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Abstract

Due to its relatively low computational cost, the equivalent inclusion method is an attractive alternative to traditional full-field

computations of heterogeneous materials formed of simple inhomogeneities (spherical, ellipsoidal) embedded in a homogeneous

matrix. The method can be seen as the discretization of the Lippmann–Schwinger equation with piecewise polynomials. Contrary to

the original approach of Moschovidis and Mura, who discretized the strong form of the Lippmann–Schwinger equation through Taylor

expansions, we propose in the present paper a Galerkin discretization of the weak form of this equation. Combined with the new,

mixed boundary conditions recently introduced by the authors, the resulting method is particularly well-suited to homogenization. It

is shown that this new, variational approach has a number of benefits: (i) the resulting linear system is well-posed, (ii) the numerical

solution converges to the exact solution as the maximum degree of the polynomials tends to infinity and (iii) the method can provide

rigorous bounds on the apparent properties of the statistical volume element, provided that the matrix is stiffer (or softer) than all

inhomogeneities. This paper presents the formulation and implementation of the new, variational form of the equivalent inclusion

method. Its efficiency is investigated through numerical applications in 2D and 3D elasticity.

NOTICE: this is the author’s version of a work that was accepted for publication in the International Journal of Solids and

Structures. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting,

and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work

since it was submitted for publication. A definitive version was subsequently published in the International Journal of

Solids and Structures 51(3-4), pp. 716–728, 2014 (http://dx.doi.org/10.1016/j.ijsolstr.2013.10.037).
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1. Introduction

A wide range of tools are available for the determination of

the macroscopic properties of heterogeneous materials. Standard

micromechanical techniques, based on the solution of Eshelby

(1957), are found at one end of this range. Examples of such

techniques are the scheme Mori and Tanaka (1973) [see also Ben-

veniste (1987)] and the self-consistent scheme (Walpole, 1969;

Kröner, 1977). Although not based on the solution of Eshelby

(1957), the generalized self-consistent scheme (Christensen and

Lo, 1979; Hervé and Zaoui, 1993) also falls into this category.

The main asset of these schemes is their flexibility, as they ap-

ply to linear as well as non-linear behaviours (Suquet, 1997),

while leading to analytical or semi-analytical models; various

types of couplings can also be included. The weakness of such

models lies in the limited amount of microstructural information

they can account for in a quantitative way: volume fractions

and possibly distributions of orientations, but no higher-order

correlations.

Full-field calculations can be found at the other end of this

range. These computation return the ‘exact’ (up to some numeri-
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cal error) local strains and stresses of a specific realization of the

material. Standard (finite elements, boundary elements) as well

as non-standard [based for example on the Fast Fourier Trans-

form (Moulinec and Suquet, 1998)] homogenization techniques

can be used for this computation. Contrary to the microme-

chanical technique, the amount of microstructural information

that full-field calculations can account for is limited by the res-

olution (or fineness of the mesh) only, thus leading to models

with greater accuracy. However, such type of computations

are also much more demanding both in terms of memory and

processing time, to the effect that advanced techniques such as

parallelization or multi-threading are usually invoked. This can

be problematic for stastical analyses requiring computations on

numerous microstructures (Kanit et al., 2003; Ostoja-Starzewski,

2006).

The equivalent inclusion method is an intermediate tech-

nique which is both more accurate than micromechanical ap-

proaches, and less costly than full-field computations. Like the

latter, it requires a realization of the material under investigation,

and produces estimates of the local strain and stress fields. Be-

cause the total number of degrees of freedom remains limited,

the required memory and processing time are lowered. It should

also be noted that the preparation of the computation is straight-

forward, as no mesh of the microstructure is required. The price
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to pay is, of course, a loss of accuracy with respect to full-field

computations. Still, the accuracy gain over micromechanical

approaches can be significant.

The equivalent inclusion method finds its roots in the pioneer-

ing work of Eshelby (1957), who derived the exact solution to

the problem of a single ellipsoidal inhomogeneity, embedded in

an infinite matrix. To this end, he introduced a strictly equivalent

ellipsoidal inclusion, with appropriate eigenstrain. Moschovidis

and Mura (1975) then extended this work to find an approximate

solution to the problem of multiple inhomogeneities, embed-

ded in an infinite matrix. Similarly, each inhomogeneity is

susbtituted with an inclusion, which is equivalent only in an

approximate sense. The eigenstrains to which the inclusions are

submitted are found by solving a linear system, resulting from a

discretization of the so-called consistency equation by means of

Taylor expansions. Since this consistency equation is equivalent

to the Lippmann–Schwinger equation (Korringa, 1973; Zeller

and Dederichs, 1973; Kröner, 1974), the equivalent inclusion

method can be seen as a particular discretization of this integral

equation.

Although many applications of the equivalent inclusion

method found in the literature deal with pairs of inhomogeneities

(Moschovidis and Mura, 1975; Rodin and Hwang, 1991; Shodja

et al., 2003), some authors have successfully applied this tech-

nique to problems involving many inclusions (Fond et al., 2002;

Benedikt et al., 2006). It has also recently been used to enrich the

shape functions of finite element models with non-conforming

meshes (Novák et al., 2012).

The equivalent inclusion method is limited to composites

with ellipsoidal inhomogeneities and homogeneous matrix. While

this might be too stringent a restriction for many real materi-

als, this method is a valuable tool for the quantification –on

model microstructures– of the influence of some specific mi-

crostructural parameters, such as particle-size distribution, or

local orientational order.

In this paper, a variational form of the equivalent inclu-

sion method is introduced. It is based on a Galerkin discretiza-

tion (through piecewise polynomials) of a modified Lippmann–

Schwinger equation, which is better-suited to numerical ho-

mogenization than the standard Lippmann–Schwinger equation

(Brisard et al., 2013b). The new, variational form of the equiva-

lent inclusion method improves upon its original, Taylor-based

form in many respects. Indeed, the resulting linear system is

well-posed, and convergence with respect to the degree of the

polynomial approximations can be proved. By contrast, none of

these results has been established for the Taylor-based equivalent

inclusion method, and examples can be found where increas-

ing the degree of the polynomials actually lowers the accuracy

of the approximations (Fond et al., 2001). Furthermore, the

principle of Hashin and Shtrikman (1962a), extended to the

modified Lippmann–Schwinger equation (Brisard et al., 2013b),

can be used to show that the Galerkin-based equivalent inclusion

method provides rigorous bounds on the macroscopic properties.

The present paper is organized as follows. Sec. 2 provides

some background information regarding the original (Taylor-

based) equivalent inclusion method and its relation to the Lippmann–

Schwinger equation, as well as its application to numerical ho-

mogenization. Sec. 3 introduces the variational framework

for the proposed alternative version of the equivalent inclusion

method. The discretized equations are derived from a Galerkin

approach. Using the principle of Hashin and Shtrikman (1962a)

[see also Hill (1963b) and Willis (1977)], it is then shown that

the newly introduced method can provide bounds on the macro-

scopic properties. Sec. 4 provides technical details on the

implementation of the method. In particular, the calculation

of the self-influence and influence pseudotensors is presented.

Finally, some applications are proposed in Sec. 5 to illustrate

the efficiency of the method.

In the remainder of this paper, we refer to the original

(Taylor-based) form of the equivalent inclusion method as EIM-

T. Likewise, EIM-G refers to the new (Galerkin-based) form of

the equivalent inclusion method.

2. Background

The present section provides background information on the

equivalent inclusion method and its application to numerical

homogenization. The presentation below differs from the origi-

nal paper by Moschovidis and Mura (1975), in that the Green

operator for strains Γ∞0 is used in place of the potentials Φi j and

Ψi j. Furthermore, derivation of the EIM-T is traditionally based

on eigenstrains (Moschovidis and Mura, 1975). By contrast,

the EIM-G presented in this paper is most conveniently derived

using prestresses (more precisely, polarizations). As a conse-

quence, slightly altering the terminology introduced by Eshelby

(1957), an inclusion is defined in the present paper as a region

in a homogeneous medium (no material mismatch), subjected

to eigenstrains or prestresses. By contrast, an inhomogeneity

is a region in a heterogeneous medium which is occupied by a

homogeneous material whose mechanical properties differ from

those of the matrix.

Sec. 2 is organized as follows. In Sec. 2.1, the tuple notation

is first introduced, which will allow for more compact formulas

in the remainder of this paper. Then, in Sec. 2.2, the fundamen-

tals of the equivalent inclusion (EIM-T) method are briefly re-

called. Following Moschovidis and Mura (1975), the derivation

of the method is based on eigenstrains; unlike these authors, our

formulation of the consistency equation makes explicit use of the

Green operator for strains. This reveals important connections

between the EIM-T and the well-known Lippmann–Schwinger

equation (Korringa, 1973; Zeller and Dederichs, 1973; Kröner,

1974). Finally, applicability of this method to numerical homog-

enization is discussed in Sec. 2.3.

2.1. On the tuple notation

In the remainder of this paper, quantities indexed with a dot

(e.g. k•, l•, x•, y•, . . .) denote d-tuples; in particular, 0• denotes

the null tuple

0• = (0, . . . , 0)
︸     ︷︷     ︸

d times

.

Depending on the context, the components of the tuple can

be naturals or reals. For example, k• = (ki)1≤i≤d ∈ N
d denotes a
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multi-index, while x• = (xi)1≤i≤d ∈ R
d denotes the coordinates

of the vector x with respect to the global basis (ei)1≤i≤d. Similarly,

x′• = (x′
j
)1≤ j≤d ∈ R

d denotes the coordinates of x with respect to

an auxiliary basis (e′
j
)1≤ j≤d.

For any tuple a•, a+ (resp. a×) denotes the sum (resp. prod-

uct) of its components

a+ = a1 + · · · + ad, and a× = a1 · · · ad.

In particular, dx× is the following volume element

dx× = dx1 · · · dxd.

It is understood that all binary operators (+, ×, ≤,. . . ) should

apply component-wise to tuples. For example,

a• + b• = c•, where ci = ai + bi for all i = 1, . . . , d,

similarly

a• ≤ b• if, and only if, ai ≤ bi for all i = 1, . . . , d.

Exponentiation of tuples is then defined as follows

xn•
• = x

n1

1
· · · x

nd

d
,

and it should be noted that the above quantity is not intrinsic,

as it depends on the components x1, . . . , xd of the vector x in

a specified basis. In particular, xn• would not be a meaningful

notation, since x
′n•
• , x

n•
• . From the binomial theorem

(a• + b•)
n• =

∑

0•≤l•≤n•

(

n•

l•

)

al•
• bn•−l•
• , (1)

where the following multi-binomial coefficient has been defined

(

n•

l•

)

=

(

n1

k1

)

· · ·

(

nd

kd

)

=
n1!

k1! (n1 − k1)!
· · ·

nd!

kd! (nd − kd)!
.

2.2. The equivalent inclusion method

The N-inhomogeneity problem. The equivalent inclusion method

allows the computation of the approximate strain field in an as-

sembly of inhomogeneities, embedded in an infinite matrix, and

submitted to a uniform strain at infinity.

The microstructure under consideration is formed of N in-

homogeneities Ω1, . . . ,ΩN ⊂ R
d (d: dimension of the physical

space), embedded in an infinite matrix Ω0 = R
d \ (Ω1∪· · ·∪ΩN).

Inhomogeneity α is centered at xα (α = 1, . . . ,N), and χα de-

notes the indicator function of inhomogeneity α, translated

back to the origin. In other words, x ∈ Ωα if, and only if,

χα(x − xα) = 1; besides, χα = χβ if inhomogeneities α and β are

identical (up to a translation).

Assuming a linear elastic behaviour for all constituants, Cα
(resp. C0) denotes the elastic stiffness of inhomogeneity α (resp.

the matrix). The local stiffness, defined over the whole space Rd

then reads

C(x) = C0 +

N∑

α=1

χα(x − xα) (Cα − C0) . (2)

With this notation at hand, the problem to be solved by the

equivalent inclusion method reads (Fig. 1, left)

∇x · σ = 0 (x ∈ Rd), (3a)

σ(x) = C(x) : ε(x) (x ∈ Rd), (3b)

ε(x) = ∇s
xu (x ∈ Rd), (3c)

u(x) ∼ E∞ · x (‖x‖ → +∞), (3d)

under the constraint that ε − E∞ be square-integrable to ensure

well-posedness (Brisard et al., 2013b). In Eqs. (3), u (resp. ε, σ)

denotes the local displacement (resp. strain, stress); furthermore,

∇su denotes the symmetric gradient of the displacement. Bound-

ary conditions (3d) will be called KUBC∞[Kinematic Uniform

Boundary Conditions at infinity, see Brisard et al. (2013b)].

The N-inclusion problem. Prior to solving problem (3), Moscho-

vidis and Mura (1975) consider the following auxiliary N-inclusion

problem, in which Ω1, . . . ,ΩN are inclusions rather than inho-

mogeneities, submitted to the uniform strain at infinity E∞ and

the eigenstrain η (Fig. 1, right)

∇x · σ = 0 (x ∈ Rd), (4a)

σ(x) = C0 :
(

ε(x) − η(x)
)

(x ∈ Rd), (4b)

ε(x) = ∇s
xu (x ∈ Rd), (4c)

u(x) ∼ E∞ · x (‖x‖ → +∞). (4d)

It should be noted that η(x) = 0 for all x ∈ Ω0; besides,

contrary to the single-inclusion problem of Eshelby (1957), the

eigenstrain η is allowed to vary spatially within each inclusion.

The solution to the N-inclusion problem (4) depends linearly

on E∞ and η. It is conveniently written in terms of the Green

operator for strains Γ∞0 of the homogeneous, infinite medium C0.

It is recalled that this operator returns the opposite of the strain

induced in the reference, unbounded medium by any prestress

̟ (Korringa, 1973; Zeller and Dederichs, 1973; Kröner, 1974).

In other words

Γ
∞
0 ∗̟ = −∇

su, (5)

where ’∗’ stands for the standard convolution product, and u is

the solution to the following partial differential equation in R
d

∇ ·
(

C0 : ∇su +̟
)

= 0, (6)

with ∇su square integrable and u(x) → 0 as ‖x‖ → +∞. From

Eqs. (5) and (6), it is readily found that the local strain ε solu-

tion to the N-inclusion problem (4) is given by the convolution

product

ε = E∞ + Γ∞0 ∗
(

C0 : η
)

. (7)

From inhomogeneities to inclusions. To solve the N-inhomo-

geneity problem (3), Moschovidis and Mura (1975) proceed

in two steps. As a first step, they introduce an equivalent N-

inclusion problem [see Eqs. (8) below]. Equating the elastic

stress induced in the homogeneous medium by E∞ and η to the

3



σ = C0 : ε

u(x) ∼ E∞ · x, ‖x‖ → +∞

Ωα

Ω1
Ω2

Ω3

Ω4

Ω5

σ = Cα : ε

σ = C0 : ε

u(x) ∼ E∞ · x, ‖x‖ → +∞

Ωα

Ω1
Ω2

Ω3

Ω4

Ω5

σ = C0 :
(

ε − η
)

Figure 1: Left: the N-inhomogeneity problem. Right: the N-inclusion problem.

stress induced in the heterogeneous medium by E∞ and the ma-

terial mismatch, they derive the so-called consistency equation,

with the eigenstrain η as unknown. As a second step, they then

propose a procedure to discretize the consistency equation, thus

allowing the numerical computation of approximate solutions to

the N-inhomogeneity problem (3). These two steps are briefly

summarized below.

An equivalent formulation of the N-inhomogeneity problem

(3) is first introduced

∇x · σ = 0 (x ∈ Rd), (8a)

σ(x) = C0 :
(

ε(x) − η(x)
)

(x ∈ Rd), (8b)

η(x) = −C−1
0 : (C(x) − C0) : ε(x) (x ∈ Rd), (8c)

ε(x) = ∇s
xu (x ∈ Rd), (8d)

u(x) ∼ E∞ · x (‖x‖ → +∞), (8e)

where the quantity η [defined by Eq. (8c)] can be viewed as an

eigenstrain applied to Ω1, . . . ,ΩN , which are no longer inhomo-

geneities, but inclusions. It should be noted that the eigenstrain

η does not affect the matrix Ω0 since by construction, η(x) = 0

for x ∈ Ω0 [see Eq. (8c)]. The solution to Eqs. (8a), (8b), (8d),

(8e) is given by Eq. (7), which, upon substitution in Eq. (8c),

leads to the so-called consistency equation (Moschovidis and

Mura, 1975)

(C − C0)−1 : C0 : η = −E∞ − Γ∞0 ∗
(

C0 : η
)

. (9)

The consistency equation is an integral equation with the

local eigenstrain η as unknown. Its discretization is addressed in

the next paragraph. It should be noted that if the local strain ε is

chosen as main unknown, Eq. (9) reduces to

ε + Γ∞0 ∗ ((C − C0) : ε) = E∞,

which is known as the Lippmann–Schwinger equation (Korringa,

1973; Zeller and Dederichs, 1973; Kröner, 1974).

Finally, it will be seen in Sec. 3 that the most natural choice

of main unknown for the derivation of the EIM-G is neither the

local eigenstrain η, nor the local strain ε, but the local polar-

ization τ, defined as follows [see Willis (1977) among others]

τ = (C − C0) : ε = −C0 : η. (10)

It is readily observed that τ is homogeneous to a prestress,

and that τ(x) = 0 for all x ∈ Ω0. With τ as main unknown, Eq.

(9) reads

(C − C0)−1 : τ + Γ∞0 ∗ τ = E∞. (11)

Discretization of the consistency equation. Following Moscho-

vidis and Mura (1975), an approximate solution to Eq. (9) is

found by use of piecewise polynomial expansions of degree p

for the eigenstrain η

η(x) =

N∑

α=1

∑

k•∈Ip

χα(x − xα)(x• − xα,•)
k•ηk•
α , (12)

for all x ∈ Rd, where Ip is the following set of multi-indices k•

I
p =

{

k• ∈ N
d, k+ ≤ p

}

.

For α = 1, . . . ,N and k• ∈ I
p, η

k•
α is a set of d2 constants

η
k•
α,i j

, such that η
k•
α,i j
= η

k•
α, ji

(i, j = 1, . . . , d); however, η
k•
α should

not be considered as a true second-rank, symmetric tensor. In-

deed, Eq. (12) is not intrinsic (because exponentiation is not

an intrinsic operation). In particular, η
k•
α does not follow the

required transformation laws under a change of basis. Such

objects will be called pseudotensors in the remainder of this

paper.

Substituting the assumed form (12) for η into Eq. (7), it is

readily seen that the local strain ε resulting from the imposed

uniform strain at infinity E∞ and the piecewise polynomial eigen-

strain η defined by Eq. (12) reads

ε(x) = E∞ +

N∑

β=1

∑

l•∈Ip

D
l•
β

(x − xβ) : η
l•
β
, (13)

where the fourth-rank pseudotensor D
l•
β

is defined as follows

D
l•
β

(x) =

∫

y∈Rd

χβ(y)yl•
• Γ
∞
0 (x − y) : C0dVy. (14)

In the above expression, dVy denotes the d-dimensional vol-

ume element at y ∈ Rd. D
l•
β

(x) depends on the shape of inclusion

β, but not on its position in space; for ellipsoidal inclusions, these

pseudotensors can be calculated explicitely [see Moschovidis

and Mura (1975) and references therein].

Substitution of Eq. (14) into Eq. (9) leads to the following

set of equations which must hold for all α = 1, . . . ,N and x ∈ Ωα

(Cα − C0)−1 : C0 : η(x) = −E∞−

N∑

β=1

∑

l•∈Ip

D
l•
β

(x−xβ) : η
l•
β
. (15)

Clearly, these equations can only be solved for the η
l•
β

in an

approximate sense. Indeed, the left-hand side of Eq. (15) is

polynomial over Ωα, while the right-hand side is not. Following

Moschovidis and Mura (1975), it is natural (since the left-hand

side is polynomial) to approximate the right-hand side of Eq.

4



(15) with a Taylor expansion in the neighborhood of the center

xα of Ωα

D
l•
β

(x − xβ) ≃
∑

k•∈Ip

(

x• − xα,•
)k• D

k•l•
αβ

: η
l•
β
, (16)

where

D
k•l•
αβ
=

1

k1! · · · kd!

∂k1 · · · ∂kd D
l•
β

∂x
k1

1
· · · ∂x

kd

d

∣
∣
∣
∣
∣
∣
∣
xα−xβ

,

and, upon substitution into Eq. (15)

∑

k•∈Ip

(x• − xα,•)
k• (Cα − C0)−1 : C0 : ηk•

α

= −E∞ −

N∑

β=1

∑

k•,l•∈Ip

(

x• − xα,•
)k• D

k•l•
αβ

: η
l•
β
.

The above identity must be satisfied for all x ∈ Ωα. Equating

all monomials results in the following set of algebraic equations

with unknowns η
k•
α (α = 1, . . . ,N, k• ∈ I

p)

(Cα − C0)−1 : C0 : ηk•
α +

N∑

β=1

∑

l•∈Ip

D
k•l•
αβ

: η
l•
β

=






−E∞ if k• = 0•,

0 otherwise.
(17)

The system of equations (17) defines the original form of the

equivalent inclusion method (EIM-T), first derived by Moscho-

vidis and Mura (1975). From the solution to these equations, an

approximate expression of the local strain ε(x), solution to the

N-inhomogeneity problem (3) can be computed by means of Eq.

(13).

Since the seminal paper of Moschovidis and Mura (1975),

alternative linear systems of equations have been proposed. In-

stead of the inclusions centers xα, Benedikt et al. (2006) compute

Taylor expansions of D
l•
β

[see Eq. (16)] at selected points of inter-

est (where the stresses are seeked); they show that the resulting

estimates are more accurate. However, this approach requires a

new inversion of the linear system (17) if a new set of points of

interest is considered. Shodja et al. (2003) use point collocation

in place of Taylor expansions, which makes the assembly of the

linear system much simpler.

Closed-form expressions of the pseudotensors D
k•l•
αβ

are avail-

able (Mura, 1987); alternatively, they can be computed numeri-

cally (Nakasone et al., 2000). Then the linear system of equa-

tions (17) can be assembled and solved numerically for the

coefficients of the polynomial expansion of the eigenstrain, η
k•
α

[see Eq. (12)].

The EIM-T presented above has two shortcomings. First,

there is no guarantee that the linear system given by Eq. (17)

is indeed invertible; the EIM-T therefore lacks robustness, as it

might fail in some circumstances. Second, increasing the degree

p of the expansions does not necessarily improve the quality of

the approximate solution given by Eqs. (12) and (13). This has

already been reported by many authors (Rodin and Hwang, 1991;

Fond et al., 2001; Benedikt et al., 2006). Also, convergence (as

p→ +∞) of this numerical method is not established.

In Sec. 3, an alternative to Taylor expansions is proposed

to carry out the discretization of the consistency equation, and

overcome these problems. Following a Galerkin approach based

on the weak form of Eq. (11), a new system of equations is

derived for the polynomial expansion of the unknown local

polarization τ. This new system replaces the system obtained by

Moschovidis and Mura [see Eq. (17)]; for this new system, well-

posedness and convergence (as p→ +∞) to the true polarization

can then be investigated with the help of standard mathematical

tools [see e.g. Ern and Guermond (2004)].

Before this variational approach is introduced in Sec. 3,

application of the EIM to homogenization problems is first

dicussed in Sec. 2.3. It is shown that a slight modification

[introduced by Brisard et al. (2013b)] of the standard Lippmann–

Schwinger equation (11) makes it much better-suited to this kind

of problems. Galerkin discretization will therefore be carried out

on the modified Lippmann–Schwinger equation [see Eq. (21)].

2.3. The EIM for numerical homogenization

Provided that the degree p of the polynomial expansions is

not too high, each inhomogeneity has relatively few degrees of

freedom; in other words, the linear system (17) remains small,

even for large assemblies of inhomogeneities. The EIM is there-

fore an attractive tool for numerical homogenization, where

hundreds to thousands of inhomogeneities must be considered

simultaneously. Attention must however be paid to the boundary

conditions, as was already noted by Fond et al. (2002).

We seek to determine (numerical estimates of) the apparent

stiffness of a statistical volume element Ω ⊂ R
d [SVE, following

the terminology of Ostoja-Starzewski (2006)]. As previously,

the microstructure is formed of inhomogeneities Ω1, . . . ,ΩN

embedded in a homogeneous matrix. However, contrary to Sec.

2.2, the SVE Ω is now a bounded domain.

It is recalled that the apparent stiffness Capp relates the macro-

scopic stress σ to the macroscopic strain ε

σ = Capp : ε, (18)

where overlined quantities denote volume averages over the

bounded domain Ω

ε =
1

|Ω|

∫

Ω

ε and σ =
1

|Ω|

∫

Ω

σ.

In Eq. (18), the macroscopic strain and stress are computed

from the solution to the following auxiliary problem, which

states that the SVE is in (elastic) equilibrium (Fig. 2, left)

∇x · σ = 0 (x ∈ Ω),

σ(x) = C(x) : ε(x) (x ∈ Ω),

ε(x) = ∇s
xu (x ∈ Ω).

In addition, appropriate boundary conditions must be speci-

fied. The boundary conditions most frequently met are kinematic

uniform (KUBC), static uniform (SUBC) and periodic (PBC)
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σ = C0 : ε

u(x) = E · x

Ωα

Ω1
Ω2

Ω3

Ω4

Ω5

σ = Cα : ε

Ω

σ = C0 : ε

u(x) ∼ E∞ · x, ‖x‖ → +∞

Ωα

Ω1
Ω2

Ω3

Ω4

Ω5

σ = Cα : ε

Ω

Figure 2: Left: evaluation of the apparent stiffness traditionally requires the

determination of the elastic equilibrium of the SVEΩ, with appropriate boundary

conditions imposed at the boundary ∂Ω (boundary conditions of type KUBC are

represented here). Right: in order to evaluate the apparent stiffness by means

of the EIM, the SVE Ω must be embedded in an infinite homogeneous medium

with same stiffness as the matrix, with imposed strain E∞ at infinity (boundary

conditions of type KUBC∞). In this case, the loading parameter E∞ is not the

macroscopic strain ε.

boundary conditions [see among others Hill (1963a, 1967), Man-

del (1972) and Gusev (1997)]. With kinematic uniform and peri-

odic boundary conditions, the loading parameter is the macro-

scopic strain (E = ε is specified), while with static uniform

boundary conditions, the loading parameter is the macroscopic

stress (Σ = σ is specified). For a finite-size SVE, these bound-

ary conditions produce three different estimates of the apparent

stiffness: C
app

KUBC
,C

app

SUBC
,C

app

PBC
. However, under statistical ho-

mogeneity and ergodicity assumptions, all estimates converge to

the effective stiffness Ceff as the size of the SVE tends to infinity

(Sab, 1992).

As previously mentioned, the EIM is an attractive technique

to compute numerical estimates of the apparent stiffness of the

SVE Ω. This would of course require to embed the bounded

domain Ω in an infinite, homogeneous medium with same stiff-

ness as the matrix (Fig. 2, right). However, the EIM-T is a

discretization of the N-inhomogeneity problem (3) with bound-

ary conditions of type KUBC∞, which is not strictly speaking

a standard auxiliary problem, for two reasons. First, elastic

equilibrium is specified in the whole space R
d (as opposed to

the bounded domain Ω ⊂ R
d); second, neither macroscopic

strain nor macroscopic stress can be specified. Indeed, there is

no simple relationship between the sole loading parameter E∞

[see Eq. (3d)] and the macroscopic strain or stress (in particular,

ε , E∞).

Notwithstanding, the N-inhomogeneity problem (3) can still

be used to define an apparent stiffness C
app

KUBC∞
of the SVE Ω.

Indeed, from the linearity of this problem with respect to E∞,

both σ and ε depend linearly on the strain at infinity E∞

ε = AKUBC∞ : E∞, σ = BKUBC∞ : E∞,

where AKUBC∞ and BKUBC∞ are fourth-rank localization tensors.

The apparent stiffness results from the elimination of the loading

parameter E∞ [see e.g. Fond et al. (2001, 2002)]

C
app

KUBC∞
= BKUBC∞ : A−1

KUBC∞ , (19)

and this definition is consistent in the sense that C
app

KUBC∞
→ Ceff

as |Ω| → +∞ (under statistical homogeneity and ergodicity

assumptions). To sum up, the macroscopic strain and stress

must be computed for six independent values of the loading

parameter E∞ (strain at infinity); from these six computations,

the localization tensors AKUBC∞ and BKUBC∞ can be computed,

and the apparent stiffness C
app

KUBC∞
can be retrieved. However,

evaluating ε and σ from the EIM estimate of the prestress in-

volves complex surface integrals at the boundary ∂Ω of the SVE

(Fond et al., 2001, 2002). These operations are costly and po-

tentially inaccurate. Furthermore, there is no guarantee that the

apparent stiffness thus defined is symmetric, positive definite for

finite-size SVEs. Using an energy approach to define the appar-

ent stiffness partially resolves these issues (Rodin and Hwang,

1991).

Mixed boundary conditions (MBC) were introduced and an-

alyzed in detail by Brisard et al. (2013b) as a way to circumvent

the above-mentioned shortcomings of the boundary conditions

of type KUBC∞. The resulting system (20) of partial differential

equations is very similar to the initial problem (3) with boundary

conditions of type KUBC∞. Yet, it is better-suited to homog-

enization problems, since the loading parameter E is now the

macroscopic strain [in other words, the solution to problem (20)

satisfies ε = E]. Besides, the macroscopic stress can readily be

derived from the average polarization, the computation of which

does not involve complex surface integrals. Furthermore, the

corresponding apparent stiffness is symmetric, positive definite,

and we have

C
app

SUBC
≤ C

app

MBC
≤ C

app

KUBC
,

where inequalities should be understood in the sense of quadratic

forms.

The N-inhomogeneity problem with mixed boundary con-

ditions is depicted in Fig. 3. The SVE Ω is embedded in an

infinite, homogeneous medium with same stiffness as the matrix.

It is then submitted to a uniform strain E at infinity, as well

as a surface load t · n applied to the boundary ∂Ω of the SVE,

where t is a constant, second-rank, symmetric tensor and n is

the outward normal to ∂Ω

∇x · σ = 0 (x ∈ Rd), (20a)

σ(x) = C(x) : ε(x) (x ∈ Rd), (20b)

ε(x) = ∇s
xu (x ∈ Rd), (20c)

[[σ]](x) · n(x) = −t · n(x) (x ∈ ∂Ω), (20d)

u(x) ∼ E · x (‖x‖ → +∞), (20e)

ε = E, (20f)

where [[σ]] denotes the stress-jump across the boundary ∂Ω of

the SVE Ω. From the above set of equations, it is apparent

that t is not a loading parameter, but should be chosen so as to

ensure that Eq. (20f) holds. In other words, the unique loading

parameter in the N-inhomogeneity problem with boundary con-

ditions of type MBC is the strain at infinity E, which is forced

to coincide with the average strain over the SVE.

At first sight, problem (20) might seem more complex than

problem (3) because of the additional unknown t. However, it

can be shown (Brisard et al., 2013b) that for ellipsoidal SVEs Ω,
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σ = C0 : ε

u(x) ∼ E · x, ‖x‖ → +∞

Ωα

Ω1
Ω2

Ω3

Ω4

Ω5

σ = Cα : ε

Ω

n

[[σ]] · n = −t · n

Figure 3: The N-inhomogeneity problem with mixed boundary conditions

(MBC). Similarly to the situation depicted in Fig. 2 (right), the SVE Ω is

embedded in an infinite medium with same stiffness as the matrix. It is submitted

to a uniform strain at infinity E, as well as a surface load t · n applied at the

boundary ∂Ω of the SVE Ω. The constant, second-rank, symmetric tensor t is a

free parameter which is chosen so as to ensure that the unique loading parameter

E coincides with the macroscopic strain ε.

Eqs. (20) are equivalent to the following modified Lippmann–

Schwinger equation, from which the supplementary unknown,

constant tensor t is absent

(C − C0)−1 : τ + Γ∞0 ∗ (τ − χτ) = E, (21)

where χ denotes the indicator function of Ω and τ again denotes

the polarization [see Eq. (10)]. Furthermore, the local strain ε

and stress σ are readily retrieved from the solution τ to Eq. (21)

(Brisard et al., 2013b)

ε = E − Γ∞0 ∗
(

τ − χτ
)

and σ = C0 : ε + τ. (22)

The above formulation as an integral equation shows that the

N-inhomogeneity problems with boundary conditions of type

MBC [see Eqs. (21) and (22)] and KUBC∞ [see Eqs. (11) and

(7)] are very similar, and can be discretized through the same

techniques [including Taylor expansions used by Moschovidis

and Mura (1975) for Eq. (9)]. From Eq. (22)2 and the constraint

ε = E, the following identity is readily found

τ =
(

C
app

MBC
− C0

)

: E, (23)

where C
app

MBC
denotes the apparent stiffness associated with mixed

boundary conditions. As a consequence, unlike the original

Lippmann–Schwinger equation (11), estimation of the apparent

stiffness from a numerical solution to the modified Lippmann–

Schwinger equation (21) does not involve complex surface in-

tegrals. Indeed, only the volume average of the polarization is

required, which is trivial to compute provided a simple form is

assumed for the numerical estimate of the polarization [see Eq.

(26)]. Slightly modifying the equation to be solved numerically

therefore allows to overcome one of the shortcomings of the

EIM-T.

Adopting a Galerkin approach (rather than Taylor expan-

sions) for the discretization of this equation allows to overcome

all other shortcomings of the EIM-T listed in Sec. 2. This will

be shown in Sec. 3, where a variational form of the EIM is

proposed, based on the modified Lippmann–Schwinger equa-

tion (21), and piecewise polynomial approximations of the local

polarization [see Eq. (26)].

To close this section, it should be noted that other types of

mixed boundary conditions have been proposed in the past by

various authors [see among others Hazanov and Huet (1994); Co-

enen et al. (2012); Salmi et al. (2012)]. However, such boundary

conditions usually apply at the boundary ∂Ω of the (bounded)

SVE. This precludes the use of the Green operator for strains

Γ
∞
0 of the whole space to solve the underlying system of par-

tial differential equations. By contrast, the mixed boundary

conditions introduced in Brisard et al. (2013b) and used in the

present paper apply partly at infinity. Eq. (21) shows that this

approach allows to associate a very simple integral equation

of the Lippmann–Schwinger type to the underlying (seemingly

complex) system of partial differential equations (20). It should

be emphasized that with these boundary conditions, the Green

operator for strains Γ∞0 of the whole space arises naturally, with-

out any approximation. This is essential, since rigorous bounds

on the apparent stiffness can then be produced through this ap-

proach, as shown in Sec. 3.2. Finally, the fact that the Green

operator of the whole space (rather than the bounded SVE Ω)

appears in the integral equation (21) is what makes the EIM

practical. Indeed, Γ∞0 has very simple expressions; besides, it is

translation invariant, which makes assembly of the underlying

linear system (37) [or indeed (17)] less costly.

3. Derivation of the proposed method

It is first noted that the equivalence between the N-inhomo-

geneity problem (20) with boundary conditions of type MBC

and the modified Lippmann–Schwinger equation (21) holds for

ellipsoidal SVEs only (Brisard et al., 2013b). Therefore, it will

be assumed in the remainder of this paper that Ω is an ellipsoid.

3.1. Galerkin discretization of the consistency equation

The point of departure is the following weak form of the

modified Lippmann–Schwinger equation (21), which is found

by premultiplying with a test function ̟ ∈ V, and averaging

over the SVE Ω

Find τ ∈ V such that a(τ,̟) = f (̟) for all̟ ∈ V, (24)

where V is the set of square integrable, second-rank, symmetric

tensors, supported in R
d \ Ω0; a and f are bilinear and linear

forms, respectively, given by

a(τ,̟) = ̟ : (C − C0)−1 : τ +̟ :
(

Γ
∞
0 ∗

(

τ − χτ
))

,

f (̟) = E : ̟.

It should be noted that since the SVE Ω is an ellipsoid, the

theorem of Eshelby (1957) applies, and for all x ∈ Ω

(

Γ
∞
0 ∗

(

χτ
))

(x) = PΩ : τ,

where PΩ denotes the Hill tensor of the domainΩ with respect to

the reference medium C0. Therefore, the bilinear form a reduces

to

a(τ,̟) = ̟ : (C − C0)−1 : τ +̟ :
(

Γ
∞
0 ∗ τ

)

−̟ : PΩ : τ.
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The above continuous variational problem is then discretized

following a standard Galerkin procedure. More precisely, Eq.

(24) is replaced with

Find τp ∈ Vp such that a(τp,̟p) = f (̟p) for all̟p ∈ Vp,

(25)

where V
p is the finite dimension set of piecewise polynomial

polarizations τp defined as follows

τp(x) =

N∑

α=1

∑

k•∈Ip

χα(x − xα)(x• − xα,•)
k•τk•
α . (26)

Comparison with Eqs. (10) and (12) shows that the present

variational form of the EIM uses the same piecewise polyno-

mial approximation of the polarization as the classical EIM of

Moschovidis and Mura (1975).

The discrete variational problem (25) reduces to a linear

system, with the coefficients τ
k•
α of the polynomial expansion

(26) as unknowns. Introducing the following expansion of the

test function̟p ∈ Vp

̟p(x) =

N∑

α=1

∑

k•∈Ip

χα(x − xα)(x• − xα,•)
k•̟k•

α , (27)

the linear system to be solved is derived from the substitution of

Eqs. (26) and (27) into Eq. (25). Recalling that all inclusions are

completely included in Ω, so that
∫

Ω
χα =

∫

Rd χα (α = 1, . . .N),

it is readily found that

̟p =
1

|Ω|

N∑

α=1

∑

k•∈Ip

Mk•
α̟

k•
α , (28)

whereM
k•
α denotes the moment of order k• of inclusion α

Mk•
α =

∫

x∈Rd

χα(x)xk•
• dVx. (29)

Consequently, the value of the linear form f at̟p ∈ Vp reads

f (̟p) =
1

|Ω|

N∑

α=1

∑

k•∈Ip

Mk•
α̟

k•
α : E. (30)

Similarly

̟p : (C − C0)−1 : τp

=
1

|Ω|

N∑

α=1

∑

k•,l•∈Ip

Mk•+l•
α ̟k•

α : (Cα − C0)−1 : τl•
α , (31)

and

̟p :
(

Γ
∞
0 ∗ τ

p
)

=
1

|Ω|

N∑

α,β=1

∑

k•,l•∈Ip

̟k•
α : T

k•l•
αβ

(rαβ) : τ
l•
β
, (32)

where rαβ = xβ − xα and T
k•l•
αβ

(r) denotes the following influence

pseudotensor

T
k•l•
αβ

(r) =

∫

x,y∈Rd

χα(x)χβ(y)xk•
• yl•
• Γ
∞
0 (r + y − x)dVxdVy. (33)

For k• = l• = 0•, these pseudotensors coincide with TII

and TIJ introduced by Berveiller et al. (1987) and Molinari and

El Mouden (1996). It is assumed that the inclusions do not

overlap. Therefore, if α , β, then r + y − x is always non-zero

in the above integral, and the integrand is never singular. By

contrast, if α = β, then r = 0, and the integrand is singular. This

suggests to single out so-called self-influence pseudotensors,

defined as follows

Sk•l•
α = Tk•l•

αα (0), (34)

and it is noted that |Ωα|
−1S

0•0•
α is the Hill tensor of inclusion α

with respect to the reference medium C0. Eq. (32) then reads

̟p :
(

Γ
∞
0 ∗ τ

p
)

=
1

|Ω|

N∑

α,β=1
α,β

∑

k•,l•∈Ip

̟k•
α : T

k•l•
αβ

(rαβ) : τ
l•
β

+
1

|Ω|

N∑

α=1

∑

k•,l•∈Ip

̟k•
α : Sk•l•

α : τl•
α , (35)

Evaluation of the bilinear form a for τp,̟p ∈ V
p is then

carried out from Eqs. (28), (31) and (35)

a(τp,̟p) =
1

|Ω|

N∑

α=1

∑

k•,l•∈Ip

Mk•+l•
α ̟k•

α : (Cα − C0)−1 : τl•
α

+
1

|Ω|

N∑

α=1

∑

k•,l•∈Ip

̟k•
α : Sk•l•

α : τl•
α

+
1

|Ω|

N∑

α,β=1
α,β

∑

k•,l•∈Ip

̟k•
α : T

k•l•
αβ

(rαβ) : τ
l•
β

−
1

|Ω|2

N∑

α,β=1

∑

k•,l•∈Ip

Mk•
αM

l•
β
̟k•
α : PΩ : τ

l•
β
. (36)

Gathering Eqs. (30) and (36), it is found that the discretized

variational problem (25) is equivalent to the following linear

system with unknowns τ
k•
α (one equation for each value of α =

1, . . . ,N and k• ∈ I
p)

∑

l•∈Ip



M
k•+l•
α (Cα − C0)−1 + Sk•l•

α −
M

k•
αM

l•
α

|Ω|
PΩ



 : τl•
α

+

N∑

β=1
β,α

∑

l•∈Ip




T

k•l•
αβ

(rαβ) −
M

k•
αM

l•
β

|Ω|
PΩ




: τ

l•
β
=Mk•

α E. (37)

For inhomogeneities with simple geometries, closed-form

expressions of the momentsM
k•
α , self-influence pseudotensors

S
k•l•
α and influence pseudotensors T

k•l•
αβ

(r) can be derived (see Sec.

4); assembly of the above system is therefore straightforward.

Following an approach similar to that of Brisard and Dormieux

(2012) (see in particular Sec. 4.2 in this reference), it can be

shown that this system is well-posed.

To sum up, the EIM-G is defined through the discretization

(26) and the linear system (37). The solution to this system
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provides the coefficients of the expansion of the approximate

polarization, τp. In turn, estimates of the strain and stress in the

inclusions can be computed as follows

εp(x) = (Cα − C0)−1 : τp(x) (x ∈ Ωα), (38)

and

σp(x) = C0 : εp(x) + τp(x) (x ∈ Ωα).

For points belonging to the matrix, Eq. (38) is meaningless

(since C − C0 is singular), and the approximate strains must

be computed from the convolution product εp = E − Γ∞0 ∗

τp; this involves complex numerical integration, which are not

necessary for the determination of the approximate apparent

stiffness, C
app,p

MBC
. Indeed, from Eq. (23)

C
app,p

MBC
: E = C0 : E + τp = C0 : E +

1

|Ω|

N∑

α=1

∑

k•∈Ip

Mk•
α τ

k•
α . (39)

To close this section, it should be noted that for p = 0 (con-

stant polarization in each inclusion), the equations of the EIM-G

are very close to those found by previous authors (Rodin and

Hwang, 1991; Rodin, 1993; Molinari and El Mouden, 1996;

El Mouden and Molinari, 2000). In the present work however,

periodization of the unit-cell is not necessary owing to the intro-

duction of the mixed boundary conditions and the corresponding

correction term involving the Hill tensor PΩ of the domain Ω

[see Eq. (36)].

3.2. Bounds on the apparent stiffness

Provided that the matrix is stiffer (resp. softer) than all inho-

mogeneities, the above approach leads to an upper bound (resp.

lower bound) on the apparent stiffness of the SVE Ω. Indeed, an

extremum principle of the Hashin and Shtrikman (1962a) type

has been proved for the modified Lippmann–Schwinger equa-

tion (21) (Brisard et al., 2013b). More precisely, introducing for

̟ ∈ V the following functional

H(̟) = f (̟) − 1
2
a(̟,̟),

it can readily be shown thatH is stationary at the solution τ to

Eq. (21), and

H(τ) = 1
2
E :

(

C
app

MBC
− C0

)

: E. (40)

It was further shown in (Brisard et al., 2013b) that H is

minimum (resp. maximum) at τ, provided Cα ≤ C0 (resp.

Cα ≥ C0) for all α = 1, . . . ,N.

In particular, if one of these conditions is fulfilled,H(τ) can

be compared to H(τp), where τp is the EIM-G estimate of τ.

Since τp is the solution to the discretized variational problem

(25), it verifies a(τp, τp) = f (τp), and from Eq. (39), it is readily

found that

H(τp) = 1
2
E :

(

C
app,p

MBC
− C0

)

: E. (41)

If the matrix is stiffer than all inhomogeneities, then H is

minimum at τ, and H(τ) ≤ H(τp). Gathering Eqs. (40) and

(41)

C
app

MBC
≤ C

app,p

MBC
,

the EIM-G estimate of the apparent stiffness is in fact an up-

per bound. Conversely, if the matrix is softer than all inhomo-

geneities, then the EIM-G estimate of the apparent stiffness is a

lower bound.

To sum up, if the matrix is stiffer (resp. softer) than the inho-

mogeneities, then the variational form of the EIM returns upper

(resp. lower) bounds on the apparent stiffness. This result further

guarantees that the quality of the solution will not deteriorate as

the order p of the method is increased. Indeed, the discretized

variational problem (25) can be seen as the optimization ofH

over the finite-dimension subspace Vp of V. As p grows, so does

the subspace V
p, and the quality of the approximate optimum is

therefore improved. This desirable property is not necessarily

observed with the EIM-T (Fond et al., 2001), which is not based

on a variational setting.

4. Implementation of the method

The key point for the implementation of the method is the

computation of the self-influence and influence pseudotensors.

The complex integrals involved [see Eqs. (33) and (34)] must be

evaluated with the help of a computer algebra system1. Exam-

ples of such computations can be found in Brisard et al. (2013a).

4.1. Computation of the self-influence pseudotensors

The self-influence pseudotensors S
k•l•
α are defined as follows

[see Eqs. (33) and (34)]

Sk•l•
α =

∫

x,y∈Rd

χα(x)χα(y)xk•
• yl•
• Γ
∞
0 (y − x)dVxdVy.

In the above expression, principal values are taken according

to Eq. (A.1) in order to remove the singularity at x = y

Sk•l•
α =

∫

x∈Rd

χα(x)xk•
• lim
δ→0

∫

y∈Rd

‖y−x‖>δ

χα(y)yl•
•Q0(y − x)dVydVx

+

∫

x∈Rd

χα(x)xk•+l•
• P0dVx. (42)

The last term reduces toM
k•+l•
α P0. For convex inclusions,

the following change of variables is performed to compute the

first term (see Fig. 4 and Appendix B.1 for more details)

y = x + rn, with ‖n‖ = 1 and 0 ≤ r ≤ Rα(x,n), (43)

1The present work was carried out with the Maxima computer algebra system,

version 5.30.0, http://maxima.sourceforge.net/ (last visited 2013-06-

05).
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x

y

n
R(x,n)

r

Ωα

Figure 4: Variables for the calculation of the self-influence pseudotensor of

inclusion Ωα.

where Rα(x,n) is defined as the largest value of r such that

χα(x + rn) = 1 for χα(x) = 1. It can then be shown that

Sk•l•
α =Mk•+l•

α P0

+

∫

x,y∈Rd

χα(x)χα(y)xk•
•

(

yl•
• − xl•

•

)

Q0(y − x)dVydVx

+

∫

x∈Rd

‖n‖=1

χα(x)xk•+l•
• log Rα(x,n)Q0(n)dS ndVx, (44)

where dS n denotes the surface element at n on the unit sphere.

For spherical inclusions, the last term vanishes, while the second

term can be computed analytically (see Appendix B.2).

4.2. Computation of the influence pseudotensors

The influence pseudotensors T
k•l•
αβ

(r) are given by Eq. (33)

(see also Fig. 5). As inclusions α and β do not overlap, only the

regular part Q0 of Γ∞0 is involved in this computation [see Eq.

(A.1)].

Direct evaluation of integral (33) is complex (if possible

at all). In particular, the method proposed by Berveiller et al.

(1987) –based on Fourier transforms– for the evaluation of the

lowest-order influence pseudotensor T
k•l•
αβ

(r) with k• = l• = 0•
does not generalize to higher orders. In the present paragraph, an

alternative approach is therefore proposed, based on multipole

expansions.

Let r = rn (‖n‖ = 1) be a fixed vector, and r′ = r (n + ξ).

From the homogeneity of degree −d of the regular part Q0 of

Γ
∞
0 , it is found that

Q0(r′) = r−dQ0(n + ξ),

wich is expanded in a Taylor series with respect to the powers

of the components of ξ. The resulting expansion is then inserted

in Eq. (33), with ξ = (y − x) /r. Each term of the series being a

monomial in the variables xi/r and y j/r (i, j = 1, . . . , d), its inte-

gral for x ∈ Ωα and y ∈ Ωβ can readily be computed (provided

Ωα and Ωβ have simple shapes).

This procedure returns the influence pseudotensors T
k•l•
αβ

(r)

as series of the negative powers of r. In practice, this series

must be truncated, and the above method ought to be viewed

as approximate. However, experience shows that for spherical

inclusions, all computed expansions have a finite number of non-

zero terms. This suggests that the present computation would

Ωα

Ωβ

xα

xβ

r

r ′

x

y

n

Figure 5: Variables for the calculation of the influence pseudotensor of inclusions

Ωα and Ωβ.

in fact be exact in that case, although this conjecture remains

unproved for the time being.

The above procedure involves rather tedious, but very sys-

tematic, algebra. As such, it lends itself to straightforward

implementation in a computer algebra system; the resulting ex-

pressions are then imported into a numerical code, in charge of

assembling and inverting the global matrix.

While it is possible to compute literal expressions of the

influence tensors in any basis, the resulting expressions are

intractable, and lead to cluttered code. For the sake of clarity and

simplicity, closed-form expressions of the influence tensors were

computed in a local basis (e′
1
, . . . , e′

d
), where the d-th direction e′

d

coincides with the line of centers of the two inclusions (r = re′
d
);

the resulting pseudotensors are denoted T
′k•l•
αβ

(r). A change of

basis must be performed to retrieve the components of T
k•l•
αβ

in the global basis (e1, . . . , ed); this is performed numerically,

during the assembly of the global matrix. It should be noted that

this change of basis does not reduce to a standard linear algebra

operation, since T
k•l•
αβ

is not a tensor (see Appendix C).

5. Applications

In the present section, two applications of the variational

form of the equivalent inclusion method (EIM-G) derived in

Secs. 3 and 4 are proposed. The first application (see Sec. 5.1) is

a plane strain elasticity application, while the second application

(see Sec. 5.2) is a 3D elasticity application.

It is recalled that the EIM-G requires the SVE to be of

ellipsoidal shape (Brisard et al., 2013b). Therefore, circular

(resp. spherical) SVEs are considered in Sec. 5.1 (resp. 5.2).

5.1. Monodisperse assemblies of circular pores in plane strain

elasticity

The present example deals with porous media in plane strain

elasticity. The circular SVE Ω contains N circular pores of

radius a. The porosity is φ = 0.4; with N = 160 pores, the radius

R of the SVE Ω is R = 20a (see Fig. 6). The shear modulus and

Poisson ratio of the matrix are µ0 (arbitrary value) and ν0 = 0.3.

To account for statistical fluctuations of the apparent me-

chanical properties of each individual SVE, 1 000 configurations

were considered. The (mean) apparent shear modulus of these
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Figure 6: Left: graphical representation of one out of the 1 000 SVEs considered

in Sec. 5.1. Circular, monodisperse pores are embedded in a homogeneous

matrix; the porosity is φ = 0.4. Right: graphical representation of one out of the

100 SVEs considered in Sec. 5.2. Spherical, polydisperse pores are embedded

in a homogeneous matrix (only the pores are shown in this image); the porosity

is φ = 0.45.

Order p Bound on µapp DOFs

0 0.310 µ0 480

1 0.278 µ0 1 440

2 0.257 µ0 2 880

3 0.247 µ0 4 800

Table 1: Upper bounds on the apparent shear modulus of a monodisperse

assembly of circular pores in plane strain elasticity, for increasing orders p of the

EIM-G. For each value of p, the corresponding number of degrees of freedom

(DOFs) is also reported.

microstructures is then estimated through the EIM-G, and the re-

sults are reported in Table 1 for various values of p (it is recalled

that p is the maximum degree of the polynomial expansions used

to approximate the polarization τ). Due to the large number of

independent configurations considered here, the amplitude of

the 99 % confidence interval is smaller than one unit in the last

place of each value reported in Table 1.

Since the reference medium (the matrix) is stiffer than the

inclusions, results presented in Sec. 3.2 apply, and the estimates

of µapp are in fact upper bounds on this quantity. This is con-

sistent with the fact that this bound decreases as p increases,

as expected (the functional H is minimized on sub-spaces of

increasing dimension).

Observation of the results presented in Table 1 shows that

increasing p significantly improves the upper bound on µapp.

Indeed, from p = 0 to p = 3, the upper-bound is reduced

by approximately 20 %, while the total number of degrees of

freedom is multiplied by a factor 10.

In order to quantify the error on the apparent shear modu-

lus, the above results were compared to finite element (FEM)

estimates computed on the same 1 000 configurations. Strictly

speaking, EIM-G and FEM computations are not equivalent. In-

deed, kinematic uniform boundary conditions were adopted for

convenience for the FEM models, while EIM-G models require

mixed boundary conditions (see Sec. 2.3 for a definition of these

two types of boundary conditions). Since the SVEs under con-

sideration are very large (R/a = 20), finite-size effects should be

negligible, and the apparent shear moduli resulting from these

two sets of boundary conditions are expected to coincide (Hill,

1963a).

The FEM estimate of the apparent shear modulus was found
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Figure 7: Relative error on µapp as a function of the number of degrees of

freedom of the EIM-G, in semi-log scale. Convergence seems to be exponential.

to be 0.244 µ0; again, the 99 % confidence interval is narrow

enough to ensure that this value is correct up to one unit in

the last place. Using this value as a reference, Fig. 7 shows

in semi-log scale the relative error on µapp as a function of the

number of degrees of freedom. Observing Fig. 7, it seems that

the EIM-G converges exponentially with respect to the number

of degrees of freedom. This empirical result was expected,

as similar asymptotic behaviors are also observed with the p-

version of the FEM, which is very similar in spirit to EIM-G

(Szabó et al., 2004).

Comparison of the respective sizes of the EIM-G and FEM

models emphasizes the efficiency of the EIM-G. Indeed, each

of the 1 000 FEM model contained about 320 000 degrees of

freedom (this figure was variable from one configuration to

another), while with only 4 800 degrees of freedom, the EIM-G

achieves a relative error of approximately 1.2 %. In other words,

the EIM-G can provide at a relatively low cost estimates of some

quantities of interest with a small (but finite) error. Of course, if

high accuracy is required, then the FEM should be preferred to

the EIM-G.

To close this section, it should also be noted that the Hashin

and Shtrikman (1962b) upper-bound on µapp reads in this case:

µHS+ = 0.349 µ0. Clearly, this bound is a poor estimate in plane

strain elasticity of the effective shear modulus of a composite

with circular inclusions. Even the 0-th order EIM-G bound leads

to an improvement of 11 %.

5.2. Polydisperse assembly of spherical pores in 3D elasticity

The present example deals with porous media in 3D elasticity.

The spherical SVE Ω contains N1 = 20 (resp. N2 = 40, N3 =

140) spherical pores of radius a1 (resp. a2 = 0.7 a1, a3 = 0.4 a1).

The total porosity is φ = 0.45, so that the radius R of the SVE

Ω is R = 4.56 a1 (see Fig. 6, right). The shear modulus and

Poisson ratio of the matrix are µ0 (arbitrary value) and ν0 = 0.3.

To account for statistical fluctuations, 100 such SVEs were

generated. It should be noted that fluctuations were smaller in

the present, 3D case than in the previous, plane strain one. In
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Order p Bound on µapp DOFs

0 0.381 1 200

1 0.371 4 800

2 0.363 12 200

Table 2: Upper bounds on the apparent shear modulus of a polydisperse assembly

of spherical pores in 3D elasticity, for increasing orders p of the EIM-G. For

each value of p, the corresponding number of degrees of freedom (DOFs) is also

reported.

both cases, the amplitude of the statistical error (99 % confi-

dence interval) was identical, even if the number of generated

configurations was ten times smaller in the 3D application.

The (mean) apparent shear modulus µapp of these microstruc-

tures is then estimated through the EIM-G, and the results are

reported in Table 2 for various values of p. Again, the results are

accurate (with probability 99 %) within one unit in the last place.

For the same reasons as previously, they can be considered as

upper bounds on µapp (which is again consistent with the fact

that this bound decreases as p increases).

However, observing Table 2, it seems that the relative im-

provement of the bounds is much lower in the present case than

in the previous, plane strain case, for the same increase of the

number of degrees of freedom. It is necessary to thoroughly

investigate this apparent loss of efficiency; this investigation will

be carried out in future work.

6. Conclusion

In the present paper, we proposed a new form of the equiva-

lent inclusion method (EIM). Recognizing that the EIM can be

seen as an approximation of the Lippmann–Schwinger equation,

we proposed a Galerkin discretization of the weak form of this

integral equation as an alternative to the discretization of its

strong form, based on Taylor expansions, initially proposed by

Moschovidis and Mura (1975). All details are provided for the

implementation of this new method.

Combined with the new, mixed boundary conditions recently

introduced by the authors (Brisard et al., 2013b), the resulting

numerical method is an attractive tool for homogenization. In

particular, provided that the matrix is stiffer or softer than all

inhomogeneities, it can provide rigorous bounds on the macro-

scopic properties, at a relatively low cost. Numerical exam-

ples show that the method is extremely efficient in plane strain

elasticity, less so in three dimensional elasticity. We intend to

investigate in future work the origins of this loss of efficiency,

and how to overcome it. We will also extend the method to

ellipsoidal inhomogeneities, which should allow us to capture

local orientational order effects.

Appendix A. On the infinite body Green’s operator for strains

It is recalled that the Green’s operator for strains Γ∞0 decom-

poses into a regular part Q0 and a singular part P0

(Γ∞0 ∗τ)(x) = lim
δ→0

∫

y∈Ω
‖y−x‖≥δ

Q0(x−y) : τ(y)dVy+P0 : τ(x), (A.1)

where P0 is the Hill tensor of d-dimensional spheres. Litteral

expressions of P0 and Q0(r) can be found in reference textbooks

[see e.g. Torquato (2002); Buryachenko (2007); Kanaun and

Levin (2008)]. For d = 3,

P0 =
1 − 2ν0

6µ0 (1 − ν0)
J +

4 − 5ν0

15µ0 (1 − ν0)
K, (A.2)

and

Q0(r) =
1

16πµ0 (1 − ν0) r3

[

−δi jδkl + (1 − 2ν0)
(

δikδ jl + δilδ jk

)

+ 3
(

δi jnknl + δklnin j

)

+ 3ν0
(

δikn jnl + δiln jnk + δ jkninl + δ jlnink

)

−15nin jnknl

]

ei ⊗ e j ⊗ ek ⊗ el, (A.3)

where µ0 (resp. ν0) is the shear modulus (resp. Poisson ratio) of

the reference medium, r = ‖r‖, n = r/r and J (resp. K) is the

spherical (resp. deviatoric) fourth-rank projection tensor. More

precisely, J = 1
d
i ⊗ i and K = I − J, where i (resp. I) is the

second- (resp. fourth-) rank identity tensor. For d = 2 (plane

strain elasticity),

P0 =
1 − 2ν0

4µ0 (1 − ν0)
J +

3 − 4ν0

8µ0 (1 − ν0)
K, (A.4)

and

Q0(r) =
1

8πµ0 (1 − ν0) r2

[

−δi jδkl + (1 − 2ν0)
(

δikδ jl + δilδ jk

)

+ 2
(

δi jnknl + δklnin j

)

+ 2ν0
(

δikn jnl + δiln jnk + δ jkninl + δ jlnink

)

−8nin jnknl

]

ei ⊗ e j ⊗ ek ⊗ el. (A.5)

It should be observed that Q0 is homogeneous of degree −d.

Besides, the following identity will prove useful in the present

paper

∫

‖n‖=1

Q0(n)dS n = 0, (A.6)

where dS n denotes the surface element at n on the unit sphere.

Appendix B. Computation of the self-influence pseudoten-

sors

In this section, a procedure is presented for the computation

of the self-influence pseudotensors of spherical inclusions. The

general expression [see Eq. (42)] of the self-influence pseudoten-

sors is first transformed so as to handle the principal values (see

Appendix B.1). It is then shown that the resulting integral can

be computed analytically in the case of spherical inclusions (see

Appendix B.2).
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Appendix B.1. Proof of Eq. (44)

These pseudotensors are defined by Eq. (42), where the

principal value must be computed. Let

Ql•
α (x) = lim

δ→0

∫

y∈Rd

‖y−x‖>δ

χα(y)yl•
•Q0(y − x)dVy, (B.1)

so that

Sk•l•
α =Mk•+l•

α P0 +

∫

x∈Rd

χα(x)xk•
• Ql•

α (x)dVx. (B.2)

Assuming inclusion α is convex, it is possible to perform in

Eq. (B.1) the change of variables specified by Eq. (43)

Ql•
α (x) = lim

δ→0

∫

‖n‖=1

∫ Rα(x,n)

δ

(x• + rn•)
l•Q0(rn)rd−1drdS n,

where dS n denotes the surface element at n on the unit sphere.

From the homogeneity of Q0 (see Appendix A)

Ql•
α (x) = lim

δ→0

∫

‖n‖=1

(∫ Rα(x,n)

δ

(x• + rn•)
l•

r
dr

)

Q0(n)dS n,

where the singularity is removed with the help of the following

substitution

(x• + rn•)
l•

r
=

(x• + rn•)
l• − x

l•
•

r
+

x
l•
•

r
.

Indeed, Eq. (1) readily shows that the first term is regular as

r → 0

(x• + rn•)
l• − x

l•
•

r
=

∑

0•≤h•≤l•
h•,0•

(

l•

h•

)

rh+−1nh•
• xl•−h•
• ,

and

lim
δ→0

∫ Rα(x,n)

δ

(x• + rn•)
l• − x

l•
•

r
dr

=

∫ Rα(x,n)

0

(x• + rn•)
l• − x

l•
•

r
dr

=
∑

0•≤h•≤l•
h•,0•

(

l•

h•

)

Rα(x,n)h+

h+
nh•
• xl•−h•
• .

Therefore,

Ql•
α (x) =

∫

‖n‖=1

∫ Rα(x,n)

0

(x• + rn•)
l• − x

l•
•

r
Q0(n)drdS n

+ xl•
• lim
δ→0

∫

‖n‖=1

log
Rα(x,n)

δ
Q0(n)dS n, (B.3)

and, from Eq. (A.6), the integral in the last term reduces to
∫

‖n‖=1

log (Rα(x,n)) Q0(n)dS n, (B.4)

while the change of variables specified by Eq. (43) can be

reversed in the first term
∫

y∈Rd

χα(y)
(

yl•
• − xl•

•

)

Q0(y − x)dVy. (B.5)

This completes the proof, since Eq. (44) is readily retrieved

from Eqs. (B.2), (B.3), (B.4) and (B.5).

Appendix B.2. Application to spherical inclusions

Let aα denote the radius of the spherical inclusion Ωα. It can

readily be verified that

Rα(x,n) = −x · n +

√

a2
α − ‖x‖

2 + (x · n)2. (B.6)

In expanded form, the self-influence pseudotensor of convex

inclusions reads [see Eq. (44)]

Sk•l•
α =Mk•+l•P0

+
∑

0•≤h•≤l•
h•,0•

(

l•

h•

)




∫

x∈Rd

‖n‖=1

χα(x)
Rα(x,n)h+

h+

nh•
• xk•+l•−h•
• Q0(n)dS ndVx





+

∫

x∈Rd

‖n‖=1

χα(x) log (Rα(x,n)) xk•+l•
• Q0(n)dS ndVx. (B.7)

The third term in Eq. (B.7) vanishes. Indeed, from the

identities Q0(−n) = Q0(n) and

∫

‖n‖=1

f (n)dS n =

∫

‖n‖=1

f (n) + f (−n)

2
dS n, (B.8)

for any function f , it is found that

∫

‖n‖=1

log (Rα(x,n)) Q0(n)dS n

=

∫

‖n‖=1

log
√

Rα(x,−n)Rα(x,n)Q0(n)dS n.

From Eq. (B.6), Rα(x,−n)Rα(x,n) = a2
α − ‖x‖

2, and the above

integral reduces to

log

√

a2
α − ‖x‖

2

∫

‖n‖=1

Q0(n)dS n = 0, (B.9)

where Eq. (A.6) has been used. Turning now to the second

term of Eq. (B.7), Eq. (B.8) can again be used to transform the

integral over the unit sphere

∫

‖n‖=1

Rα(x,n)h+nh•
• Q0(n)dS n

=

∫

‖n‖=1

Rα(x,n)h+ + (−1)h+Rα(x,−n)h+

2
nh•
• Q0(n)dS n.

Using Eq. (B.6), it is readily seen that all odd powers of
√

a2
α − ‖x‖

2 + (x · n)2 vanish in the integrand

Rα(x,n)h+ + (−1)h+Rα(x,−n)h+

2

= (−1)h+
∑

j

(

h+

2 j

)

(x · n)h+−2 j
(

a2
α − ‖x‖

2 + (x · n)2
) j
. (B.10)
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Gathering Eqs. (B.7), (B.9) and (B.10), the following ex-

pression of S
k•l•
α is finally found for spherical inclusions

Sk•l•
α =Mk•+l•P0

+
∑

0•≤h•≤l•
h•,0•

0≤2 j≤h+

(−1)h+

h+

(

l•

h•

)(

h+

2 j

)




∫

x∈Rd

‖n‖=1

χα(x) (x · n)h+−2 j

(

a2
α − ‖x‖

2 + (x · n)2
) j

xk•+l•−h•
• nh•

• Q0(n)dS ndVx




.

The above sum reduces to integrals of trigonometric polyno-

mials. Its computation therefore involves only simple (though

tedious) algebra, and can easily be implemented in a computer

algebra system.

Appendix C. Change of basis for the influence pseudoten-

sors

As already argued in Sec. 4, literal expressions of the influ-

ence pseudotensors are computed in a convenient, local basis

(e′
j
)1≤ j≤d. In order to retrieve the pseudotensors in the global

basis (ei)1≤i≤d, a change of basis must be carried out, keeping in

mind that the influence pseudotensors are not tensors. This is

detailed below.

In the remainder of this section, it will be convenient to

introduce the following notation: k•• denotes doubly indexed

tuples of size d × d, k•• = (ki j)1≤i, j≤d. Given k••, two d-tuples

are further introduced

k•+ = (ki1 + · · · + kid)1≤i≤d and k+• = (k1 j + · · · + kd j)1≤ j≤d,

which are the horizontal and vertical projections of k••, respec-

tively.

For x ∈ R
d, let x• (resp. x′•) be the coordinates of x in

the global (resp. local) frame; x• is related to x′• through the

classical formula

xi = Ri jx
′
j,

where R is the rotation tensor which maps the global basis onto

the local basis (e′
i
= R · ei). Then, from the multinomial theorem

x
p

i
=

(

Ri jx
′
j

)p
=

∑

k+=p

p!

k1! · · · kd!

(

Ri1x′1
)k1 · · ·

(

Rid x′d

)kd

,

and x
p•
• is expressed as a function of x′•

x
p•
• =

∑

k•+=p•

p1! · · · pd!

k11! · · · kdd!
R

k11

11
· · ·R

kdd

dd
x′k+•• .

Using the above identity, the variables x′• and y′• are substi-

tuted to x• and y• in Eq. (33)

T
p•q•
αβ

(r) =
∑

h•+=p•

∑

k•+=q•

p1! · · · pd!

h11! · · · hdd!

q1! · · · qd!

k11! · · · kdd!
R

h11+k11

11
· · ·R

hdd+kdd

dd

∫

x,y∈Rd

χα(x)χβ(y)x′h+•• y′k+•• Γ
∞
0 (r + y − x)dx′×dy′×,

where it is recalled that det R = 1. The integrals in the above

sums are the influence pseudotensors T
′h+•k+•
αβ

(r), expressed in

the local basis

T
′p•q•
αβ

(r) =

∫

x,y∈Rd

χα(x)χβ(y)x
′p•
• y

′q•
• Γ

∞
0 (r + y − x)dx′×dy′×,

which shows that the influence pseudotensors in the global ba-

sis can be expressed as a linear combination of the influence

pseudotensors in the local basis

T
p•q•
αβ

(r) =
∑

r+=p+

∑

s+=q+

Λ
p•q•
r• s• T

′r• s•
αβ
,

where

Λ
p•q•
r• s• =

∑

h•+=p•
h+•=r•

∑

k•+=q•
k+•=s•

p1! · · · pd!

h11! · · · hdd!

q1! · · · qd!

k11! · · · kdd!
R

h11+k11

11
· · ·R

hdd+kdd

dd
.

Finally, recalling that Γ∞0 is a true tensor, and introducing

the components T
p•q•
αβ,i jkl

(r) [resp. T
′r• s•
αβ,IJKL

(r)] of T
p•q•
αβ

(r) [resp.

T
′r• s•
αβ

(r)] in the global (resp. local) basis, it is found that

T
r• s•
αβ,i jkl

(r) = RiIR jJRkKRlL

∑

r+=p+

∑

s+=q+

Λ
p•q•
r• s• T

′r• s•
αβ,IJKL

.

The above formulas can be used to compute the influence

tensor in any basis, provided all influence tensors have been

computed in the local basis.
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