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ABSTRACT
In this paper, we study the problem of real-time scheduling
of parallel tasks represented by a Directed Acyclic Graph
(DAG) on multiprocessor architectures. We focus on Global
Earliest Deadline First scheduling of sporadic DAG tasksets
with constrained-deadlines on a system of homogeneous pro-
cessors. Our contributions consist in analyzing DAG tasks
by considering their internal structures and providing a tighter
bound on the workload and interference analysis. This ap-
proach consists in assigning a local offset and deadline for
each subtask in the DAG. We derive an improved sufficient
schedulability test w.r.t. an existing test proposed in the
state of the art. Then we discuss the sustainability of this
test.

1. INTRODUCTION
Uniprocessor platforms have been widely used in com-

puter systems and applications for a long time. However,
making processors smaller and faster has become more chal-
lenging for manufacturers recently due to heating and power
problems. As a result, manufacturers are moving toward
building multicore and multiprocessor systems, such as the
72-core processor of the TILE-Gx family from Tilera, and
the 192-core processor released by ClearSpeed in 2008.

Unfortunately, the development of software is not as fast
as the hardware, and many of the industrial applications are
still built for single processor platforms. This prevents them
from achieving the maximum performance of the multipro-
cessor platform. Parallelism is a programming technique
used to perform calculations on multiple processors simul-
taneously. There are many parallel programming APIs used
in practice, such as OpenMP and POSIX Threads.

Real-time systems are defined as the systems in which
the correctness of the application depends on temporal con-
straints in addition to the correctness of the results. These
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systems have been studied thoroughly for uniprocessor plat-
forms and many scheduling algorithms and analysis have
been provided over the years. However, the shift from unipro-
cessor to multiporcessor platforms is a challenge in real-time
systems, because of the additional execution and resource
synchronization constraints between the different processors,
and the management of job migrations and preemptions.
However, adapting scheduling algorithms designed for unipro-
cessors to be used on multiprocessors usually reduces their
performance. For example, the optimal1 Earliest Deadline
First (EDF) scheduling algorithm on uniprocessor systems
loses its optimality when applied to multiprocessor systems.

Most studies in real-time scheduling have focused on se-
quential independent tasks for uniprocessor and multipro-
cessor systems, and fewer studies were done on parallel tasks.
A parallel real-time task is a task that is allowed to execute
on multiple processors at the same time, it either consists
of identical threads that execute in parallel and synchronize
the result at a merge point (as in fork-join model), or a
collection of different subtasks that execute in parallel ac-
cording to time and precedence constraints. This model is
called the Directed Acyclic Graph (DAG). The schedulabil-
ity of different models of parallel real-time tasks are shown
later in Section 2.

The contribution of this paper is related to Global-EDF
(G-EDF) scheduling in which job migrations are allowed.
They are summarized as follows:

• a new and more precise analysis of the DAG tasks in
the context of scheduling on homogeneous multipro-
cessor systems, while considering the internal structure
and the execution flow of DAGs,

• an improved schedulability test for the G-EDF schedul-
ing of sporadic constrained-deadline DAG tasks,

• a study of the sustainability of G-EDF scheduling pol-
icy and the proposed scheduling test.

The remainder of this paper is organized as follows. In
Section 2, we represent a state-of-the-art methods relative
to real-time parallel task scheduling on multiprocessor sys-
tems especially for a DAG model. The considered model
and the used terminology are described in Section 3. The
new analysis of the DAG tasks is described in Section 4.

1If there is an algorithm that can schedule a given taskset,
then it is schedulable by the optimal algorithm.



A new schedulability test for G-EDF scheduling is derived
from this analysis in Section 5. The sustainability property
of this test is studied in Section 6. In Section 7, we study
the performance of our feasibility test by simulation and we
discuss the obtained results. Finally, we conclude this study
and show future work in Section 8.

2. RELATED WORK
Many hard real-time scheduling algorithms and schedula-

bility analyses on homogeneous multiprocessor systems have
been proposed in the literature [11]. However, they focus on
the traditional sequential independent real-time task model.
The problem of scheduling sporadic tasksets on multipro-
cessor systems is more complicated. Moreover it has been
shown NP-hard in the strong sense in [3]. This work focuses
on the G-EDF scheduling algorithm and provides a sufficient
schedulability test in polynomial time. A more efficient but
more complex sufficient test that runs in pseudo-polynomial
time has also been proposed.

Regarding parallel tasks, there are different models and
each has its own advantages and limitations. First there is
the Fork-join model, in which a parallel task is an alternat-
ing sequence of parallel and sequential segments, a stretch-
ing algorithm to execute the parallel segments as sequential
as possible was proposed in [14]. It provided a resource
augmentation bound of 3, 42 when the Deadline-Monotonic
scheduling algorithm is used. Another parallel task model
which integrates work-limited job parallelism was proposed
in [18]. The authors investigated global scheduling for spo-
radic implicit-deadline taskset and they proposed a theoret-
ically optimal scheduling algorithm.

A more general model of parallel tasks, called the multi-
threaded segment model, has been studied in the literature.
The multiprocessor scheduling of periodic tasksets with im-
plicit deadlines of this model has been addressed in [17].
This work proved a resource augmentation bound of 4 for
a G-EDF scheduling and 5 for Partitioned DM scheduling.
The analysis has been extended to the DAG model and the
same results can be applied. Another scheduling approach
based on the response time analysis for this task model has
been provided in [16] for soft real-time multi-core systems.

Most of the parallel task models presented earlier are con-
sidered special cases of the DAG model, in which a task is
represented as a graph of nodes and directed relations. This
model has been studied in [9] for the uniprocessor case. The
authors considered a hybrid task set of periodic indepen-
dent tasks and dependent sporadic graph tasks that execute
only once. A graph task in this model consists of a set of
tasks with precedence constraints and each task has a re-
lease time and deadline. They proposed an algorithm based
on a modification of task parameters in order to avoid the
dependencies between the tasks. Their algorithm is based
on the same concept as our algorithm presented in Section
4 with few differences because of the characteristics of the
model.

A G-EDF scheduling analysis of a single arbitrary-deadline
DAG task has been studied in [3], in which the authors
proved a resource augmentation bound of 2.

A capacity augmentation bound of 4− 2
m

and a resource

augmentation bound of 2− 1
m

have been proposed recently
for G-EDF scheduling of periodic implicit-deadline DAG
tasksets in [15]. While a resource augmentation bound en-
ables to gauge the distance between a given scheduling algo-

rithm and a hypothetical optimal scheduler, a capacity aug-
mentation bound can be used directly as a sufficient schedu-
lability test.

3. MODEL AND TERMINOLOGY
We consider a set of n sporadic parallel real-time tasks,

scheduled on a system of m identical processors. The taskset
is denoted by τ = {τ1, . . . , τn} and the processor set is de-
noted by π = {π1, . . . , πm}. Each parallel task τi, where
1 ≤ i ≤ n, is represented by a DAG and consists of a set
of nodes and directed relations. The nodes represent the
execution requirements of the task, while the directed re-
lations show the execution flow. A real-time DAG task τi
is characterized by (ni, {1 ≤ j ≤ ni|τi,j}, Gi, Di, Ti), where
ni is the number of subtasks of τi, the second parameter is
the set of subtasks, Gi is the set of directed relations be-
tween subtasks, Di is the relative deadline of τi and Ti is
the minimum time interval between two successive jobs of
τi (sporadic tasks). In this work, we consider constrained-
deadline DAGs, which means that the deadline of each DAG
cannot exceed its period (Di ≤ Ti). Each subtask τi,j , where
1 ≤ j ≤ ni, has a Worst-Case Execution Time (WCET) de-
noted Ci,j . Let Ci denote the worst-case total execution
time of a DAG τi, which is the sum of the WCET of all of

its subtasks, Ci =
∑

∀τi,j∈τi

Ci,j .

According to the DAG model, the execution flow of the
subtasks is constrained by their directed relations. A di-
rected relation from subtask τi,j to τi,k means that τi,k can
start its execution only if τi,j completes its own. In this
case, we call subtask τi,j a parent subtask of τi,k and τi,k
the child of τi,j . Each subtask in a certain DAG could
have multiple parents and children. A starting subtask is
a parentless subtask, while an ending subtask is a child-
less subtask. A DAG task could have multiple starting and
ending subtasks. Figure 1 shows an example of DAG task
τ1 which consists of six subtasks where τ1,1 is the starting
subtask and τ1,6 is the ending subtask. The directed arrows
between the subtasks in the figure represent the precedence
constraints between the subtasks.
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Figure 1: An example of DAG task consists of six
subtasks.

The critical path of a DAG is defined as the longest
path among all the other paths in the DAG if executed on
a system of infinite number of processors. Let Li be the
length of the critical path of DAG τi. The utilization of a



DAG task is denoted by ui = Ci
Ti

. A DAG job is defined as

Ji = (ri, di), where ri is the release time of the job and di
is its absolute deadline. A job of subtask τi,j is denoted by
Ji,j as well.

Regarding the feasibility of parallel tasks of the DAG
model on a system of m processors, two necessary condi-
tions can be defined as the following:∑

τi∈τ

ui ≤ m

∀{τi ∈ τ} : Li ≤ Di
If any of these two conditions does not hold for a taskset of

DAGs, then the taskset cannot be scheduled by any schedul-
ing algorithm on m processors of speed 1. It is obvious that a
system with m identical unit-speed processors cannot sched-
ule a taskset of utilization higher than m. Also, the critical
path length Li of each DAG, which is the longest sequential
path in DAG τi, should not exceed its deadline Di.

4. DAG ANALYSIS
Parallel real-time tasks of the DAG model have partic-

ular characteristics due to precedence constraints between
the subtasks and their activation dependencies. This is why
scheduling DAG tasks on multiprocessor systems is chal-
lenging. As described in Section 3, a DAG task consists of
a set of subtasks and directed relations, and the scheduling
of DAG tasks depends on the dependencies of the subtasks
and the structure of the DAGs.

A DAG job is said to be ready at time t if it is released
at t, while a subtask job is said to be ready if its DAG job
is ready and all the precedent subtasks have completed their
execution. By default, the DAG model defines one individ-
ual temporal parameter for subtask τi,j which is the WCET
Ci,j . The rest of the parameters — such as its deadline,
period and offset — are inherited from its DAG τi and are
shared with the other subtasks. This is why the schedula-
bility of the DAGs is complicated. A DAG task τi can be
treated as a single unit denoted by its total WCET Ci, its
deadline Di, its period Ti and its critical path length Li, as
in [3] and [15]. This assumption does not take into account
the internal DAG structure nor the dependencies between
the subtasks in the scheduling process. However, we show
that ignoring the structure of the DAGs results in a pes-
simistic analysis.

Example. In Figure 2, we show an example which motivates
the need for knowledge about the internal structure of DAG.
Both DAG tasks τ1 and τ2 have the same external structure
and number of subtasks, where C1 = C2 = 6, D1 = D2 = 4,
T1 = T2 = 4 and L1 = L2 = 4. However, they differ in
their execution flow. The first DAG τ1 has subtask τ1,3
executed in parallel with subtask τ1,2, and they are both
activated after τ1,1 completion. On the other hand, subtask
τ2,3 of DAG τ2 executes in parallel with τ2,1 and they are
the starting subtasks of τ2, while τ2,3 executes after they
complete their activation.

We show in this example that it is not enough to build
the scheduling decisions based on the external structure of
the DAGs as it can lead to pessimistic scheduling decisions.
Therefore, we propose in the next section an analysis of the
DAG tasks to identify their subtasks to be included in the
scheduling process.


























 

 

 

 

 





 



 




 

Figure 2: An example of two different DAG tasks
with the same external structure.

4.1 Local offset and deadline for subtasks
In this section, we assign additional temporal parameters

for the subtasks of the DAG tasks, so as to define their
internal structure and improve their schedulability. Based
on the structure of the DAG model, we provide the following
definitions:

Definition 1. A local offset Oi,j of subtask τi,j is defined
as the earliest possible release time w.r.t the activation of
DAG τi in which subtask τi,j can be ready, and this is the
length of the longest path from the starting subtask in τi to
τi,j .

In order to define Oi,j , we take into consideration the
precedence constraints of DAG τi. It is defined as the min-
imum duration that τi,j has to be activated while making
sure that its predecessors are terminated. Following this def-
inition, it is impossible for a subtask τi,j to be ready before
Oi,j .

The calculation of the local offset of each subtask in the
DAG is done assuming that the system has an infinite num-
ber of processors. In this scenario, all ready subtasks will
execute as soon as possible and the response time of DAG
will be equal to its critical path length. We apply a straight-
forward depth-first search algorithm shown in Algorithm 1
on each DAG task. This algorithm executes in linear time
to calculate the offset of all of its subtasks.

Algorithm 1 Local offset algorithm

. Inputs: τi is a graph task, τi,j is a subtask in τi
procedure local Offset(τi,j)

if τi,j = start subtask(τi) then
return ri

else
return max

τi,k∈Pred(τi,j)
(

local Offset(τi,k) + Ci,k)
end if

end procedure

In Figure 3 we represent the DAG task τ1, in which D1 =
T1 = 8, and a total WCET C1 = 10 from six subtasks, and
we assume that τ1 has no offset. In Figure 3(a) we show



the DAG task. Each subtask in the DAG is displayed with
a square and its WCET is the number on the upper right
corner. We calculate the local offset of each subtask τ1,j ,
where 1 ≤ j ≤ 6. Subtask τ1,1 is the starting subtask in
τ1, ready at the release time of DAG τ1. For its successor
subtasks τ1,2 and τ1,3, their earliest offset is the WCET of
their parent subtask O1,2 = O1,3 = C1,1 = 1, and it is
impossible for these subtasks to be released earlier. Finally,
the local release time O1,6 of the ending subtask τ1,6 is the
longest path from τ1,1 to τ1,6 which is {τ1,1, τ1,2} and O1,6 =
5.
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(a) A DAG task τ1 consists of six subtasks
and their directed relations
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(b) The time diagram of each subtask in τ1 shows their
local release and deadline

Figure 3: An example of the analysis of local offsets
and deadlines for a DAG.

Secondly, we define another important local time param-
eter for each subtask which is its local deadline.

Definition 2. A local deadline Di,j of subtask τi,j is
defined as the latest possible deadline of τi,j with Di,j =
Di−Ri(τi,j), where Ri(τi,j) is the length of the longest exe-
cution path from the successor of subtask τi,j to the ending
subtask in the DAG (Ci,j is not included).

For each subtask τi,j of DAG τi, we calculate a local dead-
line Di,j . As in the case of local offset, the local deadline is
calculated while considering the best execution case where
we assume a system with an infinite number of processors. In
order for a DAG τi to respect its deadline Di, each subtask
τi,j has to keep enough time for its successors to execute.
The local deadline of a subtask can be seen as the longest
sequential execution path from its successors to the ending
subtasks on a system of infinite processors.

Lemma 1. If a subtask τi,j misses its local deadline Di,j
at time t, the DAG τi will definitely miss its deadline even
if t ≤ Di.

Proof. We consider the scenario where the system has
an infinite number of processors, the local deadline of a sub-
task is its latest possible deadline that leaves just enough
time for the execution of their successors. So missing this
deadline at t means that the time from t to the deadline of
the DAG is not enough for the successor subtasks to execute
even if the system has an infinite number of processors.

In Algorithm 2, we showed a straightforward recursive
method based on the depth-first search algorithm that cal-
culates the local deadline of each subtask in the DAG. This
algorithm executes in linear time.

Algorithm 2 Local deadline algorithm

. Inputs: τi is a graph task, τi,j is a subtask in τi
procedure Local deadline(τi,j)

if τi,j = end subtask(τi) then
return di

else
return min

τi,k∈Succ(τi,j)
(

local deadline(τi,k) - Ci,k)
end if

end procedure

Back to the example in Figure 3, we calculate the local
deadline D1,j for each subtask τ1,j in DAG τ1. We start
with the ending subtask τ1,6. This subtask has no successor
subtask so it has the same deadline as the DAG D1,6 =
D1 = 8. The predecessor subtasks of τ1,6 are τ1,2, τ1,4, τ1,5.
These subtasks must have a local deadline that guarantees
the schedulability of τ1,6 in the best case. For the three
subtasks, their local deadline is equal to D1,6−C1,6, and so
forth for the rest of the subtasks.

As a result, a new notation can be added to subtask defini-
tion to include the local offset and deadline. A constrained-
deadline subtask τi,j in τi is characterized by a three-tuple
{Oi,j , Ci,j , Di,j}. In our work, these local offsets and dead-
lines are not used in the scheduling process of DAGs because
we assume that the scheduling decisions are taken at DAG
level, but they are useful in the analysis. Regarding the pe-
riod of each subtask, we can notice that each subtask inherits
the period of its DAG (Ti,j = Ti).

In Figure 3(b) we show the time diagram of each subtask
in DAG τ1 individually. It is worth mentioning that this
is not a decomposition algorithm and we did not transform
the DAG task into another model. Each subtask is still
a dependent subtask which has to wait for the completion
of its predecessors to complete their execution in order to
become ready for execution.

5. G-EDF SCHEDULABILITY TEST
In this paper, we consider Global Earliest-Deadline First

(G-EDF) scheduling algorithm for a taskset τ of n sporadic
constrained-deadline DAGs on m identical processors. The
G-EDF scheduling algorithm is a well-known fixed job pri-
ority assignment algorithm, in which, the ready job with the
earliest absolute deadline has the highest priority. A global
scheduler in multiprocessor systems is defined as the sched-
uler which assigns active ready jobs on available processors
without considering the previous state of the processors. As
a result, job migrations and preemptions are allowed.



In this work, we assume that the scheduling decisions are
taken at the DAG level and not at the subtask level, which
means that the DAG job with the earliest absolute dead-
line has the highest priority. When G-EDF is used on DAG
taskset, a sufficient condition for the schedulability of a par-
ticular job was proved by Li et al. in [15] in the following
lemma:

Lemma 2. ( from [15]) If the total workload Ak,a on the
ath job of DAG task τk is bounded by

Ak,a ≤ bmDk − (m− 1)Dk

then this job can meet its deadline on m identical processors
with a speed of b.

On a system of m processors of speed b, each time step is
divided into b sub-steps. Let a complete sub-step be de-
fined as the sub-step where all the m processors of the sys-
tem are busy, while an incomplete sub-step is the sub-step
when at least one processor is idle. The proof of Lemma 2
is based on two straightforward observations for the schedu-
lability of DAGs:

• At each incomplete sub-step, the remaining critical
path length for each unfinished job is decreased by 1.

• The total work F t done in an interval of length cor-
responding to t steps on m processors of speed b, in
which there are t∗ incomplete sub-steps is defined by
the relation:

F t ≥ m(bt− t∗) + t∗

≥ bmt− (m− 1)t∗

As we can see from the previous bound and observations,
no knowledge of internal DAG structure is required. In
Lemma 2, an upper bound is defined on the total work-
load done for a particular job of a DAG task in an interval
equal to its deadline, on a system of m processors of speed
b. The authors in [15] found that any periodic implicit-
deadline taskset of DAGS satisfies the previously mentioned
necessary conditions and is schedulable on a system of m
processors of speed b ≥ 4 − 2

m
using G-EDF. It’s worth

mentioning that the right side of the condition in Lemma 2
can be relaxed due to the knowledge of the internal struc-
ture of the DAG. However, we will use this upper bound in
this work while keeping this as a perspective work for the
future.

In this work, we use the work bound expressed in Lemma 2
on a taskset of n sporadic constrained-deadline DAG tasks
on m identical processors. Our main contribution is to an-
alyze each DAG in the taskset while including its internal
structure to find an upper bound on the work of a particu-
lar DAG job. Then we use this bound to find the minimum
required speed b of processors which guarantees the schedu-
lability of the taskset using G-EDF. Although adding the
knowledge of internal structure might lead to a more com-
plicated analysis, we show that the analysis is more accurate
and the bounds are less pessimistic. Therefore, we will con-
sider the local offsets and deadlines of each subtask in the
DAG tasks in our analysis.

The total workload done on a particular job of a DAG task
in an interval equal to its deadline consists of the execution
time of this job and the interference from the higher prior-
ity jobs of other DAGs. In order to find an upper bound of

workload, first we have to identify the scenario which gen-
erates the highest interference on a particular job. Then
we analyze the possible interference on DAGs w.r.t. this
scenario.

Interference analysis on DAGs
In our work, we assume that each DAG task τi in the taskset
generates an infinite number of jobs each denoted by Ji,
since we consider constrained-deadline DAGs, where the dead-
line of a DAG cannot exceed its period, only one active job
of each DAG is released at any time t. As a result, when G-
EDF is used, the interference on a particular job Ji cannot
be generated from jobs of DAG τi itself but from the other
DAGs.

In this case, there are two types of jobs causing interfer-
ence on DAG job Ji in an interval of length Di: body jobs
and carry-in jobs. A body job is a job that is released af-
ter the release of Ji and has an absolute deadline no later
than the absolute deadline of Ji. The carry-in job is a job
released before the release of job Ji with its deadline in the
interval (ri, di]. Figure 4 shows an example of an interfering
DAG task which has the two types of interfering jobs.

Worst-case interference scenario for DAGs
Lemma 2 is based on the workload on a particular job of
DAG task. In order to find the upper bound, either we
have to calculate the workload of each possible job and then
choose the maximum, or we can identify the scenario that
generates the maximum interference. The maximum inter-
ference on a DAG task τi is defined as the longest cumulative
time intervals in Di in which any subtask of τi is ready to
execute but it is blocked by higher priority DAG tasks in
the system.

Observation 1. For sporadic DAG tasks, the maximum
total interference on a particular job of DAG τi in an inter-
val of length Di occurs when the jobs of the other DAGs are
activated periodically.

This is a straightforward observation, because the inter-
ference of a DAG task τj on a particular job of another DAG
τi depends on the number of jobs within the interfering in-
terval. Sporadic activation means that the time interval
between two successive jobs of τj is at least Tj . So the max-
imum number of jobs within a fixed interval happens if the
jobs are activated as soon as possible (after exactly Tj time
units).

Therefore, in order to define the worst-case interference
scenario on a particular job in a sporadic taskset, we consider
periodic tasksets in the analysis.

Lemma 3. When G-EDF is used and no deadline is missed,
the interference of a DAG task τj on a particular job of τi
in an interval of length Di is maximized when the deadline
of the last body job of τj is the same as the deadline of τi,
and the carry-in job of τj executes just before its deadline.

Proof. The proof of this lemma is inspired from the
worst-case interference scenario described in [6] for sequen-
tial tasks.

As shown in Figure 4, the interference bound can be eas-
ily analyzed considering this situation, since the carry-in
job contributes to its maximum interference in the interval.
While moving the interval backward or forward will only
result in reducing the interference on the job.



Let J∗i denotes the job of DAG τi which is defined in the
scenario in Lemma 3, and let J∗i,j be the job of subtask τi,j .

   

   

 










 

Figure 4: The scenario that generates the worst in-
terference from DAG τi on J∗k of DAG τk.

In the DAG model, if a job of DAG τi executes just before
its deadline Di (as late as possible), then this means that
each subtask τi,j will execute just before its calculated local
deadline Di,j .

Body jobs interference
Based on the definition of a body job, it contributes to its
full execution time Cj in the interference on J∗i . According
to this, defining the internal structure of each DAG task does
not affect the total interference. In order to calculate this
interference, we will use the Demand Bound Function (DBF)
introduced in [2]. For constrained-deadline sequential tasks,
DBF is defined as follows.

Definition 3. The Demand Bound Function (DBF i)
of a sequential task τi in a time interval [0, t] for any t > 0
is defined as the sum of the execution time of all jobs of τi
that have both their arrival time and deadline [0, t].

DBF i(t) = max(0,

(⌊
t−Di
Ti

⌋
+ 1

)
∗ Ci)

Lemma 4. The total body work interference on J∗k of DAG
task τk is the sum of the demand bound function of all the
DAGs in taskset in the time interval [0, Dk].

Proof. In the DAG model, the subtasks in a DAG are
sequential tasks with precedence constraints, which have lo-
cal offsets and deadlines. Let DBF i,jk denote the demand
bound function from the jobs of subtask τi,j in [0, Dk]:

DBF i,jk = max(0,

(⌊
Dk −Di,j

Ti,j

⌋
+ 1

)
∗ Ci,j)

Since all the subtasks of a DAG have the same period of the
DAG (Ti,j = Ti). The DBF of a DAG τi can be calculated
as follows:

DBF ik =

ni∑
j=1

max(0,

(⌊
Dk −Di,j

Ti

⌋
+ 1

)
∗ Ci,j)

=

ni∑
j=1

DBF i,jk

The proof of the lemma follows.

Carry-in jobs interference
The carry-in interference is defined as the interference from
a DAG job Ji on another job J∗k of DAG τk, in which Ji
is released before the release of Jk and has a deadline in

the interval (rk, rk + Dk]. For constrained-deadline tasks,
there is, at the most, one carry-in job from each DAG in the
taskset.

Let αik denotes the interfering interval of carry-in DAG
job Ji on DAG job J∗k which can be defined as the inter-
val between the release of Jk and the deadline of Ji, where
αik = di − rk. It is straightforward to define the carry-in in-
terference for sequential tasks, but it is more complicated in
the case of parallel tasks of a DAG model. As we can see in
the example in Figure 2, the execution flow of subtasks is de-
fined by precedence constraints, that define which subtasks
are included in the carry-in interference and which have no
effect. Let αi,jk denote the carry-in interfering interval of

subtask τi,j on job J∗k , which is defined as: αi,jk = Di,j − rk.
As shown in Figure 5, subtasks of a DAG job can be di-
vided into the following categories based on their carry-in
interference:

• a subtask τi,j that has its local deadline Di,j before
the release of J∗k . This subtask causes no carry-in in-
terference, and αi,jk has a negative value,

• a subtask τi,j that has its local offset after the release
of J∗k . This subtask contributes to its full execution
time as carry-in interference,

• a subtask τi,j is released before the release of J∗k and
has a deadline in the interval of length αik. This sub-
task has partial carry-in interference on J∗k equal to
αi,jk .

Let ζik denote the carry-in interference of DAG job τi on
another DAG job τk and let it be defined as:

ζik =
∑

τi,j∈τi

min
(
Ci,j ,max

(
0, αi,jk

))
(1)

 





  



 

 













  




Figure 5: Carry-in interference of subtasks of DAG
τi on DAG τk. The shaded areas show the worst
carry-in interference work from each subtask.

Lemma 5. When G-EDF is used and no deadline is missed,
the carry-in interference ζk on job J∗k from other DAGs in
the system in an interval of length Dk is at most:

ζk ≤
n∑
i=1

ni∑
j=1

min
(
Ci,j ,max

(
0, αi,jk

))
(2)

Proof. The proof of this lemma is based on the situation
described above, in which we note that the worst carry-in
interference of a DAG on another one happens when the



carry-in job is executed before its deadline. In this situa-
tion, each subtask τi,j of the carry-in job cannot contribute
to more than the interfering interval on job J∗k which is of
length αi,jk . And since each subtask τi,j is sequential, it can-
not contribute to more than its WCET in this interval.

G-EDF scheduling condition
From the previous analysis, we derive the following theorem.

Theorem 6. A set of DAG τ is G-EDF schedulable on
m processors of speed b if:

∀k ∈ {1, . . . , n},
n∑
i=1

DBF ik +

n∑
i=1,i 6=k

ζik ≤ bmDk − (m− 1)Dk
(3)

Proof. The proof of this theorem has already been de-
scribed in previous sections. The left side of the inequality
is an upper bound for the interference on DAGs as proved
in Lemma 4 and 5. This upper bound represents the total
workload for a particular DAG job during an interval equal
to its deadline, which is bounded from Lemma 2 (right side
of inequality).

Here we should mention that the workload analysis is done
based on the worst-case interference scenario, in which each
subtask has to execute up to its WCET. Hence, the body
and carry-in interference are maximized for the interfering
subtasks. Based on this theorem, for each DAG task in the
taskset, we find the minimum value of b satisfies inequality of
Equation (3). Then for all the DAGs, the maximum b is the
speed of the m processors that guarantee the schedulability
of the taskset when G-EDF is used.

6. SUSTAINABILITY
The schedulability analysis aims at ensuring that a taskset

is schedulable according to a scheduling policy when it meets
all its deadlines. A necessary requirement is that the schedul-
ing policy be stable to “positive” changes of the task param-
eters. For example, if a taskset with processor utilization
is schedulable according to a given scheduling policy, then
it must be schedulable with a smaller utilization. Other-
wise, we can state that this policy is subject to scheduling
anomalies. The sustainability w.r.t. positive variation in
parameters has been studied in the case of EDF scheduling
on uniform multiprocessors in [5].

In the same way considering the scheduling policy, the no-
tion of sustainability can be applied to schedulability tests.
The common FP and EDF tests for uniprocessors have been
examined in [4, 7]. Concerning the multiprocessor case, both
the scheduling policies and the schedulability tests have been
discussed in [1] from the sustainability point of view. In
particular, the G-EDF scheduling policy has been shown to
be sustainable w.r.t. smaller execution requirements and
later arrival times (sporadic case). However, sustainability
of G-EDF w.r.t. larger relative deadlines is not so straight-
forward. Indeed, it depends on the implementation of the
G-EDF scheduling policy. If the priorities of jobs are com-
puted using the priorities of tasks which generate these jobs
(the specified priority), then G-EDF is trivially sustainable
w.r.t. larger relative deadlines since a smaller actual dead-
line of a job does not affect the scheduling decisions. Other-
wise, it is not obvious that this property is guaranteed and

it is safer to design the G-EDF scheduler to compute job
priorities according to the specified priorities.

6.1 Scheduling policy
In this section, we review the property of sustainability of

G-EDF scheduling policy in the case of tasksets composed
of DAGs. Firstly, we give the definition of sustainability ac-
cording to a scheduling policy. Secondly, we discuss three
observations related to the three kind of parameter relax-
ations.

Definition 4. (from [1]) Let A denote a scheduling policy.
Let τ denote any sporadic task system that is A-schedul-
able. Let J denote a collection of jobs generated by τ .
Scheduling policy A is said to be sustainable if and only if
A meets all deadlines when scheduling any collection of jobs
obtained from J by changing the parameters of one or more
individual jobs in any, some, or all of the following ways: (i)
decreased execution requirements; (ii) larger relative dead-
lines; and (iii) later arrival times with the restriction that
successive jobs of any task τi ∈ τ arrive at least Ti time
units apart.

According to this definition, we notice that G-EDF is sus-
tainable w.r.t. the three possible relaxations of the param-
eters of DAG jobs.
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Figure 6: An example of job collection gener-
ated by the sporadic {τ1(3, 3), τ2(2, 4), τ3(2, 4)} implicit-
deadline taskset where τi is characterized by (Ci, Ti).

In order to apply the observations from [1], we used the
example given in Figure 6. This example represents three
different activation schemes that are generated by the same
taskset. For the sake of simplicity, we considered simple
sequential jobs instead of DAG jobs.

Observation 2. The G-EDF scheduling policy is sustain-
able w.r.t. decreased execution requirements for any set of
jobs that may be generated by a set of sporadic DAG.

Proof. As for Observation 1 in [1], this proof is based
on the proof of predictability in [13, 12]. This predictability
proof can be applied easily on a collection of DAG jobs by
considering each subtask job as an independent one.



We observe the sustainability of G-EDF w.r.t. decreased ex-
ecution requirement by means of Definition 4. We consider
a collection of jobs which have been generated by G-EDF
and with known release times. If this collection can be ac-
curately scheduled w.r.t. these release times, no deadline
is missed by decreasing execution requirements. In a more
general case, online G-EDF can generate several collections
of jobs from the same sporadic taskset. The same job can
have different release times in several collections. We should
consider jobs with release jitters if we want to observe the
sustainability at taskset level. Unfortunately, it has been
proved in [13] that a preemptable, migratable and jittered
release timed jobs scheduling is not predictable.

Observation 3. The G-EDF scheduling policy is sustain-
able w.r.t. later arrival times for any set of jobs that may
be generated by a set of sporadic DAG.

Proof. Let τ denote a sporadic DAG taskset of DAG
that is G-EDF schedulable. Let J ′ denote any collection of
jobs obtained from J by increasing the arrival times of one
or more individual jobs with the restriction that successive
jobs of any task τi ∈ τ arrive at least Ti time units apart.
The collection J ′ of jobs could also have been generated by
τ since it is G-EDF schedulable. The observation follows,
as a consequence.

According to Figure 6, the consequence could not be straight-
forward. In this example, we represent three jobs gener-
ated by a sporadic taskset. In Figure 6(a) (respectively Fig-
ure 6(b)), job J1 is released at time t = 0 (respectively at
time t = 2) and all jobs meet their deadline. However, in
Figure 6(c), J1 misses its deadline at time t = 4 since it is
released at time t = 1.4 but no processor is available before
time t = 2. In order to make it clear with the observation,
we recall in the proof that the sporadic taskset has to be
schedulable according to G-EDF, thus all possible release
scenarios must be tested schedulable.

Observation 4. The G-EDF scheduling policy is sustain-
able w.r.t. larger relative deadlines for any set of jobs that
may be generated by a set of sporadic DAG if the scheduling
algorithm is implemented by using the specified deadlines.

Proof. As explained in the section above, this obser-
vation is based on the implementation of G-EDF. If the
scheduling algorithm uses a larger relative deadline to com-
pute job priorities, it is not clear that G-EDF is sustainable
w.r.t. deadline relaxations. But if the algorithm computes
the priorities by considering the relative deadline of the
tasks, no change in the scheduling behavior will occur.

The sustainability of G-EDF, w.r.t the parameters shown
in Observation 2, 3 and 4, is a good result. Those obser-
vations are based on the fact that we considered a spo-
radic DAG set (or taskset in a more general way) as G-EDF
schedulable. We now propose a sufficient feasibility condi-
tion.

6.2 Schedulablity test
We have shown that G-EDF is a sustainable scheduling

policy for a sporadic DAG set. We now consider the sus-
tainability of the schedulability test proposed in Section 5
according to the following definition.

Definition 5. (from [1]) Let A denote a scheduling pol-
icy, and F an A-schedulability test for sporadic task sys-
tems. Let τ denote any sporadic task system deemed to
be A-schedulable by F . Let J denote a collection of jobs
generated by τ . F is said to be a sustainable schedulability
test if and only if scheduling policy A meets all deadlines
when scheduling any collection of jobs obtained from J by
changing the parameters of one or more individual jobs in
any, some, or all of the following ways: (i) decreased exe-
cution requirements; (ii) larger relative deadlines; and (iii)
later arrival times with the restriction that successive jobs
of any task τi ∈ τ arrive at least Ti time units apart.

Observation 5. The test proposed in Section 5 is sus-
tainable for sporadic DAG w.r.t. decreased execution re-
quirements, larger relative deadlines and later arrival times.

Proof. A DAG set deemed schedulable by the test pro-
posed in Section 5 is G-EDF schedulable. G-EDF is a sus-
tainable scheduling policy w.r.t. decreased execution re-
quirements, larger relative deadlines and later arrival times.
The observation follows.

In addition to the sustainability of our G-EDF DAG schedu-
lability test, we studied the self-sustainability of our test.

Definition 6. (from [1]) A schedulability test is self-sust-
ainable if all task systems with “better” (less constraining)
parameters than a task system deemed to be schedulable by
the test are also deemed schedulable by the test.

In this case, the taskset is not only required to remain schedu-
lable under various parameter relaxations, but it is required
to be verifiably schedulable by the same test.

Observation 6. G-EDF DAG schedulability test from The-
orem 6 is self-sustainable w.r.t. decreased execution require-
ments.

Proof. In Equation 3, decreased execution requirements
can only decrease the left side of the inequality since only
DBF and ζki values are dependent on the WCET values. The
inequality remains valid and the observation follows.

Observation 7. G-EDF DAG schedulability test from The-
orem 6 is self-sustainable w.r.t. later arrival times.

Proof. In Equation 3, later arrival times can only de-
crease the left side of the inequality since only DBF values
are dependent on the period values. The inequality remains
valid and the observation follows.

Observation 8. G-EDF DAG schedulability test from The-
orem 6 is not self-sustainable w.r.t. larger relative deadlines.

Proof. We assume a system with only one unit-speed
processor. From Equation (3), we obtain:

n∑
i=1

DBF ik +

n∑
i=1,i 6=k

ζik ≤ Dk

We recall that ζik is defined by the following expression:∑
τi,j∈τi

min (Ci,j ,max (0, Di,j − rk)) (4)

Let us assume that in Equation (4), the “min” value is given
by max(0, Di,j − rk). Then we can assume that there is



D′i,j > Di,j such that max(0, D′i,j − rk) > max(0, Di,j − rk)
but max(0, D′i,j − rk) ≤ Ci,. The deadline D′i,j > Di,j
implies a larger carry-in interference of a job of τi on a job
of τk which can miss its deadline.

Unfortunately, our proposed schedulability test for G-EDF
is not self-sustainable w.r.t. larger relative deadlines. These
results can be explained because the test is based on the
analysis of the schedule on a study window of size corre-
sponding to the DAG deadline. A self-sustainable schedula-
bility test w.r.t larger relative deadlines is subject to future
work.

7. EXPERIMENTAL RESULTS
We presented in Theorem 6 a scheduling bound based on

the total workload of a DAG task during an interval equal to
its deadline. This bound can be used as a G-EDF schedula-
bility condition by calculating the processor speed (denoted
by b in Theorem 6) that guarantees the schedulability of the
taskset. As mentioned earlier, for a particular taskset, the
speed of processors can be found by solving the inequality
of Equation (3) for each DAG tasks. The minimum proces-
sor speed among all the tasks is the speed that guarantees
G-EDF schedulability.

We use simulation to show the performance of our schedul-
ing condition given in theorem 6 for tasksets of DAGs. Then,
we compared our calculated processor speed with the speed
calculated in [15] (b ≥ 4 − 2

m
). We used a simulation tool

called YARTISS [8], which is an open-source software writ-
ten in Java. It contains real-time scheduling policies on
multiprocessor systems for various models of tasks includ-
ing DAGs.

Regarding the generation of DAG tasksets, our DAG gen-
erator is based on the Uunifast-Discard algorithm [10] for
random generation of tasks. This algorithm is proposed by
Davis and Burns to generate randomly a set of tasks of a cer-
tain total utilization on multiprocessor systems. The num-
ber of tasks and their utilization are inputs of this algorithm.
The DAG taskset generator is described briefly as follows:

• The algorithm takes two parameters n and U , where
n is the number of DAGs in the set and U is the total
utilization of the taskset (U > 0).

• The Uunifast-Discard algorithm distributes the total
utilization on the taskset. A DAG task τi can have a
utilization Ui greater than 1.

• The subtasks and the directed relations of each DAG
are generated randomly based on the calculated uti-
lization. The subtasks are classical sequential real-time
tasks.

For our experiments, we fixed the size of the tasksets at
50 periodic DAG tasks per taskset. We chose to simulate
periodic DAGs instead of sporadic because the periodic ac-
tivation generates the worst interference on a particular task
in the worst-case scenario. For each utilization from 1 to 5,
we generated 1 million tasksets to be simulated on m pro-
cessors where m is the smallest integer value that is not less
than the utilization U of the taskset τ (m = dUe).

First, we analyzed the scheduling condition of G-EDF de-
scribed in Theorem 6. For the sake of clarity, let Sched-Qam
denote our scheduling condition described in theorem 6, and

Sched-Li be the condition from [15]. The simulation results
for various utilization are shown in Figure 7. More than
80% of the tasksets were schedulable using Sched-Qam on
m processors with a lower speed than Sched-Li. We can see
here that Sched-Qam calculates processor speed while con-
sidering worst-case workload scenario, that is reason why
some tasksets required high speed processors. For these
20% tasksets, we can use the workload bound of Sched-Li to
find the minimum processor speed to guarantee its G-EDF
schedulability. As a result, all the tasksets are scheduled
using G-EDF on m processors with speed ≤ 4− 2

m
.

(a) Total taskset utilization of 2.

(b) Total taskset utilizatoin of 4.

Figure 7: Processors’ speed calculated for each
taskset based on Theorem 6.

In the second part of our simulation, we compare the pro-
cessor speed necessary to schedule the taskset of DAGs using
G-EDF when our workload bound and the bound from [15]
were used. We generate 5 datasets of utilization from 1 to
5, and each dataset contained 1,000,000 tasksets. After ap-
plying Sched-Qam and Sched-Li on the tasksets, we found
that both conditions are not comparable, which means that
Sched-Qam schedules some tasksets with a smaller speed
than Sched-Li and vice versa. Despite this result, we found
that Sched-Qam dominates Sched-Li in practice, which means
that on average, Sched-Qam schedules at least 80% of tasksets
on processors with lower speed than Sched-Li (tested utiliza-
tion are 2,4 and 8).

The results of the experimental simulations prove the im-
portance of including the internal structure for the schedul-
ing analysis of DAGs. In average case, our Sched-Qam con-
dition had better performance than Sched-Li, and schedules
tasksets on the same number of processors but with lower
speed.



8. CONCLUSION AND FUTURE WORK
In this paper, we were interested in scheduling parallel

real-time scheduling on multiprocessor systems, for Directed
Acyclic Graph (DAG) tasks. Our motivation was to show
that the scheduling of real-time DAG tasks is affected by
the internal structure of the DAG and the execution flow
of its subtasks. Since the execution of the DAG tasks is
not uniform and the subtasks are activated on the basis of
the completion time of their successors. In other words, the
subtasks of a DAG task have a dynamic activation time.

We analyzed the real-time DAG tasks, and we proposed
two algorithms to calculate local offsets and deadlines for
each subtask in the DAG. Then we investigated the schedu-
lability of sporadic constrained-deadline DAG tasks on a sys-
tem of homogeneous processors with Global-EDF. It is based
on the workload analysis which includes the interference of
subtasks in the analysis. Then we derived a schedulability
test for the DAG tasks in which we can calculate in prac-
tice the minimum processor speed required to guarantee the
schedulability of the DAG set. We studied the sustainability
of the scheduling policy and test for the DAG tasks w.r.t.
worst-case execution time, period and deadline. We showed
the performance of this test by simulations, and we found
that on average our schedulability test requires a smaller
processor speed than the test in Li et al. in [15].

As a future work, we will analyze the schedulability of
real-time DAG tasks with other scheduling algorithms than
G-EDF, and compare their performance in order to find the
most appropriate scheduling algorithms for DAG tasks. We
also want to improve our scheduling test and make it sus-
tainable w.r.t. larger relative deadlines.
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