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destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
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Collapses and watersheds in pseudomanifolds of arbitrary
dimension

Jean Cousty, Gilles Bertrand, Michel Couprie, and Laurent Najman

January 2014, version 2

Abstract This work is settled in the framework of
abstract simplicial complexes. We propose a definition

of a watershed and of a collapse (i.e., a homotopic

retraction) for maps defined on pseudomanifolds of

arbitrary dimension. Then, we establish two important

results linking watersheds and homotopy. The first one
generalizes a property known for distance transforms in

a continuous setting to any map on pseudomanifolds:

a watershed of any map is a subset of an ultimate

collapse of the support of this map. The second result
establishes, through an equivalence theorem, a deep link

between watershed and collapse of maps: any watershed

of any map can be straightforwardly obtained from

an ultimate collapse of this map, and conversely any

ultimate collapse of the initial map straightforwardly
induces a watershed.

Keywords watershed · segmentation · collapse ·
topology preservation · simplicial complex ·
pseudomanifold

1 Introduction

For topographic purposes, the watershed has been

extensively studied during the 19th century [53,15,

42,31,12]. One hundred years later, the watershed

transform [27,57,3,24] was introduced by Digabel and
Lantuéjoul for image segmentation and is now used

as a fundamental step in many powerful segmentation

procedures [8]. Intuitively, if we see a map as a

topographic surface, a watershed may be thought of as
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a set of points from which a drop of water can flow
down towards several distinct minima. For instance,

Fig. 1a depicts a topographical relief whose watershed

is made of the crests represented in black (see also the

corresponding black curves in Fig. 1b).

(a) (b)

Fig. 1 Illustration of the watershed. (a): A topographical
relief. (b): A watershed of (a).

The notion of topological watershed, introduced and

studied in [19,3], shows that the watershed transforma-

tion (i.e. the process that computes a topological wa-

tershed from a map) can be defined through a process
where only one topological invariant, namely the num-

ber of connected components, is preserved.

Fig. 2a depicts an object X that has two connected

components. It has also two holes, meaning in 2D, two

finite connected components of the background. The
number of holes is another topological invariant, that

is, a quantity which is left unchanged by any continuous

deformation. The intuitive notion of continuous defor-

mation (see an example with Fig. 2b and a counter-
example with Fig. 2c) is formalized by the notion of

homotopy (the interested reader may refer to e.g. [41]

for a complete exposition). Transformations that pre-
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(a) connected components

holes

(b)

(c)

Fig. 2 Illustration of some topological invariants in 2D.
(a,b,c) are objects with 2 connected components and 2 holes,
(b) can be obtained from (a) by a continuous deformation,
whereas (c) cannot. Any continuous deformation preserves
the topological invariants such as the number of connected
components and the number of holes.

serve all topological characteristics, known as topology-

preserving transformations, are used in many applica-

tions of image analysis. Homotopic skeletonization [32,

20] is the best known and most used transformation of

this kind, with many applications both in 2D and 3D. In
particular, skeletons are often used as a simplification

of the original data, which facilitates shape recognition,

registration, or animation. In Fig. 3, we show in (b) an

example of homotopic skeleton, obtained from the 2D
object depicted in (a).

(a) (b)

Fig. 3 Illustration of a relation between watersheds and
homotopic skeletons. (a): The support of Fig. 1a. (b): A
homotopic skeleton of (a).

For our purpose, it is important to mention the

medial axis, a geometrical notion introduced by Blum

for image analysis in the 60’s [10,11]. Intuitively, the

medial axis of an object X is the set of those points of

X that have at least two closest points on the boundary

of X (see Fig. 4). It is thus “centered” in X , and in the

continuous framework, it has nice topological properties
which assess that the medial axis is thin and contains

the same topological information as the original object.

More precisely, if we consider an object X that is an

open subset of Rn and its medial axis MA(X), then:

– there is a homotopy between MA(X) and X , as
stated by G. Matheron in [39,40], and proved by

A. Rivière in [47,48] and by A. Lieutier in [36].

– The interior of MA(X) is empty [39,40], and

moreover, MA(X) is Lebesgue negligible [47,48].

z

y

x

a

b

c

d e

Fig. 4 Illustration of the medial axis. The object X is the
interior of the depicted rectangle. The points a, b (resp. c, d)
are the points of the boundary of X closest to x (resp. y),
hence x and y are medial axis points. The point z has only
one closest point e on the boundary, thus it is not a medial
axis point. The medial axis of X, made of five straight line
segments, is depicted.

Furthermore, if we denote by DX the distance map

of X (that is, the map that associates to each point x

of X the Euclidean distance from x to the boundary

of X), the medial axis MA(X) can be obtained by
extracting the “crests” of DX , or more precisely, the

points x of X such that there exists at least two distinct

steepest descent paths for DX starting from x. This

property is illustrated in Fig. 5, where the distance
map of a rectangle is depicted as a topographical relief,

and steepest descent paths issued from two crest points

are shown. Also in Fig. 1, the map depicted in (a) is

indeed the distance map of the object in Fig. 3a, and

the skeleton shown in Fig. 3b corresponds to a discrete
notion of medial axis.

Through the notion of distance map, an interesting
link between watershed and medial axis has been stated

by L. Najman and M. Schmitt in [43]. They showed

that the watershed of DX is a subset of the medial

axis MA(X). This property is illustrated in Figs. 1 and
3, where it can be observed that the watershed (Fig. 1b)

of the distance map (Fig. 1a) of Fig. 3a is indeed a

subset of the skeleton (Fig. 3b). More precisely, the
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Fig. 5 Illustration of the relation between medial axis and
distance map.

watershed is composed by all the points of the skeleton
that are adjacent to several connected components of

its complementary set.

As far as we know, such a link between watershed

and medial axis had never been established in a discrete

framework. Moreover, in the framework of digital topol-
ogy which is used in a majority of applications in image

processing, fundamental properties like homotopy and

thinness of skeletons cannot be both satisfied, as shown

by the counter-example of Fig. 12.

The first main contribution of this article is a prop-
erty (Theorem 34) that establishes a relation between

watershed and homotopy in a discrete framework. This

link is even more general than the one discussed above

in the continuous framework, as it holds for arbitrary

maps, distance maps being just a particular case, and
for skeletons which are not necessarily medial axes. This

property opens the way for defining and computing new

shape descriptors that are hybrids between watersheds

and skeletons.

The second main contribution of this paper is an
equivalence result (Theorem 36) that establishes a deep

link between watersheds and homotopy of maps, which

is defined in [7,21] by considering the homotopy of every

level sets of the considered maps. Intuitively, it states

that a set X is a watershed of a map F if and only if
there exists a so-called ultimate skeleton H of F (this

skeleton is also a map) such that X is exactly the set of

points adjacent to several distinct minima of H . To the

best of our knowledge, no result of this kind has been
obtained until now. Furthermore, due to this result,

efficient algorithms based on homotopic transforms can

be derived for computing a watershed of a map.

The results presented in this paper hold true in a

large family of n-dimensional discrete spaces, namely
the pseudomanifolds. This study is developed in the

framework of simplicial complexes (triangulated objects)

of arbitrary dimension. The notion of watershed that we

use is based on the drop of water principle [24,25] and

the one of homotopy relies on the collapse operation

[58], a topology-preserving transformation known in al-

gebraic topology. Additionally, this paper includes the

following important contributions:

– a definition of watershed for maps defined on

pseudomanifolds;

– a definition of collapse for maps defined on simplicial

complexes; and

– a property of thinness of watersheds (resp. ultimate
collapses) in pseudomanifolds (see Theorem 34 and

Property 6 respectively): in a pseudomanifold of

dimension n, the dimension of any watershed and

of any ultimate collapse is at most n− 1.

The proposed notions can be used for segmenting
the triangulated surfaces of 3D objects (see, e.g., [45]

and Fig. 6). Within this applicative context, the seg-

mentation of simplicial complexes was the subject of

many papers in the last decade. L. De Floriani et al. [29,
17] tackled the problem as a Smale-like decomposition

in discrete Morse theory (see also [30]) where the simpli-

cial complex is segmented into ascending and descend-

ing subcomplexes. Based on the same theory, H. Edels-

brunner and J. Harer [28] proposed another decompo-
sition algorithm and they informally discuss some links

with watershed algorithms. Furthermore, since the pi-

oneering work of Mangan et al. [38], many applications

involving the segmentation of 3 dimensional meshes have
been developed, often without mentioning explicitly sim-

plicial complexes. The interested reader may refer to

surveys papers [2,56] or to the recent SHREC’12 Track:

3D mesh segmentation challenge [35]. However, as far

as we know, before the present paper, a formal study of
watersheds in simplicial complexes was not available.

The proposed framework can also be used for

segmenting digital images equipped with triangular
or cubical grids (see e.g. Fig. 7). Indeed, all notions

and properties presented in this article for simplicial

complexes (which include the triangular grids) can

be easily transposed (see [6]) to the framework of

cubical complexes (which include the cubical grids).
Cubical complexes have been promoted in particular

by V. Kovalevsky [34] in order to provide a sound

topological basis for image analysis. Recent advances

in this framework includes the design of new image
processing operators [20,37,49] as well as applications

in different fields such as computer graphics [44] or

medical imaging [13,14].
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(a) (b) (c) (d)

Fig. 6 (a) Rendering of a triangulated surface M. (b) A map F on M (which behaves like the inverse of the mean curvature
of the surface, see [45]) (c) A watershed (in black) of F . (d) Zoom on a part of (c). The object M shown in (a) is provided by
the French Museum Center for Research.

(a) (b) (c) (d) (e) (f)

Fig. 8 (a, b, c, d) Simplices of dimension 0, 1, 2 and 3. (e)
A 2-cell. (f) A complex.

In order to ease the reading this article is self-

contained. In particular, it provides the proof of all

original properties.1

2 Simplicial complexes and pseudomanifolds

We call (abstract) simplex any finite nonempty set. The

dimension of a simplex x, denoted by dim(x), is the

number of its elements minus one. In the following, a

simplex of dimension d will also be called a d-simplex.
If x is a simplex, we set close(x) = {y | y ⊆ x, y 6= ∅}.
A finite set X of simplices is a cell if there exists x ∈ X

such that X = close(x).

Fig. 8a (resp. b, c and d) graphically represents a
simplex x of dimension 0 (resp. 1, 2 and 3). Fig. 8e

shows a cell composed of one 2-simplex, three 1-

simplices and three 0-simplices.

1 Note that some of these properties were first presented in
a conference article [23] without proof.

If X is a finite set of simplices, we write close(X) =⋃
x∈X close(x), the set close(X) is called the (simpli-

cial) closure of X . A finite set X of simplices is a (sim-

plicial) complex if X = close(X)2. Let X be a com-

plex. Any element in X is a face of X and we call d-

face of X any face of X whose dimension is d. Any
d-face of X that is not included in any (d + 1)-face

of X is called a (d-) facet of X . The dimension of X ,

written dim(X), is the largest dimension of its faces:

dim(X) = max{dim(x) | x ∈ X}. If d is the dimension

of X , we say that X is pure whenever the dimension of
all its facets equals d.

Intuitively, an n-manifold is an n-dimensional object

that is locally “like” the n-dimensional Euclidean space.
For instance, 2D-tori, like the one shown in Fig. 9a,

are 2-manifolds whereas 2D pinched tori like those of

Fig. 9b and c are not.

The notion of n-pseudomanifold is less restrictive

than the one of n-manifold. In particular, it allows

“pinchings” of dimension strictly less than n − 1 to

appear. For instance, the 2D pinched torus shown in
Fig. 9b is a 2-pseudomanifold, contrarily to that of

Fig. 9c for which a pinching of dimension 1 appears.

Note that any manifold is a pseudomanifold but that

2 Note that all simplicial complexes considered in this paper
are finite. Indeed, in general, the extension of the proposed
notions to the case of infinite complexes is not direct and is
beyond the scope of this paper.
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F H X (in white)

Fig. 7 A map F , an ultimate skeleton H of F and a watershed X of F . The map F , defined on the two dimensional cubical
complex associated to the square grid (see e.g. [5]), is obtained after some morphological filtering of an uranium oxyde image.
The second (resp. third) row provides crops on a part of the images of the first (resp. second) row. The images of the third
row also provide the interpretation of the images in terms of cubical complexes. As an illustration of the main result of this
paper, it can be seen that the watershed X of F is also the set of the faces that are adjacent to two distinct regional minima
of H.

the converse is not true. Pseudomanifolds, that are

often used in computer graphics applications, constitute

the class of discrete spaces studied in this paper. The
notion of a pseudomanifold considered in this article

implicitly refers to objects without boundary (see e.g.

[41] for formal definitions of these notions). Digital

images are in general defined on a (hyper) rectangular

domain with boundaries. To handle a digital image in
the proposed framework, one can embed its domain

into a pseudomanifold without boundary. For instance,

every boundary element can be linked to an additional

point so that the obtained domain has the same
topology as a sphere. Alternatively, the “opposite”

boundaries of the domain can be identified in order to

obtain a torus. In fact, the definitions and properties

presented in this paper can be adapted (this would be

rather technical and would increase the length of the
proofs) to handle the case of objects with boundaries,

allowing for handling digital images in a direct way, as

done in the illustration of Fig. 7.

The remaining part of this section is devoted to the
formal definition of pseudomanifolds, in the framework

of simplicial complexes, and to a lemma that will be

used for proving the main claims of the paper.

Let X be a set of simplices, and let d ∈ N. Let π =
〈x0, . . . , xℓ〉 be an ordered sequence of d-simplices in X .

The sequence π is a d-path from x0 to xℓ in X if xi−1∩xi

is a (d − 1)-simplex in X , for any i ∈ {1, . . . , ℓ}. Two
d-simplices x and y in X are said to be d-linked for X
if there exists a d-path from x to y in X . We say that

the set X is d-connected if any two d-simplices in X are

d-linked for X .

Let X be a set of simplices, and let π = 〈x0, . . . , xℓ〉
be a d-path in X . The d-path π is said simple if for

any two distinct i and j in {0, . . . , ℓ}, xi 6= xj . It can

be easily seen that X is d-connected if and only if, for
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(a) (b) (c)

Fig. 9 (a) A topological torus. (b,c) Pinched tori: the pinchings (of dimensions 0 and 1 respectively) are marked in light gray.

any two d-simplices x and y of X , there exists a simple

d-path from x to y in X .

Definition 1 A complex X of dimension d is a d-

pseudomanifold if:

1. X is pure; and

2. any (d − 1)-face of X is included in exactly two d-

faces of X; and

3. X is d-connected.

The complex of Fig. 8f is pure, its dimension is 2,

but it is not a 2-pseudomanifold. Indeed, it contains

six 1-faces, each of which is included in only one 2-
face. Remark also that it cannot be a subset of a 2-

pseudomanifold since it contains one 1-face that belongs

to three 2-faces. Fig. 10a shows a subset of a 2-

pseudomanifold.

Important notation 2 In this paper M stands for

any n-pseudomanifold, where n is a positive integer.

In the next sections, we will study transformations

that preserve the number of connected components

of the complement of complexes. In general, the

complement of a complex is not a complex. Therefore,

we introduce the following notions that allows the
complement of complexes to be handled.

Let x ∈ M, the star of x (in M), denoted
by star(x), is the set of all simplices ofM that include x,

i.e., star(x) = {y ∈ M | x ⊆ y}. If A is a subset of M,

the set star(A) = ∪x∈Astar(x) is called the star of A

(in M). A set A of simplices of M is a star (in M)

if A = star(A).

If X ⊆ M, we denote by X the complementary set

of X in M, i.e. X = M \X .

Let X be a subset of M. Observe that, in general,

if X is a complex, then X is not a complex. The
following property clarifies the links between the

subsets of M and their complementary sets, and

follows immediately from the definitions. Note that this

property holds true even if the complex M is not an n-

pseudomanifold.

Property 3 Let X ⊆ M. The set X is a complex if

and only if X is a star.

Since M is n-connected, the empty set and M are the

only subsets of M which are both a complex and a star.

Any subset of a complex X which is also a complex

is called subcomplex of X . If Y is a subcomplex of X ,

we write Y � X . Any subset of a star A which is also

a star is called substar of A. If B is a substar of A, we

write B ⊑ A.

Important notation 4 In this paper, we will only

consider d-paths in M with d = n. Therefore, to shorten
the notations, we will use the term path (resp. linked

and connected) instead of n-path (resp. n-linked and n-

connected).

Let A ⊑ M and let B ⊑ A. We say that B is a

(connected) component of A if B is a connected substar

of A which is maximal for this property, i.e., for any

connected star C in M, B ⊑ C ⊑ A implies C = B.

To finish this section, we introduce a property of the

pseudomanifolds that will be used in the next section

to establish the main claims of this paper.

Lemma 5 Let x ∈ M be an (n− 2)-face of M, let y be

an (n − 1)-face that contains x, and let x0 and x1 be
the two distinct n-faces of M that contain y. Then, x0

and x1 are linked for star(x) \ {y}.

The proof of Lemma 5 is given in Appendix A.

Fig. 11 shows the set of 2-faces belonging to star(x),

where x is a 0-face of some 2-pseudomanifold. Let
us consider the two 2-faces x0 and x1 and the 1-

face y = x0 ∩ x1, which indeed includes x. It can be

verified that x1 and x0 are linked for star(x) \ {y}
since 〈x1, . . . , x7, x0〉 is a path in star(x) \ {y}.

3 Homotopic transforms: collapses

For applications to 2D and 3D image processing,
homotopies are often tackled in the framework of digital

topology [32] for which the notion of a simple pixel

or point is central. Intuitively, a pixel of a 2D black

object lying in a white background is said to be simple
if its removal from the set of black pixels does not alter

topology. For instance, in Fig. 12a, the pixel labeled x is

simple for the setX drawn in black. In particular, it can
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y

x
z

(a) (b) (c)

y’

x’

(d) (e) (f)

Fig. 10 (a) A subset of a 2-pseudomanifold M. (b) A subcomplex X of M in black. (c) An elementary collapse Y of X. (d)
An ultimate 2-collapse Z of both X and Y . (e) An ultimate 1-collapse W of Z. (f) A cut V for X.

x0

x1

x2

x6

x5

x4

x3

x7

yx

Fig. 11 Illustration of Lemma 5 and of a local cycle
(Appendix A).

be verified that the sets X and X \ {x} have the same

number of connected components and “holes”. On the
contrary, in Fig. 12, the removal of the pixel labeled w

would merge two “holes” of X and therefore w is not

simple. The pixel y (resp. z) is not simple either, since

its removal would suppress (resp. create) a “hole”. A

set Y of black pixels is a (homotopic) skeleton of an
object X , if Y may be derived from X by iterative

removal of simple pixels. For instance, in Fig. 12, the

object Y is a skeleton of X . It can be observed in

particular that X and Y have the same number of
connected components and “holes”. In this framework

of digital topology, a skeleton is said to be an ultimate

skeleton if it does not contain any simple pixel, that is

if it cannot be reduced, by pixel removal, while leaving

topology unchanged. For instance, it can be verified
that the set Y (Fig. 12) does not contain any simple

pixel. Thus, the set Y is an ultimate skeleton of X .

Intuitively, one may think of an ultimate skeleton in

a 2D image as a 1D object. However, it is well known in

digital topology (see e.g. [1]) that an ultimate skeleton

can be arbitrarily thick. For instance, in Fig. 12b, the
point z, which belongs to the ultimate skeleton Y , is not

adjacent to any white pixel. Thus, Y is thick and cannot

be considered as a 1D object. Fig. 13 shows similar

examples for 2D objects in the triangular and hexagonal
grids which are popular in the field of mathematical

morphology (see chapter XI of [55]). Similar examples

can also be found in 3D (see, for instance, the object of

Fig. 15b in [22]). Furthermore, in 3D one can encounter

specific problems, which cannot arise in 2D. Indeed,
an object homotopic to a single point can have an

ultimate skeleton not reduced to a single point (e.g.

Bing’s House [9]). In practice, such thickness leads to

important difficulties for post-processing skeletons.

In this section, we present the operation of collapse
of a complex introduced by J.H.C. Whitehead [58],

which is a discrete analogue of a retraction, that is, a

continuous (homotopic) deformation of an object onto

one of its subsets. As introduced in [4] (see also [33,
20]), the collapse operation allows the main notions

(and results) of digital topology, including the one of

simple pixel, to be retrieved. Fig. 12 shows an example
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x

w
z

y
z z

X Y Z

Fig. 12 Illustration of homotopic skeleton in 2D digital
topology (X, Y ) and in cubical complexes (Z): the object Y
(black pixels) is an ultimate skeleton of X (black pixels).
The foreground object in black is equipped with the
indirect adjacency relation (also called 8-adjacency relation)
and its complement, the background object in white, is
equipped with the direct adjacency relation (also called
4-adjacency relation). A homotopic skeleton (namely an
ultimate collapse) Z of the two black objects X and Y
considered in the framework of cubical complexes.

z z

(a) (b)

Fig. 13 (a) A homotopic skeleton in the hexagonal grid.
The 6-adjacency relation is used for both the foreground
(black) and background (white) objects. Any hexagon that
is 6-adjacent to the black hexagon z is also black. (b) A
homotopic skeleton in the triangular grid. In this grid, we
consider that any two black triangles that share a side or a
vertex are adjacent. Note that any triangle adjacent to the
black triangle z is also black. Thus, the two objects in (a) and
(b) may be considered as “thick objects”.

of an ultimate collapse of an object in the 2D square

grid. Property 6 given in this section asserts that, in an
n-pseudomanifold, an ultimate collapse is always thin

in the sense that its dimension is always lower than the

one of the pseudomanifold.

Let X � M, and let y be any face of X . If there

exists a unique face x of X which strictly includes y,

we say that y is a free face for X and that the pair (x, y)
is a free pair for X . If the pair (x, y) is a free pair for X

and if d = dim(x), then (x, y) is called a free d-pair

for X .

For instance, in Fig. 10b, y is a free 1-face for the

complex X represented in black since x is the only face

of X that strictly includes y. On the other hand, z

is not a free face since it is included in two distinct
2-faces of X . Therefore, (x, y) is a free 2-pair for X

whereas (x, z) is not. In Fig. 10d, (x′, y′) is a free 1-pair

for the complex represented in black.

Let X be a subcomplex of M and let (x, y) is a

free d-pair for X . It can be seen that x is necessarily

a facet of X (otherwise there would be a face z that

strictly includes x, and thus y would be included in

two faces of X). Hence, the set X \ {x} is a complex.
Furthermore, the face y is not strictly included in any

face of X \ {x}: y is a facet of X \ {x}. Thus, the

set (X \ {x}) \ {y} = X \ {x, y} is a complex.

Let X � M. If (x, y) is a free pair for X , the

complex X \ {x, y} is an elementary collapse of X or,
more precisely, an elementary d-collapse of X if (x, y)

is a free d-pair for X .

To illustrate this definition, let us consider the two

complexes X and Y drawn in black in Figs. 10b and

c respectively. Since (x, y) is a free 2-pair for X and
since Y = X \ {x, y}, the complex Y is an elementary

2-collapse of X .

Let X and Y be two subcomplexes of M. The

complex Y is a collapse of X if there exists a

collapse sequence from X to Y , i.e., a sequence of
complexes 〈X0, . . . , Xℓ〉, with ℓ > 0, such that X0 =

X , Xℓ = Y and Xi is an elementary collapse of Xi−1,

for any i in {1, . . . , ℓ}. If each Xi is an elementary d-

collapse ofXi−1, we also say that Y is a d-collapse of X .

Let X,Y, Z and W be the four subcomplexes in
black in Figs. 10b,c,d and e respectively. The complex Z

is a 2-collapse of both X and Y , and W is a collapse

of X,Y and Z which is also a 1-collapse of Z. Moreover,

it can be seen that Z does not contain any free 2-pair
but that it contains free 1-pairs whereas W does not

contain any free 2-pair nor free 1-pair.

In the following, let us write X ≺ M, if X � M

and X 6= M and let us recall that n = dim(M).

Intuitively, one may guess that a complex strictly

included in M, but of dimension n, has a border. The
following property, whose complete proof is given in the

remaining part of the section, establishes this fact.

Property 6 Let X ≺ M. If dim(X) = n, then

necessarily there exists a free n-pair for X.

Note that, by definition of a free n-pair, the converse

is also true.

As a direct consequence of Property 6, any ultimate

collapse (i.e., any collapse that does not contain any

free pair) of any subcomplex of M is thin in the sense
that its dimension is at most n − 1. Note that if X is

not a subcomplex of an n-pseudomanifold, the previous

property is, in general, not true. Note also that this

property appears in [16] in the case where the space is

the cubical complex F
n, which is a discrete manifold

whose faces are made of points in Z
n.

Before proving Property 6, let us first state a

remark.
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Remark 7 If A is a nonempty star of M, then any

face x in A is included in an n-face of A (otherwise,

since M is pure we would not have star(A) = A).

Proof (of Property 6) Since dim(X) = n, there exists,

by definition, a facet x of X such that dim(x) = n.
As X 6= M, we have X 6= ∅. Thus, by Remark 7,

there exists an n-simplex y in X. Since M is an n-

pseudomanifold, there exists a path 〈x0, . . . , xℓ〉 from x

to y in M. Let i be the lowest index in {1, . . . , ℓ} such
that xi ∈ X and let z be the (n− 1)-simplex such that

z = xi−1 ∩ xi. Since X is a complex and since xi−1

belongs to X , we deduce that z belongs to X . Since M

is an n-pseudomanifold, the faces xi−1 and xi are the

only two n-faces of M that contain z. As xi /∈ X ,
the face xi−1 is the only face of X that contains z.

Thus, (xi−1, z) is a free n-pair for X . �

4 Cuts

Segmentation is the task of delineating objects of

interest. In many cases, the result of such process is

a set of connected regions lying in a background which
constitutes the separation between regions. Intuitively,

a cut is a separation that cannot be reduced without

connecting some regions. Our aim being to study

segmentations in pseudomanifolds, we introduce the
notion of cuts of a set of simplices. Then, we present two

important results. First, we state (Property 13) that

in an n-pseudomanifold the dimension of a nonempty

cut is always n − 1. Secondly, we give an equivalence

result (Theorem 15) between cuts and some subsets of
the ultimate collapses. This last property leads to an

efficient method to compute cuts in pseudomanifolds.

4.1 Extensions

Given a set of “seed components”, which “mark” the

regions of interest of the space, many segmentation

methods (among them, watershed algorithms) look for
a set of connected components such that each connected

component contains one seed and each seed is included

in one of these components. The notion of an extension,

presented hereafter in the case of simplicial complexes,

provides a definition for the results produced by this
kind of methods. This notion was first introduced by

G. Bertrand [3] for studying watersheds in vertex-

weighted graph and was adapted in [25] to the case

of edge-weighted graphs. In this section, we give a
definition of extensions in pseudomanifolds, and we

show (Property 11) that the collapse operation can be

used to obtain extensions.

Definition 8 (extension) Let A and B be two non-

empty stars in M. We say that B is an extension

of A if A ⊑ B, and if each connected component of B

includes exactly one connected component of A. We also

say that B is an extension of A if A and B are both
empty.

For instance, the sets of gray simplices in Figs. 10c-f

are extensions of the set of gray simplices in Fig. 10b.

Observe, in particular, that all these five sets of
simplices include three connected components.

Remark 9 Let A,B and C be three stars in M. If B is

an extension of A and if C is an extension of B, then

clearly C is an extension of A.

In fact, we have a more remarkable “triangular”

property. This property, which is given below, can be
derived from Theorem 4 in [3] stated in the framework

of graphs3. To this end, one may associate to M

the graph whose vertices are the n-faces of M and

whose edge-set is made of the pairs of n-faces whose
intersection is an (n− 1)-face of M.

Property 10 (confluence, from [3]) Let A,B, and
C be three stars of M such that C is an extension of A

and A ⊑ B ⊑ C. The star B is an extension of A if

and only if C is an extension of B.

The collapse operation preserves the topology of the

object. The next result (Property 11) shows that it also

preserves the number of connected components of the
complement of the object when the object is a subset

of an n-pseudomanifold (the property would not hold

true without this hypothesis).

Property 11 Let X � M and Y be a collapse of X.

Then Y is an extension of X.

Proof We are going to establish the result in the case

where Y is an elementary collapse of X . Then, due to
Remark 9, this will prove Property 11 by induction.

Let us suppose that Y is an elementary collapse

of X . Let (x, y) be the free pair for X such that Y =

X \ {x, y}. By construction X ⊑ Y . Thus, to establish

that Y is an extension of X, we will prove that any

component of Y includes exactly one component of X.
Let C′ be any component of Y , and let C = C′ \{x, y}.
Thus, we have C′ ∩ X = C. It can be seen that

to establish the result, it is sufficient to show that

(1) C 6= ∅ (hence that C′ includes at least one connected
component of X) and that (2) C is connected.

3 A property similar to Property 10 was proposed in [51]
(Lemma 3.1) for the so-called k-deletable sets in the 2D
square grid.
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1) By definition C′ is a nonempty star. Thus, C′

contains at least one n-face w. If w 6= x, then C 6= ∅
since w ∈ C. If w = x, then y ⊆ w is an (n−1)-face.

Since M is an n-pseudomanifold, there exists an n-

face w1 6= w such that y ⊆ w1. Since (x, y) is a free
pair for X , the face w1 belongs to X. Since X ⊑ Y ,

we have w1 ∈ Y . It can be seen that the faces w

and w1 are linked in Y . Thus, we have w1 ∈ C′ as w

and w1 are linked in Y . Thus, the n-face w1 belongs
to C, and C 6= ∅.

2) We are going to prove that any two n-faces w

and z in C are linked for C. Since C ⊑ C′ and C′

is connected, there exists, from w to z, a simple

path π = 〈w0, . . . , wℓ〉 in C′.
2.i) Let us first prove that, for any i ∈ {0, . . . , ℓ},we

have wi ∈ C. As w0 = w and wℓ = z, the faces w0

and wℓ belong to C. Let i ∈ {1, . . . , ℓ − 1}. The
two (n − 1)-faces wi−1 ∩ wi and wi ∩ wi+1 belong
to C′. Since M is a n-pseudomanifold and π a simple

path, we have wi−1 ∩wi 6= wi ∩wi+1 (otherwise the

(n − 1)-face wi−1 ∩ wi would be included in three

distinct n-faces). Hence, by definition of C, at least

one of wi−1 ∩wi and wi ∩wi+1 belongs to C. Thus,
since C is a star, the face wi belongs to C.

2.ii) Suppose now that π is not a path in C. Thus, there

exists i ∈ {1, . . . , ℓ} such that either wi ∩ wi−1 = y

or wi ∩wi−1 = x. Suppose first that wi ∩wi−1 = y.
Thus y is an (n − 1)-face. Hence, x is an n-face.

Since π is a simple path, we have wi 6= wi−1. Thus,

since M is a n-pseudomanifold, we have x = wi

or x = wi−1. Thus, one of wi−1 and wi belongs toX ,

that is a contradiction with (2.i). Thus, necessarily,
we have wi ∩ wi−1 = x. Therefore, y is an (n − 2)-

face included in both wi and wi−1. Furthermore,

the face y belongs to Y . By Lemma 5, the n-

faces wi−1 and wi are linked for star(y) \ {x} by
a path π′ = 〈z0, . . . , zm〉 in star(y) \ {x} such

that z0 = wi−1 and zm = wi. Since Y is a star

and since y ∈ Y , we have star(y) ⊑ Y . Hence, π′ is

a path in Y . Furthermore, since C′ is the connected

component of Y that contains wi−1 and wi, we
deduce that π′ is a path in C′. Thus, the path

π′′ = 〈w0, . . . , wi−1 = z0, . . . , zm = wi, . . . , wℓ〉 is a

path in C′. By construction, we have wj∩wj−1 6= x,

for any j ∈ {1, . . . , ℓ} and zj ∩ zj−1 6= x, for
any j ∈ {1, . . . ,m}. As C = C′ \ {x, y}, π′′ is also

a path in C, that is w = w0 and z = wℓ are linked

for C. �

Let us first illustrate Property 11 with the subcom-
plexes X,Y, Z, and W , drawn in black in Figs. 10b-e

respectively. The subcomplexes Y , Z, and W are three

collapses of X , and therefore Y , Z and W are three ex-

tensions of X. In particular, these four stars all include

exactly three components.

Let us also illustrate the previous property in the

pinched 2-pseudomanifold of Fig. 9b. Let X and Y be

the two subcomplexes represented in black in Figs. 14a
and b, respectively. The complementary set X of X

includes two components. Let x be a triangle located

at the left of the pinching, let y be a triangle located

at the right of the pinching, and let z = x ∩ y be the
pinching. Observe that there is no path in X from x

to y. Thus, one of the two components of X contains

the face x and the the second one contains the face y.

The subcomplex Y is a collapse of X . Therefore, by

Property 11, the star Y is an extension of X . Thus,
asX, the star Y includes two components. Indeed, even

if the point z belongs to Y , there is no path from x to y

in Y . In particular, the sequence 〈x, y〉 is not a path,

according to the definition of d-path given in Section 2
(here d = 2), since dim(z) 6= 1. Note also that the

point z does not belong to any component of Y since

there is no connected substar of Y that contains z. In

fact, the definition of connected component adopted in

this paper falls into the category of partial connections,
which are investigated by C. Ronse in [52], and which

do not require that any element of a set belongs to a

connected component of this set. This second example

also illustrates our choice of considering the notion
of d-path (with d = n) for the connectivity of the

complement of the simplicial complexes (i.e. the star

connectivity).

z yx

(a) X (in black) (b) Y (in black)

Fig. 14 Illustration of Property 11 where the subcomplex Y
is a collapse of X.

4.2 Cuts

Among the segmentation methods that produce exten-

sions, several aim at building maximal extensions, i.e.
extensions of the seeds that are not included in any

strictly larger extension of the seeds. In this case, the

set that separates the connected components of the ex-

tension is called a cut. The notion of a cut corresponds
to the intuitive idea of a frontier between regions. We

prove in this section that the dimension of a nonempty

cut is always n− 1 in an n-pseudomanifold.
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Definition 12 (Cut) Let A be a nonempty star in M

and X be a subcomplex of M. We say that X is a cut

for A if X is an extension of A and if X is minimal for

this property, i.e., for any Y � X, if Y is an extension

of A, then we have necessarily Y = X.

Observe that there can be several distinct cuts for

a same star A and, in this case, these distinct cuts

do not necessarily contain the same number of faces.
Thus, a cut for a star A is not necessarily a smallest

complex in the number of faces among the complexes

whose complement is an extension of A. However, as we

will see with the next property, a cut is always “thin”.
The set of black simplices in Fig. 10f is a cut for X

(where X is the complex depicted in black in Fig. 10b).

Intuitively, a “frontier” or a cut in an n-dimensional

space should be an object of dimension n−1. Neverthe-

less, we have shown [22] that the clefts (a notion in the
framework of digital topology that corresponds to cuts

in the framework of this paper) in the grids Z2, Z3, Zn

equipped with usual adjacency relations [32] cannot be

considered as (n−1)-dimensional objects (the clefts are
not necessarily thin). For instance, the set Y of black

pixels in Fig. 12 is a cleft, however, we have seen in

Section 3 that this set is not thin. From this point of

view, the next result shows that the framework of pseu-

domanifolds is an interesting alternative to usual adja-
cency relations, as used in digital topology.

Property 13 Let A ⊑ M and X � M, with A 6= ∅.
If X is a cut for A, then the complex X is either empty

or a pure (n− 1)-complex.

Proof We first prove by contradiction that dim(X) <
n. Suppose that dim(X) = n. Then, by Property 6,

there exists a free n-pair forX . Hence, there exists an n-

collapse Y of X such that Y ≺ X . By Property 11, Y

is an extension of X, which is itself an extension of A

(Definition 12). Thus, by Remark 9, Y is also an
extension of A, a contradiction with the fact that X

is a cut and Y ≺ X . Thus, dim(X) < n.

Suppose that X is nonempty. We will now prove

that X is pure. To this end, we have to prove that the
dimension of any facet x of X equals n − 1. Let Y =

X \{x}. Since x is a facet of X , Y is a complex. Since X

is a cut, Y is not an extension of A (Definition 12).

From the definition of X and Y , it can be seen that

any component of A is included in a component of Y .
Thus, there exists a component B of Y which does

not include exactly one component of A. If B contains

no component of A, then we have B = {x}, which is

impossible since dim(x) < n and B is a star. Thus, B
includes at least two nonempty components A1 ⊑ A

and A2 ⊑ A of A. Since A1 and A2 are nonempty stars,

there exist two n-simplices y and z such that y ∈ A1

and z ∈ A2. Since B is connected, there exists a

path π = 〈x0, . . . , xℓ〉 in B such that x0 = y and xℓ = z.

Since X is an extension of A, π is not a path in X.

But, for any i in {0, . . . , ℓ}, we have dim(xi) = n, and,

therefore, the face xi is in X, since dim(X) < n. Thus,
there exists an index i ∈ {1, . . . , ℓ} such that the (n−1)-

face xi−1∩xi is inX . On the contrary, by definition of π,

the face xi−1 ∩ xi is in Y . Thus, by construction of Y ,

we have xi−1 ∩xi = x. Hence, we have dim(x) = n− 1.
�

We remark that Definition 12 does not directly lead
to an efficient algorithm to compute a cut. Indeed,

based on this definition, in order to obtain a cut for

a star A, one needs i) to consider all the complexes

included in A; ii) to remove from this family the

complexes whose complement is not an extension of A
(this requires to find the inclusion relationship between

components of the complement of the considered

complexes and those of A); and iii) to find among the

remaining complexes one element that is minimal for
the inclusion relation. Step i) alone has an exponential

complexity.

4.3 Cut by collapse

In this section, we introduce the notion of a cut by

collapse. Intuitively, a cut by collapse for a starA, which
correspond e.g. to the seeds in a segmentation task,

is a complex made of all faces of an ultimate collapse

of A that are adjacent to at least two components of

the complement of this collapse. The main result of
this section is an equivalence theorem (Theorem 15)

between the cuts for A and the cuts by collapse for A. A

simple method is presented to compute cuts by collapse,

hence cuts, in linear-time.

We introduce hereafter the notion of multiconnected

faces that will play a fundamental role for cuts by

collapse.

Let X � M, let A ⊑ M and x be an (n − 1)-face
of M. We say that x is adjacent to A if there exists a

simplex y ∈ A such that either x ⊆ y or y ⊆ x. An

(n− 1)-face of X is said to be multi-connected for X if

it is adjacent to at least two components of X.

For instance, the set of faces that are multi-
connected for the complex in black in Fig. 10d is

composed of the 1-faces represented in black in Fig. 10f.

We remind that the simplicial closure close(X) of a set

of faces X is the complex made of all subsets of the
elements in X .

Definition 14 (cut by collapse) Let A be a substar

of M, and let X be a subcomplex of M.
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We say that the complex X is a cut by collapse for A

if there exists a complex Y � M such that:

1. Y is a collapse of A;

2. Y does not contain any free n-pair; and

3. X is the simplicial closure of the set of (n−1)-faces
in Y that are multiconnected for Y .

For instance, the complex V in black in Fig. 10f is

a cut by collapse for the star A = X represented in

gray in Fig. 10b. Indeed, the complex Z (black faces of

Fig. 10d) is a 2-collapse of X that does not contain any

free 2-pair and V is the closure of the set of all faces
that are multi-connected for Z.

To obtain a cut by collapse Y for an object A, the

following straightforward algorithm can be used:

1. While A contains a free n-pair do
– Select a free n-pair (x, y) for A;

– Add x and y to A (i.e. A := A ∪ {x, y})
2. Set Z to the set of all multi-connected faces for A.

3. Set Y to the simplicial closure of Z.

Each step of elementary collapse requires only a

local test. Moreover, the use of a breadth-first strategy

([18], Chapter 22) leads to a linear-time algorithm for

performing step 1. To perform Step 2, one stage of

global computation (connected component labeling) is
required. Therefore step 2 can also be performed in

linear-time. Furthermore, Step 3 can be performed on

the fly while doing step 2. Thus, the overall complexity

of the previous algorithm is linear. Observe also that,
according to the definition of a cut by collapse, if we

replace the free n-pairs by free pairs in the preceding

algorithm, then the algorithm would still output a cut

by collapse. Nevertheless, this algorithm would require

more iterations of elementary collapse to achieve the
same result.

The following result establishes that any complex

which is a cut is a cut by collapse, and that the converse

is also true. Therefore, the above algorithm constitutes
a simple and linear-time algorithm to compute cuts.

Theorem 15 Let A ⊑ M. A complex X is a cut for A

if and only if it is a cut by collapse for A.

The remaining part of the section is devoted to the
proof of Theorem 15. To this end, we will first prove

the forward implication of the theorem (Property 17)

and then the backward implication (Property 19).

Lemma 16 Let X � M such that dim(X) < n. Let Y

be the closure of the set of all faces of X that are

multiconnected for X.

1. If X \ Y 6= ∅, then X \ Y contains a facet of X.

Let x be a facet of X such that x belongs to X \ Y and

let Z = X \ {x}.

2. The subset Z of M is a complex.

3. The star Z is an extension of X.

4. The complex Y is exactly the closure of the set of

all faces of Z that are multiconnected for Z.

Proof 1) Since X \ Y 6= ∅, there exists y ∈ X \ Y . If y

is a facet of X , the proof is done. If y is not a facet
of X , then necessarily there exists a facet z of X that

includes y. As Y is the closure of the set of all faces

of X that are multiconnected for X and as y /∈ Y , we

have z /∈ Y .

2) follows directly from the fact that x is a facet

of X .

3) will be proved by contradiction. To this end,

let us suppose that Z is not an extension of X.

By construction, X ⊑ Z. Thus, any component
of X is included in one component of Z. Since, by

hypothesis, Z is not an extension of X, there must

exist one component A of Z that does not include any

component of Z or that includes at least two distinct
nonempty components B and C of X . In the former

case, since Z = X ∪ {x}, we deduce that A = {x},
which is impossible since dim(x) < n and A is a

star. Let us now consider the latter case. In this case,

since B and C are nonempty stars, there exists a simple
path π = 〈x0, . . . , xℓ〉 in Z such that x0 is an n-simplex

of B and xℓ is an n-simplex of C. As π is a path in Z, for

any i ∈ {1, . . . , ℓ}, the face xi−1∩xi is an (n−1)-simplex

of Z. Since x0 and xℓ belong to distinct components
of X, π is not a path in X. As dim(X) < n, for

any i ∈ {0, . . . , ℓ}, we have xi ∈ X. Thus, there

exists i ∈ {1 . . . ℓ} such that xi−1 ∩ xi does not belong

to X . As Z = X \ {x}, we have xi−1 ∩ xi = x. From

the preceding remarks, we deduce that 〈x0, . . . , xi−1〉
and 〈xi, . . . , xℓ〉 are two paths in X. Since x0 and xℓ

belong to distinct components of X and since x is

a (n − 1)-face of X such that x ⊆ xi−1 and x ⊆
xi, we deduce that x is multiconnected for X , which
constitutes a contradiction with x ∈ X \ Y .

4) Let y be an (n − 1)-face of Z. To establish 4),

we are going to prove that y is multiconnected for Z
if and only if y is multiconnected for X . Since M is

an n-pseudomanifold, there exists exactly two distinct

n-faces z1 and z2 of M that contain y. These two n-

faces belong to both X and Z (since dim(X) < n and
since Z = X \ {x}). Since Z is an extension of X,

the n-faces z1 and z2 belong to the same component

of Z if and only if they belong to the same component

of X. Thus y is multiconnected for Z if and only if y is

multiconnected for X . �

Property 17 Let A ⊑ M. If X is a cut by collapse

for A, then X is a cut for A.
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Proof By definition of a cut by collapse, there exists

a collapse Y of A such that Y does not contain any

free n-pair and such that X is the closure of the set of

all (n − 1)-faces of Y that are multiconnected for Y .

By Property 11, Y is an extension of A. We will now
establish that X is an extension of Y , which, by

Remark 9, will prove that X is an extension of A. Let us

consider a sequence 〈Y0, . . . , Yℓ〉 of subcomplexes of M

such that:

1. Y0 = Y ; and

2. Yi = Yi−1 \ {xi−1}, where xi−1 is a facet of Yi−1

that is not included in a face that is multiconnected

for Yi−1; and

3. any facet of Yℓ is multiconnected for Yℓ.

Since Y does not contain any free n-pair, by the

contraposition of Property 6, we have dim(Y ) < n.

Hence, by Lemma 16.3, the star Yi is an extension

of Yi−1. Therefore, due to Remark 9, the star Yi is, by

induction, an extension of Y0 = Y . Due to Lemma 16.4,
we also deduce, by induction, that X is the closure of

the set of faces of Yi that are multiconnected for Yi.

By the contraposition of Lemma 16.1, we have Yℓ = X .

Thus, the star X is an extension of A.

In order to establish thatX is a cut for A, it remains

to show that, for any Z � X , if Z is an extension of A,
then we have necessarily Z = X . Let Z � X such

that Z is an extension of A. Suppose that Z 6= X .

Then, there exists x ∈ X \ Z. Since X = Yℓ, the

dimension of any facet of X is not greater than n − 1
and any facet ofX is multiconnected. Thus, there exists

an (n − 1)-face y ∈ X such that x ⊆ y and such

that y is multiconnected for X . Thus, there exist two n-

faces z, w ∈ X such that, y ⊆ z, y ⊆ w, and z and w

belong to two distinct components of X. Since Z is a
complex, x /∈ Z and x ⊆ y imply y /∈ Z. Thus, 〈z, w〉
is a path in Z. Hence, the connected component of Z

that contains y includes at least two components of X,

and, since X is an extension of A, this component of Z
includes also at least two components of A. Thus, the

star Z is not an extension of A, a contradiction. �

Lemma 18 Let A ⊑ M and let X be a cut for A.

If dim(A) = n, then there exists a free n-pair (z, w)

for A such that z and w are in X.

Proof If X = ∅, then, Property 6 is sufficient to
establish Lemma 18. From now on, suppose that X 6=
∅. Since dim(A) = n, there exists x ∈ A such

that dim(x) = n. By Property 13, we have dim(X) =

n − 1. Thus x is in X. Let B be the connected
component of X which contains x. Since X is a cut

for A, there exists a nonempty component B′ of A such

that B′ ⊑ B. Since B′ is a star, there exists y ∈ B′

whose dimension is n. Since both x and y belong

to B and since B is a connected star, there exists a

path π = 〈x0, . . . , xℓ〉 in B such that x0 = x and xℓ = y.

Since x ∈ A and B′ is a component of A, the face x

is not in B′. Since y ∈ B′, there exists an index i ∈
{1, . . . , ℓ} such that xi ∈ B′ whereas xi−1 /∈ B′. By

definition of a path, xi ∩ xi−1 = w is a (n − 1)-

face. Since xi−1 does not belong to B′, which is a

connected component of A, we have xi−1 ∈ A. As A
is a complex and as w ⊆ xi−1, w ∈ A. By definition

of B′, the face xi is in A. Thus, since M is an n-

pseudomanifold, we deduce that xi−1 is the only n-face

of A which contains w. Thus, (xi−1, w) is a free n-pair

for A. Furthermore, we remind that π is a path in B.
Thus, xi−1 ∈ B and x ∈ B. But B ⊆ X, thus xi−1

and w are in X. �

Property 19 Let A ⊑ M and let X be a cut for A.

Then, X is a cut by collapse for A.

Proof Let us consider a sequence 〈X0, . . . , Xℓ〉 of
complexes such that:

1. X0 = A;

2. for any i ∈ {1, . . . , ℓ}, Xi = Xi−1 \ {x, y}
where (x, y) is a free n-pair forXi−1 such that x /∈ X

and y /∈ X ; and
3. Any free n-pair (x, y) for Xℓ is such that x ∈ X

or y ∈ X .

Clearly, Xℓ is an n-collapse of X0 = A. By the

contraposition of Lemma 18, dim(Xℓ) < n. Thus, Xℓ

does not contain any free n-pair. Hence, the closure S

of the set of all (n− 1)-faces which are multiconnected

for Xℓ is a cut by collapse for A. Therefore, by

Property 17, S is a cut for A. To complete the proof

of Property 19, we will establish that X ⊆ S. Indeed,
since X and S are cuts for A, this will prove, by the

minimality property of cuts, that S = X , hence that X

is a cut by collapse for A.

Let x ∈ X and x′ be a facet of X that contains x.

Since X is a cut for A, by Property 13, dim(x′) = n−1.

Since X ⊆ A and A = X0, we have X ⊆ X0. Thus,
since, for any i in {1, . . . , ℓ}, we have (Xi−1 ∩X) ⊆ Xi,

we deduce that X ⊆ Xℓ. Hence, we have x′ ∈ Xℓ and

thus also x ∈ Xℓ sinceXℓ is a complex and x ⊆ x′. AsM

is an n-pseudomanifold, there exist two distinct n-faces

x0 and y0 of M that contains x′. Since dim(Xℓ) < n, x0

and y0 belong to Xℓ. As Xℓ is an n-collapse of A, by

Property 11, Xℓ is an extension of A. Thus, there are

two paths πx = 〈x0, . . . , xk〉 and πy = 〈y0, . . . , ym〉
in Xℓ such that xk and ym belong to A. Since Xℓ ⊆ X
(see above), πx and πy are paths in X. Since X is a

cut, xk and ym belong to distinct components of A

(otherwise we would have X \ {x′} � X and X \ {x′}
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would be an extension of A, a contradiction with the

fact that X is a cut). Thus, x′ is multiconnected for Xℓ.

Hence, x ∈ S. �

5 Simplicial stacks

This section presents some basic definitions relative to

maps defined on a pseudomanifold. In particular, we

introduce the simplicial stacks as the maps whose level

sets are all simplicial complexes. This notion will be
used in the next section to easily extend the operation

of collapse from complexes to maps.

Here and subsequently kmin and kmax stand for two

elements of Z such that kmin < kmax. We set K = {k ∈
Z | kmin 6 k 6 kmax}.

Let F be any map from M into K. For any face x

of M, the value F (x) is called the altitude of x (for F ).

Let k ∈ K. The k-section of F , denoted by F [k], is the

set of faces of M whose altitude is greater than or equal
to k: F [k] = {x ∈ M | F (x) > k}.

Definition 20 A (simplicial) stack F (on M) is a map
from M into K such that, for any k ∈ K, the k-section

of F is a simplicial complex.

A set X being a complex whenever it is equal to its

closure (i.e., whenever we have X = close(X)), we

can see that a map F is a simplicial stack if any k-

section F [k] of F is equal to its closure (i.e., F [k] =
close(F [k])). By duality (see Property 3), we can also

see that F is a simplicial stack if and only if, for

any k ∈ K, the set of faces of M whose altitude is less

than k is a star. In other words, a map F is a simplicial
stack if, for any two faces x and y of M such that x ⊆ y,

we have F (x) > F (y). Fig. 15a depicts a stack F and

Figs. 15b, c and d depict in black the k-sections of F

for respectively k = 1, 2, 3. These k-sections are indeed

simplicial complexes.

Remark 21 Observe that we can obtain a stack H

from any map F by considering the simplicial closure

of F , i.e., H is the simplicial stack such that, for
any k ∈ K, the k-section of H is the simplicial closure

of the k-section of F . Note also that the simplicial

closure H of a map F can be easily obtained by

setting H(x) to the maximum altitude for F of the

simplices which include x (i.e. H(x) = max{F (y) | x ⊆
y and y ∈ M}), for any face x of M.

Important notation 22 In the sequel of this paper,
the symbol F denotes a simplicial stack on M.

We finish this section by presenting the notion

of a (regional) minimum of a stack, which plays an

important role for defining a watershed. By the very

definition of a stack, the set of faces whose altitude is

less than a given value k is a star. Thus, the minima of

a stack are also necessarily stars.

Let A ⊑ M and let k ∈ K. We say that A is

a minimum of F (at altitude k) if A is a connected
component of F [k + 1] and if A ∩ F [k] = ∅. In the

following, we denote by MF the union of all minima

of F .

In other words, a connected substar A of M is a
minimum of F at altitude k if the altitude of any

face in A is k and if the altitude of any face in the

boundary close(A)\A of A (i.e., any face of A included

in a face of A) is strictly greater than k.

Observe that, by definition, any minimum of F is a
star and therefore MF is also a star.

For instance, the star made of all faces that belong

to the minima of the stack F represented in Fig. 15a

are depicted in gray in Fig. 15e.

6 Collapses of simplicial stacks

We propose an operation of a collapse of a simplicial

stack based on the collapse operation in the sections of

the stack. In this framework, an ultimate collapse of a

stack can be seen as an analog of a homotopic grayscale
skeleton in digital topology [7,46].

Let y be any face of M, d − 1 be the dimension

of y and k = F (y). If y is a free face for F [k], we say

that y is a free face for F . If y is a free face for F ,

there exists a unique face x in F [k] such that (x, y) is
a free pair for F [k] and we say that the pair (x, y) is a

free pair or a free d-pair for F . Let (x, y) be a free pair

for F . Then, (x, y) is also a free pair for F [k]. Thus, x

is a face of F [k], and we have y ⊆ x. Therefore, we
have F (x) > k and F (x) ≤ F (y) (since F is a stack)

which imply that F (x) = F (y) = k.

In Fig. 15a, the 1-face y at altitude 1 is a free face

for the depicted map F . Indeed, y is a free face for F [1]

(Fig. 15b). Thus, the pair (x, y) in Fig. 15a is a free pair
for F .

Let S ⊆ M. The indicator function of S, denoted

by 1S , is the map from M into K such that 1S(x) = 1

for any x in S and such that 1S(x) = 0 for any x in
S. The lowering of F at S is the map F − 1S from M

into K. Thus, we have:

1. (F − 1S)(x) = F (x) − 1, for any x ∈ S; and

2. (F − 1S)(x) = F (x), for any x ∈ S.

Let (x, y) be a free pair for F . The map F − 1{x,y}
is called an elementary collapse of F or, more precisely,
an elementary d-collapse of F if (x, y) is a free d-

pair. Thus, the elementary collapse F − 1{x,y} of F

is obtained by subtracting 1 to the values of x and y.
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Fig. 15 (a) Representation of a simplicial stack F . The gray level of a face corresponds to its altitude which is also indicted
by the superimposed number (the faces with no values are supposed to be at altitude 0). (b,c,d) The k-section of F for
respectively k = 1, 2, 3. (e) The minima of F are represented in gray and the divide DF of F is represented in black.

Remark that the elementary collapse H = F − 1{x,y}
of F is a simplicial stack since we have F [k] = H [k] for

any k ∈ K \ {F (x)} and H [k] is an elementary collapse

of F [k], for k = F (x).

In other words, an elementary collapse of F is

a stack obtained from F by decreasing by one the

altitudes of the two faces of a free pair for F while

leaving unchanged the altitude of any other face.

For instance, the stack shown in Fig. 16a is an

elementary 2-collapse of F (Fig. 15a). More precisely,
to obtain this second stack, the values of x and y (see

Fig. 15a) have been lowered by one and the pair (x, y)

is a free 2-pair for F .

Let H be a simplicial stack on M. We say that H

is a collapse of F if there exists a collapse sequence

from F to H , i.e., a sequence of stacks 〈F0, . . . , Fℓ〉 such
that F0 = F , Fℓ = H and Fi is an elementary collapse
of Fi−1, i ∈ {1, . . . , ℓ}. If each Fi is an elementary d-

collapse of Fi−1, we also say that H is a d-collapse of F .

If H is a d-collapse of F and if there is no free d-pair
for H , H is said to be an ultimate d-collapse of F .

The stack H (Fig. 17a) depicts an ultimate 2-
collapse of the stack F (Fig. 15a).

Remark 23 Note that a stack H is a collapse of F
if and only if, for any k ∈ K, the k-section of H is

a collapse of the k-section of F . In this sense, we can

say that the operation of collapse in simplicial stacks

extends the one on simplicial complexes. In particular,
if F is the indicator map 1X of a complex X (i.e. a

simplicial stack such that the altitude of the faces of X

equals 1 and the altitude of the faces in X equals 0), it
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Fig. 16 A map (a) which is an elementary 2-collapse of the
map of Fig. 15a with its divide in black and its minima in
gray (b).

is equivalent to consider a collapse of F or to consider
the indicator map 1Y of a collapse Y of the complex X.

The divide (or support) of a stack H , denoted

by DH , is the set of all faces of M which do not belong

to any minimum ofH : DH = MH . Note that sinceMH

is a star, by Property 3, DH is a complex.

The divide of the stack of Fig. 15a is shown in black

in Fig. 15e.
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Fig. 17 (a) An ultimate 2-collapse H of the map F depicted
in Fig. 15a. (b) a watershed X of F which is equal to the set
of all multiconnected faces of M(H).

Let us now establish some interesting properties of

collapses of stacks. We will first see (Property 25) that

if a stack H is a collapse of F , then the divide of H is a
collapse (in the binary sense, see Section 3) of the divide

of F . Additionally, we will see that ifH does not contain

any free n-pair, then the divide of H does not contain

any free n-pair, the converse being also true. Through
these two properties, we can see that the collapses of

stacks lead to new strategies for obtaining collapses of

binary objects. Indeed, if X � M, one can proceed in

three steps for obtaining a collapse Y of X : i) compute

a stack F such that DF = X ; ii) compute a collapse H
of F ; and iii) set Y to the divide DH of H . As we

will see formally later on (Theorem 30), this strategy

is interesting since the obtained collapses are localized

on the “crests” of the map. In this perspective, it is for
instance interesting to consider at step ii) a stack H

which behaves like a distance function to the object X

(obtained e.g. by considering the simplicial closure of

a Euclidean distance maps on complexes [54]). Indeed,

in this case the obtained collapse is localized “as far as
possible” fromX that is, in other words, it is “centered”

in X .

Lemma 24 Let (x, y) be a free pair for F . Let H be the
elementary collapse of F such that H = [F − 1{x,y}].
Then, DH is an elementary collapse of DF that is either

equal to DF or to DF \ {x, y}.

Proof If x and y do not belong to MH , then it can be

easily seen that they do not belong to MF . Thus, we

have DH = DF , which establishes the result.

If x (resp. y) belongs to a minimum of H , it can

be easily seen, by definition of a minimum, that y

(resp. x) belongs to the same minimum ofH since y ⊆ x

and H(x) = H(y) = k − 1, with k = F (x). Let us then

suppose that x and y both belong to MH . Let M ′ be
the minimum of H that contains x and y. By definition

of a minimum and of H , H(M ′) = k − 1 and M ′ is a

connected component of H [k]. By definition of H , H [k]

is a collapse of F [k]. Thus, by Property 11, H [k] is
an extension of F [k]. Let M = M ′ \ {x, y}. Since M

is a subset of F [k] and since M ⊂ M ′, we deduce

that M is a connected component of F [k]. Since M ′

is a minimum of H , we also have M ′ ∩ H [k − 1] = ∅.
Again by definition of H , we have H [k − 1] = F [k − 1].
Thus, since M ⊆ M ′, we deduce that M∩F [k − 1] = ∅,
which (together with the fact that M is a connected

component of H [k]) implies that M is a minimum

of F . Since M ′ is a minimum of H , M ′ is a star.
Therefore, since y ∈ M ′, we deduce that star(y) ⊆ M ′.

Hence, [star(y)\{x, y}] ⊆ MF . Then, we deduce that x

is the only face of DF that contains y, which is sufficient

to prove that DH is an elementary collapse of DF and

that DH = DF \ {x, y}. �

The previous property can be verified on the

map F (Fig. 15a) and its elementary 2-collapse H

(Fig. 16a); the divides of F and H are drawn in black

in respectively Fig. 15e and Fig. 16b.

From Lemma 24, we deduce by induction the
following result which establishes that the collapses of

stacks allow for obtaining collapses of complexes.

Property 25 If H is a collapse of F , then DH is a

collapse of DF .

Since collapses and extensions are linked through

Property 11, the next corollary follows straightforwardly.

It states in particular that the number of minima of a
stack is the same as the number of minima of its col-

lapses.

Corollary 26 Let H be a collapse of F . Then MH is

an extension of MF .

Property 27 The simplicial stack F contains a free

n-pair if and only if DF contains a free n-pair.

In order to prove Property 27, we first need to define

descending paths.

Definition 28 Let π = 〈x0, . . . , xℓ〉 be a path in M.

We say that the path π is descending (for F ) if, for
any i ∈ {1, . . . , ℓ}, F (xi) 6 F (xi ∩ xi−1) 6 F (xi−1).

We say that the path π is an M-path for F , if π

is a simple path, if xℓ belongs to MF , and if none

of {xi | i < ℓ} belongs to MF .
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Observe that, sinceM is finite, from any n-face ofM,

there exists a simple path that is descending for F and

whose last element belongs to MF , or, in other words,

for any n-face of M, there exists an M-path for F that

is descending for F .

Proof (of Property 27)

1. Suppose that there exists a free n-pair (x, y) for F .

Let k = F (x) = F (y). Thus, the pair (x, y) is

a free n-pair for F [k] and we have dim(x) = n

and dim(y) = n−1. Since M is a n-pseudomanifold,
there exists a unique n-face z such that y ⊆ z

and z 6= x. Hence, since (x, y) is a free n-pair

for F [k], the face z is not in F [k]. Thus, we

have F (z) < k. Therefore, from the definition of a
minimum, it can be seen that x and y do not belong

to any minimum of F . Thus, the face x is in DF ,

and, therefore, we have dim(DF ) = n. Hence, by

Property 6, there exists a free n-pair for DF .

2. Suppose now that there exists a free n-pair (x, y)
for DF . By definition of a free n-pair, the dimension

of x is n. Since x does not belong to any minimum

of F , there exists a simple path π = 〈x0, . . . , xℓ〉
such that x0 = x, such that π is a descending path
for F , and such that xℓ belongs to a minimum

of F . Let i be the lowest index in {1, . . . , ℓ}
such that xi belongs to a minimum of F . By

definition of a descending path we have F (xi) 6

F (xi ∩ xi−1) 6 F (xi−1). Since, xi−1 does not
belong to a minimum and since DF is a complex,

we deduce that the (n − 1)-face z = xi−1 ∩ xi

belongs to DF . Thus, F (xi) < F (z). On the

other hand, since F is a stack and z ⊆ xi−1, we
must have F (z) > F (xi−1). Let k = F (z). From

the previous relation, we have F (z) = F (xi−1) = k.

Since M is a n-pseudomanifold and z is an (n − 1)

face, there are exactly two distinct n-faces ofM that

contain z. Hence, as xi and xi−1 are two distinct n-
faces containing z, from the underlined relations we

deduce that xi−1 is the only n-face of F [k] which

contains x. In other words, (xi−1, z) is a free n-pair

for F .

�

From the previous result, we derive Property 29

which is an analog of Property 6 for the case of stacks.
A consequence of this property is that the divide of

any ultimate collapse of F is thin in the sense that its

dimension is at most n− 1.

Property 29 If dim(DF ) = n, then there exists a free

n-pair for F .

Proof If dim(DF ) = n, there exists, by Property 6, a

free n-pair for DF . Hence, by Property 27, there is also

a free n-pair for F . ⊓⊔

Intuitively, one could expect that if a collapse Y

of X = DF is localized on the “crests” of F and

if a face x does not belong to Y then there must

exist a descending path π that starts from x and ends

in X = MF without crossing Y . The following theorem
asserts that the present framework leads to collapses

that satisfy this intuitive property. More precisely the

next result states that if H is an n-collapse of F , then

the divide DH is localized on crests.
Before stating Theorem 30, let us recall that, for

any stack H , we have MH = DH .

Theorem 30 Let H be an n-collapse of F . Let x0 be

an n-face of M.

1. If x0 ∈ MH , then there exists a path π =

〈x0, . . . , xℓ〉 such that:

– π is a path in MH ; and

– π is a descending path for F ; and

– xℓ belongs to MF .
2. If x0 ∈ DH , then any M-path π = 〈x0, . . . , xℓ〉

for H that is descending for H is also descending

for F .

The remaining part of the section is devoted to the
proof of Theorem 30.

Lemma 31 Let H be an elementary n-collapse of F .

Let π = 〈x0, . . . , xℓ〉 be an M-path for H which is

descending for H. Then π is a descending path for F .

Proof By definition of an elementary n-collapse, there

exists a free n-pair (x, y) for F such that H = [F −1{x,y}]. In order to prove Lemma 31 we are going to

distinguish three cases.

Case 1. Suppose that for any i in {0, . . . , ℓ}, xi 6= x.
Then, for any i ∈ {0, . . . , ℓ}, F (xi) = H(xi). Since M

is an n-pseudomanifold, for any j ∈ {1, . . . , ℓ}, xj−1

and xj are the only two faces of M which contain zj =

xj−1 ∩ xj . Since x 6= xj−1, x 6= xj and y ⊆ x, we
deduce that zj 6= y. Thus, by hypothesis, we also

have F (zj) = H(zj) for any j ∈ {1, . . . , ℓ}, which

together with the underlined relation proves that π is

descending for F .

Case 2. Suppose now that there exists i ∈
{0, . . . , ℓ − 1} such that xi = x. We denote by w

the (n − 1)-face that equals xi ∩ xi+1. As w ⊆ xi and

as F is a stack, we deduce that F (w) > F (xi). Since π

is a descending path forH , we also haveH(xi) > H(w).
Thus, as H(xi) = F (xi) − 1, we have H(w) < F (w).

Hence, we deduce that H(w) 6= F (w). Since w is an

(n − 1)-face, this implies w = y. Hence, F (w) = F (xi)
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and H(w) = k − 1. As w ⊆ xi+1 and as F is a stack,

we also deduce that F (xi+1) 6 F (w). If i = 0, the

underlined relations and the fact that F (z) = H(z)

for any z ∈ M \ {x, y} imply that π is descending for F

which completes the proof of Lemma 31 in case 2. Let us
now assume that i > 0 and denote by w′ the (n−1)-face

that equals xi−1∩xi. As w
′ ⊆ xi and as F is a stack, we

have F (w′) > F (xi). Since w′ 6= y and since xi−1 6= x,

we have F (w′) = H(w′) and F (xi−1) = H(xi−1).
Since π is descending for H , H(w′) 6 H(xi−1).

Thus, F (w′) 6 F (xi−1). From the underlined relations

and from the fact that F (z) = H(z) for any z ∈
M\{x, y}, we deduce that π is a descending path for F .

Case 3. Suppose finally that xℓ = x. If ℓ = 0,
the proof is trivial. Let us now assume that ℓ > 0 and

denote by w the (n−1)-face which is equal to xℓ−1∩xℓ.

Since π is an M-path for H , xℓ−1 ∈ DH . Since DH

is a complex (by definition of a stack), w ⊆ xℓ−1

implies w ∈ DH . Since π is an M-path for H , xℓ ∈
MH . Hence, by definition of a minimum, we must

have H(w) > H(xℓ). Thus, since H(x) = H(y) by

construction of H , we deduce that w 6= y, Thus, we

have F (w) = H(w) and therefore, we also have F (w) >
F (xℓ). We can also deduce easily that, for any i in

{0, . . . , ℓ − 1}, F (xi) = H(xi) and F (xi+1 ∩ xi) =

H(xi+1∩xi). Therefore, the path π is descending for F .

�

Lemma 32 Let (x, y) be a free n-pair for F . Let H be

the elementary collapse of F such that H = [F−1{x,y}].
Let π = 〈x0, . . . , xℓ〉 be an M-path for H that is

descending for H.

1. If xℓ 6= x, then π is an M-path for F that is
descending for F .

2. If xℓ = x, then there exists an n-face z such that

π′ = 〈x0, . . . , xℓ, z〉 is an M-path for F that is

descending for F and 〈xℓ, z〉 is a path in MH .

Proof 1. Suppose that xℓ 6= x. By Lemma 24, we have

either DH = DF or DH = DF \ {x, y}, and, thus,

we have either MF = MH or MF = MH \ {x, y}.
Since π is an M-path for H , the face xℓ belongs
to MH and the faces x0, . . . , xℓ−1 belong to DH . Thus,

the faces x0, . . . , xℓ−1 also belong to DF . Furthermore,

as xℓ 6= x and as xℓ 6= y (since dim(xℓ) = n and

dim(y) = n − 1), the face xℓ is in MF . Therefore, the

path π is an M-path for F . By Lemma 31, the path π
is descending for F .

2. Let us now suppose that xℓ = x. Let k = F (x) =

F (y). Then, H(x) = H(y) = k − 1. By hypothesis,

(x, y) is a free n-pair for F [k]. Thus, x is the only n-
face that contains y and belongs to F [k]. Therefore,

since M is an n-pseudomanifold, there exists a unique

n-face z which belongs to F [k] and contains y. We

then have the relations F (x) > F (y) > F (z). Note

also that y = x ∩ z. By Lemma 31, the path π is

descending for F . Thus, we deduce that the sequence

π′ = 〈x0, . . . , xℓ, z〉 is a path that is descending for F .

We will establish that π′ is an M-path for F .
Since F (z) < F (y) and since z contains y, the (n− 1)-

face y does not belong to MF . Hence, as F (x) > F (y)

and as x contains y, the n-face x does not belong

to MF either. But, since π is an M-path for H , the
face x = xℓ belongs to MH . Hence, by Lemma 24,

we deduce that DH is an elementary collapse of DF

that is equal to DF \ {x, y}. Thus, the pair (x, y)

is a free n-pair for DF . Hence, the simplex x is

the only n-face of DF that contains y. Thus, the
n-face z belongs to DF = MF . As π is an M-

path for H , the faces x0, . . . , xℓ−1 belong to DH and,

as DH = DF \ {x, y}, the faces x0, . . . , xℓ−1 also belong

to DF . Hence, the sequence π′ is an M-path for F .
Since, DH = DF \ {x, y}, we have MH = MF ∪
{x, y}. Thus, x and y belong to MH . Furthermore,

since z belongs MF , z also belongs to MH . Thus,

the sequence 〈x, z〉 is a path in MH . Hence, the three

underlined relations complete the proof of Lemma 32.
�

Proof (of Theorem 30, by induction) IfH = F , then the

result is trivial. Let us now assume that H 6= F . Thus,

there exists a collapse sequence 〈F = F0, . . . , Fℓ = H〉
from F to H . As induction hypothesis, we assume that

Theorem 30 holds true for Fi = I, with i ∈ {0, . . . , ℓ −
1}. In order to complete the proof by induction, it is

sufficient to prove, under this induction hypothesis, that
Theorem 30 also holds true for G = Fi+1.

Since G is an elementary collapse of I, there exists

a free n-pair (x, y) for I such that G = [I − 1{x,y}].
Let x0 be any n-face in M. We distinguish three cases.

1. We first consider the case where x0 belongs to MG

and x0 6= x. Then, the trivial path 〈x0〉 is an M-

path for G. By Lemma 32.1, the path 〈x0〉 is also

an M-path for I that is descending of I. Thus x0

belongs to MI . Therefore, by induction hypothesis,
there exists a path π in MI that is descending

for F and that ends in MF . By Corollary 26, we

have MI ⊑ MG. Thus, we deduce that π is also a

path in MG.

2. We now consider the case where x0 belongs to MG

and x0 = x. Then, the trivial path 〈x0〉 is an M-

path forG that is descending for G. By Lemma 32.2,

there exists a n-face x1 such that 〈x0, x1〉 is an

M-path for I that is descending for I and such
that 〈x0, x1〉 is a path in MG. By induction

hypothesis, the path 〈x0, x1〉 is descending for F

and there exists a path 〈x1, . . . , xk〉 in MI that
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is descending for F and that ends in MF . Thus,

as MI ⊑ MG by Corollary 26, we deduce

that 〈x0, x1, . . . , xk〉 is a path in MG that is

descending for F and that ends in MF .

3. We finally consider the case where x0 belongs
to DG. Let π = 〈x0, . . . , xk〉 be any M-path

for G that is descending for G. If xk 6= x, then,

from Lemma 32.1, the path π is a descending M-

path for I, and therefore, by induction hypothesis,
the path π is also descending for F . If xk =

x, from Lemma 32.2, there exists a n-face xk+1

such that π′ = 〈x0, . . . , xk, xk+1〉 is an M-path

for I descending for I. By induction hypothesis, the

path π′ is also descending for F . Thus, the path π
is also descending for F , which completes the proof

of Theorem 30. �

7 Watersheds

Based on the drop of water principle [24,25], we

propose in this section a definition of a watershed in a
pseudomanifold. Then, we present the two main results

of this paper (namely Theorems 34 and 36): the first

one establishes a strong link between the watersheds

of F and the homotopy type (i.e., the topology) of

the divide DF of F , and the second one establishes the
equivalence between the watersheds of F and the sets

of multiconnected faces obtained from the ultimate n-

collapses of F .

Intuitively, the regions, also called catchment basins,

delimited by a watershed constitute an extension of the

minima and they are separated by a cut from which a

drop of water can flow down towards distinct minima.

Definition 33 Let X � M be a cut for MF . We say

that X is a watershed of F if, for any x ∈ X, there

exist two paths π1 = 〈x0, . . . , xℓ〉 and π2 = 〈y0, . . . , ym〉
in X such that:

– x ⊆ x0 and x ⊆ y0; and

– π1 and π2 are two descending paths for F ; and
– xℓ and ym are simplices of two distinct minima of F .

For instance, the set of black faces in Fig. 17b is a
watershed of the map in Fig. 15a.

The main result of this section (namely Theorem 36)

establishes the equivalence between the watersheds of F
and the cuts by collapse (see Definition 35) of F .

The definition of a cut by collapse is constructive

and, following this constructive definition, one can

always obtain a cut by collapse from a stack. Thus,
Theorem 36 also establishes that, whatever the stack F ,

there always exits a watershed of F . However, as in

the case of weighted graphs, there may exist several

distinct watersheds of the same stack F . This is in

particular the case when the map F has two minima

which are separated by a plateau. The position of the

watershed contours on the plateaus is the subject of

many discussions which are beyond the scope of this
paper (see e.g., [43,50]).

Any watershed of F is by definition a complex

and a cut for MF . Thus, the following result can

be straightforwardly deduced from Property 13 and

Theorem 15.

Theorem 34 The two following statements hold true.

1. Any watershed of F is either empty or is a pure (n−
1)-complex.

2. Any watershed of F is a cut by collapse for MF .

The first part of the previous theorem establishes

that the watershed of any stack is thin in the sense
that its dimension is always lower than the one of the

space. The second part of the theorem asserts that any

watershed of F is made of the closed contours (in the

sense of Definition 14) of an ultimate collapse of X =
DF , establishing a direct link between the watersheds

of F and the homotopy type of X . We remind that

these two results hold true in any n-pseudomanifold,

whatever the dimension n ∈ N.

As far as we know, in the literature, there is only one

context where some watersheds satisfy simultaneously
two statements similar to those of Theorem 34. More

precisely, given a continuous open subset X of Rn, there

is a link between the watershed W (X) of the Euclidean

distance transform DX of X and the homotopy type

of X . Furthermore, the watershed W (X) satisfies a
thinness property. In fact, the three following properties

hold true in this continuous setting.

1. The watershed of DX is made of the closed contours

of the medial axis MA(X) of X (see [10,11] for the
definition of medial axis, and see in particular the

work of L. Najman and M. Schmitt in [43] for a

proof of this statement).

2. The setX and its medial axisMA(X) have the same

homotopy type (the first study of this question was
provided by G. Matheron in [39,40], and a proof of

the statement was given by A. Rivière in [47,48] and

by A. Lieutier in [36]).

3. The interior of the skeleton MA(X) (and hence
also the interior of the watershed W (X)) is empty

[39,40] and furthermore MA(X) and W (X) are

Lebesgue negligible [47,48].

Furthermore, a result similar to Theorem 34 has not
been investigated in a discrete setting. In particular,

in digital topology, there is no such a straightforward

relation between homotopic skeletons and a notion of
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watershed. Moreover, in general, a watershed can be

arbitrarily thick [22,26].

In the remaining part of this section, a second strong

link between watershed and homotopy is established by

Theorem 36. This result states i) that any ultimate n-

collapse of the stack F directly leads to a watershed
of F , and ii) that any watershed of F can be

directly obtained from an ultimate n-collapse of F . In

fact, ultimate n-collapses can be computed in linear

time (using the same thinning strategies as those
presented in [25]). Therefore, Theorem 36 furthermore

indicates an efficient algorithmic strategy for computing

watersheds.

On one hand, the divide of an ultimate n-collapseH

of F is located on the “crests” of F in the sense

of Theorem 30. On the other hand, we can say
intuitively that a watershed of F corresponds to the

“closed contours” located on the “crests” of F . Hence,

a desirable property is that the watersheds of F

correspond to the “closed contours” of the divide of

the ultimate n-collapses of F . The following theorem
asserts that this intuitive property is indeed true in the

framework presented in this paper.

Definition 35 (Cut by collapse for a stack) Let X

� M. We say that X is a cut by collapse for F if there
exists an ultimate n-collapse H of F such that X is the

simplicial closure of the set of all (n− 1)-faces that are

multiconnected for DH .

The next theorem, which is one of our main results, gen-

eralizes Theorem 15 to the case of stacks. It establishes

a deep link between watersheds and homotopy.

Theorem 36 Let X � M. The set X is a watershed
of F if and only if X is a cut by collapse for F .

The remaining part of this section is devoted to the
proof of Theorem 36. To this end, we first prove the

backward implication of the theorem (Property 39) and

then the forward implication (Property 43).

Lemma 37 Let H be an elementary n-collapse of F
and let X � M. If X is a watershed of H, then X is a

watershed of F .

Proof By Corollary 26, MH is an extension of MF .

Since X is a watershed of H , the complex X is a

cut for MH , and then the star X is an extension
of MH . Thus, by Remark 9, the star X is an extension

of MF . Let x be any face of X . By definition of a

watershed, there exist two paths π1 = 〈x0, . . . , xℓ〉
and π2 = 〈y0, . . . , ym〉 in X such that:

– x ⊆ x0 and x ⊆ y0; and

– π1 and π2 are two descending paths for H ; and

– xℓ and ym are simplices of two distinct minima ofH .

Thus, there exist i and j in {0, . . . , ℓ} and {0, . . . ,m},
respectively, such that 〈x0, . . . , xi〉 and 〈y0, . . . , yj〉 are
two M-paths for H that are descending for H .

Let us consider the path 〈x0, . . . , xi〉 (resp. 〈y0, . . . , yj〉).
From Lemma 32,

1. either 〈x0, . . . , xi〉 (resp. 〈y0, . . . , yj〉) is an M-path

for F that is descending for F , and in this case we

set π′
1 = 〈x0, . . . , xi〉 (resp. π′

2 = 〈y0, . . . , yj〉);
2. or there exists x′ (resp. y′) such that π′

1 =

〈x0, . . . , xi, x
′〉 (resp. π′

2 = 〈y0, . . . , yj , y
′〉) is an M-

path for F , that is descending for F , with 〈xi, x
′〉

(resp. 〈yj , y′〉) in MH .

In the second case, as 〈xi, x
′〉 (resp. 〈yj , y′〉) is, by

Lemma 32, a path in MH and as MH ⊆ X , we deduce
that π′

1 (resp. π′
2) is a path in X. In any of cases 1

and 2, π′
1 (resp. π′

2) is a path in X that is descending

for F . Furthermore, since X is an extension of MF

and since xℓ and ym belong to two distinct connected

components of X , we deduce that the last faces of the
paths π′

1 and π′
2 belong to two distinct minima of F .

Thus, X is a watershed of F .�

Therefore, the following lemma is established by induc-

tion.

Lemma 38 Let H be an n-collapse of F , then any

watershed of H is a watershed of F .

Property 39 Any cut by collapse of F is a watershed
of F .

Proof Let X be a cut by collapse of F . Then, there

exists an n-collapse H of F such that X is the
simplicial closure of the set of all (n− 1)-faces that are

multiconnected for DH . Since H does not contain any

free n-pair, by Property 27, DH does not contain any

free n-pair and thus, dim(DH) = n− 1 by Property 6.
Thus, X is the only cut by collapse of MH . Therefore,

by Theorem 15, X is the only cut for MH . Let x

be any face of X , there exists an (n − 1)-face of X

that contains x and that is multiconnected for DH .

Thus, there exist two n-faces x0 and y0 that include x
and that belong to two distinct connected components

of DH = MH . Hence, we have x ⊆ x0, x ⊆ yo, and 〈x0〉
and 〈y0〉 are two descending paths for H that ends in

two distinct minima of H . Thus, the complex X is
a watershed of H . Then, by Lemma 38, X is also a

watershed of F .�

Lemma 40 Let X be a watershed of F . Then, for

any n-face x of M, there exists a path in X from x

to an n-face of MF , that is a descending path for F .
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Proof Let x0 be any n-face ofM. SinceM is finite, there

exists a path π = 〈x0, . . . , xℓ〉 in M that is descending

for F and such that xℓ ∈ MF . If π is a path in X,

the proof is done. Suppose now that π is not a path

in X . As X is a watershed of F , X is a cut for MF . We
suppose that X 6= ∅, the property obviously holds true

otherwise. Thus Property 13 implies that the dimension

of X equals n− 1. Then, it follows that there exists an

index i ∈ {1, . . . , ℓ} such that xi−1∩xi ∈ X . Let i be the
lowest such index and let z = xi−1 ∩ xi. By definition

of a path, z is an (n − 1)-face. Therefore, since M is

a n-pseudomanifold, xi−1 and xi are the only two n-

faces that contain z. Thus, since X is a watershed of F ,

there exists a path 〈y0, . . . , ym〉 in X that is descending
for F and such that ym ∈ MF and y0 = xi−1. Then,

the path 〈x0 . . . , xi−1, y1, . . . , ym〉 is a path in X that is

descending for F .�

Lemma 41 Let X be a watershed of F . If the dimen-
sion of DF equals n, then there exists a free n-pair (x, y)

for F such that x and y are in X.

Proof Since the dimension of DF equals n, there exists

an n-face x0 ∈ DF . Since X is a watershed of F , by
Lemma 40, there exists a path π = 〈x0, . . . , xℓ〉 in X

that is descending for F and such that xℓ ∈ MF .

Let i be the lowest index in {0, . . . , ℓ} such that xi ∈
MF . Since x0 ∈ DF , i > 0. Let y be the (n − 1)-
face defined by y = xi−1 ∩ xi and let k = F (y).

Thus y ∈ F [k]. Since DF is a complex, xi−1 ∈ DF ,

and y ⊆ xi−1, we deduce that F (y) > F (xi−1)

(by definition of a stack) and thus that y ∈ DF .

Hence, as xi ∈ MF , F (y) > F (xi), that is, in
terms of sections, xi /∈ F [k]. On the other hand,

since π is descending for F , we have F (xi−1) >

F (y), that is, in terms of sections, xi−1 ∈ F [k]. As M

is an n-pseudomanifold and as the dimension of y
is n − 1, xi and xi−1 are the only two n-faces of M

that contain y. Then, from the underlined relations,

we deduce that (xi−1, y) is a free n-pair for F .

Furthermore, as π is a path in X, xi−1 and y are in X.

�

Lemma 42 Let X be a watershed of F . Let (x, y)

be a free n-pair for F such that x and y are in X,

and let H be the elementary n-collapse of F defined

by H = [F − 1{x,y}]. Then, X is a watershed of H.

Proof Since H is an elementary n-collapse of F , by

Corollary 26, the star MH is an extension of MF and,

thus, that MF ⊑ MH . Furthermore, by Lemma 24,

we deduce that MH ⊑ MF ∪ {x, y}. Since X is a
watershed of F , the star X is an extension of MF and

thus we have MF ⊑ X. As x and y both belong to

X, we also have MF ∪ {x, y} ⊑ X, and therefore we

deduce that MH ⊑ X. From the underlined relations

and Property 10, we deduce that X is an extension

of MH . Hence, X is a cut for MH .

Let x′ be any element in X . As X is a watershed

of F , there exist two paths π1 = 〈x0, . . . , xℓ〉 and π2 =
〈y0, . . . , ym〉 in X such that:

– x′ ⊆ x0 and x′ ⊆ y0; and
– π1 and π2 are two descending paths for F ; and

– xℓ and ym belong to two distinct minima of F .

Since MH is an extension of MF , in order to
complete the proof of Lemma 42, it is sufficient to show

that there exist two paths π′
1 and π′

2 such that:

– the first face of π′
1 (resp. π′

2) includes x
′

– π1 and π2 are descending for H ;

– the last face of π′
1 (resp. of π′

2) belong to the same

minimum of H as xℓ (resp. ym).

If π1 and π2 satisfy these three properties, then the

proof is done.

Let us now assume that π1 does not satisfy

these three properties. Exactly the same arguments
hold true if one assumes that π2 does not satisfy

these properties. As MH is an extension of MF ,

it can be seen that necessarily π1 is not descending

for H . Thus, there exists i ∈ {1, . . . , ℓ} such that

the path 〈x0, . . . , xi−1〉 is descending for H and the
path 〈x0, . . . , xi〉 is not. Thus, the inequation H(xi) 6

H(xi ∩ xi−1) 6 H(xi−1) is false. Since xi−1 ∩ xi ⊆ xi

and since H is a stack we have H(xi) 6 H(xi ∩ xi−1).

Thus, we have H(xi ∩ xi−1) > H(xi−1). Since π1 is
descending for F , F (xi−1 ∩ xi) 6 F (xi−1). Hence, by

definition of H , we deduce that H(xi−1) < F (xi−1).

Thus, we have xi−1 = x. As (x, y) is a free n-

pair for F , y is an (n − 1)-face included in x.

Since M is an n-pseudomanifold, there exist a unique n-
face z0 such that z0 ∩ xi−1 = y. Since H is a

stack, H(z0) 6 H(y). As z0 6= x and z0 6= y, we

have H(z0) = F (z0) by definition of H . Thus, we

have F (z0) 6 H(y). Furthermore, as H(y) = F (y)− 1,
we deduce that F (y) > F (z0). We also have F (x) >

F (z0) since F (x) = F (y). By Lemma 40, there exists

a path π′ = 〈z0, . . . , zk〉 in X descending for F and

such that zk ∈ MF . Thus, since F (z0) < F (x), for

any j ∈ {1, . . . , k}, we have:

– F (zj) < F (x), thus zj 6= x, hence H(zj) = F (zj);

and
– F (zj−1 ∩ zj) < F (y), thus zj−1 ∩ zj 6= y,

hence H(zj−1 ∩ zj) = F (zj−1 ∩ zj).

We can deduce from these two properties that π′ is
a path in X that is descending for H . By definition of

a collapse H(x) = H(y) or equivalently H(xi−1) =

H(xi−1 ∩ z0). From the underlined relations, it can be
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seen that:

π′
1 = 〈x0, . . . , xi−1, z0, . . . , zk〉 is descending for H .

As x /∈ X , we also infer that π′
1 is a path in X.

Furthermore, since X is an extension of MF , the

face zk belong to the same minimum of F as xℓ, which
completes the proof. �

If X is a watershed of F , Lemmas 41 and 42 prove

that we can obtain by induction a collapse H of F
such that X is a watershed of H and such that the

dimension of DH is less than n. By the contraposition

of Property 6, the complexDH does not contain any free

n-pair. Hence, according to Definition 14, there exists

a unique cut by collapse Y for MH . By Theorem 15, Y
is also the unique cut for MH . Since X is also a cut

for MH , we deduce that X = Y . Thus, the following

holds true.

Property 43 Let X be a watershed of F , then X is a

cut by collapse of F .

8 Conclusion

The main notions presented in this article as well as the

links between them, which constitute our main results,

are synthetically presented in the diagram of Fig. 18.

The first sections (Sections 2, 3, and 4) of this

paper study some subsets of a pseudomanifold of
arbitrary dimension. After reminding the definitions of

a complex and of a homotopic transform by collapse,

we introduce the notions of an extension, a cut, and

a cut by collapse particularly useful in the context of
(image) segmentation. Then, a property of thinness is

established for collapses and cuts (Properties 6 and 13

respectively) and the equivalence between the cuts and

the cuts by collapse is proved (Theorem 15), leading to

a simple and efficient algorithm to compute cuts.

The second part (Sections 5, 6, and 7) of this

paper deals with maps defined on pseudomanifolds. We

introduce the simplicial stacks as the maps whose level

sets are simplicial complexes and we propose definitions
of watersheds and of homotopic transforms by collapse

for these maps. Based on the results of the first sections,

we deduce an important property (Theorem 34) that

links a watershed of a stack to the homotopy type of

its support. This property is a generalization of a result
known in a continuous setting for the particular case of

distance functions. Then, the main result (Theorem 36)

of this paper establishes a deep link between the

watersheds and the collapses of a stack: any watershed
of any stack can be straightforwardly obtained from

an ultimate collapse of this stack, and conversely any

ultimate collapse of the initial stack straightforwardly

induces a watershed. This result, as well as Theorem 15

for the binary case, leads to efficient algorithms for

computing watersheds in the framework of simplicial

complexes. Additionally, we show that the collapses of

maps can be used for obtaining collapses of complexes
(Property 25) that satisfy an interesting properties of

descending paths (Theorem 30).

The proposed framework can be applied for seg-

menting the triangulated surface of 3D objects (see,
e.g., [45] and Fig. 6). It can also be easily transposed

to cubical complexes which allows for handling digital

images [6] (see an illustration to image segmentation

in Fig. 7). Future work include the study of topologi-

cal transformations for obtaining objects between the
watersheds and the ultimate collapses of a map. These

objects may be interesting for the segmentation tasks

where one is interested not only by closed contours but

also by pieces of curves not necessarily closed. Future
work also includes the study and the proof of a prop-

erty linking watersheds and collapses to the notion of

minimum spanning forest known in combinatorial opti-

mization.

A Local cycles (proof of Lemma 5)

This appendix section is devoted to a property of pseudo-
manifolds that allows Lemma 5 to be established. Let us
first illustrate this property on an example. In Fig. 11, the
set {x0, . . . , x7} is a cycle. This cycle is said “local to the point
x” in the sense that any of its elements belongs to star(x).
We prove in this appendix section that there exists a cycle
local to each (n− 2)-face, in any n-pseudomanifold. More re-
markably, Theorem 44 states, for any (n−2)-face x of any n-
pseudomanifold, that the set of n-faces of any connected com-
ponent of star(x) is a cycle. From this result, the proof of
Lemma 5 will be easily derived.

Let X be a nonempty set of n-faces of M. We say that X is
a cycle (for M), if there exists a simple path π = 〈x0, . . . , xℓ〉
in M such that X = {x0, . . . , xℓ} and such that x0 ∩ xℓ is
a (n− 1)-face of M.

Theorem 44 Let x be an (n− 2)-face of M. The set of n-faces
of any component of star(x) is a cycle of M.

In order to prove Theorem 44, we first state Lemma 45
and Corollary 46.

By its very definition, any k-face (with k ∈ {0, . . . , n})
contains k + 1 elements. Using this fact the following result
can be proved easily.

Lemma 45 Let x be an (n − 2)-face of M, and let x0 be an
n-face in star(x). Then, there exist exactly two distinct (n− 1)-
faces in star(x) that are included in x0.

Corollary 46 Let x be an (n−2)-face of M, and let x1 be an n-
face in star(x). Then, there exist exactly two distinct n-faces x0

and x2 in star(x) whose intersections with x1 are (n− 1)-faces.

Proof (of Theorem 44) Since any component of star(x) is a
star, and since any nonempty star contains an n-face of M

(Remark 7), to study all components of star(x), it is sufficient
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Composition of a homotopic transform and a
connected transform (known as a topological
watershed, an ultrametric watershed or an
ultrametric opening in other frameworks).

Homotopic trans-
form.

Fig. 18 A diagram summarizing the main results established in this paper.

to consider, for any n-face x0 in star(x), the component
of star(x) that contains x0. Let x0 be any n-face in star(x),
and let X be the set of all n-faces of the component of star(x)
that contains x0.

(1) Let us first prove that X includes a cycle. As a
consequence of Corollary 46, we may always find x1 ∈ X
such that 〈x0, x1〉 is a simple path in star(x). Using
again Corollary 46, we can construct, by induction, a
simple path π = 〈x0, . . . , xℓ〉 in star(x) such that the
only two n-faces in star(x) whose intersections with xℓ

are (n − 1)-faces of M both belong to {x0, . . . xℓ}. By
construction, one of these two n-faces is xℓ−1. Let us
denote the other one by z. Necessarily z = xi, for some i ∈
{0, . . . , ℓ − 2}. If i > 0, then xi−1, xi+1 and xℓ are three
distinct faces in star(x) whose intersections with xi are
(n−1)-faces of M, which constitutes a contradiction with
Corollary 46. Thus, we necessarily have z = x0. Hence,
the set {x0, . . . , xℓ} ⊆ X is a cycle.

(2) Let us now prove, by contradiction, that X = {x0, . . . , xℓ},
hence, by (1), that X is a cycle. Suppose that there
exists an element z in X such that z /∈ {x0, . . . , xℓ}.
By definition of X, there exists, in star(x), a simple
path π′ = 〈y0, . . . ym〉 from x0 = y0 to z = ym. Let k ∈
{1, . . . ,m} be the lowest index such that yk /∈ {x0, . . . , xℓ}.
Hence, yk−1 ∈ {x0, . . . , xℓ}. By Corollary 46, there
exist exactly two n-faces in star(x), whose intersections
with yk−1 are (n − 1)-faces of M. By construction of π,
these two n-faces belong to {x0, . . . , xℓ}. Hence, we
have yk ∈ {x0, . . . , xℓ}, a contradiction. Thus, since by
(1), we have {x0, . . . , xℓ} ⊆ X, we deduce that X =
{x0, . . . , xℓ}. �

Theorem 44 can be easily verified on Fig. 11. It can also
be verified on the 2-pseudomanifold shown in Fig. 10b. In
particular, let x denote the 0-face represented by a light gray
dot. It can be seen that star(x) includes two components: one
is made of the triangles and edges at the left of x, and the
other is made of the triangles and edges at the right of x.
It can be easily seen that the sets of triangles associated
to this two components are cycles for the considered 2-
pseudomanifold.

Remark also that, if M is a not a pseudomanifold,
then Theorem 44 is, in general, not true. For instance,
let us consider the complex of Fig. 9c, which is not a
pseudomanifold, and let x be any of the two points that

belong to the edge depicted in light gray (i.e., the pinching).
The set star(x) itself is the only component of star(x).
However, it can be verified that the set of all triangles
in star(x) is not a cycle.

Proof (of Lemma 5) Clearly, the two n-faces x0 and x1 belong
to the same component X of star(x). The set Xn of all n-
faces of X is, by Theorem 44, a cycle. Thus, as x0 and x1

belong to X, it can be seen that there exists, in star(x),
two distinct simple paths π = 〈y0 = x0, . . . , yℓ = x1〉
and π′ = 〈z0 = x0, . . . , zm = x1〉 from x0 to x1 such
that {y1, . . . , xℓ}∩{z1, . . . , zm−1} = ∅. At least one of π and π′

is a path in star(X) \ {y}. Therefore, x0 and x1 are linked
for star(x) \ {y}. �
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Ph.D. thesis, Université de Paris-sud, centre d’Orsay
(1987)

48. Rivière, A.: Nervure d’un Ouvert d’un Espace Euclidien.
J. Sci. Univ. Tehran (Sec. A: Math) 1, 1–24 (1996)

49. Robins, V., Wood, P.J., Sheppard, A.P.: Theory and
algorithms for constructing discrete Morse complexes
from grayscale digital images. IEEE Transactions on
Pattern Analysis and Machine Intelligence 33(8), 1646–
1658 (2011)

50. Roerdink, J.B.T.M., Meijster, A.: The watershed trans-
form: Definitions, algorithms and parallelization strate-
gies. Fundamenta Informaticae 41(1-2), 187–228 (2001)

51. Ronse, C.: A topological characterization of thinning.
Theoretical Computer Science 43(0), 31 – 41 (1986)

52. Ronse, C.: Partial partitions, partial connections and
connective segmentation. Journal of Mathematical
Imaging and Vision 32(2), 97–125 (2008)

53. de Saint-Venant, M.: Surfaces à plus grande pente
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