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Abstract This paper presents an image rectification

method for an arbitrary number of views with aligned

camera center. This paper also describes how to extend

this method to easily perform a robust camera cali-

bration. These two techniques can be used for stereo-

scopic rendering to enhance the perception comfort or

for depth from stereo. In this paper, we first expose why

epipolar geometry is not suited to solve this problem.

Second, we propose a non linear method that includes

all the images in the rectification process. Then, we de-

tail how to extract the rectification parameters to pro-

vide a quasi-Euclidean camera calibration. Our method

only requires point correspondences between the views

and can handle images with different resolutions. The

tests show that it is robust to noise and and to sparse

point correspondences among the views.

Keywords image rectification · stereoscopic displays ·
camera array · camera array calibration

1 Introduction

In recent years, stereoscopic technologies have been sub-

ject to an impressive growth and became incontrovert-

ible in the movie maker industry. More recently, this

technology has advanced from stereoscopic to autostereo-

scopic displays, involving more than two views and hence

more than two cameras. The use of these multiview
devices emphasizes technical issues in term of video
stream synchronization, colorimetric correction, data

compression, camera calibration or geometrical issues.

This paper deals with the two last problems. More specif-
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ically, this paper presents an extension of an image rec-

tification method [26] to perform a camera calibration

for an arbitrary number of views with aligned camera

center. This technique can be used for stereoscopic ren-

dering to enhance the perception comfort or for depth

from stereo. In this paper, we first expose why epipolar

geometry is not suited to solve this problem. We pro-

pose a non linear method that includes all the images

in the rectification process. Our method only requires

point correspondences between the views and can han-

dle images with different resolutions. Then, we present

a method to perform a quasi-Euclidean calibration of

the cameras from the parameters computed during the

rectification process. The tests show that the method

is robust to noise and to sparse point correspondences

among the views.

Stereo image rectification consists in the transfor-
mation of two images of the same scene such that for

each pixel correspondence between the two views, the

two pixels are aligned along the image horizontal axis.

The main purpose of image rectification in computer vi-

sion is to optimize depth from stereo methods both in

computational time and in robustness. A less known

application concerns stereoscopic image visualization
where the vertical parallax between any point corre-
spondences should be minimized. The large majority of
the proposed methods are dedicated to 2-views systems.

In this paper, we present an image rectification method

for more than two views, as depicted in Figure 1. Recti-

fying more than two views implies some constraints on

the cameras’ devices, especially the fact that the cam-

eras’ center should be aligned. Multiple view image rec-

tification is essential for autostereoscopic camera setup

and can have some applications for depth from stereo

methods.
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Fig. 1 Multiple image rectification : (Up) height input images. (Down) the height rectified images.

A basic approach consists of pairwise image rectifi-

cations. In this paper, we propose an alternative method
that ensures a computation providing a globally opti-
mized solution using simultaneously all the views rather

than pair by pair. Our method can handle images with

different resolution, orientation and focal length. Then,

we show how the computed orientation and focal length

parameters are used to calibrate all the cameras.

2 Image Rectification

Image rectification methods have been known for long

by photogrammetrists [30] and have been improved later

by software approaches, like with Ayache and Hansen [5].
Most of these early methods involved the camera to be
calibrated, i.e. to know the camera projection matrices.
Then, this constraint has been released with methods

taking advantage of epipolar geometry to align the two

images. The main issue of the image rectification pro-

cess is that the rectified pair is not unique, as show

in Figure 2. Most of existing methods deal with how
to find an image rectification that minimizes the im-
age distortion or that preserves some predefined image
properties.

Robert et al. [28] attempt to reduce the amount of

distortion by finding the rectification transform that
is closest to preserving orthogonality about the image

centers. However, orthogonality is not an adequate cri-

terion since even an Euclidean image rectification can

involve a loss of orthogonality. Correcting this non-

orthogonality might decrease the Euclidean property

of the rectified images. Hartley [14] proposes a linear

method to minimize the horizontal parallax among the

point correspondences used for the rectification. Loop

and Zhang [19] decompose the rectification process into
affine and projective components. Al-Zahrni et al. [1]
propose a method that prevent the rectification process

from a distortion on a selected common plane specified

from 3 point correspondences on the two images. Gluck-

man et al. [12] propose a method to find the transfor-

mation that best preserves the sampling of the orig-

inal stereo pair, i.e. each pixel in the unrectified im-

Fig. 2 Image rectification solution is not unique. First
row: two images to rectify. Second row: a possible image rec-
tification. Third row: an horizontal scale preserves the recti-
ficatio properties. Fourth row: a skew also preserves the rec-
tificatio properties.

age should map to a single pixel in the rectified im-

age. Mallon and Whelan [22] optimize each transforma-

tion in order to minimize perspective distortions, such

that the rectified images look like the original images
as closely as possible. Monasse et al. [24] perform an
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image rectification by three successive rotations. Isgrò

and Trucco [16] do not explicitly compute epipolar ge-

ometry but generate a rectifying pair of homographies

that are conform to the fundamental matrix form of a

rectified image pair. Finally, Pollefeys et al. [27] propose

a rectification method based on a reprojection onto a

cylindrical surface instead of a plane in order to reach

an optimal pixel distribution on the rectified images to
avoid any pixel loss.

All these methods minimize an image distortion and

thus are well suited for depth from stereo methods but
not for stereoscopic rendering since the generated im-
ages are not consistent with a camera transformation
that would result in a natural correction. In other words,

there is no guarantee to obtain a pair of rectified im-

ages that corresponds or is close to an Euclidean cam-

era setup. Moreover, most of these methods are based

on epipolar geometry and hence cannot be directly ex-

tended to handle more than two views, as we will show

in section 5.2.

3 Rectifying more than two views

3.1 Image rectification for stereoscopic rendering

In recent years, stereoscopic systems advanced from
stereoscopic to autostereoscopic displays. These devices
can provide more than two views simultaneously, usu-

ally around ten views, and the users do not need to wear

any specific glasses. To provide a comfortable stereo-

scopic rendering, a stereoscopic image should avoid ver-

tical parallax between correspondence points. This prob-

lem has been deeply studied (see Allison [2]) and can

be corrected with an adequate image rectification if

the cameras’ center are aligned. This latter constraint

makes possible to rectify an image with its right and left

neighbors simultaneously. Finally, to reach orthostereo-

scopic rendering [18], i.e. the scene is perceived with

its real geometric proportions, the image rectification
should be Euclidean (i.e. metric). A quasi-Euclidean
rectification where the respective camera focal lengths

are coherent but only known up to a common scale fac-

tor, provides a quasi-orthostereoscopic rendering that

is also acceptable.
Zhou and Li [37] propose an image rectification ded-

icated to stereoscopic rendering based on epipolar ge-

ometry that provides good results, but is adapted only

for two views. Fusiello and al. [11] and later Fusiello et

al. [10] propose a non-linear method to rotate and zoom

a pair of projective camera such that they fit to a pair of

rectified camera, according to the epipolar constraints.

This approach is specially well suited for stereoscopic

rendering since this method provides quasi-Euclidean

image rectification. However, this method is hardly to

be extended to multiple images rectification since it
is based on an implicit epipolar relation between the
two cameras. Our method is mainly related to this ap-

proach, especially concerning the quasi-Euclidean rec-

tification.

3.2 Rectifying more than two views

Ayache and Hansen [5], Sun [33] and also An et al. [3]
present some methods to perform an image rectifica-
tion over three views. They combine a horizontal image

rectification between a central image and a left image,

and a vertical image rectification between the central

image and a bottom image. This approach is designed

to extend depth from stereo methods to three views,

however this technique cannot be used for three aligned

cameras.

Kang et al. [17] present an image rectification from
multiple calibrated images. They adapt the images ori-

entation and focal such that the cameras share a com-

mon image plane. Boutarel and Nozick [7] present a

GPU image rectification that can support multiple im-

ages. This method requires the camera to be calibrated

and performs a projection on a common image plane,

followed by a back projection on a set of ideal rectified
cameras. This method can handle slight misalignment
of the camera center if the common image plane is cho-

sen carefully since it minimizes the error around this

common projection plane. The main drawback of these

latter methods is the need of calibrated cameras when

all the other methods can deal only with point corre-

spondences.

3.3 Camera array calibration

The camera calibration process for a camera array can

be a laborious task. The cameras can be calibrated one

by one, using a 3d pattern and the “gold standard al-

gorithm” detailed in [15].

A much easier way is to use a 2d pattern with the
method presented by Zhang [36], like in the reconfig-

urable camera array described in [35]. Lucchese [21]
presents an extension of Zhang method designed for
camera arrays. The main drawback of these methods is

that an operator has to go on the scene to move the pat-

tern such it is captured by all the cameras with various

orientations.

A simpler method, based on point correspondences,

consists in making a rough camera calibration and then

perform a non-linear refinement. The estimated cam-

era projection matrices are usually computed with the
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5-points algorithm [15,25]. Then, the final camera cal-

ibration is performed with a bundle adjustment on all

the data [15,34]. If the process is successful, the camera

calibration is accurate. The drawbacks of this method

are first to require the cameras internal parameters to

be known for the 5-points algorithm and second, to be

very sensitive to the initial camera calibration. A mod-

erately accurate initial calibration may lead to com-
pletely false result.

4 Notations

In this paper, we will follow the same notation as in [15].

We indicate column vectors of P2 in bold lower-case let-

ters such as x = (x, y, w)⊤ and column vectors of P3

in bold upper case letters such as X. Row vectors are

transposed column vectors, such as x⊤. The y coordi-
nate of a vector is denoted by (·)y. Matrices are de-

noted by upper case letters, such as H. A set of points

is denoted by an italic upper case letter like U and its

cardinality by |U |.

5 Epipolar geometry and more than two views

Epipolar geometry [15] is an usual support for stereo

image rectification methods. Thus, it can also appear

to be a good solution to rectify multiple images.

5.1 Epipolar geometry

The epipolar geometry describes the relations that ex-

ist between two images and can be described by the

following equation:

x′⊤
Fx = 0

where x and x′ are homogeneous representation of cor-

responding points and the fundamental matrix F is the

algebraic representation of epipolar geometry. An epipole

is the projection in one view of the camera center of the

other view. Numerically, the epipoles e and e′ are the

right and left null space of F and can be computed by
solving the homogeneous equations:

Fe = 0 F
⊤e′ = 0 (1)

5.2 More than two views

Rectifying more than two views involves that the cam-
era centers are aligned. Indeed, camera rectification pro-

cess consists in the image transformation such that the
rectified images share the same image plane. Moreover,

the horizontal axis of the rectified images should be

parallel to the camera baseline such the epipoles are

matched to infinity in the horizontal direction. To sat-

isfy this constraint for each view, the camera centers

should be aligned. Figure 3 presents a example where

the cameras are not aligned, background and forground

can not be rectied simultaneously.

Fig. 3 Three unaligned cameras. The left and rigth images
are rectified together. The middle image’s background is also
rectified with these two images. Scaling the middle image
would align the foreground but misalign the background (see
the lights around the head).

If we consider more than two views where the cam-

era centers are perfectly aligned, an extension of epipo-

lar geometry is conceivable according to the fact that an

image has a unique epipole whatever the other view. In-

deed, if we consider N aligned cameras, the projection

of the ith camera’s center on the jth image is equivalent

to the intersection of the line passing throw all the cam-

era center and the jth image plane. Since this epipole

eij is constant ∀i ∈ {1 · · ·N}i 6=j , then we note eij = ej
and the equation (1) leads to Fijej = 0, where Fij is

the fundamental matrix between the image i and j.
This equation can be extended in a least square form:




F1j

F2j

...
FNj


 ej = 0

Unfortunately, this approach is numerically unstable

unless the cameras’ center are perfectly aligned. Due

to practical constraints, this condition is usually not
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perfectly satisfied. The alternative that consists of com-

puting the average epipole between an image and all the

others is also unstable since a misalignment of a camera

center has strong consequences on the computed aver-

age epipole. Imagine the situation where an epipole is

at infinity with one view and on a finite point with an-

other. Computing the average position would have no

meaning.
As a consequence, epipolar geometry appears to be

incompatible with more than two views, neither by an

overall process nor by pairwise computation.

6 Outline of our method

Image rectification process can be considered as a trans-

formation on the images such that they share a common

image plane. Let’s consider a set ofN cameras with pro-

jection matrix Pi = Ki [Ri| − Rici]. We want to find the
corrected cameras P

′
i = K

′
i [R

′
i| − R

′
ic

′
i] such that all

the cameras’ focal plane become coplanar. This trans-

formation can be expressed by a rotation around the

optical center and an update of the focal length. With-

out loss of generality, the camera coordinate system can

be associated to the first corrected camera coordinate

system. Hence, the projection matrices of the corrected

cameras can be expressed as:

P
′
i = K

′
i [Id| − c′i]

where the camera center are:

c′i =




xi

0

0




During the image rectification process, we do not have

to consider the cameras’ position. Thus, the relation

between the initial and the corrected projection matrix

can be defined as an homography Hi:

Hi = P
′
iP

−1

i = K
′
iIdi (KiRi)

−1
= K

′
iR

−1

i K
−1

i (2)

Let R̂i = R
−1

i be the rotation applied to Pi to have the

same the orientation as P
′
i. The equation (2) can be

rewritten as follows:

Hi = K
′
iR̂iK

−1

i (3)

As depicted in Figure 4, the rectification problem be-

comes how to find R̂i and K
′
i such that Hi rectifies

the images. Given some point correspondences between

each view, we want to find Hi such that the transformed
point correspondences are horizontally aligned.

Once the rotations matrices R̂i are retrieved, the

only remaining information required to perform the cam-

era calibration is the camera position. Assuming that

Fig. 4 Image rectification for each camera consists at most
in a rotation and a change of focal length.

the cameras are aligned, the camera order and posi-
tion can be extracted from the point correspondences,
as presented in section 9. The resulting camera calibra-
tion is quasi-Euclidean, meaning that the focal length

are coherent among all cameras, but defined up to a

common scale factor.

This method is not related to epipolar geometry

and hence can be extended for an arbitrary number of

views. Moreover, it does not involve any prior knowl-

edge about the cameras’ projection matrices and re-

quires only point correspondences between the views.

Furthermore, contrary to epipolar geometry based meth-

ods, the minimal number of point correspondences is

not 8 but 4 (i.e. the minimal point correspondence to

define an homography). Finally, this method is well

suited for stereoscopic rendering since the operations

guaranty a quasi-Euclidean rectification.

7 Multiple view image rectification

Consider a set of point correspondences {xUk} where

U k denotes the set of cameras involved by the kth cor-
respondence and where ∀k, |U k | ≥ 2 (i.e. each corre-

spondence relates at least two views).

Let K′i and R̂i the rectifying internal parameters and

rotation for each camera, then the rectified point cor-

respondences should be horizontally aligned:

(Hix
k
i )y = yk, ∀i ∈ U k

where yk represents the vertical coordinate of the recti-
fied point k on each view. In practice, the yk can be set

as the average y-coordinate of the kth rectified points
since the rectified point correspondences should have

the same y-coordinate:

yk =

∑
i∈Uk(Hix

k
i )y

|U k|
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Hence, the homographies Hi should satisfy:

(Hix
k
i )y − yk = 0 (4)

We propose to find Hi with a non-linear process where

each K
′
i and R̂i are optimized to satisfy equation (4) by

minimizing the residual error e over all rectified point

correspondences:

e =
∑

k

∑
i∈Uk |(Hix

k
i )y − yk|

|U k|
(5)

The error computation of each correspondence k is nor-

malized by |U k| since the correspondence points may
not involve all the views. We perform a bundle adjust-

ment on K
′
i and R̂i from each view using Levenberg-

Marquartd method.

To simplify the computation process, we reduce the

number of parameters of K′i by specifying a zero-skew,

a unit aspect ratio and a principal point centered on

the image. The only remaining parameter is the focal

length. Hence, the cameras’ internal parameter matrix

is defined as follows:

Ki =



fi 0 wi/2

0 fi hi/2
0 0 1


 (6)

where wi and hi are respectively the width and height

image resolution of the ith view. An usual initial value

for the focal length fi is f
0
i =

√
w2

i + h2
i . As suggested

in [23] and [10], it is numerically recommended to rep-
resent the focal length by a variable ranging in [−1, 1]

using zero as an initial value for the non-linear com-
putation. It is common to expect f to have a value

roughly ranging in [f0
i /3, f

0
i × 3], thus fi is represented

by a value αi = log3(fi/f
0
i ). Hence, starting the non-

linear process with the default focal length induces an
initial value of αi set to zero. Then, during the non-
linear process, the current focal length is computed by:

fi = f0
i 3

αi

Each rotation matrix R̂i is defined by three Euler

angles θxi , θ
y
i and θzi such that R̂i = Rθz

i
Rθ

y

i
Rθx

i
. For each

view, the unknowns are the focal length represented by
αi and the three Euler angles θxi , θ

y
i and θzi which make

a total of four unknowns per camera.

All the variables (θxi , θ
y
i , θ

z
i , αi) are set to zero at

the beginning of the procedure, meaning no orientation

change on the cameras and the default focal length.

To avoid a free rotation of all the images around the

cameras’ base-line, we select a reference camera and

force its angle θxr to be zero during the minimization

process. We also let the focal length fr of this camera

constant for the same reasons.

As specified in equation (5), the point correspon-

dences do not have to cover all the views. The only

constraint is that each view should be directly or indi-

rectly linked to all the others. Finally, our method can

handle multiple view image rectification but is also very
well suited for a two images rectification.

8 Different image resolution

In our method presented in section 7, we consider that

all the input images have the same resolution. If it is

not the case, the method should be adapted to over-

come some computational errors. More specifically, a

change in the focal length may lead to a misalignment
for two images with different resolutions if the origin of
the pixel coordinates is not centered. Indeed, the focal
length variations provide centered transformations, but

the image coordinates are not subject to this scale, as

described in equation (3). Figure 5 shows that even with

an adequate update of the focal length, the images are

not aligned. This misalignment may lead to a rotation
along the image baseline that will distort the image and
degrade the image rectification. This problem does not
occur if the pixel coordinates are centered, as depicted

in Figure 6.

Therefore, our method should be modified such that
the data is centered. Let H

c
i be the homography that

centers the pixels of the ist image, defined as:

H
c
i =



1 0 −wi/2

0 1 −hi/2
0 0 1


 (7)

Equation (3) becomes:

Hi = H
c−1
out K

′
iR̂iK

−1

i H
c
i (8)

Where the matrix H
c
out is a centering homography cor-

responding to the output image format that specifies a

common pixel coordinates origin for all the images. In

practice, Hcout can be the centering homography of the

smallest image. Moreover, the intrinsic parameters ma-

trices should not include the origin of the image, since

the data is already centered. These matrices become:

Ki =



fi 0 0

0 fi 0
0 0 1




Finally, the non-linear process can find the best param-

eters to rectify the images. It is not required for the in-

put views to have neither the same image resolution nor

the same focal length. The bundle adjustment process

is summarized by the minimization function described
in Algorithm 1.
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(a)

(b)

(c)

Fig. 5 (a) Input images with different resolution. (b) The
minimization process will include a centered variation of the
focal length of the second image, i.e. a scale of the bigger im-
age performed in the principal point coordinate system. The
scale coeficeint is adequate but the fact that it is not per-
formed on the image coordinate system generates a misalign-
ment. (c) This misalignment can be reduced by a combining
a rotation around the camera baseline. However, this image
rectification is far from optimal.

(a)

(b)

Fig. 6 (a) Input images with different resolution. (b) A cen-
tered variation of the focal length of the second image, where
the image coordinate system is defined as the principal point.
The sacle does not introduces any misalignment, as in Fig-
ure 5.

If all the input images have the same resolution, Al-

gorithm 1 can be simplified by replacing the equation
of line 3 with equation (6) and the line 7 with equa-
tion (3). However using Algorithm 1 provides very good
results whatever the image resolution and does not al-

ter the numerical performance even if the images have

the same resolution.

Algorithm 1: minimization function

input : a set of candidates {(θxi , θ
y
i , θ

z
i , αi)}

a set of constant {(Ki, Hci )} and {x
Uk}

output: a set of Hi and the alignment error

get back the data

1 foreach camera i do
2 fi = 3αiKi(0, 0)
3 K

′

i = diag(fi, fi, 1)

4 R̂i = eulerAngles(θxi , θ
y
i , θ

z
i )

5 end

compute the homographies

6 foreach camera i do

7 Hi = H
c−1

out K
′
iR̂iK

−1

i H
c
i

8 end

compute the average vertical coordinates

9 foreach correspondence xk
U

do

10 yk = 0
11 foreach i ∈ U k do

12 yk+ = (Hixk
i )y

13 end

14 yk = yk/|U k|

15 end

compute the global error

16 errorTotal = 0
17 foreach correspondence xk

U
do

18 error = 0
19 foreach i ∈ U k do

20 error + = |(Hixk
i )y − yk|

21 end

22 errorTotal + = error/|U k|

23 end

24 return errorTotal and {Hi}

9 Cameras identification

In practical situations, it is usual to have a setup where

the cameras are not identified, meaning that the order

of the cameras is unknown. This is typically the case

with usb cameras where the camera identifier depends

on the usb port detection order. The geometrical cam-

era order can be retrieved using point correspondences

between the images.

9.1 Camera coordinate system

Assuming that the cameras are rectified with Algo-
rithm 1, the camera position can be computed from the
corresponding points. Indeed, if we consider the point

correspondences in the rectified camera coordinate sys-

tem, the point correspondences disparity between views

is proportional to the horizontal position of the camera.

Note that this assertion is true only in the case of rec-

tified camera.
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Algorithm 2: ordering the images

input : a set of k point correspondences {Fi}
(possibly incomplete) between n images.

output: an ordering array a

1 a = 0n

2 foreach image Ii do

3 foreach image Ij>i do

4 left = 0
5 right = 0
6 foreach correspondence Fk do

7 if Fk(i) and Fk(j) exists then

8 d = Fk(i)− Fk(j)

don’t consider equality

9 if d < 0 then right++
10 if d > 0 then left++

11 end

12 end

13 if left > right then ai++
14 else aj++

15 end

16 end

17 return a

Since the rectified images have the same resolution,

the common image system coordinate can be defined by

any image point. A direct solution is to select the top
left corner of the image, with coordinates (0, 0)⊤. An-

other easy solution is to choose the corrected principal
point of the rectified images defined by the parameters

(wi/2, hi/2)
⊤ used on the centering homography H

c
out

presented in Equation (7).

9.2 Ordering the cameras

As mention above, the rectification process involves that
the disparity (in x−axis) of the point correspondences

between views is proportional to the horizontal posi-
tion of the camera. The method we propose consists in

counting for each pair of image {Ii, Ij}i 6=j the number

of point correspondences where the disparity from Ii to
Ij is positive and respectively negative. These numbers

will lead to a geometrical ordering of the two images.

Extending the process to all pair of images will sort all

the images. This method is described in Algorithm 2,

where an element ai indicates the index of the ist cam-

era.

Finally, in the case of aligned cameras with a non-
uniform repartition, i.e. all the camera are not equidis-

tant to their left and right neighbors, it is possible to

extract the x−position of each camera from the dispar-

ity of the point correspondences. Indeed, equidistant

cameras would involve a constant disparity between two

pairs of consecutive cameras for a selected correspon-

dence.

The computation of the camera x−position starts

with the definition of a unit metric. It is standard to

define the distance between the first and second camera

as δx0,1 = 1. Then, the distance δx0,i between the first

camera and the ist camera is computed from the aver-

age of the disparity ratio among all correspondences k:

δx0,i = average

(
dk(0, i)

dk(0, 1)

)

k

or recursively with:




δx0,1 = 1

δx0,i+1 = δx0,i + δxi−1,i.average

(
dk(i, i+ 1)

dk(i− 1, i)

)

k

Thus, each camera center can be estimated with:

ci = (δx0,i, 0, 0)
⊤ (9)

9.3 Point correspondence null space

We propose another approach to sort and find the po-
sition of the cameras using a Singular Value Decompo-
sition (SVD). This approach is quite elegant but unfor-

tunately not robust to false positive or missing point

correspondences. Given a matrix of disparities between

an arbitrary reference view and the other images, the

centered and normalized disparities form a principal

axis that can be extracted from a Principal Compo-
nent Analysis or a SVD. This method is summarized
on algorithm 3. The resulting vector a represents the

sorted indexes of the cameras.

10 Cameras calibration

10.1 Rectified camera calibration

The rectified camera have the form:

P
′
i = K̂i [Id| − ci]

where the camera position ci is defined by Equation (9):

ci =




δx0,i

0

0




The internal parameter matrix K̂i does not corresponds
exactly to the matrix K′i. Indeed, at the beginning of the

minimization process, it is assumed that all the input

cameras have a default focal length. For example, if all

cameras have the same image resolution, they will have

an identical default internal parameter matrix, when in
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Algorithm 3: ordering the images with a SVD

input : a set of k point correspondences {Fi}
(possibly incomplete) between n images.

output: an ordering array a

compute the disparity matrix

1 A = 0kn

2 foreach correspondence Fk do

3 foreach image Ii do

4 Aki = Fk(i)− Fk(0)
5 end

6 end

normalize the data

7 foreach correspondence Fk do

8 center and normalize the set {Aki}i=0...n−1

9 end

compute the right null space of A

10 UDV
⊤ = SVD(A)

11 a = last column of V

normalize the data

12 am = min(a)
13 aM = max(a)
14 foreach image i do

15 ai = (n− 1)×
ai − am

aM − am

16 end

17 return a

reality, their focal length may differ. The rectification
process will find a scale on this internal parameter such

the corrected images share a common image plane par-
allel to the camera baseline. Hence this process involves
that the rectified camera have actually the same focal

length and internal parameter matrix K̂. More precisely,

the focal length scale factor computed during the mini-

mization process is related to the initial camera param-

eter but not to the corrected one. Figure 4 describes this

process. Thus, the internal parameters of the rectified
camera has the following form:

K̂ =



fr 0 wout/2

0 fr hout/2

0 0 1




where fr is the focal length of the reference camera and

(wi, hi) defined by Equation (7) and the output image

format.

The resulting camera calibration is called quasi Eu-

clidean, in opposition to Euclidean (metric) or perspec-

tive calibration. Quasi-Euclidean calibration means that

the focal length fr of the cameras is defined up to a

scale factor common for all the cameras. In our case,

finding an adequate focal length fr makes the calibra-

tion Euclidean for all the cameras, providing metric re-
construction (for computer vision applications) or an
orthostereoscopic rendering (for stereoscopic applica-

tions). Choosing a “standard” focal length will provide

quite correct 3d reconstructions or stereoscopic render-

ing. This is absolutely not the case of a perspective

reconstruction where the results have nearly no chance
to be acceptable.

10.2 Initial camera calibration

According to section 6, the initial estimation of the orig-

inal camera projection matrices are given by:

Pi = Ki [Ri| − Rici]

with

R
−1

i = R̂i

and where ci = (δx0,i, 0, 0)
⊤ is the same camera center

computed for P′i in Equation (9).

As specified in section 10.1, the initial value for the

focal length f0
i is a default value that is scaled during

the minimization process, to converge to a final value f̂i.

This process looks like how to transform similar focal

lengths to find the corrected ones when in reality it is

how to transform different focal lengths to make them

identical. Hence, the initial camera focal length fi can
be found with the inverse transformation, that is:

fi = f0
i ×

f0
i

f̂i

So finally:

Ki =



fi 0 wi/2

0 fi hi/2

0 0 1




and

Pi = Ki

[
R̂
−1

i | − R̂
−1

i ci
]

(10)

Again, the calibration is quasi-Euclidean.

The resulting internal parameters have the principal

point centred in the image. In practice, this approxima-

tion is acceptable for a large part of the camera systems.

However, if more accuracy is required, this constraint

can be relaxed using a bundle adjustment.

11 Results

We implemented our method in C++ using Eigenmath-

ematic library [13] and our implementation of Levenberg-

Marquardt method implemented from [15].
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11.1 Input data

We tested out method on synthetic data and also on
real data where the point correspondences were selected

manually. Point correspondences detection is not the

topic of this paper, there exist various automatic meth-

ods to find such correspondences that usually first find

interest points [20,6], then match them from an image

to the other and finally detect outlilers [9]. For multiple
images, there exists dedicated methods like Avidan et
al. [4] or Shafique and Shah [29], that can find robust

point correspondences among several images.

The input images may also require a radial distor-

tion correction. Indeed, radial distortion affects each

part of the image differently and generates vertical dis-

parity only in some parts of the image, leading to a

less accurate image rectification. As all image rectifica-

tion methods mentioned in this paper, we consider that

the radial distortion has already been corrected on the

input images as a preprocessing step. The radial dis-

tortion can be corrected using point correspondences

with the method presented by Stein [31] or using the
plumb line constraint with a non linear approach like
with Devernay and Faugeras [8] or with a linear method
as presented by Strand [32].

Finally, the tests of image rectification with more

than two views are performed on images with camera
centers aligned. A strong misalignment of the camera

centers would lead to a rectification that may include
strong vertical disparity between some corresponding
pixels. Moreover, if the point correspondences are se-

lected such they correspond to the same depth in the

scene, the rectification process will succeed for this spe-

cific part part of the scene and may fail for the rest of

the image, as shown in Figure 3 where the point cor-

respondences where selected on the background of the
scene. A misalignment of the cameras becomes a prob-
lem when the distance between a camera and the com-

mon camera baseline is not negligible compared to the

distance between the cameras and the nearest objects

of the scene. In any case, our method will minimize the

global vertical disparity and rectify the images as much

as it is possible.

11.2 Rectification tests for two views

We first tested our method on image pairs in order to

compare our results with some state of the art meth-

ods, namely Hartley [14] since it is one of the most

popular image rectification method and with Fusiello

et al. [10] since this method is known to be one of the

most effective in term of image preservation. Indeed,

as presented in Section 2, most of the existing image

rectification methods directly minimize the image dis-

tortion but are not consistent with a camera transfor-
mation. These methods are usually linear and thus fast,
but the image distortion constraints may involve some

stereoscopic visual artifacts that does not appear with

non-linear methods consistent with the pinhole camera

model.

The tests were performed on our implementation

of [14] and on the author implementation of [10]. We se-

lected some point correspondences manually and then

computed the per-pixel error after rectification. The re-

sults are presented in Table 1. Our method performs ev-

ery time better that [14] and is approximatively equiva-

lent to [10], i.e. sometimes a bit better and sometimes a

bit worse. Figure 8 depicts some results with both bet-

ter and worse vertical disparity minimization compared
to [10].

Table 1 Average disparity in pixel computed on images
pairs using different methods.

Image pair Hartley [14] Fusiello [10] our method
Birthday Cake 0.643632 0.629794 0.597752
Cluny church 0.434034 0.329592 0.324025
Carcassonne 0.648803 0.548186 0.584983
Beijing lion 1.19991 0.428227 0.577816

Finally, our method can compute an image rectifica-

tion with at least 4 point correspondences where all the

other methods require at least 8 point correspondences

to compute a fundamental matrix. Figure 7 shows a

result of our method with 4 point correspondences.

Fig. 7 Image rectification with only 4 point correspondences.
In this kind of scene with smoke or fire, it is complicated to
find more point correspondences.
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Fig. 8 Left: Carcassonne images. Right: birthday cake. From top to bottom: input images, Hartley’s method [14], Fusiello et
al. [10] and our method.

11.3 Rectification tests for more than two views

We first tested our method on synthetic data consisting

in a set of aligned projective cameras with controlled fo-

cal length, image resolution and orientation. A bunch

of 3D random points are projected on each camera to

get point correspondences. We performed this proce-

dure on five (800×600) virtual cameras and 50 point

correspondences with various camera settings:

1. identical cameras.

2. different orientations, same focal length.

3. same orientation, different focal lengths.

4. different orientations and focal length.

where “different” means a 10% variation between each

view on the concerned parameter. In this situation, even

if we have the ground truth camera calibration param-

eters, there is no quantitative measure of the distor-

tion that reflects the quality of the image rectification.
Therefore we compute the average of the y-axis dis-

parity between the average yk and the rectified points

among each correspondence k. The procedure is re-

peated with an isotropic Gaussian noise on the corre-
spondence points with various amplitudes. These re-
sults are summarized in Table 2 and show that the pro-

posed method is robust to Gaussian noise. The tests
also show that the method is a bit more efficient to
correct orientation than focal length.
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Table 2 Average disparity (in pixel) on the y-axis between
50 point correspondences with five (800×600) images applied
on various data sets defined in section 11.3. The data is cor-
rupted by an isotropic Gaussian noise with standard deviation
σ = 0.4 under various amplitudes.

data set zero-noise Gaussian noise Gaussian noise
ampl.: 2 pixels ampl.: 5 pixels

1 0.00 0.54 1.36
2 0.06 0.55 1.36
3 0.13 0.57 1.33
4 0.11 0.56 1.37

The second part of our tests concerns the point cor-
respondences density. We removed some point corre-

spondences from the full data set such that some corre-

spondences do not relate all the views. The results are

presented in Table 3 and clearly show that our method

still provides very good results, even when a large part

of the point correspondences are missing.

Table 3 Average disparity (in pixel) with sparse point

correspondences on the y-axis. The tests are performed
with different correspondences density by randomly remov-
ing some correspondences. The full data contains 50 point
correspondences relating the five (800×600) images. These
tests are applied on various data sets defined in section 11.3.

data set full data 90% data 60% data 40% data
1 0.00 0.00 0.00 0.00
2 0.06 0.11 1.01 2.00
3 0.13 0.07 0.07 0.07
4 0.11 0.04 0.06 1.16

Next, we tested our method on real data where we

selected the point correspondences manually. Figure 9

shows a set of images that could be encountered for a

stereoscopic setup, i.e. with only few correction to do to
get rectified images. Figure 10 presents a set of images
with converging optical axis. A zoom of the vertical

disparity of the corrected images is shown in Figure 12.

Finally, Figure 11 depicts a sample with strong orienta-

tion differences between the input images. The results

shows that our method performs very well even with

initial views far from their rectified form.

These tests show that our method succeed to per-

form a quasi-Euclidean image rectification and hence

can be exploited for a quasi-orthostereoscopic render-

ing. The computation of the matrices Hi should be per-

formed only once at the beginning of the video acquisi-

tion process and the video stream rectification can be

computed on-line on the GPU as shown in [7].

Fig. 12 Zoom of Figure 10. Vertical disparity of some point
correspondences before and after image rectification (top of
the black tea packet, top and bottom frame corners of the
wooden box).

11.4 Cameras ordering tests

The image ordering method summarized on Algorithm 2

has been tested on synthetic data. The tests focus on

point correspondence accuracy effects and on missing

data robustness. We first generated a set of rectified

image point correspondences where the x−coordinates

were subject to a Gaussian noise. Our program gener-

ated 50 point correspondences among height 400 pix-

els wide images. Then, the images were randomly shuf-

fled. We automatically launched a test loop and counted

the number successful retrieval of the original order. As

shown in Table 4, our method is robust to point corre-
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Fig. 9 Multiple image rectification : (Up) six input images. (Down) the six rectified images.

Fig. 10 Multiple image rectification : (Up) four input images. (Down) the four rectified images.

spondence inaccuracy. Indeed, the method is still robust

to a noise of 10% of the image width (i.e. ±40 pixels)

when a standard noise is usually expected to be 1% of

the image width.

Table 4 Robustness of the ordering method (Algorithm 2)
against noise on the point correspondence x−position.

Gaussian noise success rate
zero-noise 100%

σ = 10% image width 100%
σ = 25% image width 64%

Then, we tested the robustness of the ordering method

(Algorithm 2) against missing point correspondences

between views. Our program generated 50 point cor-

respondences among 8 views. The images were ran-

domly shuffled and some randomly selected points are

removed. We automatically launched a test loop and

counted the number successful retrieval of the original
order. As show in Table 5, our method is very robust
to missing point correspondences. The method is still

robust with 50% of the data missing.

Table 5 Robustness of the ordering method (Algorithm 2)
against missing point correspondence between views.

missing data success rate
50% 100%
70% 98%
90% 82%
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Fig. 11 Multiple image rectification : (Up) four input images. (Down) the four rectified images.

11.5 Calibration tests

We tested our camera calibration method on real data.

We present two sets of images and their respective cam-

era representations. The first data set consists in 8 con-

verging images shown in Figure 1. The corresponding

camera reconstruction is presented in Figure 14. A sim-

pler form of the same data set is presented in Figure 10

where only four of the eight images appear. Its corre-
sponding camera reconstruction is shown on Figure 13.
Finally, we present a data set with four nearly paral-

lel cameras and the associated camera reconstructions

depicted in Figure 15.

Fig. 13 Camera calibration of the set of images of Figure 10.

Moreover, we tested the calibration accuracy by mea-

suring the reprojection error of 3D triangulated points

from point correspondences. We also applied a bundle

adjustment on our calibrated data to measure the re-

projection error difference with an optimal calibration

setup. Again, we used Levenberg-Marquardt method

described in [15] to implement our bundle adjustment.

Fig. 14 Camera calibration of the set of images of Figure 1.

Fig. 15 Multiple image rectification: parallel setup. (Up) four
input images. (Middle) the four rectified images, (Down) the
calibrated cameras.

Our test first sorts the cameras and estimates the

camera position with Algorithm 2. Then, the cameras

are calibrated with Algorithm 1 and Equation (10). We

perform a linear triangulation on the initial point corre-

spondences to measure the reprojection error obtained
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with our method. Then, we apply a bundle adjustment

on the data to measure how far is our method from an

optimal solution. Finally, we directly apply a bundle

adjustment from the ordered camera, without our cali-

bration method, ı.e. with a good approximation of the

camera position, but with camera principal ray parallel

and default internal parameters. Table 6 presents the

results of the test for two data sets.

Table 6 Average reprojection error per point correspon-
dences. The tests concern the two data sets from Fig 10
(1000×664) and Fig 11 (900×600). In any case, the camera’s
center are estimated with Algorithm 2. The average reprojec-
tion error is computed on data computed with our method,
with our method followed by a Bundle Adjustment (BA), or
directly with a Bundle Adjustment on the sorted cameras.

→ sort → sort → sort
data set → our method → our method

→ BA → BA
Fig 10 15 pixels 0.6 pixels 4.1 pixels
Fig 11 45 pixels 3 pixels no conv.

The results show that the proposed method is a good

first estimation of the camera projection matrix. More-

over, our method is also a good initial solution for a

bundle adjustment usually very sensitive to initial con-

ditions. Table 6 shows that the default aligned camera

projection matrices are not suited to be used directly
for a bundle adjustment. Indeed, the bundle adjustment
does not converge on the data set of Fig 11 and does
not provide the optimal solution on data set from Fig 10

since one of the camera did not perfectly converge.

12 Conclusion

This paper presents an image rectification and calibra-

tion method that can handle more than two views. Our

method does not involve any prior knowledge about the

camera projection matrices and requires only point cor-

respondences between the views. Moreover, the point

correspondences between the views do not have to con-

cern all the images simultaneously. Finally, the method
supports input images with different image resolutions.

This method is well suited to remove vertical par-

allax for stereoscopic rendering without any damage
on the perspective perception since the operations per-
formed during the rectification process guaranty a quasi-

Euclidean rectification. To our knowledge, this is the

only method that provides quasi-orthostereoscopic im-

ages without full camera calibration. The camera sort-

ing and calibration process is a crucial tool for many

stereoscopic applications.

Our method has been validated by several tests con-

cerning both the robustness with inaccurate point cor-

respondence and sparse point correspondences over all

views.
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