelial cells [19], and on unfolding of spectrin in red blood cells by shear

flow stress [20]. This is not a trivial issue. Since in general any individual
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structural protein under stress is physically connected with the rest of the

cytoskeleton network, the overall cells or cytoskeletons deformability should

dictate how much this protein can be deformed as all forces must be balanced.

In this study, we demonstrate that adherent mES cells are softer and much

more sensitive to a local cyclic stress than their differentiated counterparts.

We show that the material property of the cell, the cell softness, dictates the

stress-induced spreading response. We reveal the underlying signaling path-

ways in stress-induced spreading in mES cells. OCT3/4 (Pou5f1) expression

in mES cells [21] gradually disappears in response to the stress. Our results

suggest that a local, small, cyclic stress plays a critical role in inducing strong

biological responses in soft mES cells that originate from inner cell mass and

in shaping embryogenesis during development.

2.3 Results

2.3.1 Baseline cell spreading of mES cells is optimum on 0.6
kPa substrates

First we measured the projected areas of mES cells and differentiated cells

(derived from these mES cells) on different substrate stiffness overnight. As

expected from a published report [22], the mES cell-differentiated (ESD) cells

increased their projected areas with increasing substrate stiffness (Fig. 2.1).

In contrast, mES cell projected areas were maximal at a substrate stiffness

of 0.6 kPa, similar to the intrinsic elastic stiffness of these mES cells (Fig.

2.2). These results are consistent with a previous report that cell-substrate

stiffness matching is crucial for normal cell functions [23].

2.3.2 mES cells initiates spreading in response to external
stress

Next we explored whether these soft mES cells could respond to a local-

ized external stress. After a mES cell was plated on the substrate of 0.6

kPa overnight, we attached a 4-µm RGD-coated magnetic bead on the api-

cal surface of the cell and applied a small, oscillatory stress (17.5 Pa at

0.3 Hz) continuously (Fig. 2.3a). Surprisingly, this small local cyclic stress
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induced time-dependent increases in the spreading of the mES cell. The

stress-induced spreading occurred as early as ∼30 s after the onset of stress

application (Fig. 2.3a). While it is expected that unidirectional stretching or

stressing of a whole cell would elongate the cell in the direction of the stretch-

ing or the stress [8,9], it is not clear whether a small localized oscillatory stress

of zero mean magnitude could induce cell protrusion and spreading in many

different directions. mES cells on other magnitudes of substrate stiffness also

spread in response to the applied stress but the extent of spreading was less,

suggesting that the cell-substrate stiffness matching potentiates the optimal

spreading response in mES cells to external stress. To quantify changes in cell

area, we measured velocity profiles of the cell periphery using an established

method [24]. The mES cell increased normal membrane protrusion velocity

and spreading area as a function of stress application time (Fig. 2.3b-d). In

sharp contrast, the stiff ESD cell on the same substrate stiffness did not ex-

hibit any changes in normal velocity or cell projected area in response to the

same amplitude of the cyclic stress (Fig. 2.3e-h). The lack of stress-induced

ESD cell spreading is not due to the limitation of the spreading capacity

of these cells, since they continue to spread on stiffer substrates (Fig. 2.1),

likely to be driven by much greater myosin-II-dependent endogenous forces.

The ESD cells on much stiffer substrates failed to spread in response to the

external stress. The summarized data show that mES cells are much more

sensitive to a localized cyclic stress than their differentiated counterpart ESD

cells (Fig. 2.4a). The threshold amplitude of stress for mES cell spreading is

between 3.5-17.5 Pa (Fig. 2.4a) and the optimal frequency for spreading is

∼0.3-1 Hz (Fig. 2.5), consistent with the published report that the optimal

loading frequency for cytoskeletal deformation is ∼1 Hz [25]. Results from

stiff human airway smooth muscle (ASM) cells (a well-established differenti-

ated tissue cell type), plated on the same substrate (stiffness) that was coated

with the same immobilized amount of collagen-1, showed that they did not

spread to the same stress, similar to stiff ESD cells (Fig. 2.4a), suggest-

ing that our findings that inversely correlating cell stiffness with spreading

responsiveness can be generalized to other cell types.
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2.3.3 Cell Softness dictates response to stress

To explore the underlying biophysical mechanism of stress-induced spreading

in mES cells, we compared the softness of mES cells with that of ESD cells.

Softness is defined as the ratio of strain to stress and is the inverse of stiffness.

Softness of mES cells was ∼10 times higher than that of ESD cells on the

same substrate (Fig. 2.4b). Since the applied stress was the same for both

cell types, this result suggests that the soft mES cells were more responsive

because of greater deformation or strains in these mES cells than in ESD

cells. To further test this idea, we plated the ESD cells or the ASM cells on

sparsely coated matrix proteins (1 ng/ml collagen-1 on rigid glass overnight)

to limit their projected areas and to increase their softness. As predicted,

these soft round intact ESD cells and ASM cells also started to spread in

response the cyclic localized stress (Fig. 2.4 a, b). The greater the cell

softness, the stronger the spreading response (i.e., the more increases in cell

area in response to stress) (Fig. 2.4b). Furthermore, the relative softness of

mES cells, round ESD cells, and ESD cells correlated inversely with respective

densities of F-actin (Fig. 2.6), consistent with the established evidence that

F-actin is a major determinant in cell stiffness [26].

2.3.4 Cell softness but not smaller projected area dictates
stress induced spreading

An alternative interpretation to our data is that the smaller the projected

cell area, the stronger the spreading response to the externally applied stress.

This interpretation is based on the fact that the baseline projected areas of

differentiated cells are larger than those of the mES cells on the same sub-

strate (Fig. 2.2). Thus it is possible that the biochemical responses to stress

in these differentiated cells (such as Ca2+ influx) might have been similar

to those in undifferentiated mES cells, but these biochemical signals were

just not potent enough to cause further spreading. To determine whether

it is the cell softness or the cell baseline projected area that controls the

spreading or protrusion sensitivity to stress, we plated ESD cells or ASM

cells on micropatterned adhesive islands (25-µm diameter circles) on the 0.6

kPa substrate coated with high density of collagen-1 [27]. Each ESD cell or

each ASM cell on each island had a similar projected area as the mES cell on
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the 0.6 kPa substrate but was ∼8 times stiffer. The ESD cell and the ASM

cell failed to extend any protrusions in response to the same applied stress,

as the soft mES cell did (Fig. 2.4c). These data indicate that it is the cell

softness, not the projected area, that controls the protrusion and spreading

responsiveness to stress. Taken together, these data suggest that the under-

lying biophysical mechanism for stress-triggered spreading is the deformation

of the cytoskeleton and its associated proteins, providing a biological conse-

quence and a functional significance to the recent findings on stress-induced

conformational changes and/or unfolding of signaling molecules [28] and focal

adhesion structural proteins [15].

2.3.5 Stress induced spreading coincides with increase
intraction and accumulation of pMLC

To further explore the underlying mechanical and biochemical mechanisms

of stress-induced spreading in mES cells, we quantified changes in tractional

stresses. Tractions at the cell periphery increased within the first few min-

utes of stress application (Fig. 2.7b), which coincided temporally with the

increases in cell areas (Fig. 2.7a). The ∼50% elevation in tractions at the

cell periphery (Fig. 2.7c) was preceded by ∼40% increases in phosphorylated

myosin light chains at the cell periphery by 30 s (Fig. 2.7e), from the diffusive

distribution pattern throughout the cytoplasm prior to the stress application

(Fig. 2.7d), suggesting that myosin II-dependent traction generation at the

cell periphery is essential in stress-induced spreading in mES cells.

2.3.6 Myosin II, Src, cdc42, F-actin but not rac is important
in stress induced spreading

Consistent with the aforementioned interpretation, pretreatment of the mES

cells with myosin II ATPase inhibitor blebbistatin (50 µM for 30 min) or

with myosin light chain kinase inhibitor ML-7 (25 µM for 20 min) completely

prevented stress-induced ES spreading (Fig. 2.8a; Fig. 2.9). Furthermore,

pretreatment with Rho-associated kinase (ROCK) inhibitor Y27632 (50 µM

for 20 min) also prevented spreading of mES cells (Fig. 2.8a; Fig. 2.9), sug-

gesting that ROCK is also critical in this process. Importantly, pretreatment
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with PP1 (10 µM for 1hr), a specific Src tyrosine phosphorylation inhibitor,

blocked stress-induced ES cell spreading (Fig. 2.8a; Fig. 2.9). This result

suggests that Src is critical in the initiation of stress-induced spreading, con-

sistent with a published report on the role of Src in the spontaneous early

spreading of adherent cells [29]. Interestingly, pretreatment with NSC23766

(100 µM for 1hr), a specific inhibitor of Rac [30,31], did not block stress-

induced spreading, suggesting that Rac was not important in stress-induced

spreading of mES cells (Fig. 2.8a, Fig. 2.9). The stress-induced cell spread-

ing was specific to integrin-cytoskeleton pathways, since application of the

same amplitude of stress via poly-L-lysine coated beads did not induce any

changes in cell area in mES cells (Fig. 2.10), consistent with recent findings

that rapid Src activation by stress only occurs via activated integrins [28] and

that an applied stress via integrins induces additional activation of integrins

and phosphorylation of focal adhesion kinase [19]. Stress-induced spreading

in mES cells were completely prevented by pre-treatment with Latrunculin A

(0.1 µg/ml for 30 min), consistent with the role of actin polymerization in cell

protrusion and spreading. It should be noted that although these cytoskeletal

drugs make the mES cells softer, they interfere with cytoskeletal dynamics

and intracellular biochemical processes. Therefore these softer mES cells fail

to spread in response to the applied stress, because cell spreading is a com-

plex process that requires dynamic coordination of actin polymerization and

myosin II [29]. It is known that Cdc42 mediates cell filopodia extension and

cell spreading [32]. To determine the role of Cdc42 in stress-induced mES cell

spreading, we infected the mES cells with small hairpin RNA (shRNA) for

Cdc42 using lentiviruses. As shown in Fig. 2.8b and 2.8c (Fig. 2.11), Cdc42

knockdown correlated well with the abolishment of stress-induced spreading

in these mES cells, consistent with published results in the role of Cdc42

in integrin-mediated spreading of differentiated cells [32]. Our finding that

stress-induced spreading in these mES cells depends on Cdc42 but not on

Rac is interesting since it is well known that integrin-mediated cell spreading

depends on Rac in differentiated cells [32,33].

15



2.3.7 Stress-induced mES cell differentiation

To further determine the long term effects of a local cyclic stress in mES

cell functions, we examined the expression of stably transfected GFP driven

by OCT3/4 promoter in undifferentiated cells cultured in the presence of

leukaemia inhibitory factor (+LIF) [34]. After a continuous application of a

17.5-Pa local stress at 0.3 Hz for only 60 min, OCT3/4 expression in these

mES cells was downregulated by ∼ 35% within 24 hrs, and by ∼ 50% within

72 hrs, whereas control cells a few micrometers away in the same dish with-

out stress continued to express OCT3/4 (Fig. 2.12, Fig. 2.13). Since loss

of OCT3/4 expression in ES cells is one of the hallmarks for differentiation

[35], our results suggest that a local cyclic stress via a focal adhesion might

be sufficient to drive a mES cell to differentiate. If our findings could be

extended to early animal embryos, it would provide a novel way of locally

differentiating a single cell of early lineage while keeping nearby cells undif-

ferentiated.

2.4 Discussion

Accumulating experimental evidence suggests that mechanical contractile

forces play a role in development (reviewed in ref. [36]. However, inability

to access animal embryonic cells during early development makes it difficult

to determine how important mechanical forces are during early development

of animals and how sensitive embryonic cells are to force. Cultured ES cells

offer an excellent model for studying biological responses to force by inner

cell mass cells. In a recent review, Discher et al. discuss the combined effects

of growth factors, matrices, and mechanical forces in controlling stem cells

[37]. The importance of substrate stiffness in stem cell differentiation is high-

lighted. However, the underlying mechanism remains unclear. Discher and

colleagues have shown that substrate elasticity modulates intracellular rheol-

ogy: stiffer matrices result in stiffer cells [7]. In contrast, we show here that

intracellular softness can determine cellular biological sensitivity to force at

fixed substrate rigidity. Our current work reveals a biophysical mechanism

of ES cells in dictating how ES cells respond biologically to a local small

force via integrins. Our findings that the softness of mES cells makes them

very sensitive to a local cyclic stress of physiologic amplitudes suggest that
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small local forces (either endogenously generated or from neighboring cells)

might play far more important roles in early embryogenesis and development

of animals than previously appreciated. Our result that the cytoplasm of

mES cells is intrinsically soft is also in accord with a previous finding that

the nucleus of human ES cells is intrinsically soft [38].

Currently it remains elusive what are the intracellular molecular strain

sensor(s) in a live cell, although the extracellular domains of integrins have

been shown to undergo force-dependent conformational change to enhance

adhesion [19], possibly via the catch bond mechanism [39]. However, ac-

cumulating evidence points to the deformation of focal adhesion proteins

and possibly other structural proteins as the molecular mechanism of strain

sensing. For example, in vitro forcing experiments show that unfolding sin-

gle talin rods activates vinculin binding [15]. It is likely that time-varying,

strain-dependent conformational changes and/or unfolding of these protein

molecules at focal adhesions [40] and at other distant sites [41] (e.g., in-

side the nucleus) are the primary molecular mechanisms of mechanochemical

transduction and strain-activated feedback loops [42]. An important test of

this hypothesis will be to extend the in vitro work of del Rio et al. [15] to

a live cell using physiologically relevant magnitudes of time-varying stresses.

In addition, we speculate that focal adhesion-based protein opening and/or

tyrosine kinase/phosphatase activation not only depends on the modulus of

this individual molecule, but also depends on the collective modulus (or its

inverse, softness) of the surrounding molecules and nearby cytoskeletal net-

works. The reason is that force must be balanced everywhere; therefore, the

local cell softness near a focal adhesion must be crucial in determining how

much a single molecule, such as talin, and other proteins, can be deformed

and thus activated.

It might not be a coincidence that an unfertilized egg has a stiffness of ∼10

Pa (43), an ES cell has a stiffness of ∼500 Pa (Fig. 2.2), a brain neural cell

has a stiffness of ∼100-500 Pa [12], a typical differentiated tissue cell (e.g.,

a smooth muscle cell) has a stiffness of 1-5 kPa [44], a skeletal muscle cell

has a stiffness of ∼12 kPa [23]. The respective softness of various types of

cells might manifest their different physiological functions and sensitivities

to force in a multi-cellular organism. An evolutionary advantage for an early

lineage cell to become stiffer as the cell divides and differentiates into a more

differentiated tissue cell might be to protect the organism from injuries by
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force, since the ability to respond to touch and to resist mechanical stress is

postulated to be one of the most primitive features of metazoans that had

evolved millions of years ago. Matching cell material property with that of

its substrate is known to be critical in forming striation in skeletal muscle

cells [23] and optimizing cadiomyocyte beating [45], but stiffness matching

may have broader implications. As proposed recently [46], nutrient-rich un-

compacted soft ocean sediments ∼2 billion years ago provided a selective

evolutionary pressure favoring those very earliest eukaryotes that were bet-

ter able to perform mechanical functions of invasion, crawling and forage,

which are optimized when material properties of the cell match those of

their very soft paste-like microenvironment. We perhaps see here in the ES

cell the echo of those early evolutionary events. It is established that stress

can regulate gene expression, but those previous studies are generally per-

formed by stretching or fluid flow shearing whole cell surfaces, followed by

analyses of average biological responses from millions of cells. Hence, it is

difficult to elucidate mechanisms of mechanosensing and mechanotransduc-

tion. To our knowledge, our current study reveals for the first time that

a small cyclic stress over a focal adhesion can downregulate OCT3/4 gene

expression in single mES cells, likely due to the soft material property of

these cells. Future studies are needed to elucidate the specific mechanisms

of stress-induced inhibition of OCT3/4 expression in these mES cells, to de-

termine if these findings can be extended to human ES cells and induced

pluripotent stem (iPS) cells, and to find out whether stress-induced signals

inhibit known pluripotency-supporting pathways mediated by molecules such

as mTOR [47]. It will also be interesting to determine what type of differenti-

ated cells can be derived from these soft ES cells by what mode of mechanical

perturbations.

2.5 Methods

2.5.1 Cell culture and differentiation assay

Cells were thawed and cultured as described previously [48]. In short, undif-

ferentiated mouse embryonic stem (mES) cells (W4, 129/SvEv) were main-

tained in the standard culture condition in the presence of Leukaemia In-
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hibitory Factor (LIF; Chemicon). mES cells at passage 11 were thawed onto

a feeder layer of mitoticallyinactivated primary murine embryonic fibroblasts

(mEF). mES cells were passaged onto culture dishes coated with 0.1% gelatin

for several times in every 2 days to remove feeders. For the differentiation

assay, trypsinized mES cells, at passage 15-16, were plated on gelatin-coated

dishes at a low density of 100 cells/cm2. Following day, the mES cells were

fed with the medium without LIF and with 1 µM Retinoic Acid (all-trans,

Sigma) (-LIF/+RA). The mES cells in these conditions were fed with fresh

medium every day for 4-5 days before experiment. In -LIF/+RA culture

condition mES cells became differentiated to a heterogeneous population

of differentiated cells (ESD) cells which were cultured with the complete

medium. Human airway smooth muscle (ASM) cells were isolated at au-

topsy within 8 hrs of death from tracheal muscle of lung transplant donors

(approved by the University of Pennsylvania Committee on studies involving

human beings) at University of Pennsylvania in Dr. Panettieris laboratory

[49]. We used de-identified HASM cells supplied by Dr. Panettieri who ob-

tained the tissue through NDRI (National Disease Research Interchange) in a

manner that excludes all unique identifying information. All our procedures

were approved by the Institutional Review Board of University of Illinois

at Urbana-Champaign. The ASM cells were cultured following published

protocols [28].

2.5.2 Quantification of membrane protrusion velocity profiles

Edge velocity profiles display the edge dynamics during cell spreading. This

technique is described before in details [24]. We utilized their approach

(CellMAP) where input was a high contrast time lapse sequence (5 sec in-

terval) of a single cell and the outputs were the normal cell edge velocity as

a function of space (over entire arclength) and time, mean normal velocity

over time, and change in cell area.
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2.5.3 Applying a local stress using magnetic twisting
cytometry

Magnetic twisting cytometry (MTC) is a well established method for apply-

ing controlled and precise local mechanical stresses of physiologic magnitudes

to a living cell [18, 26, 44, 48, 50]. Briefly, ferromagnetic microbeads (4 m in

diameter) were coated with ligands to integrin receptors (a synthetic peptide

containing the ArgGlyAsp (RGD) sequence) or with poly-l-lysine (Sigma),

both at 50 µg/ml per mg bead. The RGD-coated beads were incubated for

10-15 min to adhere to the apical surface of the cells so that they become

tightly bound to the F-actin cytoskeleton via focal adhesions. The beads were

magnetized horizontally using a strong (1000 gauss (G)) and short (<0.1ms)

magnetic impulse. A twisting field was applied by a sinusoidally varying

perpendicular magnetic field resulting in translational bead displacement in-

duced by bead rotation. The bead movement was quantified using an inten-

sity weighted center of mass algorithm. An inverted Leica microscope was

used. A black and white charge-coupled device camera (Hamamatsu, C4742-

95-12ERG) was attached to the camera side port of the microscope. Image

acquisition was phase-locked with the sinusoidal twisting field. In our study,

the magnetic twisting field was varied at 0.03, 0.3, 1, or 3 Hz. The amplitude

of the oscillating field was varied at 0, 10, or 50 G. The apparent applied

stress defined as the ratio of the applied torque to six times the bead volume

and equals the bead constant times the applied twisting field. The bead con-

stant was calibrated in a viscosity standard and determined to be 0.35 Pa

per G. Therefore, the applied stress was 0, 3.5, or 17.5 Pa corresponding to

the above applied magnetic field respectively. In all our loading experiments,

mES cells were plated in low serum medium (1%). However, we found that

a local cyclic stress also induced cell spreading in mES cells in the absence

of serum, although at longer times, the extent of spreading appeared to be

somewhat less prominent in zero serum than in 1% serum (Fig. 2.15).

2.5.4 Cell softness quantification

Cell stiffness measurement technique is described before [18, 25, 26, 44, 48,

50]. The cell complex softness is defined as the ratio of strain to the applied

stress (i.e., the applied specific torque) and thus is the inverse of the cell
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complex stiffness. Cell softness (unit=kPa-1) is a useful parameter here be-

cause molecular motors (e.g., myosin II) are force (the independent variable)

generators and because strain-dependent opening of proteins are likely to be

important in changing protein activities and cell functions [15]. The method

is described briefly as following. Acquired bead displacements in response to

the applied stress were stored for further analysis using a custom-made Mat-

lab program. Bead displacements were displayed on an image window where

one could select individual beads for analysis. The beads whose displace-

ment waves conformed to the input sinusoidal signals at the same frequency

were selected. This was necessary to filter out spontaneous movements of

the beads or microscope stage shifts. Beads with displacements less than

5 nm (detection resolution) and loosely bound beads were not selected for

analysis. To increase the signal to noise ratio, the peak amplitude of the

displacement d (nm) was averaged over 5 consecutive cycles. The complex

stiffness is measured by applying an oscillatory magnetic field and measuring

the resultant oscillatory bead motions using the relation G*=T/d. For each

bead, the elastic stiffness G (the real part of G*) and the dissipative stiffness

G (the imaginary part of G*) was calculated based on the phase lag. The

measured stiffness has the units of torque per unit bead volume per unit bead

displacement (Pa/nm), which is model-free. In our cells the bead was em-

bedded ∼50% into the cell surface (Fig. 2.16), similar to those found in other

cell types in a recent report [51]. If one uses a 50% bead-cell surface contact

area and an established finite element model to convert stiffness (Pa/nm) to

modulus (Pa) [52], then 1 Pa/nm stiffness is equivalent to 2.5 kPa modulus.

Cell softness values were obtained by taking the inverse of the cell modulus

values and have the unit of kPa−1.

2.5.5 Cell area and traction measurements

Cell spreading area was measured by ImageJ (NIH) using active contours al-

gorithm. Cell traction measurements have been described in details elsewhere

[46]. Briefly, a displacement field was calculated by comparing a fluorescent

submicron bead image at a particular time point during the experiment with

a reference image captured at the end of the experiment by trypsinizing

the cell from its underlying substrates. Knowing the substrate rigidity and
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the displacement field, a traction field was computed by solving this inverse

problem. Therefore, the generated traction maps were used for further quan-

tification. Based on the gray scale traction field we took a one micron thick

annular section at the cell boundary at different time points and measured

the intensity. Mean intensity within the annular section, representing the

tractional stress developed at the cell boundary, at time zero (before twist-

ing of magnetic bead) was set to 1 arbitrary unit (A.U.). Traction profiles

were plotted over time around the boundary.

2.5.6 Lentivirus production and mES cell infection

For shRNA-mediated knockdown of Cdc42, the pLKO.1-puro Vector (Sigma-

Aldrich) was used. We used Viralpower Lentivirus Packaging System (Invit-

rogen) to package lentivirus for Cdc42 knockdown, following the manufac-

turers instructions. Briefly, HEK293T cells were purchased from American

Type Culture Collection (ATCC) and were cultured according to ATCC rec-

ommendations. HEK293T cells were plated for 24 hrs before transfection.

After reaching 70 − 80% confluency, cells were transfected with target or

non-target shRNA control plasmids using the Fugene 6 reagent (Roche).

The medium was replaced after overnight incubation of cells, with the virus

packaging medium containing DMEM, 30% FBS, 1 mM sodium pyruvate,

4mM glutamine. Supernatant containing the lentivirus was collected 48-72

h later. To infect mES cells, lentiviruses were mixed with mES cells culture

medium, and the mixture was incubated with 0.25% Trypsin-EDTA digested

mES cells for 12 h. 6 µg/ml Polybrene (Sigma) was used to improve the effi-

ciency of infection. Virus-containing medium was changed with fresh culture

medium. After 5 d, the cells were harvested for additional assay.

2.5.7 Western Blot

To quantify Cdc42, infected mES cells were lysed directly with 200 µl laemmli

sample buffer (BIO-RAD). 20 µl of each sample were analyzed by Western

Blotting. The blots were developed using SuperSignal West Pico Chemilu-

minescent Substrate (Pierce).
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2.5.8 EGFP and DsRed expressions in mES cells driven by
OCT3/4 and CAGGS promoter

A mouse ES cell line, namely OGR1, that expresses EGFP under the pro-

moter of OCT3/4 (OCT3/4::EGFP) [53] was transfected with 0.5 µg of

pCAGGSDsRedT3 T2A Puro (T. S. Tanaka et al., unpublished results) with

FuGene (Roche) according to the manufacturer. Then, OGR1 that ex-

presses DsRed.T3 stably was selected by puromycin (2 µg/ml; Invitrogen).

DsRed.T3 has no toxicity in mouse ES cells [54].

2.5.9 Stress-mediated differentiation

To investigate if local application of a local cyclic stress is capable of down-

regulating OCT3/4 expression in the long term, we used OGR1 cell line

that simultaneously expresses EGFP and DsRed driven by OCT3/4 and

CAGGS respectively. mES cells were plated sparsely on 0.6 kPa substrates

on top of grid dishes to track particular cells of interest over a long pe-

riod. Ferromagnetic magnetic beads were attached to the apical surface of

the cells via integrins and incubated for 15 min. A 17.5-Pa local stress at

0.3 Hz was applied for ∼1 hr, which increased mES cell spreading area by

∼65% (Fig. 2.17). EGFP and DsRed expressions driven by OCT3/4 and by

CAGGS promoter respectively were monitored every few hours. Continued

expression of DsRed, under the promoter CAGGS, indicates the cell to be

in an active state of translation. Loss of EGFP expression indicates down-

regulation of OCT3/4, one of the hallmarks for differentiation. The stressed

cells were labeled as +stress, +LIF/-RA condition. The cells without beads

(i.e., no stress) in the same dish were also monitored (-stress, +LIF/-RA).

Other dishes were monitored and EGFP-OCT3/4 were quantified as negative

(+LIF/-RA) or positive (LIF/+RA) controls. 1 M retinoic acid (RA) was

used in the LIF/+RA condition. Students t-test was used for all statistical

analyses.

2.5.10 Variation of polyacrylamide gel substrate stiffness

Polyacrylamide gels were made as described before [55, 56]. The elastic

Youngs modulus of the polyacrylamide gels used in this study was 0.15 kPa
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(0.04% bis-acrylamide, 3% polyacrylamide), 0.6 kPa (0.06% bis-acrylamide,

3% polyacrylamide), 3.5 kPa (0.1% bis-acrylamide, 5% polyacrylamide) and

8 kPa (0.3% bis-acrylamide, 5% polyacrylamide) [57, 58]. 0.2µm yellow-

green fluorescent microspheres (Molecular Probe) were embedded onto the

gels for traction measurements. In some experiments, prepared gels and

rigid glass substrates were coated with type I collagen (100 µg/ml and 40

µg/ml respectively). In some experiments, rigid glass substrates were coated

with low type I collagen concentration of 1 ng/ml to maintain the cell in a

rounded shape. Micropatterned adhesive islands on soft polyacrylamide gels

were produced following published methods [27].

2.5.11 Drugs, antibodies, and immunofluorescence staining

LatA, PDGF, Rhodamine-phalloidin, Hoechst 33342 were from Sigma. Bleb-

bistatin was from Toronto Research Chemicals. PP1 and ML-7 were from

Biomol. NSC23766 was from Tocris Bioscience. Y-27632 was from Cal-

biochem. Anti phospho-MLC antibodies (Thr18/ Ser19, IF 1:50) and Cdc42

antibodies (WB 1:1000) were from Cell Signaling Technology. Goat anti-

GAPDH (HRP) polyclonal antibody (WB 1:10,000) from Genscript Corpo-

ration and secondary antibodies (IF 1:100 and 1:200, WB 1:10,000) were

from Abcam. For immunofluorescence microscopy, cells were fixed with 4%

paraformaldehyde and permeabilized with 0.5% Triton X-100. Cells were

incubated with primary antibodies at 4◦C overnight and secondary antibody

labeling was performed at room temperature for 1 hr. The actin cytoskele-

ton was stained using 0.76 µM Rhodamine-phalloidin for 20 minutes. The

DNA was counter-stained with 1-10 µg/ml Hoechst 33342 for 10 min and the

coverslips were rinsed three times in cytoskeleton buffer solution and once in

dH2O before mounting. F-actin content was quantified along the lines shown

using ImageJ.
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Figure 2.1: Embryonic stemcells spread optimally on substrate of
0.6 kPa

Cells were plated overnight on collagen-1 coated substrates with rigidity of
0.15-kPa, 0.6-kPa, 3.5-kPa, or 8-kPa polyacrylamide gel, or rigid glass. Left:
ES cells (n=9 cells for 0.15 kPa, 8 for 0.6 kPa, 7 for 3.5 kPa, 7 for 8 kPa,
12 for glass). Right: cells differentiated from ES cells (ESD) (n=12 cells for
0.6 kPa, 9 for 3.5 kPa, 8 for 8 kPa, 15 for glass). Means ± s.e.; at least
three independent experiments. (* p<0.05; ** p<0.001). [From Chowdhury,
F. et al. (2010) Nature Materials 9: 82- 88]
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Figure 2.2: mES cells are ∼10-fold softer than their differentiated
counterpart ESD cells

An oscillatory stress of 17.5 Pa at 0.3 Hz was applied to either ES cells
or ESD cells via RGD-coated magnetic beads. Cells were plated overnight
on collagen-1 (40 µg/ml) coated glass dishes. Although ES cells generally
appear in lumps [48], their stiffness values do not change whether they are
single individual cells or in lumps. In all our experiments, we chose to use
only sparsely plated, single individual ES cells in order to precisely quantify
cell area changes. The elastic stiffness or dissipative stiffness of the cells
was computed [48]. n=∼200 mES cells, and n=∼250 ESD cells. At least 3
separate experiments. [Chowdhury, F. et al. (2008) Biophysical Journal 95:
5719- 5727 & Chowdhury, F. et al. (2010) Nature Materials 9: 82- 88]
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Figure 2.3: mES cells but not ESD cells spread in response to a
local cyclic stress

A mouse embryonic stem (mES) cell (a−d) but not an embryonic stem cell-
differentiated (ESD) cell (e − h) spreads in response to a local cyclic stress.
A 4-µm RGD-coated ferromagnetic bead (the black dot) was attached to the
apical surface of the cell for 15 min via integrins around. A local oscillatory
stress of 17.5 Pa at 0.3 Hz was applied continuously. a, The applied stress
induced a protrusion in an ES cell as early as 30 sec that grew with time
(insets). (Scale bar, 10 µm.) b, Quantitative analyses of periphery movement
velocity normal to the cell boundary in the ES cell (Normal vel; protrusion is
shown as positive values; retraction is shown as negative values). The normal
velocity is shown as a function of normalized arclength of the cell contour and
time [24]. Note on the normal velocity map there are three visible hotspot
bands indicating the spreading of ES cells induced by mechanical stress. c,
Mean normal velocity around the ES cell periphery is shown as a function
of time. A greater than zero value represents an overall spreading of the cell
induced by the stress. d, Progressive protrusions around the cell periphery
resulted in an increase in cell area of the ES cell. e, The ESD cell failed to
spread in response to the same amplitude of mechanical stress. (Scale bar, 20
µm.) f , Normal velocity map of cell periphery indicates that the ESD cell was
relatively quiescent and unresponsive. g, Mean normal velocity of the ESD
cells was zero over time, suggesting lack of response to the mechanical stress.
h, No change in the projected area of the ESD cell was observed over time.
In general, mES cells form colonies. mES cells in a colony also spread in
response to a local cyclic stress (17.5 Pa at 0.3 Hz) (see Fig. 2.14), suggesting
that our findings on individual single cells are applicable to a colony of mES
cells. [Chowdhury, F. et al. (2010) Nature Materials 9: 82- 88]
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Figure 2.4: Cell softness dictates cell spreading response to stress

a, spreading in mES cells is amplitude-dependent. Amplitude is the mag-
nitude of change in a sinusoidal oscillatory forcing system where the mean
magnitude is zero. ES cells did not spread at 0 or 3.5-Pa stress but started
to protrude and spread at 17.5-Pa stress (n=7, 5, or 9 cells for 0, 3.5, or
17.5 Pa stress, respectively). There were no significant differences in cell
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area change between 0 and 3.5-Pa stress (p>0.58, 0.23, or 0.68 at 3, 5, or 8
min). In contrast, there were significant differences between 3.5 and 17.5 Pa
stress (p<0.0007, 4.92×10−5, or 5.66×10−5 at 3, 5 or 8 min respectively).
At 17.5 Pa stress, there was significant difference in cell area between 3 min
and 5 min (p<0.05), but no significant difference in cell area between 5 min
and 8 min (p>0.23). In sharp contrast, for ESD cells and ASM cells there
were no stress-induced changes in cell area even at 17.5-Pa applied stress
(n= 7 cells for both cell types). There were no significant differences in cell
area change between 3 min and 5 min (p>0.30 for ESD and p>0.09 for
ASM) or 5 min and 8 min (p>0.47 for ESD and p>0.37 for ASM). Round
ESD cells and round ASM cells spread but to a lesser degree than mES cells
(Fig. 2.18). (Means ± s.e.; at least 3 independent experiments) b, Stress-
induced cell spreading depends on cell softness. mES cells, ESD, and ASM
cells were plated on similar culture conditions (high density of collagen-1,
100 µg/ml) and on the same substrate stiffness of 0.6 kPa. The change
in cell area of ESD and ASM cells is statistically different from mES cells
at 3 min (p<0.05). Round ESD and round ASM cells were plated on low
density of collagen-1 (1 ng/ml) coated on the rigid glass. Changes in cell
area (spreading) after 3 min of stress application (17.5 Pa at 0.3 Hz) were
plotted. Note that stress-induced cell spreading appears to be proportional to
cell softness. Cell softness correlates inversely with F-actin density in each
cell type (see Fig. 2.6). Mean ± s.e., n=7, 9, 7, 7, and 9 for ESD, round
ESD, ASM, round ASM, and mES cells respectively. c, Cell softness, rather
than cell projected area, dictates spreading or protrusion responses to stress.
Each ESD cell or ASM cell was plated on a micropattened adhesive island
(25-µm diameter circles) on 0.6 kPa substrate stiffness coated with 100 µg/ml
of type-1 collagen and thus was restricted to within an area of ∼500 µm2.
The gel surface outside the islands was uncoated and thus was nonadhesive.
No visible protrusion on the micropatterned ESD and ASM cells (µP ESD
and µP ASM) was observed when stressed for 5 min. The data of µP ESD
and µP ASM cells are significantly different from those of mES cells at 5
min (p<0.006 and p<0.007 respectively). Mean ± s.e., n=5, 5 and 9 for
µP ESD, µP ASM and mES cells respectively. [Chowdhury, F. et al. (2010)
Nature Materials 9: 82- 88]
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Figure 2.5: Stress-induced early spreading in ES cells is stress fre-
quency dependent

Stress amplitude was fixed at 17.5 Pa. Three minutes after loading, there were
significant differences in cell area changes between 0.03 and 0.3 Hz (p<0.01)
and between 1 and 3 Hz (p<0.03) but no difference between 0.3 and 1 Hz
(p>0.48). At later times after onset of loading (5 and 8 min), there were
no differences in cell areas between different frequencies. In contrast to 3
min loading in which loading frequency is optimal at 0.3-1 Hz, at 5 min
loading, there were no significant differences: p>0.20 between 0.03 and 0.3
Hz; p>0.09 between 0.3 and 1 Hz; p>0.59 between 1 and 3 Hz respectively.
At 8 min, there were no significant differences: p>0.10 between 0.03 and 0.3
Hz; p>0.15 between 0.3 and 1 Hz; p>0.69 between 1 and 3 Hz respectively.
n=6, 9, 8, or 9 cells at 0.03, 0.3, 1, or 3 Hz respectively (three separate
experiments). [Chowdhury, F. et al. (2010) Nature Materials 9: 82- 88]
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Figure 2.6: F-actin distribution in mES cells, ESD cells, and round
ESD cells on low matrix proteins (1 ng/ml collagen-1)

a, Phase contrast images of representative mES, ESD, or round ESD cell.
b, Cells were stained with rhodamin-phalloidin for F-actin (red) and Hoechst
33342 for DNA (blue). Three color lines were arbitrarily selected for quanti-
fying F-actin fluorescent intensity at 3 different cytoplasm regions. c, F-actin
fluorescent intensities along the 3 color lines in each cell. The F-actin den-
sities are lowest in the mES cell, medium in the round ESD cell, and highest
in the spread ESD cell. The F-actin densities appear to be inversely corre-
lated with cell softness and consistent with the mechanical data of these cells
in Fig. 2.4b. Solid vertical lines represent cell edges. (Scale bar, 15 µm.)
[Chowdhury, F. et al. (2010) Nature Materials 9: 82- 88]
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Figure 2.7: Stress-induced spreading in mES cells correlates with
accumulation of phosphorylated myosin light chain and elevation
of tractions at the cell edge

a, A brightfield image shows the time course of a mES cell spreading in
response to the applied stress (17.5 Pa at 0.3 Hz). b, Corresponding traction
in the same ES cell in response to the applied stress. c, Average tractions
at 1-µm annulus around the cell boundary as a function of time after stress
application. A.U.=arbitrary unit, tractions normalized by the traction at zero
applied stress. n=8 cells, mean±s.e. d, Phosphorylated myosin light chain
(MLC Phosph) was accumulated to the cell periphery (white arrow) 30 s
after stress application in comparison to a diffuse cytoplasmic distribution at
time zero. e, Phosphorylated myosin light chain at 1-µm annulus around the
cell boundary. A.U.=arbitrary unit, normalized by the values at zero applied
stress. n=23 and 11 cells for 0 and 30 sec respectively; mean ± s.e. (Scale
bar, 15 µm.) [Chowdhury, F. et al. (2010) Nature Materials 9: 82- 88]
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Figure 2.8: Stress-induced ES cell spreading depends on myosin II
activity, Src, Cdc42, but not on Rac activity

a, Summarized data after drug treatments were compared with those of un-
treated cells (n=5 cells). Control = cell areas before stress application. In-
hibiting myosin II ATPase with Blebbistatin (50 µM for 30min; n=7 cells),
inhibiting myosin light chain kinase with ML7 (25 µM for 20min; n=5 cells),
inhibiting ROCK with Y27632 (50 µM for 20min; n=5 cells), or inhibiting
Src activity with PP1 (10 µM for 1hr; n=5 cells), all prevented stress-induced
cell spreading, i.e., no significant changes in cell areas between 0 and 10 min
and between 0 and 20 min (p>0.05). For inhibiting Rac with NSC23766
(100 µM for 1hr; n=5 cells), there were significant changes in cell areas
(p<0.006 and p<0.0009) between 0 and 10 min and between 0 and 20 min.
Latrunculin A (0.1 µg/ml for 30 min) (n=10 cells) to disrupt F-actin also
prevented stress-induced spreading. Mean ± s.e. b, Cdc42 is necessary for
stress-induced spreading in mES cells. Western blots of Cdc42 in mES cells
under different conditions. Lane 1, non-target shRNA control; Lane 2-4, dif-
ferent constructs to knockdown Cdc42. An independent experiment showed
similar results. c, Corresponding changes in cell areas after stress applica-
tion after Cdc42 knockdown (17.5 Pa at 0.3 Hz). n=9, 8, 9, 8 cells for
Lane 1-4 respectively; mean ± s.e. (for Lane 1, p < 8.68×10−7 and p <
2.66×10−6 comparing between 0 and 5 min, 0 and 10 min; there were no
significant changes (p>0.05) for Lane 2 through Lane 4). Note that cdc42
knockdown correlated strongly with abolishment of stress-induced spreading
response, suggesting that Cdc42 is critical in stress-induced protrusion and
spreading. [Chowdhury, F. et al. (2010) Nature Materials 9: 82- 88]
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Figure 2.9: Phase contrast images of representative mES cells in
response to stress after different drug treatments

Untreated: control cell; Blebb: Blebbistatin (50 µM for 30min) to inhibit
myosin II ATPase; ML7 (25 µM for 20min) to inhibit myosin light chain
kinase; Y27632 (50 µM for 20 min) to inhibit ROCK;, PP1 (10 µM for
1hr) to inhibit Src; NSC: NSC23766 (100 µM for 1 hr) to inhibit Rac; Lat
A: Latrunculin A (0.1 µg/ml for 30 min) to disrupt actin microfilaments.
Clearly stress-induced spreading in mES cells are dependent on myosin II,
F-actin, ROCK and Src, but not on Rac activity. (Scale bar, 15 µm applies
to all cells) [Chowdhury, F. et al. (2010) Nature Materials 9: 82- 88]
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Figure 2.10: Nonspecifically stressing mES cells with Poly-L-lysine
coated beads did not induce cell spreading

For deforming the cell nonspecifically with poly-l-lysine coated beads (n=5;
17.5 Pa stress at 0.3 Hz), there were no significant changes in cell areas
(p>0.70 and >0.21) between 0 and 10 min and between 0 and 20 min, sug-
gesting that stress-induced spreading in mES cells is specific via integrins.
Means ± s.e. are from at least two independent experiments. [Chowdhury,
F. et al. (2010) Nature Materials 9: 82- 88]
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Figure 2.11: Knocking out Cdc42 blocks stress-induced spreading
in mES cells

Procedures were described in Methods. Corresponding sequences of shRNA
for Cdc42 were shown: Lane 1, non-target shRNA control; Lane 2-4, different
constructs to knockdown Cdc42. It appears that knockdown of Cdc42 shRNA
in Lane 2-4 completely prevented stress-induced spreading. (Scale bar, 10
µm.) [Chowdhury, F. et al. (2010) Nature Materials 9: 82- 88]
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Figure 2.12: A local cyclic stress substantially diminishes OCT3/4
expression in mES cells

a, Brightfield (BF) images (top), corresponding GFP images of OCT3/4
expression (middle), and corresponding DsRed images of a constitutive pro-
moter (CAGGS) expression (bottom), all from the same cell(s), are shown
over time. Cells attached to RGD-coated beads (black dots) were continu-
ously stressed for ∼1 hr (17.5 Pa at 0.3 Hz) and OCT3/4 expression or
CAGGS expression was measured over time in the homogeneous pluripotent
mES cells ( assessed by the uniform high GFP fluorescent intensity in all mES
cells, unique cell shapes, and colony forming capability) plated on high den-
sity collagen-1 (100 µg/ml) coated 0.6 kPa substrate. (Scale bar, 10 µm.) b,
Summarized data for the cells in mES cell culture medium that were exposed
to stress (+stress, +LIF/-RA; closed circles, n=5), the cells in the same
dish but were not stressed (stress, +LIF/-RA; open circles, n=9), the cells in
mES cell culture medium in separate dishes (+LIF/-RA; open squares, n=9),
and the cells in the differentiation medium (LIF/+RA; closed squares, n=10)
are shown here. OCT3/4 expression is normalized with respect to time zero
(control). Mean ± s.e.; two independent experiments. [Chowdhury, F. et al.
(2010) Nature Materials 9: 82- 88]
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Figure 2.13: Representative fluorescent images of OCT3/4 expres-
sion under three different conditions

Top: stress, +LIF/-RA, the cell was in the same dish as +stress, +LIF/-
RA condition. Middle: +LIF/-RA, the cell was in a different dish. Bottom:
LIF/+RA, the cell was in the differentiation medium. OCT3/4 expression
increased over time for stress, +LIF/-RA and +LIF/-RA conditions, whereas
it drastically decreased for LIF/+RA condition. Down-regulation of OCT3/4
by RA was quick because of a retinoic acid receptor binding domain in the
regulatory region of OCT3/4. (Scale bar, 10 µm.) [Chowdhury, F. et al.
(2010) Nature Materials 9: 82- 88]
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Figure 2.14: mES cells in a colony also spread in response to a local
cyclic stress

mES cells in a colony also spread in response to a local cyclic stress (17.5 Pa
at 0.3 Hz) via a RGD-coated magnetic bead. Blue arrows point to the sites
of cell protrusion. Black dots are RGD-coated magnetic beads. The cell area
increased significantly after 10-15 min of stress application. (Scale bar, 20
µm.) [Chowdhury, F. et al. (2010) Nature Materials 9: 82- 88]
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Figure 2.15: Stress-induced spreading in mES cells occurs in the
absence of serum

Compared with the mES cells cultured in 1% serum, mES cells cultured in
zero serum also responded to a local cyclic stress (17.5 Pa at 0.3 Hz), al-
though the extent of spreading was somewhat less, especially at longer times
(8 min). n= 9 and 8 for 1% serum and no serum condition respectively.
There were no significant differences in cell area change between 1% serum
and no serum for 3, 5 and 8 min (p>0.05). Mean ± s.e. Two separate
experiments. [Chowdhury, F. et al. (2010) Nature Materials 9: 82- 88]
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Figure 2.16: Quantification of magnetic bead embedment in mES
cells

An RGD-coated magnetic bead was bound to the apical surface of the mES cell
for 15 min. Then the cell was fixed and stained with rhodamine-phalloidin.
The recruitment of actin surrounding the bead (small white arrow) was due to
the formation of an integrin-mediated focal adhesion at the bead-cell surface
contact. By measuring the maximum actin ring diameter from the fluorescent
image and the maximum bead diameter from the brightfield image (large white
arrows), one can estimate the bead embedment in the cell. This representative
cell shows ∼50% embedment of the bead. (Scale bar, 15 µm.) [Chowdhury,
F. et al. (2010) Nature Materials 9: 82- 88]
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Figure 2.17: Stress-induced spreading of mES cells at different
times

A local cyclic stress (17.5 Pa at 0.3 Hz) was applied for different durations up
to 45 min. Cell areas increase by 65% at 45 min. n=9 for each data point,
up to 8 min; n=5 from 10 min to 45 min. Mean ± s.e. are from at least 3
independent experiments. [Chowdhury, F. et al. (2010) Nature Materials 9:
82- 88]
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Figure 2.18: Round ESD and round ASM cells exhibit stress in-
duced protrusion

A representative round ESD cell or round ASM cell, plated on low concen-
tration of type I collagen (1 ng/ml), exhibits stress-induced protrusion and
spreading (arrowheads), similar to an mES cell. (Scale bar, 10 µm.) [Chowd-
hury, F. et al. (2010) Nature Materials 9: 82- 88]
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CHAPTER 3

DOWNREGULATING CELL-MATRIX
TRACTIONS PROMOTE HOMOGENEOUS
SELF-RENEWAL OF EMBRYONIC STEM

CELLS
Adapted from Chowdhury et al. (2010) PLoS ONE 5(12): e15655

3.1 Abstract

Maintaining undifferentiated mESC culture has been a major challenge as

mESCs cultured, even in the presence of LIF, exhibit spontaneous differenti-

ation, fluctuating expression of pluripotency genes, and genes of specialized

cells. Here we show that, in sharp contrast to the mESCs seeded on the

conventional rigid substrates, the mESCs cultured on the soft substrates

that match the intrinsic stiffness of the mESCs and in the absence of ex-

ogenous LIF for 5 days, surprisingly still generated homogeneous undiffer-

entiated colonies, maintained high levels of OCT3/4, NANOG, and Alkaline

Phosphatase (AP) activities, and formed embryoid bodies and teratomas ef-

ficiently. A different line of mESCs, cultured on the soft substrates without

exogenous LIF, maintained the capacity of generating homogeneous undiffer-

entiated colonies with relatively high levels of OCT3/4 and AP activities, up

to at least 15 passages, suggesting that this soft substrate approach applies

to long term culture of different mESC lines. mESC colonies on these soft

substrates without LIF generated low cell-matrix tractions and low stiffness.

Both tractions and stiffness of the colonies increased with substrate stiff-

ness, accompanied by downregulation of OCT3/4 expression. Our findings

demonstrate that mESC self-renewal and pluripotency can be maintained ho-

mogeneously on soft substrates via the biophysical mechanism of facilitating

generation of low cell-matrix tractions.

Key words: cell stiffness, substrate stiffness, traction forces, differentia-

tion, pluripotency
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3.2 Introduction

Embryonic stem cells are artificial stem cells that have adapted to the in

vitro culture environment. Since the first isolation of mouse mESCs in 1981,

mESCs have served as an excellent model to understand the mechanism of

cell fate decision in developing embryos. However, the research encounters

unrelenting challenges in keeping them undifferentiated homogeneously and

directing their specific differentiation in vitro. Many studies over the years

have demonstrated that undifferentiated mESC culture contains heteroge-

neous populations which are identified by fluctuating expression of transcripts

and cell-surface markers [1-10]. Thus, well-accepted culture conditions are

limited in maintaining self-renewal and pluripotency of mESCs [11-13] and

human ESCs (hESCs) [14-16]. The importance of physical microenviron-

ments in regulating stem cell differentiation is becoming evident nowadays

[17-23]. Recently, we have demonstrated that mESCs are intrinsically soft

and respond optimally to physical forces when cultured on substrates that

match their intrinsic softness [24]. Here we demonstrate that mESCs main-

tain their pluripotent state optimally on the soft matrix via the mechanism

of generating low cell-matrix tractions and low stiffness.

3.3 Results

3.3.1 Culturing mESCs on soft substrates generates
homogeneous colonies

To explore the potential role of substrate stiffness on mESC self-renewal, we

plated mESCs on soft substrates of 0.6 kPa polyacrylamide gels (referred to

gels hereafter) that matches the intrinsic mESC stiffness or on rigid sub-

strates of polystyrene dishes (stiffness > 4 MPa) [25]; both were coated

with of type-1 collagen (collagen-1), which is known to facilitate mESC self-

renewal [26], under the standard culture conditions including LIF and animal

serum. These mESCs express EGFP under the OCT3/4 (Pou5f1) promoter

(OCT3/4::GFP; ref. 27). As the mESCs were continuously cultured to form

colonies, round and compact colonies were formed uniformly on the gels (pre-

coated with 100 µg/ml type I collagen) with high OCT3/4::GFP expression
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and high alkaline phosphatase (AP) activities (Fig. 3.1a). In contrast, the

mESCs plated on rigid dishes (pre-coated with 40 µg/ml type I collagen)

exhibited appearances of heterogeneous colony shapes, and varying levels of

OCT3/4::GFP expression and AP activity (Fig. 3.1b). Similar results were

obtained when mESCs were plated on rigid dishes coated with 100 µ g/ml

collagen-1 (Fig. 3.2), suggesting that these colonies heterogeneous shapes

and low levels of OCT3/4 expression and AP activity are due to the rigidity

of the dishes, and not due to the number of the attached collagen-1 molecules.

These data were confirmed in freshly thawed mESCs: on soft substrates (Fig.

3.3c, d), homogenous round and compact colonies corresponded to high ex-

pressions of OCT3/4::GFP (Fig. 3.3c′, d′), whereas mESCs plated directly

on rigid dishes generated heterogeneous colonies of varying shapes (Fig. 3.3a,

b), corresponding to varying expression levels of OCT3/4::GFP (Fig. 3.3a′,

b′). Interestingly, the mESCs plated on mouse embryonic fibroblast (MEF)

feeder cells exhibited various shapes of colonies ranging from very round to

somewhat flattened (Fig. 3.3e, f), corresponding to heterogeneous expression

levels of OCT3/4::GFP (Fig. 3.3e′, f′). The differences in colony shapes and

OCT3/4 expression between the mESCs on soft substrates and the mESCs

on MEFs may be resulted from the fact that MEFs are much stiffer (∼10-

fold) than mESCs [28]. To compare different shapes between colonies on

different substrates, we measured the shape factor of mESC colonies and

found that mESCs on the soft gels are much more circular than those on the

rigid dishes or on the feeder cells (Fig. 3.3g). To further explore the effect of

the substrate stiffness on mESC culture, we withdrew LIF from the culture

for 3 days (LIF- 3 days). Interestingly, mESCs cultured on the gels were still

capable of forming round and compact colonies with the OCT3/4::GFP ex-

pression and the AP activity was maintained (Fig. 3.1c); remarkably, even in

the absence of LIF for 5 days (LIF- 5 days), mESCs on gels still maintained

high levels of OCT3/4::GFP, NANOG, and the AP activity (Fig. 1e, g).

In sharp contrast, the mESCs on rigid substrates in LIF- 3 days started to

exhibit signs of cell differentiation with significantly reduced OCT3/4::GFP

expression and the AP activity (Fig. 3.1d); as expected, in LIF- 5 days,

these mESCs exhibited appearances of differentiated cells with no detectable

AP activity, nor OCT3/4 and NANOG expression (Fig. 3.1f, h). These data

show that soft substrates can override the LIF-Stat3 signaling pathway for at

least 5 days in maintaining mESC self-renewal. Next, we compared the per-
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centage of OCT3/4::GFP-positive mESCs cultured on the gels with those on

rigid substrates. Remarkably, almost all mESCs (92%) cultured on the soft

gels maintained high OCT3/4::GFP expression levels in LIF- conditions (Fig.

3.4 a-g), similar to those in LIF+ conditions (93%) (p=0.83). In contrast,

when LIF was withdrawn from the culture of mESCs on rigid substrates for

5 days, OCT3/4::GFP-positive mESCs significantly decreased (from 94% to

59%, p<0.029; Fig. 3.4a-g). Taken together, these results indicate that the

substrate stiffness is a crucial extrinsic factor to sustain the self-renewal of

mESCs.

3.3.2 Pluripotency of mESCs is maintained on soft substrates

Because mESCs can self-renew efficiently on soft substrates, we asked whether

mESCs cultured on soft substrates are still pluripotent or not. The efficiency

of these mESCs to form embryoid bodies (EBs) from hanging drops was ex-

amined [29]. There were no significant differences in the efficiencies of EB

formation for mESCs on soft gels with or without LIF (p>0.25); more than

90% of the hanging drops made with the mESCs formed EBs. In sharp

contrast, EBs were formed in only 77% of the drops made with the mESCs

maintained on rigid substrates without LIF, compared with more than 90%

of the drops with the mESCs cultured on rigid substrates with LIF (p<0.01,

Fig. 3.5a). Next, we examined expression of genes associated with the undif-

ferentiated state of mESCs (OCT3/4, SOX2, NANOG, ESG1/DPPA5, and

TCF15) as well as the genes associated with cell differentiation (TWIST2

and T/Brachyury; ref. 30) in mESCs cultured on the soft gel or on the

rigid substrate with or without LIF (Fig. 3.5b). Semi-quantitative reverse

transcriptase-polymerase chain reaction (RT-PCR) data demonstrated that,

in the presence of LIF (LIF+), there were no significant differences between

the mESCs cultured on the gels and rigid substrates (Fig. 3.5b, top). How-

ever, in the absence of LIF for 5 days (LIF-), the mESCs on the soft gel

still maintained high expression levels of OCT3/4, SOX2, ESG1 and TCF15,

which were significantly downregulated in the mESCs on the rigid substrate

(Fig. 3.5b, bottom). Cell differentiation was evident in the mESCs on the

rigid substrate because the early mesodermal marker, T, was upregulated

dramatically (Fig. 3.5b, bottom). However, TWIST2, a late mesodermal
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marker, was not activated in mESCs on either the soft gels or the rigid sub-

strates (Fig. 3.5b, bottom), consistent with the fact that the mESCs on the

rigid substrates without LIF were in the very early stages of differentiation.

Noticeably, the high expression level of the gene responsible for tumorigenic

growth of mESCs, Eras [31], was still maintained in the mESCs on the soft

gel in LIF- conditions (Fig. 3.5b, middle). This finding led to our investiga-

tion into the formation of teratomas by these mESCs. When mESCs on the

soft gel with LIF were transplanted to NOD-SCID mice subcutaneously for 6

weeks, they grew into a well-developed teratoma (Fig. 3.6a, dashed-circles)

with cell types of three germ layers (Fig. 3.6c-e). As expected, teratomas

were formed when the mESCs on the rigid substrate with LIF were trans-

planted. Intriguingly, when the mESCs maintained on the gels without LIF

for 5 days were transplanted for 7 weeks, they were able to grow into a well-

developed teratoma (Fig. 3.6b, dashed-circle on the left) consisting of cell

types of three germ layers, much larger than the teratoma generated from the

mESCs on the rigid substrate without LIF (Fig. 3.6b, dashed-circle on the

right). This result is consistent with the high expression level of Eras in the

mESCs on the soft gel without LIF and the low expression level of Eras in the

mESCs on the rigid substrate without LIF (Fig. 3.5b). To determine if our

approach could be extended to other mESC lines and for long term cultures,

we initiated culture of another established line of mESCs (W4, 129/SvEv).

Remarkably, after W4 mESCs were passaged more than 15 times on the soft

gels without exogenous LIF continuously for more than 2 months, they still

exhibited round, compact colonies with relatively high levels of OCT3/4 ex-

pression and the AP activity (Fig. 3.7, row 3). In contrast, W4 mESCs

cultured on the rigid dishes for the same duration, even in the presence of

LIF, exhibit irregular shapes of colonies with some differentiated cells at the

periphery of the colony and with low levels of AP activity and OCT3/4 ex-

pression (Fig. 3.7, row 1). These results demonstrate that the soft substrate

strategy to promote self-renewal of ESCs could be applied to other mESCs

for long term cell cultures.
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3.3.3 A biophysical mechanism of substrate softness mediated
mESC self-renewal

Increasing evidence suggests that matrix substrate rigidity influences cell

functions via a biophysical mechanism [18, 19]. To explore the biophysical

mechanism of mESC self-renewal on soft substrates, we plated mESCs on 0.6

kPa (soft), 3.5 kPa (relatively stiff), or 8 kPa (stiff; ∼10-fold greater than the

intrinsic mESC stiffness) substrates in the presence or absence of LIF and

allowed individual cells to grow into colonies. As observed earlier, mESCs on

0.6 kPa substrates formed round compact colonies (Fig. 3.8a), maintained

high OCT3/4::GFP, with or without LIF (Fig. 3.8b). Tractions on the basal

surface and stiffness on the apical surface of the colony did not change with

or without LIF on the 0.6 kPa soft substrate (Fig. 3.8c-e). However, as the

substrate stiffness increased from 0.6 to 3.5, and then to 8 kPa, the mESC

colonies with LIF became irregular and expressed low levels of OCT3/4 (Fig.

3.8a, 3.8b). The shapes of the colonies on the 8 kPa substrate are similar to

those from the mESC colonies on the rigid substrate of polystyrene dishes,

suggesting that the 8 kPa substrate and the rigid substrate are equivalent

in rigidity in regards to mESC stiffness: stiffnesses of both substrates are

much higher than mESC stiffness. The mESC colonies on 3.5 kPa substrates

with LIF generated higher tractions and higher stiffness than on 0.6 kPa

substrates with LIF, but similar tractions as those on 8 kPa substrates (Fig.

3.8c-e). This result suggests that mESCs have started to respond mechani-

cally (changes in traction and stiffness) and biologically (changes in OCT3/4

expression) when the substrate stiffness is increased by as little as a factor

of 6 (from 0.6 to 3.5 kPa). In LIF- conditions for 5 days, the mESC colonies

on 8 kPa substrates, similar to those on 3.5 kPa substrates, became much

more spread and irregular, showing signs of differentiation (Fig. 3.8a), and

significantly elevated their tractions and stiffness (Fig. 3.8c-e), accompanied

by diminishing OCT3/4 expression (Fig. 3.8b). To further examine the role

of myosin II in traction generation of the colonies, we cultured mESCs on 8

kPa substrates with blebbistatin (10 µM) for 5 days. After treatment with

blebbistatin to inhibit myosin II, the colonies became much more uncompact

and irregular (Fig. 3.9a, b), and tractions were downregulated (Fig. 3.9c, d).

Addition of blebbistatin significantly lowered the levels of OCT3/4 expression

in the colonies without LIF from the control (untreated cells with LIF). These
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data are consistent with a recent report that blebbistatin treatment decreases

compactness and slightly downregulates OCT3/4 expression of human ESC

(hESC) colonies [32]. Together with the published reports that mouse em-

bryos cease to develop when myosin-IIs are genetically knocked out [33,34],

differentiation of mesenchymal stem cells directed by matrix substrates is

blocked when myosin-II-dependent tractions are inhibited [17], and external

stress-induced mESC spreading and differentiation are inhibited by myosin-II

inhibitor blebbistatin [24], our present data demonstrate that mESC colonies

on soft substrates maintain their self-renewal and pluripotency via the bio-

physical mechanism of generating low cell-matrix tractions and low stiffness.

3.4 Discussion

Our data show that when the stiffness of matrix substrates matches that of

the soft mESCs, the soft substrate promotes self-renewal and pluripotency

of mESCs, even in the absence of LIF for at least 5 days. These results

demonstrate that the substrate softness plays a crucial role in the main-

tenance of mESC self-renewal and pluripotency. It is clear from our data

that our approach can generate homogeneous mESC culture, a major ad-

vantage over the standard culture approach. Importantly, plating mESCs

on soft substrates is able to override the differentiation propensity triggered

by LIF withdrawal from the medium. Our discoveries on the importance of

matching the material properties of the substrate with those of the mESCs

on the optimal mESC self-renewal and pluripotency functions extend the

previous findings in skeletal and cardiac muscle cells [35,36] and the finding

from a very recent report on skeletal muscle stem cells [37]. The generation

of a homogeneous undifferentiated population of all mESC colonies on the

soft substrates indicates that the current protocols to culture mESCs can be

substantially improved by plating the mESCs on soft substrates. Further-

more, our data raise a potential significant impact of substrate stiffness on

tumorigenesis by ESCs (Fig. 3.6). Understanding this role may dramatically

improve the safety issue of ESCs and induced pluripotent stem cells (iPSCs)

in regenerative medicine.

Recently we have shown that mESCs downregulate expression of the pluripo-

tency marker OCT3/4 and differentiate as increased stresses via integrins are
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applied externally [24]. We have recently shown that single mESCs gener-

ate low basal tractions on soft substrates and increase their basal tractions

as substrate stiffness increases [38]. However, stiffness at the apical sur-

face of single mESC does not vary with basal substrate stiffness [38]. In

contrast, in this study, we show that both apical stiffness and basal trac-

tions of mESC colonies increase with substrate stiffness, possibly due to the

fact that mechanosensing capacities of the E-cadherins [39] at lateral ad-

herens junctions have promoted mechanical interactions between the apical

cytoskeleton and the basal cytoskeleton. E-cadherins have been implicated in

self-renewal and pluripotency of ESCs [40, 41]. E-cadherin knockout mESCs

have shown evidence of LIF independence [42]. Recently it is demonstrated

that E-cadherin and myosin IIA play important roles in facilitating hESC

self-renewal and survival [32]. It is possible that cell-matrix tractions and cell-

cell tractions exert opposing effects on self-renewal and differentiation: high

cell-matrix tractions promote differentiation whereas high cell-cell tractions

promote self-renewal and pluripotency. Blebbistatin or myosin-II knockdown

inhibits both cell-matrix tractions and cell-cell tractions [32]; thus the effects

of these interventions on ESC pluripotency and differentiation could be com-

plicated. We have noticed that on the same ∼8 kPa substrate, hESC colonies

generate ∼10-fold higher cell-ECM tractions (RMS traction ∼600 Pa, peak

traction ∼2000 Pa; ref. 32) than mESC colonies (RMS traction ∼60 Pa, peak

traction ∼200 Pa; our present study), suggesting that hESC colonies may ei-

ther generate much greater total force or transfer more myosin II-dependent

contractility to the matrix substrate and less force between cell-cell adhesions

than mESC colonies. In the future the relationship between cell-cell adhe-

sion E-cadherins and cell-matrix adhesion in mechanics, biology, self-renewal,

and pluripotency of mESCs and hESCs needs to be elucidated. The present

data also show that expression of OCT3/4 is inversely associated with the

traction and the stiffness of the mESC colonies. These findings lead us to

the following question, what is the underlying mechanism by which soft-

substrates can maintain self-renewal and pluripotency of mESCs? Our data

demonstrate that mESC colonies maintain their self-renewal and pluripo-

tency when the tractions and stiffness of the colonies are kept low on the soft

substrate. In addition, pluripotency marker OCT3/4 is inversely associated

with the traction and the stiffness of the mESC colonies. These data indi-

cate that mESC colonies tend to differentiate when both myosin-II dependent
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basal tractions and apical cell stiffness increase as the substrate stiffness in-

creases. The findings of low tractions (prestress) in mESCs in the present

study have been predicted from our previous analyses of molecular basis of

mESC rheology using the model of molecular dynamics simulation and living

cell rheological measurements [28]. Currently the exact underlying mecha-

nism that connects the low traction and low stiffness on soft substrates with

the self-renewal and pluripotency of mESCs is not clear. However, it is pos-

sible that genes essential to sustain cellular pluripotency are kept turned-on

by low mechanical stresses. Once the high endogenous mechanical stresses

generated on the rigid substrates are applied to the cytoskeleton and the

nucleus, genes associated with cell differentiation and/or the transcription

factors that regulate expression of such genes are directly activated whereas

pluripotency genes are inhibited [43, 44], via the molecular mechanisms of

conformational change or unfolding of cytoskeletal proteins and/or nuclear

proteins [44-47]. This interpretation is consistent with a report that sim-

ulated microgravity promotes formation of ball-like ES cell colonies in the

absence of LIF [48]. Alternatively, soft substrates may promote production

of and/or cellular accessibility to LIF and/or other soluble growth factors to

sustain self-renewal and pluripotency of mESCs. However, this alternative

interpretation is not able to explain the fact that saturating amounts of LIF

or other soluble growth factors alone fail to maintain homogenous popula-

tions of mESC colonies on rigid substrates, whereas soft substrates can. It

is interesting that ROCK inhibitors that inhibit Rho-mediated cytoskeletal

tension can promote self-renewal and pluripotency and reduce apoptosis of

hESCs [49], consistent with our ideas on the role of low tractions on self-

renewal and pluripotency of mESCs.

Collectively, we conclude that soft substrates promote self-renewal and

pluripotency of mESCs primarily via the biophysical mechanism of low-

traction/low-stiffness-dependent gene regulation. It remains to be seen if

our findings and the underlying biophysical mechanism on mESCs can be

extended to hESCs and iPSCs since recent advances in defining culture con-

ditions chemically are not sufficient to prevent spontaneous differentiation of

hESCs [50]. Several recent papers have reported the improved long term self-

renewal of hESCs using synthetic surface molecules or recombinant matrix

molecules [14-16]. However, significant challenges remains for hESC culture,

since long term culture and passages of hESCs lead to significant changes of
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copy number variations (CNVs) and gene expressions [51]. It is conceivable

that if the substrate softness would match that of the hESCs, homogenous

populations of self-renewal, pluripotent hESCs might be generated for long-

term without inducing changes in CNVs and/or gene expressions.

3.5 Methods

3.5.1 Cell culture

A mouse embryonic stem cell (mESC) line, namely OGR1, that expresses

EGFP under the promoter of OCT3/4 (OCT3/4::GFP) [27] was used in this

study. These undifferentiated mESCs were maintained in the standard cul-

ture condition as described before (ref. 24) in the presence of Leukaemia

Inhibitory Factor (LIF; Chemicon). Briefly, undifferentiated mESCs were

cultured in the ES cell medium consisting of high glucose-Dulbeccos mod-

ified Eagles medium (Invitrogen) supplemented with 15% ES-qualified fe-

tal bovine serum (FBS; Invitrogen), 2 mM L-glutamine (Invitrogen), 1mM

sodium pyruvate, 0.1 mM nonessential amino acids (Invitrogen), penicillin/

streptomycin, 0.1 mM beta-mercaptoethanol (Sigma), and 1000 U/ml recom-

binant LIF (ESGRO; Millipore) at 37◦C with 5% CO2. Cells were passaged

every 2-3 days at a ratio of 1:6 using TrypLE (Invitrogen). The medium

was changed daily. For experiments, cells were plated on type I collagen

(Sigma)-coated (40 or 100 µg/ml) rigid dishes or type I collagen-coated (100

µg/ml) polyacrylamide gels (0.6, 3.5, and 8 kPa) and cultured up to 5 days

(unless stated otherwise) with or without LIF. The polymer layer formed by

the collagen-1 molecules are too thin (�0.2 µm) to affect the modulus of the

polyacrylamide gel (∼70 µm in thickness) that an attached cell feels. For

some experiments on 8 kPa substrates we added 10 µM Blebbistatin for 5

days. Blebbistatin containing medium was changed every two days as it is

stable for up to 48 hours [17].

3.5.2 Flow Cytometric Sorting

OGR1 mESCs were sorted on the i-Cyt Reflection system with a nozzle

of 100 µm and at a rate of 3000 to 5000 cells/second at 20 psi. Under
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the identical culture conditions, wild-type mESCs (W4, 129S6/SvEvTac)

having no fluorescent protein expression were served as a negative control.

Trypsinized cells were suspended in ice-cold PBS containing 10% FBS just

before each experiment.

3.5.3 EB formation assay

Hanging drop cultures were prepared using 25 µl droplets each having 600

cells to initiate embryoid body (EB) formation [29]. After maintained in the

presence or the absence of LIF for 3 days, mESCs were allowed to aggregate

and form EBs in the bottom of the hanging drops made with the ES medium

without LIF for 3 days. Then, they were transferred to adherent culture

dishes. The number of EBs formed was counted and therefore the efficiency

of EB formation was calculated for each test condition.

3.5.4 Teratoma formation assay

One million viable mESCs (OGR1) in ice-cold 25 µl PBS together with 25

µl of 0.3 µg/ml type-I collagen were injected into NOD-SCID mice subcu-

taneously. Health of mice was monitored regularly. They were humanely

sacrificed after 6-7 weeks (according to the protocol approved by IACUC,

University of Illinois) and teratomas were isolated. These teratomas were

fixed with 4% paraformaldehyde in PBS at 4◦C overnight and further pro-

cessed for standard Alcian Blue, Hematoxylin and Eosin (H&E) staining.

3.5.5 Traction measurements

Cell traction measurements have been described in details elsewhere [53].

Briefly, images of red fluorescent submicrobeads (0.2µm) embedded into the

apical surface of gels (∼70 µm in thickness) were taken during experiments

and compared with a reference image at the end of experiment after trypsiniz-

ing colonies from the substrates. The displacements of the beads were com-

puted to generate a displacement field of the colony generating forces on

the underlying substrates. A traction field was then calculated from the

displacement field by an established method [54].
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3.5.6 Quantification of cell stiffness

Complex stiffness was measured by applying an oscillatory magnetic field

(i.e., applied specific torque, T, or the applied stress=17.2 Pa at 0.3 Hz) and

measuring the resultant oscillatory bead motions (i.e., the measured strain)

[24, 28, 55-57]. The stiffness has the units of torque per unit bead volume

per unit bead displacement (Pa/nm), which is independent of any model.

The beads were coated with saturating amounts of RGD (Arg-Gly-Asp) to

bind specifically to integrin receptors. The beads were embedded ∼50%

into the cell apical surface as shown earlier [24]. We used the 50% bead-

cell surface contact area and an established finite element model to convert

stiffness (Pa/nm) to modulus (Pa) [58] and determined that 1 Pa/nm stiff-

ness is equivalent to 2.5 kPa modulus. In the analysis, only those beads

whose displacement waves conformed to the input sinusoidal signals at the

same frequency were selected which is essential to filter out the noise (e.g.,

spontaneous bead movements or microscope stage shifts). Beads with dis-

placements less than 5 nm (limitation of resolution detection) and loosely

bound beads were not selected for analysis. To increase signal to noise ratio,

peak amplitude of the displacement d (nm) was averaged over 5 consecutive

cycles.

3.5.7 Gene Expression Analysis

The same amount of total RNA (1.6 µg) from mESCs in each condition was

used to synthesize the first strand cDNA as previously described [59]. PCR

mixtures by Phusion DNA polymerase (NEB) were prepared according to

the manufacturers instructions. The PCR conditions were as follows: first,

denaturing at 98◦C for 1 min, different number of cycles of denaturing at

98◦C for 10 sec, annealing at 65◦C for 30 sec, and extension at 72◦C for 30

sec, followed by a final extension reaction at 72◦C for 7.5 min. As to the

PCR cycles for the samples for LIF- conditions, 16 cycles were applied for

OCT3/4, ESG1 and EF1α; 25 cycles for SOX2 and TCF15; 27 cycles for

TWIST2 and T(Brachyury); 29 cycles for Eras. Primer pairs used in this

study have been described earlier: Eras [31], OCT3/4 [60], ESG1 and EF1α

[59], TCF15 and TWIST2 [30], T [61], SOX2 [62], NANOG [63].
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3.5.8 AP Staining

Mouse ESCs were fixed in Dents fixative (DMSO:100% Methanol=1:4) at -

20◦C for 1hr, and washed with PBS for three times. The Alkaline Phosphate

(AP) kit (Sigma-Aldrich 85L3R) was used according to the manufacturers

instructions.

3.5.9 Immunofluorescent microscopy

Immunofluorescent microscopy was carried out essentially as described previ-

ously [64]. Briefly, mESCs cultured on glass-bottom culture dishes (MatTek

corporation) were fixed with Dents fixative at -20◦C overnight, washed with

PBST (0.1% Tween in PBS) twice and blocked with PBSMT (2% skimmed

milk in PBST) for 1hr. Fixed mESCs were incubated with goat anti-mouse

NANOG polyclonal antibody (R&D systems) diluted with PBMST at the

1:200 ratio at 4◦C overnight. Normal lamb serum was diluted with PBSMT

at 1:1,000 and used as a negative control. After two washes with PBSMT

for 30min each at 4◦C followed by three more washes at room temperature,

Alexa Fluor 546 rabbit anti-goat IgG (Molecular Probes) was diluted with

PBSMT at the 1:400 ratio and used as a secondary antibody. After five

washes with PBSMT as before, stained mESCs were incubated with DAPI

(5 µg/ml, Sigma) at room temperature for 15 min, and mounted into glycerol

gelatin (Sigma) for fluorescence microscopy (Leica DMI4000B).

Immunofluorescent microscopy for paraffin-embedded sections of teratomas

was carried out as described already [64] with following modifications. De-

paraffinized 4-6 µm sections were rehydrated with Histo-clear II (Fisher)-

alcohol series, immersed in 10 mM sodium citrate buffer (pH 6.0) [65], and

heated by a microwave oven (LG, 1200W) for 5 min at level 5, 3 times.

Then, blocked sections were incubated at RT for 1.5 hr with culture super-

natant from mouse anti-nestin monoclonal antibody (Rat-401 raised by Dr.

Susan Hockfield), or goat anti-a-fetoprotein (Santa Cruz Biotechnology Inc.)

or rabbit anti-a-smooth muscle actin polyclonal antibodies (Abcam) diluted

with 2% skimmed milk in PBS with 0.1% Tween 20 (PBSMT) at 1:100. Nor-

mal mouse, rabbit, or lamb sera diluted with PBSMT at 1:250 were used as

negative controls. After 3 washes with PBSMT at RT for 10 min each, sec-

tions were incubated at RT for 1.5 hr with Alexa Fluor 488-conjugated goat
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anti-mouse IgG (whole molecule; Invitrogen), or Alexa Fluor 546-conjugated

rabbit anti-goat or goat anti-rabbit IgG (whole molecule; Invitrogen) diluted

with PBSMT at 1:400. After 4 washes with PBSMT, sections were stained

with 0.5mg/ml DAPI (Sigma) in PBS, and mounted with glycerol-gelatin

(Sigma).

3.5.10 Serial Passaging on soft substrates

An undifferentiated mESC line, W4 (129/SvEv), was serially passaged on

rigid dish and soft gel (0.6 kPa) under LIF +/- condition for over three

months. Both rigid dish and soft gel were coated with type I collagen. W4

cells were thawed on mitotically inactivated primary mouse embryonic fi-

broblast. After recovery, W4 cells were passaged onto 0.1% gelatin coated

polystyrene tissue culture dishes couple of times to remove feeders. Then W4

cells were plated on rigid dishes or soft gels. On soft gels, cells were initially

plated at a high concentration which was found to be useful particularly for

LIF- condition. On the very first passage, cells were first plated with LIF+

medium. LIF+ medium was withdrawn the following day from one of the

soft gels and labeled as LIF- condition. From this point onward exogenous

LIF was never added for the LIF- condition on the subsequent passages. W4

cells on gel were passaged 1:3 ratio on subsequent passages. The medium

was changed every two days and passaged every 3-4 days.

3.5.11 Polyacrylamide Substrates

Polyacrylamide substrates were made of as described before [66]. The elas-

tic Youngs modulus of the polyacrylamide substrates used in this study

was 0.6 kPa (0.06% bis-acrylamide,3%polyacrylamide), 3.5 kPa (0.1% bis-

acrylamide, 5% polyacrylamide), and 8 kPa (0.3% bis-acrylamide, 5% poly-

acrylamide) [67, 68)] Red fluorescent microspheres (0.2 µm; Molecular Probe)

were embedded onto the gels for traction measurements so that EGFP expres-

sion in OGR1 mESC colonies did not interfere with traction measurements.
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3.5.12 Statistical Analysis

Students t-test was applied to all statistical analyses.
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Figure 3.1: Soft substrates promote mouse embryonic stem cell
(mESC) self-renewal

a, mESCs on the substrates of 0.6 kPa stiffness (Gel (0.6 kPa)) always formed
round and compact colonies (left) with uniform OCT3/4::GFP expression
(middle) and the high AP activity (right) in the presence of LIF (LIF+).
Arrowheads indicate that marked colonies were washed out during the stain-
ing procedure to measure the AP activity. b, mESCs on the rigid substrates of
polystyrene dishes (Rigid dish) with LIF formed round colonies and a spread
irregular colony (left; white arrows) with heterogeneous OCT3/4::GFP ex-
pression (middle) and varying degrees of the AP activity (right). c, mESCs
on the soft substrates without LIF for 3 days (LIF- 3 days) still formed round
colonies with uniform OCT3/4::GFP expression and the AP activity main-
tained. d, mESCs on the rigid dish without LIF for 3 days exhibited irregular
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spread colonies with OCT3/4::GFP expression and the AP activity reduced

dramatically. e, The soft substrates supported mESC self-renewal without

LIF for 5 days (LIF- 5days) with high uniform OCT3/4::GFP expression

and the AP activity maintained. f , On the rigid dishes, 5 days of cul-

ture without LIF resulted in irregular spread colonies with extremely low

OCT3/4::GFP expression and a undetectable AP activity.(g − h), Immuno-

cytochemistry with mESCs maintained on the soft (g) or the rigid substrates

(h) without LIF for 5 days. Images for bright field (left) and nuclear staining

with DAPI (middle) show appearance of colonies. High NANOG expression

was observed in the mESCs on the soft substrates (g, right), but not in the

ones on the rigid dish (h, right). Three independent experiments showed very

similar results. Bars, 100 (a-f) or 50 (g & h) µms.[Chowdhury et al. (2010)

PLoS ONE 5(12): e15655]
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Figure 3.2: Mouse ESCs were plated on collagen-1 (100 µg/ml)
coated rigid dishes

Mouse ESCs were plated on collagen-1 (100 µg/ml) coated rigid dishes and
cultured for 5 days in LIF+/- conditions. The colonies were immunostained
for OCT3/4 and the alkaline phosphatase (AP) activity. Colonies exhibited
similar phenotypes to the ones maintained on 40 µg/ml collagen-1. [Chowd-
hury et al. (2010) PLoS ONE 5(12): e15655]
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Figure 3.3: Mouse embryonic stem cells (mESCs; OGR1) thawed
and maintained on soft gels formed round and compact colonies as
they did on feeders

Bright (a − f) and dark (a′ − f ′) field images are shown. (a − a′) ORG1
mESCs thawed on rigid dishes formed small spread colonies on day 3. How-
ever, OCT3/4::GFP expression at this stage were not significantly dimin-
ished. (b − b′) mESCs thawed on rigid dishes on day 6 showed appearance
of spread and differentiated cells. The corresponding dark field image showed
very low GFP expression. (c − c′) mESCs thawed on the soft gels started
to form round and compact colony on day 3 with GFP expression. (d − d′)
on day 6, these mESCs on the soft gel still formed very round and compact
colonies with GFP uniformly expressed. (e − e′) On day 3, mESCs thawed
on feeders appeared to have colonies of various shapes ranging from relatively
round to somewhat flattened (white arrow in e). The flattened colony showed
low GFP expression (arrow in e). (f − f ′) On day 6, mESCs formed rel-
atively round colonies on feeders with GFP expression, except for the cells
on the edge of the colony whose GFP expression was relatively low, showing
early signs of differentiation. g, Comparisons among the shapes of colonies
on the rigid dish, the gel and the feeders by quantifying the colony shape factor
[68]. The colony shape factor (=4π Area/Perimeter2; Area=colony projected
area; Perimeter=perimeter length of a colony) measures to what extent the
colony is similar to a true circle. A true circle has a value of unity. Data
are mean s.e.m., n=29, 32, 30 colonies for the rigid dish, the gel and the
feeders respectively. p<0.0001 between any two conditions. Bars, 100 µm.
[Chowdhury et al. (2010) PLoS ONE 5(12): e15655]
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Figure 3.4: Quantification of OCT3/4 expression mESCs on soft
substrates or rigid substrates

(a − d) Representative density plots for FACS (fluorescence-activated cell
sorting) of mESCs in each condition are shown. The x-axis is for forward
scatter and the y-axis, side scatter. An identical gate was applied to all con-
ditions. LIF- condition on rigid dishes yields less number of cells as some
cells lose adhesion and float away [52]. This can be seen in the density plot
in (d). e, Representative plots showing high OCT3/4::GFP expression (530
nm) found in cells maintained in the presence (blue) or absence (orange)
of LIF. The threshold of GFP expression is arbitrarily determined according
to the result from sorting wild-type mESCs (W4) that do not express any
fluorescent protein. Two or three percentages of sorted mESCs on the soft
substrates with or without LIF are GFP-negative, respectively. f , The per-
centage of GFP-negative mESCs increased to 21% of sorted mESCs on the
rigid substrates without LIF from 3.2% of those with LIF. g, Data summary
shows OCT3/4::GFP-positive mESCs on the soft substrates or the rigid sub-
strates with or without LIF. An identical gate was applied to all replicates.
Mean ± s.e. (n=4); at least three independent experiments. [Chowdhury et
al. (2010) PLoS ONE 5(12): e15655]

75



Figure 3.5: Functional validation and transcript analysis of mESCs
on soft substrates

a, Efficiencies of embryoid body (EB) formation are compared among of
mESCs cultured on soft substrates and rigid dishes with or without LIF.
mESCs on soft substrate retain higher EB forming capacity even in the ab-
sence of LIF as compared to those on rigid dishes. b Semi-quantitative RT-
PCR was carried out with cDNAs from mESCs cultured in LIF+ and LIF-
medium for 5 days either on the soft substrates (G) or the rigid substrates (R).
Expression of pluripotency markers OCT3/4, ESG1, SOX2 and TCF15, the
pan-mesodermal maker Brachyury (T), the late mesodermal maker TWIST2,
and the tumorigenic marker ERAS were analyzed. EF1α is a loading con-
trol. Duplicates showed similar results. c, mESCs cultured on soft substrates
without LIF for 5 days developed a teratoma, when injected into NOD-SCID
mice subcutaneously, giving rise to all three germ layers. Ne, neural tissue;
Ca, cartilage; Mu, Mucous membrane; Ep, epidermis; Ke, keratin pearl; Cc,
chondroitin sulfate-rich cartilage; Ci, ciliated epithelium. Bars, 50 µm. d,
mESCs cultured on soft substrates with LIF for 5 days developed a teratoma.
The paraffin-embedded teratoma sections confirmed the presence of all three
germ layers by immunostaining (nestin: ectoderm, α-fetoprotein: endoderm,
and α-smooth muscle actin: mesoderm). Bars, 20 and 50 µm as indicated.
[Chowdhury et al. (2010) PLoS ONE 5(12): e15655]
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Figure 3.6: Mouse ESCs maintained on soft gels under LIF+ and
LIF- conditions formed a well-developed teratoma when trans-
planted into NOD-SCID mice subcutaneously

a, Teratomas (dashed circles) are developed from mESCs cultured on the
soft gel in the presence of LIF. b, The teratoma on left is developed from
mESCs on the soft gel, whereas the teratoma on right is from ones on rigid
dishes in the absence of LIF. n=2 separate mice. The teratoma on right
is significantly smaller in size. (c − e) Hematoxylin and Eosin (H & E)
staining of sections from a teratoma of mESCs maintained on the soft gel
with LIF shows the presence of cells from all three germ layers. Ne: Neural
tissue (ectoderm); St: Striated muscle (mesoderm); Ci: Ciliated epithelium
(endoderm). [Chowdhury et al. (2010) PLoS ONE 5(12): e15655]
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Figure 3.7: Undifferentiated mouse ES cell line, W4 (129/SvEv),
was serially passaged (images shown at passage 15) on rigid dishes
and soft gels (0.6 kPa) under LIF +/- conditions for over three
months

Even in the presence of LIF on rigid dishes, cells start to exhibit decreased
OCT3/4 expression and the AP activity accompanied by appearance of dif-
ferentiated cells at the colony periphery (row 1). However, their self-renewal
was maintained best on soft gels in the presence of LIF, evident by the high
OCT3/4 expression level, the high AP activity, and compact and round mor-
phology (row 2). Remarkably, cells on soft gels also maintained self-renewal
in the absence of LIF with sustained OCT3/4 expression and the AP activity
(row 3). [Chowdhury et al. (2010) PLoS ONE 5(12): e15655]
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Figure 3.8: Elevated endogenous stress and stiffness lead to mESC
differentiation

a, Bright-field images of colonies on 0.6, 3.5 or 8 kPa substrates with or
without LIF. Colonies are round and compact on 0.6 kPa substrates in the
presence and absence of LIF. In contrast, colonies on 3.5 kPa, similar to 8
kPa substrates, are spread in the presence of LIF and even more spread and
irregular in the absence of LIF. b, Corresponding GFP images of OCT3/4
expression of the same colonies on 0.6, 3.5 or 8 kPa substrates. Uniform
OCT3/4::GFP expression is found in colonies on 0.6 kPa substrates but not
on 3.5 and 8 kPa substrates. c, Colonies on 0.6 kPa substrates exert lower
tractions than colonies on 3.5 and 8 kPa substrates. d, Summarized data
shows that stiffnesses of the colonies are significantly different between 0.6
and 3.5 kPa substrates, and between 0.6 and 8 kPa substrates, but similar
between 3.5 and 8 kPa (all are in LIF+ conditions). Colony stiffnesses are
similar with (n=52) or without (n=50) LIF on 0.6 kPa substrates, but are
significantly different between with (n=22) or without (n=19) LIF on 3.5 kPa,
and on 8 kPa substrates (n= 85, 10 colonies with or without LIF). Mean ±
s.e. e, RMS (root-mean-square) tractions of colonies on 0.6, 3.5 or 8 kPa
substrates. In the presence of LIF, when substrate stiffness increased from
0.6 kPa to 3.5 kPa or to 8 kPa, tractions significantly increased. Tractions
on 0.6 kPa were similar with (n=8) or without (n=7) LIF; tractions on 3.5
kPa were also similar with (n=7) or without (n=6) LIF, but tractions on
8 kPa substrates were different with (n=6) or without (n=7) LIF. Mean ±
s.e. Bars, 50 µm. (*, p<0.05; **, p<0.01; ***, p<0.001; #, p>0.05)
[Chowdhury et al. (2010) PLoS ONE 5(12): e15655]

79



Figure 3.9: Blebbistatin (10 µM) treatment on 8 kPa substrates
for 5 days decreases RMS tractions

(a − c) Blebbistatin treatment altered colony shape (a), OCT3/4 expression
(b), and tractions (c). d, For LIF+ conditions, adding blebbistatin down-
regulated tractions (p=0.032; n=10 colonies). Similary, for LIF- conditions,
addition of blebbistatin decreased tractions (p=0.03; n= 8 colonies). Mean
± s.e.m. Bars, 50 µm. e, Summarized data for OCT3/4 expression after
blebbistatin treatment. Control: colonies on 8 kPa with LIF (n=9). Blebbis-
tatin significantly lowered the level of OCT3/4 expression in colonies without
LIF (n=6) when compared with the control (p<0.01). LIF withdrawal alone
(n=7) or blebbistatin added to LIF+ condition (n=8) decreased OCT3/4 ex-
pression from the control only slightly but not significantly (p>0.25). Mean
± s.e. [Chowdhury et al. (2010) PLoS ONE 5(12): e15655]
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CHAPTER 4

CONCLUSIONS AND FUTURE
DIRECTIONS

4.1 Summary

The central theme of this dissertation was to determine the effect of physical

and mechanical cues on embryonic stem cells. We discovered a significant

role of local cyclic stresses or underlying substrates in cell fate decisions of

embryonic stem cells. In one hand, this dissertation illustrates a novel mecha-

nism of how to differentiate ESCs and on the other hand it demonstrates how

to keep them in an undifferentiated state solely by manipulating mechani-

cal factors. The work presented in Chapter 2 identifies a novel mechanism

of embryonic stem cell differentiation. It is the cell material property- cell

softness of ESCs that leads to a higher strain (for a given stress) than other

stiffer differentiated cell types and finally when reached a threshold strain

ESCs commit to differentiate. Conversely, when ESCs experience less forces

simply via down-regulation of cell-matrix tractions by culturing them on soft

substrates as opposed to rigid polystyrene dishes we observed a homogeneous

self renewal and maintenance of pluripotency as depicted in Chapter 3.

The idea of stress-mediated gene expression is not novel. Some of these

earlier studies were generally carried out by stretching or shearing by fluid

flow over entire cell surfaces followed by analyses which include average gene

expression changes from several million cells. Thus, it is difficult to reveal

underlying biophysical mechanisms of mechanotransduction. The work pre-

sented in Chapter 2 reveals for the first time that a small cyclic stress via

focal adhesions can downregulate OCT3/4 gene expression in normal intact

embryonic stem cells due to the soft material property of the cells. It is

showed in Chapter 2 that intracellular softness can determine cellular sensi-

tivity to force at a given substrate stiffness. We fixed the substrate stiffness

(to 0.6 kPa) and the soluble factor (e.g. the ES cell culture medium). Then
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we applied a small cyclic local stress to either soft ESCs or stiff ESD cells. We

found a strong positive correlation between ESC softness and cell spreading

and subsequent OCT3/4 downregulation in response to the cyclic loading.

To recapitulate the biophysical mechanism that addresses how ESCs re-

spond biologically to locally applied stresses we see that it is the cell material

property- cell softness of ESCs which makes them very sensitive to a locally

applied stresses. Since ESCs are intrinsically soft, for a given applied stress

level, the resulting strain is much higher than other stiffer differentiated

cell types. Therefore the deformation of the cytoskeleton and its associated

proteins is also higher in ESCs which in turn dictates stress-triggered spread-

ing and differentiation of embryonic stem cells. The work presented in this

Chapter 2 provides a functional significance to the recent findings on forced

unfolding of proteins [1, 2] and signaling molecules [3] within cells. Thus

we see that ESCs can be differentiated simply based on external mechanical

forces. Perhaps, the work presented in Chapter 2 is best described by Fig.

4.1 [4].

In Chapter 3 we addressed a long-standing problem in the field of stem

cell biology to keep ESCs in an undifferentiated state of growth by manip-

ulating their local microenvironment. ESCs are adapted to in vitro culture

condition by plating them on rigid plastic dishes which is million times [5]

stiffer than their intrinsic stiffness. Consequently, the ESCs respond to the

substrate stiffness by fluctuating expression of pluripotent genes and spo-

radic expression of differentiated genes and the culture results in a hetero-

geneous cell population. This also hinders the induction of differentiation

processes as precursor materials (ESCs) are non-homogeneous. Therefore,

we hypothesized that culturing them on a substrate with similar stiffness as

their intrinsic stiffness would be the key to this problem. Importantly, we

showed the mechanism by which our novel method can keep these ESCs in

an unlimited self-renewal state. This is solely due to the downregulation of

cell-matrix traction generated by these cells. When we started to elevate

cell-matrix tractions, the ESCs began to lose self-renewal and pluripotency

and committed to differentiate.

However, the definitive underlying molecular mechanism that links low

traction and low stiffness on soft substrates with undifferentiated growth of

ESCs is not known at this time. One may hypothesize that the soft substrate

may offer easy accessibility to LIF or other soluble growth factors produced
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by ESCs themselves which in turn keep them in a sustained self-renewal state.

Nevertheless, this hypothesis cannot explain how saturating amount of LIF

and other soluble factors cannot keep ESC population on rigid substrate from

differentiating. Therefore it is most probable that genes essential to sustain

undifferentiated growth of ESCs are kept turned on by soft substrates via

generation of low tractions. Future exploration using Microarray and gene

expression profiling may unveil gene regulation mechanism by soft substrates.

Mechanical forces controls cell fate decisions of ESCs. The next relevant

question arises which specific germ-layer they go to. This is left for future

exploration. Additionally, the principle of matching substrate stiffness to in-

trinsic cell stiffness is likely to work for other cell types like human embryonic

stem cells (hESCs). Currently, hESCs are cultured on Matrigel derived from

EHS sarcoma. Identifying stiffness and functionalizing synthetic substrates

for hESC culture would enable researchers a cheap, affordable, and xeno-free

substrate. A recent report elegantly shows the importance of E-cadherin and

nonmuscle myosin IIA (NMMIIA) in hESC self-renewal and pluripotency [6].

The optimized stiffness of the substrate should not, therefore, interfere with

E-cadherin and NMMIA activities that could potentially affect long-term

cell survival. Until recently, there has not been any standardized platform

to test pluripotency of hESCs. One can easily make use of PluriTest [7]

(an open-access bioinformatic assay of pluripotency in hESCs) to investigage

hESC self-renewal and pluripotency status when cultured on an optimized

substrate stiffness.
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Figure 4.1: Mechanically induced differentiation

With chemical induced differentiation ESCs start to differentiate in response
to small soluble molecules (left, gradient blue box) while mechanical induced
differentiation (right, gradient green box) causes ESCs to spread and experi-
ence increased traction stresses. This stress leads to the downregulation of
pluripotency gene OCT3/4 comparable to cells that had undergone chemical
induced differentiation.[Holle, A. W. & Engler, A. J. (2010) Nature Materi-
als 9(1), 4-6]
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APPENDIX A

POLYACRYLAMIDE GEL RECIPE

A.1 Preparation and activating glass bottom dishes

Day 1:

Materials

1. 0.1N NaOH (Sigma-Aldrich, Product # S8045)

Method

1. Apply 1 drop (200 µl) of 0.1N NaOH on each glass bottom dishes

2. Let it air dry overnight

Day 2:

Materials

1. 3-aminopropyltrimethoxysilane (Aldrich, Product # 281778-100ml)

2. 0.5% gluteraldehyde (Sigma-Aldrich, Product # G6257)

3. Distilled Water (Milli-Q water)

Method

1. Smear 3-aminopropyltrimethoxysilane over the surface using a cotton-

tipped swab and let it sit there for 6 min

2. Wash 2x with water for 15 min in shaker

3. Apply 100 µl/ dish of 0.5% gluteraldehyde and wait for 30 min

4. Wash with water for 15 min in shaker two times

5. Let them dry off

6. Activated dishes may be stored either in covered Petri dishes at room

temperature for up to 48 hr or in a dessicator for two weeks
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A.2 Polyacrylamide substrates

Day 3:

Materials

1. 40% Acrylamide (Bio-Rad, Product # 161-0140)

2. 2% Bis (Bio-Rad, Product # 161-0142)

3. Fluorescent latex beads (Fluospheres) if used ( Molecular Probes, Red:

580/605, Yellow: 505/515)

4. Ammonium persulfate (Bio-Rad, Product # 161-0700) solution (APS)10%

(w/v), mix with water

5. TEMED (Bio-Rad, Product # 161-0801)

6. 100 mM HEPES (Sigma, Product # H0887)

Method

1. Determine acrylamide: Bis solution proportions to get desired substrate

stiffness 1

2. Mix acrylamide: Bis solution of desired proportions w/o introducing

bubbles

3. Degas the solution for 20 minutes to remove dissolved oxygen which

inhibits acrylamide polymerization.

4. Sonicate beads for 1-3 min

5. Add of Activator/ Initiator of polymerization

10% APS @ 1: 200 volume ratio

TEMED @ 1: 2000 volume ratio.

6. Aliquot (10 µl would give ∼70 µm thick substrates and 15 µl would give

∼75 µm thick substrates) mixture on edge of activated glass bottom

dishes

7. Flatten droplet w/ circular cover glasses (Fisher, Product # 12-545-80)

1Engler, A. et al., BioPhys. J. 2004; Yeung, T. et al., Cell Motil. Cytoskeleton, 2005
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8. Turn the glass bottom dishes upside down. This ensures the beads to

be closer to the top surface.

9. Wait for 30 min

10. Flood the surface w/ 2 ml 100 mM HEPES; it should not get dried

11. Carefully remove circular cover glasses with a single edge razor

12. Rinse the substrate well w/ 100 mM HEPES

13. The substrate may be stored w/ 100 mM HEPES at 4◦C for two weeks

A.3 Activating substrates

Day 4:

Caution: This step is to be done in the dark. SANPAH is light and moisture

sensitive

Materials

1. Crosslinker: Sulfo-SANPAH (Pierce, Product # 22589)

2. DMSO (Sigma, Product # D2650)

3. 100 mM HEPES (Sigma, Product # H0887)

4. Col I (0.1 mg/ ml)

Method

1. Make 1mM solution of SANPAH in 100 mM HEPES.

2. Take out HEPES from the glass bottom dishes, dab excess HEPES

with Kim wipes from around gel edge

3. Apply 200 µl of freshly made SANPAH solution on each dish

4. Expose surface under 302 nm UV for 6 min (no more than 6 inch away

from the lamp). SANPAH will darken when used up

5. Rinse off SANPAH w/ HEPES in the shaker

6. Repeat photo activation procedure
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7. Wash 1x for 3-4 min in 100 mM HEPES w/o shaking

8. Cover substrates w/ Col I (0.1 mg/ ml)

9. Incubate overnight at 4◦C

10. Wash gently w/ PBS

11. Sterilize under UV light for 20 min

12. Substrates can be stored at 4◦C in PBS for two weeks

A.4 Plating cells on substrates

Day 5:

Method

1. Soak gels for 30-45 min in culture medium in an incubator

2. Plate cells at desired density: 3000- 5000 cells/ dish. Cells would nor-

mally be ready by overnight
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