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Sensors and Measurements

1 Introduction

Due to errors such as manufacturing or assembly defects, it is well known that the geometry
of robotics manipulators does not exactly match the design goals. A direct drawback lies in
a reduced accuracy of the manipulator, which turns out to be a problem since robot control
requires accurate kinematic models. One way to tackle this problem consists in improving
the knowledge of the kinematic model using kinematic calibrations. This is the problem we
address in this contribution for parallel manipulator.

1.1 Unified formulation for calibration problem

According to the general paradigm of [15], a unified calibration formulation can be stated
as follows. First, given the unknown kinematic parameters of the manipulator x and the
measurements m provided by sensors, some loop equations f(x,m) = 0 have to be figured
out. The measurements m can be of two types : either external measurements of the posi-
tion/orientation of the robot’s end-effector, with its articular coordinates ; or only internal
measurements of the articular coordinates and redundant sensors —see [18], [19] (in par-
ticular, the knowledge of this particular information in the case where the direction of the
segments is also known makes the forward kinematic problem simpler.) To obtain the loop
equations, one can use forward, inverse kinematic, closing loops, mobility constraints [1], [3],
[11] on the legs or on the end effector. Second, these loop equations can be solved using
some optimization [8], linearization [4] or resolution [6] machinery.

1.2 Leg mobility constraints

The simplest ways to calibrate a parallel manipulator without any constraint are directly
derivate from the serial robot calibration methods. The loop equations can be provided by
either the forward kinematic (FK) or the inverse kinematic (IK).

e For the FK methods, the kinematic parameters are provided by minimization of the

difference between the position/ orientatilon measurements and the position/orientation



calculated from the FK which is function of the leg length measurements and the
kinematic parameters unknowns. But for a Gough platform, there is no closed form
for FK, so numerical methods are used to solve this problem. In this case, there are
uncertainties on the convergence of the FK in presence of noise measurement, and more
on the calibration convergence. These methods are slow due to the high number of
iterations.

e For the IK method, the kinematic parameters are provided by minimization of the
difference between the leg length measurements and the leg length calculated from the
IK as function of the position/orientation measurements and the kinematic parameters
unknowns. Due to the formal form of IK, these methods are simpler and faster than
FK methods.

These basic methods can be improved by imposing constraints on the robot and one
possibility is to use constraints on the robot legs. For example Zhuang [17] fixes the length
of one leg for each measurement configurations, to remove a kinematic parameter (offset on
the leg length) and to lower the degrees of the equations. Murrarecci [10] fixes the direction of
a leg for a set of measurement and then determine the kinematic parameter which minimize
the changes in the U-ball angles calculated from two measurement configurations. We shall
use these ideas thereafter.

1.3 Optimization Method

Most of algorithms use iterative methods to solve the non-linear loop equations see—[7].
Innocenti [5] uses the same constraints than Zhuang [17], but solves the equations by a
dialytic method and finds 21 solutions for one leg kinematic parameters. As the problem
may have multiple solutions, the use of numerical algorithms is problematic, specially in
presence of noise measurement.

To take these problems into account we use leg mobility constraints to obtain some linear
loop equations.

2 Robot model

Mobile Platform

Base Platform

Figure 1: Gough platform

We perform the calibration for a Gough platform 6 DOF (figure 1).
The following notation will be used throughout this paper :
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¢ leg index.

A;, B; attachment points of the leg ¢ with the base (U joint) and with the platform
(ball joint).

Ra, = (O, 2,9, z) an absolute frame and R.. = (C,x,,y,, 2-) an end effector frame.

P vector (3 x 1) defines an end-effector position in Ryp.

R rotation matrix (3 x 3) or A = (¢¥,0,¢)" Euler’s angles vector defines a platform
orientation.

For a simplify notation : b; = CB; in Re, (b;)o = CB; in Ry, a; = OAj in Ry

Each leg is a RRPRRR chain.

Platform

P

\\\ Prismatic joint (2 @ p=9]+Ap
>/ 2R

(a) Complete model (b) Reduced model

% Y }» 3R O B,
>/' Ball joint  (12) !

Figure 2: Model of a parallel manipulator leg

Wang [16] has shown that, a complete model (figure 2(a)) of one leg need 23 parameters
(9 for the U-joint, 2 for the prismatic joint and its offset, 12 for the ball joint). But he shows
that the contribution of joint manufacturing tolerances have a minor effect on the platform
pose error. Under the assumption that prismatic joints are perfectly assembled and U-joints
and ball-joints are ideal, one leg can be considered as a SS chain (figure 2(b)).

So we have to identify 7 kinematic parameters per leg : 3 coordinates of the base at-
tachment point axy,ay,,azr, 3 coordinates of the mobile attachment point bxy, by, b2k,
1 offset on the leg length Ap,. In total, 42 kinematic parameters have to be found to
calibrate the robot (Model 42). For this model the vector of kinematic parameters is
Py = [bay, byy, bz, axy, ayy, azi, Apg)T.

In a first part of this contribution, we consider the offset on the leg length as perfectly
known (the sensor leg have been already calibrate), so we want only to determine the coordi-
nate attachment points, (6 legs x 3 coordinates x 2 attachment points) parameters (Model
36). For this model, Py, = [bay, byg, b2k, T, ayg, azp]” .

3 New methods

The idea of this contribution is to fix the direction of one leg by a clamping mechanism
(figure 3(b)) in order to obtain some linear goop equations function of measurements and



our unknowns. An additional constraint on the fixed leg length (figure 3(a)) can be used

to remove some unknowns. We impose these kind of constraints on one leg at a time. The

obtained measurement equations are fully decoupled for each leg. So this type of algorithm

can calibrate only one leg of the robot (k : index of fixed leg). The same operation have to

be process 6 time for each leg of the robot for a complete calibration of the Gough platform.
Two methods are shown :

e The first method is used to calibrate in one step Model 36. For all measurement
configurations (i = 1..N), the direction of the leg k (to be calibrated) is fixed. The
position, the orientation of the mobile and the leg length are free in order to verify the
direction constraint (figure 3(b)). The direction of the leg provide us a 3D linear loop
equations function of ours unknowns.

e The second method take into account the segment offset and calibrate as a Model 42
in three steps. First, for all measurement poses, the direction and the length of the
leg k are fixed (figure 3(a)). We will obtain some linear loop equations only function
of the coordinates of mobile attachment point. Then, (similarly to Zhuang method
[17]) we fix the leg k length but we let free the segment direction to determinate the
coordinate of the base attachment point (figure 3(c)). Finally the length leg offset is
easily determinable with the knowledge of by, ay.

For all measurement poses, the orientation, the position of the platform and the leg
length are measured to provide us enough data for calibration.

3.1 Constrained measurement poses

We simulate three of measurement poses set denoted Type I, Type II and Type III for
each type of constraints on the leg direction and/or the leg length :

e Type I :We compute random positions P; and orientation R;,7 = 1..N of the platform

such as the direction of the leg k (denoted ;) is the same for all measurement poses

i =1.N: ng1 = ... = ng; = ... = nn see—figd(b). The leg lengths are free :

piF A E ph £t

e Typell: We compute random positions P; and orientations R;,7 = 1..IN of the platform
such as the directions and the length of leg k (note 7; and p;* ) are the same for all
measurement poses i = 1.N : g = ... = g = ... = gy and piF

pn" see-figd(a).

=.=pF=..=

e Type III : We compute random positions P; and orientations R;,¢ = 1..N of the
platform such as the length of leg k (denoted p;* ) is the same for all measurement
poses ;¥ = ... = p¥ = ... = py" see-figd(c) but the direction of segment k is free :
i1 # e F Wi 7 oo 7 N



Pita, Ritz

Pit2, Ritz

Pit1s Rit1

pit2 + Ap

Pi+1, Rit1
pPit1 + Dp
Pi, Ri Pi, Ri
Mobile platform ( pi + Ap

Mobile platforr

Base Platform

Base Platforn

(b) The direction of one leg is fixed

(a) The direction and the length of one leg are
fixed simultaneously

Pit1.Rit1

Pi, R

Base Platform

(c¢) The length of one leg is fixed

Figure 3: Constrained measurement poses



3.2 The direction of one leg is fixed fig3(b)

Mobile Platform

i A

Base Plétféfu{ o
Figure 4: Inverse Kinematic.

For each leg of the parallel manipulator (figd), we have:
AB =40+ OC + RCB, (1)

For any measurement configurations of the platform ¢ = 1..N with N number of measures,
for the segment K :

-
ar(bi), = Pi + Riby, — ay, (2)

In the case where all measurement configurations (i = 1..IN) have been computed for a
fixed direction of the leg k (Type I), we get, for all measurement pose (i = 1..N) :

1 —_ 1 1 1
jak(bk)o = _k(Pl + Rlbk - ak) = ... = _k(,Pl + szk - Clk) = _k(PN + Rka - ak)
[lak(br), | Pi Pi PN
(3)

where, p¥ is the length measurement of the fixed segment k for the pose i.
We have the loop equation by writing that the unit vector of the leg k is constant for
measurement pose ¢ and ¢ + 1 :

1 1
—(Pi + Rib, — ag) — —5—(Pit1 + Ripaby —ax) =0 (4)
Pi Pit1

with 7 = 1.N — 1.

For a set of N measurement, we can put equation (4) in linear form :

PiRy — phRy (o} — p5)I PPy — phPy
PR —pE Ri (o = I = prP; = pEPia (5)
. ay,

PR RN = PRy (PR = PR PNPN-1 = Py 1PN

where I a 3 x 3 unit matrix,R; a 3 X 3 matrix,P; a 3 X 1 vector.
Equation (5) may also be written as :



M3(N—1)><6(Pk:)6><1 :N3(N—1)><1 (6)

with Py = [bay, by, b2y, axy, ayy., azi]” .

For N measurement poses, we get 3(N — 1) linear equations. We have to identify 6
kinematic parameters per leg, 3(N — 1) > 6 so N > 3.
The least squares solution for these equations is :

P = (MTM)yTTMTN (7)

3.3 The direction and the length of one leg are fixed simultaneously

We want now calibrate Model 42. We take into account the offset of the legs.
Equation (4) can be rewritten, in the case where the direction of leg k is fixed as :

Pi+ Ribk —ar  Pip1 + Riy1by — ap
pr+ Apy, pres+ Apg

~0 (8)

3.3.1 Determination of b
For a set of measurement configurations, we fix simultaneously the leg length and the direc-
tion of the leg k, (Type II). So p¥ + Ap, = pf_H + Apy.

The equation (8) becomes :

(Pig1 + Rip1br) — (Pi + Ribr) =0 9)

The 3D equation (9) is linear in b term of a hence for N measurement poses :

Ra — TRy P1 =P
Ri—l—l — RZ' bk = Pi - 73@'-1—1 (10)
-
Ry —Rn-1 3(N—1)x3 Pn-1—Pn 3(N=1)x1
with 2 = 1..N, R; a 3 X 3 matrix,P; a 3 X 1 vector.
We put equation (10) in a linear form :
Az(v_1)x3(bk)31 = By(v—1)x1 (11)

Equation (10) provide us 3(N — 1) equations. To determinate the 3 coordinates of by
we need at minimum 3 independent equations. As the rank of the matrix (R;11 — R;) is 2,
equation (10) provides us 2(/N — 1) independent equations. Hence to solve this problem, we
need N > 3.

The least squares solution for these equations is :

by = (ATA)TATB (12)
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3.3.2 Determination of ay

Now, we want to determine a; with the knowledge of b, (determined in 3.3.1).
In the sequel vector P; + R;by, for pose ¢ will be denoted V; (dim 3 x 1).
For all configuration poses, the leg length is fixed pf + Ap, = pfﬂ + Ap;, but the direction
of the leg k is free (Type III).
The IK provides us :

1P + Riby, — ax||” = (pF + Apy)? (13)
With the simplification and with leg length constraints p¥ + Ap;, = pfﬂ + Apy, we get :
Vi = a)l® = Vier — arll® = (o + App)® = (pfy + Apy)? (14)

or in linear form for N measurement configurations :

(V2 =V)T V2]l = [Iva®
(Vi = Vi)l w | =5 Wil (15)
(Vv _'{/N—l)T N—1x3 ! IVn |2 —””VN—IH2 (N—1)x1
In matrix form :
C(N—l)x3 ( g )3X1 = D(N—1)><1 (16)
The least squares solution for these equations is :
(ax )=("c)"'¢"D (17)

The Equation (15) provide N — 1 equations. Hence to determinate the 3 coordinate of
ap, weneed N —12>3,s0 N > 4.

3.3.3 Ap, determination

With the knowledge of by (3.3.1), a (3.3.2) and with one position/orientation P, R mea-
surement pose, we want to determine Apy.
For any leg length measurement, the IK equation provides us :

P+ Rbi — axll = (p* + Apy) (18)
We get :

Apy = |P + Rby, — ag|| — p" (19)

4 Simulation

We want to simulate a calibration on the robot “Left Hand” built at INRIA. The coordinates
of the attachment points are (in cm) :



Attachment Coordinates in cm

points X ‘ Y ‘ Z
aq -9.7 9.1 0.00
a9 9.7 9.1 0.00
a3 12.76 3.9 0.00
4 3 -13 | 0.00
as -3 -13 | 0.00
g -12.76 3.9 0.00
by -3 7.3 0.00
by 3 7.3 0.00
b3 7.822 | -1.052 | 0.00
by 4.822 | -6.248 | 0.00
bs -4.822 | -6.248 | 0.00
bg -7.822 | -1.052 | 0.00

This data are assumed to be the real parameters P, of the robot (P, for the leg k). The
real offset on the leg lengths is Ap = 15.25¢m.

The algorithms are computed for k=3.

With this data, we compute some measurement poses of Type I, IT and III. All simulations
are done using Matlab.

Let Py, be the kinematic parameters of leg k provided by the calibration algorithm. For
evaluate the quality of the methods, we use the index error ||Py. — Pk, ||-

To simulate measurement noise, we add on each measurement a random noise uniformly
distributed. The amplitude of this error is err, (in cm) for the position (i.e. we add a
random number between [—err,...err,] on the coordinate x,y,z of the position platform),
err, (in degree) for the orientation (i.e. we add a random number between [—err,...err,] on
the 3 Euler’s angles describing the orientation platform) and err; (in cm) for the leg length.

We have to take into consideration the influence of choice of the measurement poses on
the calibration result. For ours methods this problem is easily understood : we rely on solving
equation Az = B to find a solution ; but the condition number of the matrix 4 (function
of the measurement) determine the robustness of algorithms to the noise measurement ([2],
[12]). In order to have a global evaluation of our algorithms independent of the choice of the
measurement poses, we have to use each algorithm with a set of 1000 random measurements
poses and computed an average index error as 13y 231:1000 | Py — Pg.||; with j the index of
a set of V measurement poses. To determinate the influence of the number of measurements,
we process each algorithm for measurement pose number N = 4..50 for Type I, N1 = 4..30
for type II, and N2 = 5..30 for Type III (one more than the minimum required to get a
robust least square solution).

e For example for method 3.2 the test program is as follow :
For N =4 to 50

— for 7 =1...1000
x 1. We produce N simulation measurement poses of type I, we obtain [P;, R, pi];, we add
error erry, errq, err; on position orientation and leg length, we obtain M, N .
* 2. We process P, = (MTM)"*MIN
* 3. With the real kinematic parameters of the leg k : Py,
We process : ||Pee — Proll; = [llake — anell;, [[bre — bell;]-

— end for

9



1000
- ”P’Cc - P’W” = ﬁ Zi:j ”P’Cc - Pkr”j

end For.
e FExample with method 3.3 :

— Determination of by, :
For N1 =4 to 30

* for j = 1...1000
- 1. We produce N1 simulation measurement poses of type II, we obtain [P;, R;];, we
add error errp, err, on position and orientation, we obtain A, B.
- 2. We process by, = (ATA) "1 ATB
- 3. With the real kinematic parameters of the leg k : by.,. We process : ||bxc — b, |l;-

* end for
* [1bre = brrll = 955 2imr 1bre = brs
end For.
— Determination of ay, : For N2 =5 to 30
* for j = 1...1000

- 1. We produce N2 simulation measurement poses of type III, we obtain [P;, Ri];, we
add error errp, err, on position,orientation and on by, (to simulate by, obtain by the

method 3.3.1) we obtain C,D.
- 2. We process a, = (CTC)~'¢TD
- 3. With the real kinematic parameters of the leg k, We process : |lar. — ax.||;-

* end for
* lage — ag,|| = ﬁ 2323-0 llake — aer]-
end For.

— Determination of Apy, :

* for j = 1...1000
- 1. We produce one measurement pose, we obtain [P, R, pl;, we add error erry, errq, erry

on position, orientation and on by, ,ar, .
- 2. We process (Apy); = ||P + Rby, — ax|| — p*
- 3. With the real kinematic parameters of the leg k, We process : ||Ap;,. — Apy, ||,

* end for
_ 1 1000
* WA = Api, |l = 1555 2i=; 18Pk = Api I

end For.

5 Results

If we simulate these methods without measurement noise, the kinematic parameters are

exactly determinated.
The following results show the influences of the noise on position, orientation and leg

length measurements.

5.1 Method 3.2

The comparison between the calibration results for each platform show that the noise have
a larger influence on the base point error determination (Fig: 5). For N = 7 the factor
between the input error (error on measurement in cm and in degree) and the output error
(error on kinematic parameters in cm) is around 13 for the base and 1.4 for the mobile (Fig:
5,6). This difference is due to the conditionement of the loop equations.
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0.0343 0.0051
0.0309 | 0.0046 |
0.0241 | 0.0035 |
llak, — akll 1687 — brcll

0.0172 | 0.0025 |
0.0104 | 0.0014 |
0.0036 ; ; ; ‘ 0.0004 ; ; ; ‘

4 14 24 34 44 50 4 14 24 34 44 50

Number of measured poses Number of measured poses
Base Mobile
errp = 0.001, erre = 0.001, err; = 0.001
Figure 5:
0.3834 0.0509
0.3447 | 0.0456 |
0.2674 | 0.0351 |
lak, — akll 1687 — brcll

0.1902 | 0.0246 ||
0.1129 | 0.0141 |
0.0356 ; ; ; ‘ 0.0036 ; ; ‘ ‘

4 14 24 34 44 50 4 14 24 34 44 50

Number of measured poses

Base

Number of measured poses
Mobile

errp = 0.01,errg = 0.01,err; = 0.01

Figure 6:
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To compare this algorithm with existing method, Innocenti’s algorithm [6] has been used
with the same type of noise and the same number of measurement poses. The result factor
obtain for the base and for the mobile is near 15.

In order to compare the influences of orientation, position or leg length measurement
error, we check the kinematic parameter error with different level of noise (Fig: 7,8).

0.31231 0.04138
0.20982 0.02783 ||
llag, —akll 165, = brecll
0.10733 | 0.01428
0.00485 ‘ 0.00073 ‘
4 14 24 4 14 24
Base Mobile
number of measured poses
errp = 0.01,errq = 0,err; =0
— errp =0,errg =0.01,err; =0
— — — errp =0,erry = 0,err; =0.01
Figure 7:
0.28714 0.04025
0.19396 0.02716 ||
llag, —akll 165, = brecll
0.10078 | 0.01407 |
0.00760 , 0.00098 ‘
4 14 24 4 14 24
Base Mobile

number of measured poses

errp = 0.01, errq, = 0.001, err; = 0.001
— errp = 0.001,errqy = 0.01, err; = 0.001
~— ~ = errp =0.001,erry =0.001, err; = 0.01

Figure 8:

5.2 Method 3.3

The base point determination algorithm (3.3.2) need the coordinates of mobile point process
by algorithm (3.3.1). We use b determinate for N1 = 7 with a noise on position and
orientation measurement :

e For err, = 0.01cm, err, = 0.01degree, we get b, = [7.8291, —1.05809,0.007995].
e For err, = 0.001lcm, err, = 0.001degree, we get by, = [7.82149, —1.052215,0.0011].

It is interesting to note, we do not need leg length measurement to determinate the
attachment points. So we have not to take iritf) account the leg measurement error.



0.00549 0.00466

0.00407 | 0.00325 |
ek, — agcll 1ok — brcll
0.00266 | 0.00183 |
0.00125 ; ; ‘ 0.00042 ; ; ‘
5 12 18 25 30 4 11 17 24 30
Base Mobile

number of measured poses

errpy = 0.001, errq, = 0.001

Figure 9:
0.05535 0.04667
0.04106 | 0.03250 |
lak, —ag.ll 1ok, — brcll
0.02678 | 0.01832 |
0.01250 ; ; ; 0.00415 ; ; ;
5 12 18 25 30 4 11 17 24 30
Base Mobile

number of measured poses

errp = 0.01,err, = 0.01

Figure 10:
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For this method, the error on mobile kinematic parameters is as the same order as the
previous method (figure 9,10)(output/input error factor = 1.4). But, if by, is calculated with
a small error (here N1 = 7), we get a better accuracy on ar (of 2 x error on the mobile
determination)(figure 9,10)(for N1 = 7, N2 = 7 output/input error factor = 2.8). We need
here N1+ N2 independent location measurements instead of IV for the first algorithm, so
we have more information data to calibrate a robot leg. Conversely, the first algorithm is
interesting for his low number of measurements.

The error on the linear transducers offset is dependent of the determination of attachment
points. So the mean error on the offset is close to the biggest noise applied on measurement
(position ,orientation, leg length) or processed through algorithm (b, ay).

6 Conclusion

Two effective algorithms for identification of kinematic parameters have been presented and
verified through simulations. The proposed calibration methods are based on data sets each
composed of one platform location and corresponding leg length. The mobility constraints
on leg provide us some linear equations function of unknown kinematic parameters and
measurement. Neither algorithm requires initial estimation of the unknown. The error on
kinematic parameters can be easily improved by additional measures. The first calibration
algorithm unambiguously provides the coordinates of all spherical pair centers, and the
second add the knowledge of the offset values of the manipulator linear transducers.

The advantages of these algorithms are the simplicity of the method due to the linear
form of the loop equations, the velocity of these algorithms compared to non-linear numerical
methods, a robust determination of mobile (3.2) or mobile/base (3.3) attachment points and
the low number of minimum measurement configurations required.

An study of the condition number of the linear equations provided by these methods can
be used to improve the kinematic parameters error by a choice of measurement configurations.

The paper show the interest to use constraints on the robot leg to simplify loop equations
and/or to hide unknowns. Imposing constraints on the leg and on the location of the platform
can be interesting to solve kinematic calibration problem.
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