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Abstract Summary

This thesis is focused on dynamic user equilibrium models and their applica-

tions to traffic assignment. It aims at providing a mathematically rigorous

and general formulation for the dynamic user equilibrium. Particular atten-

tion is paid to the representation of transport demand and more specifically

to trip scheduling and users with heterogeneous preferences. This is achieved

by expressing the dynamic user equilibrium as a Nash game with a contin-

uum of players. This allows for a precise, concise and microeconomically

consistent description.

This thesis also deals with computational techniques. We solve analyti-

cally equilibrium on small networks to get a general intuition of the complex

linkage between the demand and supply of transport in dynamic frameworks.

The intuition acquired from the resolution is used to elaborate efficient nu-

merical solving methods that can be applied to large size, real life, transport

networks.

Along the thesis several economic applications are proposed. All of them

are dealing with the assessment of congestion pricing policies where are likely

to reschedule their trips. In particular, a pricing scheme designed to ease

congestion during holiday departure periods is tested. In this scheme a toll

varying within the day and from day to day is set on the french motorway

network. This form to toll is especially appealing as it enables the operator

to influence the departure day as well as the departure time. Indeed it is

shown that even moderate variations of the toll with time might have strong

impacts on an highly congested interurban network.





Résumé Court

Cette thèse porte sur les modèles d’équilibres dynamiques sur un réseau de

transport et leurs applications à l’affectation de trafic. Elle tente d’en pro-

pose une formulation à la fois générale et mathématiquement rigoureuse.

Une attention particulière est accordée à la représentation de la demande

de transport. Plus spécifiquement, la modélisation de l’hétérogénéité dans

les préférences des usagers d’un réseau de transport, ainsi que des stratégies

de choix d’horaire dans les déplacements, occupe une place importante dans

notre approche. Une caractéristique de ce travail est son fort recours au

formalisme mathématique; cela nous permet d’obtenir une formulation con-

cise et micro-économiquement cohérente des réseaux de transport et de la

demande de transport dans un contexte dynamique.

Cette thèse traite aussi de méthodes de résolution en lien avec les modèles

d’équilibres dynamiques. Nous établissons analytiquement des équilibres sur

des réseaux de petites tailles afin d’améliorer la connaissance qualitative de

l’interaction entre offre et demande dans ce contexte. L’intuition retirée de

ces exercices nous permet de concevoir des méthodes numériques de calculs

qui peuvent être appliquées à des réseaux de transport de grande taille.

Tout au long de la thèse plusieurs applications économiques de ces travaux

sont explorées. Toutes traitent des politiques de tarification de la congestion

et de leurs évaluation, notamment lorsque les automobilistes sont suscepti-

bles d’ajuster leurs horaires de départ. En particulier une politique tarifaire

conçue pour limiter la congestion lors des grands départs de vacances est

testée. Elle consiste à mettre en place un péage sur le réseau autoroutier

variant selon l’heure de la journée mais aussi de jour en jour. Ce type de

péage est particulièrement intéressant pour les exploitants car il leur permet

d’influencer à la fois sur l’heure et le jour de départ des vacanciers. Les

méthodes développées dans cette thèse permettent d’établir que les gains en

termes de réduction de la congestion sont substantiels.
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Abstract

This thesis is focused on dynamic user equilibrium models for traffic assign-

ment. It aims at providing a mathematically rigorous and general formula-

tion for the dynamic user equilibrium. Particular attention is paid to the

representation of transport demand and more specifically to trip scheduling

and users with heterogeneous preferences. This work is characterized by a

high level of mathematical formalism; this allows for a precise, concise and

microeconomically consistent description of dynamic transport networks and

dynamic transport demand.

Although the rigorous formalization of dynamic user equilibrium models is

the main object of the thesis, it also deals with computational techniques. We

aim at solving analytically some stylized models to get a general intuition of

the complex linkage between the demand and supply of transport in dynamic

frameworks. The intuition acquired from solving these analytical models will

be used to elaborate efficient numerical solving methods that can be applied

to large size, real life, transport networks.

Our approach can be broken down into four steps. The first step is the

literature review (Part I). Extensive reviews of academic works constitute

the first stage of this study. Second, a game theoretic formulation of the

dynamic user equilibrium is proposed (Part II). It strongly relies on up-

to-date results from mathematical economics on games with a continuum of

players. Third, analytical resolutions of this model are presented in restricted

cases (Part III). Although these specific cases are chosen to answer specific

issues in transport economics, they gave us interesting insights regarding the

mathematical structure of the problem. In particular they have been very

valuable for the last step of this thesis (Part IV), where a computable model

is designed and corresponding solution methods are proposed.



20 Abstract

Part I: Bibliography

Our literature review aims at formulating existing dynamic user equilibrium

(DUE) models with a unified set of notations. This is a natural first step in

our quest for a general framework for DUE models.

Chapter 1 is entitled Dynamic network modelling and algorithmics. DUE

models operate on transport networks that are both time-varying and prone

to congestion. It is thus essential to first precisely defined the network model

that is used. This leads us to formalize a model of dynamic transport net-

works (DTN). In a DTN, arc travel times and costs are time-varying and so

are the flows of traffic. Using this formalism, two algorithmic problems are

presented. The first one, known as the continuous dynamic network loading

problem, consists in determining the traffic flow propagation in a DTN and

to deduce the resulting arc travel times and costs. The second one is the

time-varying shortest route problem. In both cases, the DTN model allows

to present and compare existing numerical schemes from the literature.

Chapter 2, Mathematical formulations for the dynamic user equilibrium,

is divided in two parts. First, the most common DUE model, which we

will simply referred to as the dynamic Wardrop equilibrium, is described.

In this dynamic Wardrop assignment problem, users are homogeneous and

might only choose their route. This specific DUE is reviewed in depth, as

the literature covering it is vast and extremely rich. A particular attention

is paid to the equivalence between each formulations. The associated algo-

rithmic problem, the well-known dynamic traffic assignment problem, is also

reviewed and the most common algorithms are presented and compared.

Then, extensions of the dynamic user equilibriums that considers more

complex representations of the demand are considered. In particular, models

including trip-scheduling and user heterogeneity are presented.

This bibliographic review shows that the literature leaves a number of

questions unanswered, especially regarding the dynamic representation of

the transport demand. In particular:

- The mathematical properties of user equilibriums remain to be fully es-

tablished : existence results for dynamic equilibrium models have been

shown only in specific cases and no uniqueness and stability results

have been proven (Mounce, 2007). Along the same lines, mathemat-

ically concise formulations are rare, mainly due to the complexity of

analytically formulating the traffic flow on a network.
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- User heterogeneity is not fully represented: most of the existing ana-

lytical models consider a finite number of homogeneous groups of trav-

ellers, each group being characterized by a few variables e.g. vehicle

type, value of time or preferred arrival time (for instance in De Palma

and Marchal, 2002). A more general representation would be to con-

sider continuous distributions over the space of characteristics. Al-

though microeconomists have long considered small transport models

with continuous heterogeneity (Vickrey’s bottleneck model is probably

the most famous example), up to now no general theoretical formula-

tion is available.

- More efficient algorithms for user equilibriums with departure time

choice are still required. User equilibriums with route choice can now

be computed with reasonable efficiency on large size networks (Aguiléra

and Leurent, 2009). A substantial amount of work is still needed to

properly state the appropriate numerical solution techniques when the

problem includes departure time choice. From an algorithmic viewpoint

this is probably one of the most challenging problems in transport sci-

ence currently.

Part II: Dynamic congestion games and their applica-

tion to dynamic traffic assignment

This part aims at designing a new framework for DUE models that allows

a refined representation for the transport demand. A particular attention is

paid to the representation of users heterogeneity and trip scheduling. To do

so, recent results and models from mathematical economy and game theory

are exploited.

Chapter 3, Dynamic congestion games: presentation and a simple illus-

tration, presents a new category of games intended to be a new framework

for dynamic user equilibrium models is introduced. These so-called dynamic

congestion games offers a wide range of modelling possibilities. Users might

be represented by a continuous distribution over one or many variables. Road

pricing strategies can be embedded in the utility functions, possibly only for

specific types of users and the pricing scheme might be time-varying. Finally,

the possibility of intermediate stops from which the user might derive some

utility, typically short shopping stops, might be taken in account. As far
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as congestion modelling is concerned, the assumptions considered seems a

priori weak and it is reasonable to think that they include a wide range of

the operational models used for transport planning.

Two theoretical results are established within the chapter. First, a con-

structive proof of the existence and uniqueness of the solution to the dynamic

traffic loading problem is exposed. Then, it is shown that the existence of

a Nash equilibrium in dynamic congestion games is guaranteed under five

natural assumptions on the congestion model.

Chapter 4, Application to the dynamic traffic assignment problem on a

network of bottlenecks, establishes that the simplest dynamic user equilib-

rium model, known as the dynamic Wardrop equilibrium, can be seen as

a particular case of dynamic congestion games. A known existence result,

due to Mounce (2007), is then shown to derive from the existence result of

Chapter 3.

Part III: Analytical resolutions of simple games

Part III is devoted to two simple dynamic congestion games for which the

solutions can be derived analytically. Both games are extension of Vickery’s

classical bottleneck model.

Chapter 5, User equilibrium with general distribution of preferred arrival

times, studies the pattern of departure times at a single bottleneck, under

general heterogeneous preferred arrival times. It generalizes Vickery’s model,

without the classical “S-shape” assumption i.e. that demand, represented by

the flow rate of preferred arrival times, may only exceed bottleneck capacity

on one peak interval. It delivers two main outputs. First, a generic analytical

is given to solve the departure time choice equilibrium problem. Second, the

graphical approach that pervades the solution scheme provides insights in the

structure of the queued periods, especially so by characterizing the critical

instants at which the entry flow switches from a loading rate (over capacity)

to an unloading one (under capacity) and vice versa.

Chapter 6, User equilibrium with continuously distributed values of time

presents a game with a two route network where users are continuously het-

erogeneous w.r.t. their value of time. Road infrastructures are assumed to

present bottleneck congestion technology and a flat (i.e. time-invariant) toll

is set on one of the routes while the other one is free. Using this framework,

two pricing policies are assessed. In both cases, a toll is set on only one route
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while the other is free. In the first policy the toll is set to maximize revenue,

while in the second it is set to maximize the welfare gains. This known in

the literature as a value pricing scheme and the two policies correspond re-

spectively to the private and the public ownership of the tolled route. The

analytical investigation demonstrates that the level of heterogeneity signif-

icantly impacts the efficiency (measured in terms of welfare gains) of each

policy. The main result of this chapter is that the relative efficiency of the

private ownership increases with the level of heterogeneity. This results is

especially interesting to compare to the one of van den Berg and Verhoef

(2010), that states the contrary when the toll is time-varying.

Part IV: Numerical Resolution

Chapter 7, A user equilibrium model with departure time choice, presents a

simple DUE model as a dynamic congestion game. The main features of the

model are that time is represented continuously, that scheduling preferences

are represented by continuous distributions of the preferred arrival times, that

traffic flowing is multi-class and that time-varying tolls can be imposed on

each arc. The main technical technical difference between this model and the

ones currently developed in the literature is that the trip scheduling model

is deterministic (contrary to Bellei, Gentile and Papola, 2005; De Palma and

Marchal, 2002). It was designed to extend the LADTA model introduced by

Leurent (2003b) whose original implementation did not account for departure

time choice.

Now in a dynamic congestion games, users with the same characteristics

may choose different departure times. This property is unconvenient from

a computational perspective as it leads to memory-intensive representations

of users’ choices. Thus the possibility of imposing the same departure time

for all users with the same characteristics is studied. In such a case the

users’ departure time distribution is said to be symmetric. It is shown that

when users differ with their value of time and the network is subject to tolls,

the existence of an equilibrium is no longer guaranteed. Hopefully, the users’

arrival time distribution can be assumed to be symmetric without loosing the

existence property. A restricted model of DUE, more suited to computation,

is thus introduced. The subsequent chapters present algorithms to solve this

restricted model.

Chapter 8, A convex combination algorithm to compute the dynamic user
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equilibrium, is devoted to the presentation and assessment of an algorithm

inspired from the classical convex combination scheme. The main algorithmic

breakthrough is a numerical method that finds simultaneously the optimal

arrival times of all users on an Origin-Destination pair. This method is shown

to be significantly faster than the näıve approach where each user is treated

separately. The whole algorithm is tested on small scale networks and the

algorithm performs well on these examples. However it requires to set a

parameter and this operation is time-consuming.

Chapter 9, A user equilibrium computation algorithm based on user coor-

dination, proposes a prospective study on an alternative algorithm inspired

from the analytical methods developed in Part III. In a nutshell, the al-

gorithm simulates that users coordinatingly choose their departure time in

order to get closer to an equilibrium situation. Its scope is restricted to net-

works with no tolls and it has been tested on a simple network. Although

the method remains to be tested more extensively to control how it behaves

on large networks, the first results are very encouraging.

Chapter 10, An application to large interurban networks during summer

holiday departures presents a real-size application of the model on the French

national road network (2404 arcs and 939 nodes). The model is used to

assess an hypothetical time-varying pricing schemed intended to ease summer

traffic congestion. The resulting computation time is perfectly acceptable

and the qualitative analysis of the results shows the computed equilibrium

gives consistent orders of magnitude. The numerical results indicate that

even moderate variations of the toll with time might have strong impacts

on an highly congested interurban network. By applying a time-dependant

factor varying between 0.7 and 1.2 to the existing tolls, the aggregate travel

times have decreased of approximately 10%.
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Introduction

Dynamic user equilibrium in network assignment: op-

erational and scientific context

Operational stakes Modern economy is based on trade between economic

agents. People and firms trade for various goods, services or labour. This

results in movements of goods and people. To be fulfilled, this demand for

transport requires transport networks. Transport networks are characterized

by a certain capacity, which corresponds to the number of passengers that

can be transported per unit of time. When demand approaches capacity

congestion may occur: travel speed, reliability and convenience decrease as

the amount or length of trip-making increases. Although the proper evalu-

ation of the costs of congestion is subject to vivid debates, there is a wide

agreement that the economic stakes are considerable.

Increasing the capacity of the network to deal with congestion is one

solution which needs to be assessed with a long term viewpoint. Investments

in transport infrastructure and operating vehicles are long lasting expensive

goods with sunk costs. Planning consists in designing, assessing and selecting

the transport infrastructure.

A planned infrastructure is designed to cope with a certain volume of

traffic. The actual volume of traffic might be larger as a result of unex-

pected growth in demand, or to day to day variations of the traffic volumes

such as commuting peaks in urban contexts or seasonal peaks in interurban

contexts. Transport authorities have at their disposal a wide range of short-

term congestion management measures. These measures can be operational;

some examples might include an increase in the frequency of service of pub-

lic transport, the directing of traffic flows on alternatives routes or dynamic
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speed control systems intended to homogenize traffic flow speeds. They can

also be economic in nature, such as congestion tolls or modal shift incentives.

Transport capacity is a scarce resource in both time and space. Since

massive investments in road infrastructure have decreased in recent years

owing to their financial costs and environmental impacts, short-terms mea-

sures need to be optimized more than ever before. Fortunately there is space

for improvements. Morning peaks can be spread out by using adequate time-

varying pricing; the traffic on a congested route can be decreased by provid-

ing the right quantity and quality of dynamic information to users; adaptive

traffic control systems can be installed at intersections to control changes in

incoming flows traffic during the day. However, the challenges that need to

be met are high. A deep understanding of the collective mechanisms lead-

ing to the allocation of capacity in time and space is necessary to correctly

design these schemes. There is an urgent need for more detailed means to

represent the interaction between travel choices, traffic flows, and time and

cost measures in a temporally coherent manner.

Scientific context We have seen that congestion interferes with both

short-term and long-term transport policies. Optimizing remedial measures

requires a fine comprehension of the linkage between transport networks and

transport demand. This is a difficult problem due to its numerous dimensions

of complexity: traffic flows are the results of numerous trips with various ori-

gins and destinations; users’ behaviours and preferences vary from one to

another; congestion on the network results from spatially disaggregated in-

teractions between users. For these reasons, finding a consistent solution

– a (user) equilibrium in economic terms – requires considerable analytical

sophistication.

The seminal work on the subject is by Beckmann, McGuire and Winston

(1956) who showed how to find an equilibrium on an arbitrary transport

network given certain assumptions. The operational tools they introduced,

user equilibrium models (commonly known as network assignment models),

are now widely spread in developed countries and used on a regular basis

for traffic studies. Historically, the first assignment models had a static

representation of transport in the sense that traffic flows and travel times

were assumed to be constant over the simulation period.

This approach is problematic for two reasons. First, it ignores the dy-

namic aspects of congestion, i.e. the progressive accumulation and dissipa-
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tion of large traffic volumes in certain areas of the network. This phenom-

ena, sometimes referred to as hypercongestion, plays an important role in

urban road transport. It is responsible for the essential part of the travel

time losses. Second, it does not allow to model the time-varying aspects

of either the origin-destination flows, dynamic traffic control measures, or

time-varying pricing schemes.

The inherent limitations of the static assumption were soon identified.

In this thesis, we will use the generic term of dynamic network models to

designate all network models that represents variations in time of traffic flow

and thus reflect the reality that transport networks are generally not in steady

states. Here dynamic is a synonym for time-varying. Vickrey (1969) with

his well-known bottleneck model, formulated a dynamic model of congestion

on a single arc and establishes the resulting user equilibrium. Merchant and

Nemhauser (1978) proposed a dynamic model of a transport network. The

1990’s witnessed a renewed interest in dynamic user equilibrium models. The

literature is divided into two different trends. On one hand, simulation-based

models enhanced with equilibrium principles are developed (e.g. Dynasmart

of Mahmassani, Hu and Jayakrishnan (1995)). On the other hand, the first

rigorous analytical formulations of the dynamic user equilibrium appeared

(Friesz, Bernstein, Smith, Tobin and Wie, 1993). At the end of that decade

researchers began to realize that the equilibrium of the simulation-based

models lacked some theoretical properties: their existence is not guaranteed,

they are difficult to compute and are unstable. It is also around that time that

the first large scale implementations of analytical dynamic user equilibrium

models have appeared (Akamatsu, 2001; Bellei et al., 2005; Leurent, 2003a;

Aguiléra and Leurent, 2009).

Analytical modelling of the dynamic user equilibrium is a rapidly evolving

research topic. A large number of academic papers are focused on refining the

physical representation of road traffic. The proper introduction of Daganzo’s

cell transmission model (Szeto, 2008) or the modelling of queue spill backs

(Gentile, Meschini and Papola, 2007a) are examples of important theoretical

and algorithmic advances. Yet the literature leaves a number of questions

unanswered, especially regarding the dynamic representation of the transport

demand. Some of them are stated hereafter.

- The mathematical properties of user equilibriums remain to be fully es-

tablished : existence results for dynamic equilibrium models have been

shown only in specific cases and no uniqueness and stability results
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have been proven (Mounce, 2007). Along the same lines, mathemat-

ically concise formulations are rare, mainly due to the complexity of

analytically formulating the traffic flow on a network.

- User heterogeneity is not fully represented: most of the existing ana-

lytical models consider a finite number of homogeneous groups of trav-

ellers, each group being characterized by a few variables e.g. vehicle

type, value of time or preferred arrival time (for instance in De Palma

and Marchal, 2002). A more general representation would be to con-

sider continuous distributions over the space of characteristics. Al-

though microeconomists have long considered small transport models

with continuous heterogeneity (the bottleneck model is probably the

most famous example), up to now no general theoretical formulation is

available.

- More efficient algorithms for user equilibriums with departure time

choice are still required. User equilibriums with route choice can now

be computed with reasonable efficiency on real size networks (Aguiléra

and Leurent, 2009). A substantial amount of work is still needed to

properly state the appropriate numerical solution techniques when the

problem includes departure time choice. From an algorithmic viewpoint

this is probably one of the most challenging problems in transport sci-

ence currently.

This list, although clearly not exhaustive, is sufficient to indicate that

there is a need for a better representation of transport demand in dynamic

user equilibrium models and more efficient algorithms to solve them.

Problem statement

This thesis is focused on dynamic user equilibrium models for traffic assign-

ment. It aims at providing formal properties and microeconomic foundations

for computable DUE models.

This leads us to propose a mathematically rigorous and general formu-

lation for the dynamic user equilibrium. Particular attention is paid to the

representation of transport demand and more specifically to trip scheduling

and users with highly heterogeneous preferences. This work is characterized

by a high level of mathematical formalism; this allows for a precise, concise
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and microeconomically consistent description of dynamic transport networks

and dynamic transport demand. To the author point of view, the main

contribution of the thesis is the formalization of dynamic user equilibrium

models as Nash games.

Although the rigorous formalization of dynamic user equilibrium models

is the main object of the thesis, it also deals with computational techniques

of dynamic user equilibriums. We aim at solving analytically some stylized

models to get a general intuition of the complex linkage between the demand

and supply of transport in dynamic frameworks. The intuition acquired from

solving these analytical models will be used to elaborate efficient numerical

solving methods that can be applied to large size, real life networks.

Specifically, the work presented in this thesis has investigated these issues

by studying the difficulties and the potential benefits of a finer representation

of demand in dynamic equilibrium models. In particular, the thesis provides

elements of answers to the following matters:

- A theoretical framework for dynamic equilibrium models with contin-

uous user heterogeneity. Before aiming at fully operational and com-

putable models, a formal framework for dynamic user-equilibrium mod-

els should be designed. Among the important theoretical questions is

whether or not an equilibrium in such a model even exists.

- What are the impacts of continuous user heterogeneity on dynamic user

equilibriums? How does this affect the physical distribution of traffic

flows in time and space? What are the consequences in the cost dis-

tribution among users? To what extent are standard results altered by

taking heterogeneity into account?

- Evaluate the computability of dynamic user equilibrium models. Obvi-

ously in the end our ability to correctly solve our model is essential. It

requires the development of algorithms that (1) are effectively able to

compute reasonable approximations of a dynamic equilibrium and (2)

have reasonable requirements in term of computing times.

Methodology

Our approach can be broken down into four steps. The first step is the litera-

ture review. Extensive reviews of academic works constitute the first stage of
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this study. Second, a game theoretic formulation of the dynamic user equilib-

rium is proposed. It strongly relies on up-to-date results from mathematical

economics on games with a continuum of players. Third, analytical resolu-

tions of this model are presented in restricted cases. Although these specific

cases are chosen to answer specific issues in transport economics, they gave

us interesting insights regarding the mathematical structure of the problem.

In particular they have been very valuable for the last step of this thesis,

where a computable model is designed and corresponding solution methods

are proposed.

This thesis heavily relies on mathematical techniques. In particular, great

attention is given to the precise statements and mathematical correctness of

the equilibrium we define. At first, some approaches and modelling choices

might be perceived as unnecessarily sophisticated. Yet they have proven to

be very useful and revealed that some commonly accepted assumptions are

inconsistent.

Finally, our work was part of LADTA, a wider project led by the team

Economie des Réseaux et Modélisation Offre-Demande of the LVMT 1. LADTA,

for LumpedAnalyticalDynamic TrafficAssignment, is a dynamic user equi-

librium model introduced by Leurent (2003b) and designed as an extension of

classical static assignment models, with special emphasis on the time-varying

features. Recently the LTK (Ladta ToolKit), a powerful implementation of

LADTA main principles and associated solution methods has been developed

by Aguiléra and Leurent (2009). One of the practical goals of this thesis was

to enhance LADTA with a departure time model and to implement it in

the LTK. For this last point we have benefited from the help of LTK’s main

contributor, Vincent Aguiléra. The relationship between LADTA and the

thesis is two-sided. Obviously LADTA is a natural application of the general

framework developed in the thesis. It has also been a useful case study upon

which we have drawn in order to elaborate a more general theory.

Outline

The thesis comprises ten chapters grouped into four parts.

- Part I: Bibliography is divided into two chapters. Chapter 1 deals

with dynamic network modelling. It describes the physical mecha-

1Laboratoire Ville Mobilité Transport - UMR Ecole des Ponts ParisTech, INRETS,

UPEMV
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nisms leading to congestion. In addition, two important sub-problems

are reviewed: dynamic least cost path and dynamic network loading.

Chapter 2 covers the mathematical formulations and the computational

methods of dynamic user equilibriums.

- Part II: Dynamic congestion games and their application to dynamic

traffic assignment. In this part a new category of games intended to be

a new framework for dynamic user equilibrium models is introduced. In

Chapter 3 the game model is presented and two theoretical results are

provided. First, a constructive proof of the existence and uniqueness of

the solution to the dynamic traffic loading problem is exposed. Then a

general existence theorem for Nash equilibriums in dynamic congestion

games is given. In Chapter 4 it is established that the simplest dynamic

user equilibrium model, known as the dynamic traffic assignment, can

be seen as a particular case of dynamic congestion games. A known

existence result, due to Mounce (2007), is then shown to derive from

the existence result of Chapter 3. Most of the materials presented in

Chapter 3 and 4 have been published in (Meunier and Wagner, 2010).

- Part III: Analytical resolutions on simple cases. Part III presents two

simple dynamic congestion games for which the solutions can be derived

analytically. The first game (Chapter 5) is a generalization of the Vick-

rey’s bottleneck model as formalized in (Smith, 1984; Daganzo, 1985).

Whereas Smith and Daganzo assume that the distribution of preferred

arrival time is S-shaped, we consider more general distributions. This

leads to a much more complex pattern of congestion and in particu-

lar gives insights on the way companies’ work schedules can impact

morning peak hours. The results of Chapter 5 have been published in

(Leurent and Wagner, 2009). The second game (Chapter 6) models

a two-route tolled network where users are continuously heterogeneous

with respect to their value of time. This allows us to conduct a study on

the relative efficiencies of various pricing strategy and how it is affected

by the level of heterogeneity in users’ value of time.

- Part IV: Numerical methods for the dynamic user equilibrium with de-

parture time choice. In Chapter 7 a simple dynamic user equilibrium

model is stated in the formalism of dynamic congestion games. Chap-

ter 8 is devoted to the presentation and assessment of an algorithm
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inspired from the classical convex combination scheme. Chapter 9 pro-

poses a prospective study on an alternative algorithm inspired from the

analytical methods developed in Part III. Finally, Chapter 10 presents

a real-size application of the model on the French national road net-

work. Part of the results presented in Chapter 10 were published in

(Aguiléra and Wagner, 2009).
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Part introduction

What is traffic assignment at equilibrium?

In the transport field, the most basic user equilibrium problem can be infor-

mally stated as follows.

Given:

- A transport infrastructure supply represented by a network consist-

ing of nodes and arcs. With each arc is associated a way to represent

congestion (a congestion model), i.e. some function or procedure

that allows deriving the travel time on an arc knowing the flow of

travellers that goes through it.

- The travel demand modelled by an origin-destination (OD) matrix

with network users’ departure rates from each origin node to each

destination.

find the users’ flows and the travel times on each the network arcs.

This problem is known as that of traffic assignment, since the issue is how

to is to assign the OD matrix onto the network. To solve the traffic assign-

ment problem, it is required that the rule by which network users choose a

route be specified. This rule can be viewed as the function or the procedure

that specifies the demand for transport over routes. The interaction between

the routes chosen between all OD pairs, on the one hand, and the congestion
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models on all the network arcs, on the other, determines the equilibrium

flows and corresponding travel times throughout the network.

The transport infrastructure is typically a network of motorway segments

and the network users’ road vehicles. But one might consider traffic assign-

ment for all sort of transport infrastructures, such as transit network, and

for all sort of network users, such as pedestrian or cyclists.

Traffic assignment

Infrastructure supply Travel demand

arc flows

arc travel times

For each arc of the network:

Figure 1: General framework of a traffic assignment procedure

This rule is usually derived by assuming that every network user will try

to minimize his own travel time when travelling from origin to destination.

This does not mean that all users between each origin and destination pair

should be assigned to a single route. The travel time on each arc changes with

the flow and therefore, the travel time on several routes changes as the arc

flows change. A stable condition is reached only when no user can improve his

travel time by by unilaterally changing routes. This is the characterization of

the user-equilibrium (UE) condition, well known as the Wardop’s principle.
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Static and dynamic traffic assignment

There is a fundamental distinction between the congestion models used for

traffic assignment: they can be either static or dynamic.

- In static congestion models, travel time and users’ flows are assumed

to be time independent. Thus a static congestion model is usually a

simple function that maps a user flow with a travel time. This function

is often referred to as an arc performance functions.

- In dynamic congestion models, users flows and travel times may vary

with time. Consequently the range of congestion models is much wider.

Although less realistic, static congestion models are especially convenient

because they lead to well-posed traffic assignment problems for which they

exist powerful computational techniques. They are now used on an everyday

basis by most transport policy analysts.

Until recently dynamic models were essentially research objects. Indeed

the resulting assignment problems, dynamic traffic assignment problems are

relatively more complex to formulate and to compute.

Dynamic user equilibrium problems

The problem of dynamic traffic assignment as presented above implicitly as-

sumed that users may only choose their route. Now, with dynamic congestion

models, travel times vary so network users (acting as rational agents) should

also be able to choose their departure time. Starting from this observation,

more general dynamic user equilibrium (DUE) models have been elaborated.

Such models are known as DUE models with departure time choice. In

the resulting equilibrium problems, there are no longer OD matrices as users’

departure rates now change according to users’ departure time decisions.

That’s why we will no longer speak of dynamic traffic assignment but rather

of DUE problems2.

2Note that some authors speak of dynamic traffic assignment with departure time

choice. In this thesis, we have chosen not to use this terminology.
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Scope of the bibliographic review

This thesis studies DUE models with departure time choice. Our first step

is to provide a mathematically rigorous, microeconomically consistent and

general formulation for these models. The bibliographic review will provide

materials for this task. Consequently, we will focus on the following aspects:

- Dynamic models. We do not review static models of the user equi-

librium. Indeed the subject is extremely wide, already well covered and

we have felt that it would not bring much to our matter.

- A microeconomic and mathematical viewpoint. The approach

chosen here is not the one of traffic engineering, even if a significant

amount of the literature reviewed comes from this field. Here, the at-

tention is rather paid on the way users decision process are represented

and formalised.

- Analytical congestion models. The traffic phenomenons that lead

to congestion can be modelled using analytical, simulation-based or

even statistical methods. We essentially cover analytical approaches.

Moreover, the focus is not on the way the traffic is represented but we

rather look at the general properties of the congestion models and their

consequences on the equilibrium structure.

- Deterministic models. Although there is an increasing number of

works on stochastic DUE models, we do not review them. Indeed, the

rest of thesis does not deal with stochastic issues in DUE models3.

Structure of the part

This part is divided in two chapters. Chapter 1 is devoted to the supply side

of a DUE model. It presents models of congestion on a network. Although

it focuses mainly on road congestion, other from of congestion are reviewed

(notably parking and public transport). This chapter also deals with two

types of algorithms on a dynamic transport network, namely least cost route

3However a careful reader will realize that, when considering continuously heteroge-

neous demand, the differences between deterministic and stochastic DUE models are very

thin.
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algorithms and network loading algorithms. To present them in a unified

fashion, we introduce a common framework for dynamic transport networks.

Chapter 2 then presents equilibrium models that can apply to dynamic

transport networks as stated in Chapter 1. This chapter first presents dif-

ferent formulations of the dynamic traffic assignment problem. All of them

are expressed under a unified notation framework and the equivalence results

between each formulations are given. The chapter then summarizes different

works on more general DUE models.

Some vocabulary

Terminology regarding DUE models may vary from one author to another.

Thus we have felt it was necessary to provide the following definitions. Al-

though some of them are shared by several authors, they have no universal

meaning outside the scope of this thesis.

Network users Even though most of this thesis refers to road traffic, the

generic term of “(network) user” is retained. A user might represent all

kinds of entities (pedestrians, cyclists, travellers, vehicles, trucks, . . . ).

Congestion model Informally, an arc congestion model is a mathematical

object that encompass the traffic phenomena that lead to congestion.

Precisely, in this thesis, an arc congestion model is a mapping between

a time-varying flow of users and a time-varying travel time. A similar

definition could be introduced for intersection (or node) congestion.

Dynamic transport network Informally a dynamic transport network is

a mathematical object that models a transport infrastructure and the

congestion phenomenons that might occur on it. Precisely, in this

thesis, a dynamic transport network is modelled by a graph where

each arc (and possibly each node) is associated with an arc (or a node)

congestion model.

Dynamic Wardrop assignment ADUE problem with only route choice is

refer to as a dynamic traffic assignment problem. The dynamic traffic

assignment according to the Wardrop principle is referred to as the

dynamic Wardrop assignment.
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A simple definition of the supply of transport between an origin and a desti-

nation is the set of available transport services serving this origin-destination

pair, a transport service being defined as a departure time, a mode and a

route. The assessment of a transport service by a user depends on the ex-

pected travel time proposed by a transport service and on its monetary costs.

Now there are other characteristics that might be taken in account, typically

the reliability of the travel time, convenience of travel, and the expected ar-

rival time. The set of such characteristics represents the quality of a transport

service.

Transport occurs on networks and thus transport supply is intricately

related to transport network modelling. A service’s travel time depends on

several factors including the transport network structure and its operating

rules as well as the traffic load. The influence of the latter on travel time is

called congestion. The objective in this chapter is to analyse the determinants

of travel time, travel costs and congestion in dynamic (i.e. time-varying)

frameworks, assuming a given network structure.

This chapter treats of transport network modelling and of the associated

algorithmic issues. It is organized as follows. Section 1 gives the basic prin-

ciples of congestion and cost modelling in dynamic transport networks at the

elementary level of an arc then a junction. Section 2 defines formally the

concept of dynamic transport network and gives some notations. Two sub-

sequent sections deal with two problems that pertain to dynamic transport

networks. The first one, known as the continuous dynamic network loading

problem, consists in determining the traffic flow propagation in a network
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subject to congestion. The second problem is that of shortest route and least

cost route problems in time-varying networks.

1 Congestion dynamics and user costs at the

elementary level

A general economic definition of a congestion prone facility is that the quality

of service decreases with the intensity of use. For transport, road congestion

is perhaps the best illustration. Yet congestion in transport is not limited to

road: it also affects travellers on bus and subway networks. Even on pave-

ments some forms of pedestrian congestion might occur. Now we will only

briefly mention public transport and essentially focus on road congestion.

Road congestion arises from many physical mechanisms. A classic dis-

tinction is between flow and bottleneck congestion. Flow congestion arises

from the local interactions between drivers: slower cars are getting in the way

of faster cars, drivers can’t adjust their speed instantaneously. . .Bottleneck

congestion arises when a drop in the capacity somewhere on the road net-

work causes traffic queues to form. A related distinction is between arc and

intersection (or nodal) congestion. This latter is quite appealing when repre-

senting transport supply as a transport network and we will retain it in our

exposition.

In the first two subsections we thus present arc and then intersection

congestion. These two subsections solely focus on the effect of congestion

travel time. In the subsequent subsections are listed some other relevant

topics about congestion modelling.

1.1 A preliminary remark on the mathematical nature

of traffic flows

In a dynamic transport network model, the basic quantities are time-varying

flows of users. Although most of this thesis refers to road traffic, the generic

term of “user” retained here might represent all kinds of entities (pedestri-

ans, cyclists, travellers, vehicles, trucks, . . . ). A time-varying flow can be

represented as a map from a set of clock times (instants) h ∈ H to the set

of positive real numbers. Denote it h 7→ x(h). Now not all such maps are

representing physically sound flows. A natural requirement on users’ flows



1 Congestion dynamics and user costs at the elementary level 45

is to be integrable on every bounded susbsets of H. Then integrating the

map x over an interval I of H gives the number of users that went through a

certain point in space during I. When x is not integrable this quantity is not

necessarily defined which is difficult to interpret physically. Consequently

the integrability of x is a physical requirement.

x being integrable, one defines its corresponding cumulated flow X : h 7→
∫ h

hm
x(u) du for all h > hm, where hm is some reference instant. The inter-

pretation of X(h) is straightforward: it is simply counting the number of

users that went through a given point between hm and h. Using cumulated

flows, instead of “normal” flows (call them instantaneous flows), is conve-

nient to express conservation laws. A natural question arises: what is the

set of cumulated flows that corresponds to physically sounded instantaneous

flows? The answer to that question is given by standard real analysis results.

Assume H is a bounded interval [hm, hM ] and a function X on [hm, hM ] such

that X(hm) = 0; then there exists a (Lebesgue) integrable function x such

that X(h) =
∫ h

hm
x(u) du if and only if X is absolutely continuous 1 2 (see

for example Rudin, 2009).

For a given cumulated flow X there might be several possible instanta-

neous flows x but they are equal almost everywhere. Thus we will consider

the set of integrable functions from H to R+ quotiented out by the equiva-

lence relationship “equal almost everywhere”3. It is denoted L(H,R+). For

any increasing and absolutely continuous function X from H to R+, there is

a unique corresponding instantaneous flow x ∈ L(H,R+). It is possible to

create a bijection between instantaneous flows (taken from L(H,R+)) and

cumulated flows (taken from the set of increasing and absolutely continuous

functions). For this reason the set of increasing and absolutely continuous

functions onH is abusively denoted L(H,R+). To avoid confusion the follow-

ing convention is adopted: a cumulated flow is always denoted by a capital

letter while the associated instantaneous flow is denoted by the corresponding

1 A function F : [a, b]→ R is absolutely continuous if for every epsilon > 0, there exists

δ > 0 such that for all sequences ([an, bn])n of disjoint intervals of [a, b]:
∑

n≥0
(bn − an) <

δ ⇒
∑

n≥0
|F (an)− F (bn)| < ǫ. This definition is equivalent to F has a derivative f almost

everywhere, f is Lebesgue integrable, and F (x) = f(a) +
∫ x

a
f(t) dt for every x ∈ [a, b].

2 Note that the set of functions differentiable almost everywhere can not be used here

as a function might be differentiable almost everywhere with a derivative that is not

integrable.
3In other terms we consider the set obtained by identifying the elements f and g such

that f equals to g almost everywhere.
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lower-case letter. For instance if X is a cumulated flow then x is the cor-

responding instantaneous flow and consequently x = dX
dh

almost everywhere.

Then x ∈ L(H,R+) is read “x is an integrable functions H 7→ R+” while

X ∈ L(H,R+) is “X is an increasing and absolutely continuous function on

H”.

1.2 Road congestion on arcs

To stay as general as possible, let us define an arc congestion model as a

mapping between a time-varying flow and a time-varying travel time. There

are two common requirements on a congestion model. The first one, namely

the causality principle, states that the arc travel time of a user entering at an

instant h solely depends on the flows entered before h. The second one, the

FIFO principle, states that users exit the arc in the same order they entered

it. The FIFO principle is sometimes translated as a forbidden overpassing

rule. For flows of homogeneous users it states in fact much more: that it is

inconsistent that the same user might arrive earlier at arc’s exit by entering

later on this arc. These two principles are of great help in the assessment of

the models presented below.

In this subsection, we overview different approaches for the modelling of

time-varying congestion on a single arc. We first limit ourselves to flows of

homogeneous users and then briefly consider multi-class users flows.

Hydrodynamic models. Hydrodynamic models are traffic models inspired

by fluid mechanics. The most widely used hydrodynamic model was devel-

oped by Lighthill and Whitman (1955) and Richards (1956) and is known

as the LWR model. In the LWR model the traffic streams on an arc are

represented by time- and space-varying traffic flows, densities and speeds. It

assumes that the speed-density relationship embedded in the fundamental

traffic diagram also holds under non-stationary conditions at every point of

space and time. The model is closed by a traffic conservation law. It leads

to the formulation of a single partial derivative equation (see Frame 1 for

details).
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We denote ρ(h, s), x(h, s) and v(h, s) the density, flow and velocity at

time h at a point with the curvilinear abscissa s, and f the speed-density

relationship. First, for physical consistency, the following relationship is

required:

x(h, s) = v(h, s).ρ(h, s)

Then the two assumptions of the LWR model write down as:

∂x(h, s)

∂s
+
∂ρ(h, s)

∂h
= 0 (conservation law)

ρ(h, s) = f(x(h, s)) (speed-density relationship)

This yields the following (well-known) partial derivative equation:

∂f
(
ρ(s, h)

)

∂s
+
∂ρ(h, s)

∂h
= 0 (1.1)

The LWR model is especially useful for the study of traffic shock waves.

Figure 1.1 gives a simple example. It is a time-space diagram showing the

trajectories of representative vehicles. Initially, the arc is in stationary

state described by a density ρd and a flow xd. If the inflow at entrance

changes to xu, this results, through the flow-density relationship, in a new

density ρu at entrance that will propagate downstream as a shock wave.

According to the conservation law implies that the speed is determined

by the Rhankine-Hughoniot formula:

vwave =
xd − xu
ρd − ρu

Frame 1: The LWR model
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Figure 1.1: Shock waves with the LWR model: flow density relationship (right)

and time space diagram (left)

The model is analytically untractable in the general case, but the partial

derivative equation can be solved numerically by classical partial derivative

equation techniques such as the Godunov’s scheme (Lebacque, 1996). Now

the most widely used solution is the cell transmission model proposed by

(Daganzo, 1994) as an independent approach, that can be shown to be a

spatial and temporal discretization for the LWR for the following flow-density

function:

f(ρ) = max
{
v.ρ, xmax, v.(ρj − ρ)

}

where v, xmax and ρj are parameters that can be interpreted respectively as

the free flow speed, the maximal flow and the jam density. The success of

the cell transmission model is probably due to the simplicity of its imple-

mentation and its reasonably good computational properties. However the

model is still tedious and computationally demanding on large networks with

arcs with large spatial dimensions. It requires a dense spatial discretization,

in the sense that each road link is represented as a important sequence of

cells (a typical space discretization step is 50 meters). Therefore various sim-

plifications have been developed, some of which are presented in the next

paragraphs.

Although the LWR model can predict some traffic phenomena rather well,

it is also known to have some flaws. Its main restrictive assumption is that

the speed-density relationship holds exactly at each point in time and space

regardless of the possible drivers anticipations. This leads to instantaneous
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speed adjustment and thus to infinite acceleration. Among the known con-

sequences is the impossibility to represent stop and go waves. In an attempt

to correct those flaws higher order differential equations have been proposed,

starting in the early 70s (Payne, 1971).

Bottleneck models. The pointwise bottleneck model was introduced by

May and Keller (1967) and is famous for its use by Vickrey (1969).

The bottleneck model assumes that travel on the arc is uncongested ex-

cept perhaps on a single bottleneck of deterministic capacity k. If the incom-

ing flow at the bottleneck exceeds k a queue began to form and users have

to wait according to a FIFO discipline before leaving the bottleneck. The

analytic of the model, as presented in (Arnott, De Palma and Lindsey, 1998),

writes down as follows. Assume an inflow x and denote h 7→ t(h) the result-

ing travel time. Then the function t writes down as below, where Q(h) is the

number of users queuing at h in the bottleneck, and t0 is the free flow travel

time:

t(h) = t0 +
Q(h)

k
(1.2)

where Q stems from the following differential equation:

dQ

dh
(h) =







x(h)− k +
Q(h)

k
if Q(h) 6= 0 or x(h)− k > 0

0 otherwise
(1.3)

Here the capacity is to be understood as the maximal flow that can go

through the arc. The restriction in capacity can arise from many causes: the

geometry of the roadway, speed restriction, lane reduction or an intersection

limiting the capacity at the extremity of the arc. Note that the latter case

is related with the next subsection dealing with congestion at intersections.

In our physical description of the model, we stated the queue was punc-

tual and this features gives its name to the model. More realistic models

of queuing have been developed, often termed as physical queue models or

horizontal queue models. They are compatible with the LWR model with the

assumption that the flow-density relationship has a triangular shape in the

bottleneck area and allow to estimate the physical extent of the traffic queue.

This latter feature is particularly important when one wants to model queue

spill back on neighbouring arcs.

Bottleneck models respect by construction both the causality and the

FIFO principles.
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Flow-delay and volume-delay models. The two previous approaches

described traffic congestion by an explicit model of the traffic flowing over

the arc. Another widely used approach is to consider that the travel time on

an arc when entering at an instant h is some function of the characteristics of

the arc at h (e.g. Ran and Boyce, 1996). The rationale behind these models

appears to be an attempt to generalize the classic performance models used

in static transport network models. Two variants exists.

- In flow-delay models, the travel time is taken as a function of the

instantaneous flows at the time of entrance.

- In volume-delay models, the travel time is taken as a function of the

traffic volume on the arc at the time of entrance. The volume-delay

function can typically be derived from standards speed-density relation-

ships by considering the average density on the arc. To the author’s

knowledge they were introduced by Janson (1991).

Although the decision of which function to retain would typically im-

ply some field measurements, the great majority of the literature simply

assume some form of BPR type relationships without further justifications.

By definition flow-delay and volume-delay models respect the causality prin-

ciple. However, it is easy to see that they do not always satisfy the FIFO

principle. For volume-delay models, there are two trends in dealing with

this problem. First, one can assume that volume-delay functions are linear

(Daganzo, 1995). Then, any arc cumulated volume leads to a FIFO travel

time function. Second, one can assume some more advanced conditions on

the maximum variation in route cumulated flows. In both cases these meth-

ods strongly limit the scope of the model.

A physical interpretation of flow-delay model is that shock wave travel at

the same speed as vehicles and therefore never influence other vehicles. This

is why they are sometimes refer to as no-propagation models.

Exit flow models Introduced by the seminal paper of Merchant and

Nemhauser (1978), exit flow models assume that the outflow of an arc solely

depends on the traffic volume on this arc or equivalently on the average den-

sity. Assuming that vehicles travel in a FIFO manner, the corresponding

travel times can be easily derived.
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A physical interpretation is that an exit flow model entails this assump-

tion that density remains uniformly distributed over the arc. Thus an in-

crease in inflow immediately results in a corresponding increase in the density

along the arc. It implies that shock waves propagate at an infinite speed.

This is why some refers to exit flow models as instantaneous propagation

models (Lindsey and Verhoef, 1999). Note that in an exit flow model ve-

hicles might be affected by traffic behind them and thus exit flow models

violate the causality principle.

Comments on microsimulation models. The primary focus of this the-

sis is about analytical models of the dynamic user equilibrium, so microsim-

ulation models are only briefly reviewed. Microsimulation models are some-

times called microscopic models or vehicle-based as they explicitly describes

the motion of each vehicle as opposed to the former methods which are

macroscopic or flow-based models.

The basis of nearly every microscopic models is a car-following model, as

developed from the late 50s up to the early 60s upon an original prototype by

Chandler, Herman and Montroll (1958). In a car-following model the motion

of a vehicle is a function of the motion of the vehicle immediately ahead. A

simple formulation is given by the following differential equation:

a(h) = c
∆v(h− T )

∆x(h− T )
(1.4)

where a(h) is the of the following vehicle at instant h, T is a reaction time,

∆v is the difference of speed between the two vehicles, ∆x is the spacing

between them and c is a non-negative parameter. Equation (1.4) states that

the acceleration of a vehicle is proportional to what can be interpreted as

the temporal distance from the vehicle ahead. An interesting feature of car-

following models is that they imply, under suitable assumptions, the LWR

model at a macroscopic level. Now they can easily be extended to better

fit with real models by recognizing that vehicles accelerate at finite rates or

that they anticipate future traffic conditions, whereas in the LWR the right

approach to do that is still under discussion.

Modern microsimulation models are considerably more complex than a

simple car-following model. They commonly integrate some stochastic com-

ponents, integrate overpassing models or elaborate engine models (Algers,

Bernauer, Boero, Breheret, Di Taranto, Dougherty, Fox and Gabard, 1997).
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The possibilities are virtually infinite but there is a real need for correctly

assessing these models with respect to field measurements that has not been

entirely fulfilled yet.

Comments on multi-class congestion models. As mentioned earlier,

the models presented above are valid for flows of homogeneous users. By

homogeneous users it is meant users with the same driving behaviour and

whose vehicle have similar physical characteristics.

Now vehicle types can be distinguished according to their difference in

size, maximum speed, acceleration and deceleration rate. Almost all micro-

scopic simulation models distinguish several vehicle types for instance trucks,

passenger cars or motorcycle (Algers et al., 1997). In that order of idea an

hydrodynamic model considering passenger cars and trucks is presented in

(Hoogendoorn and Bovy, 2000).

Another acknowledged fact is that not every person acts in the same way

in terms of traffic behaviour. Some drivers might be aggressive and wish to

drive at higher speed than more cautious ones and this has consequences on

the way traffic flow. In the simulation model PARAMICS (Smith, Duncan

and Druitt, 1995) the characteristics of different drivers within the network

are determined by allocating random values of aggression and awareness to

the driver of each vehicle. Many other simulation models exist, all making

their own distinctions in driver characteristics and/or vehicle type charac-

teristics. When it comes to analytical approaches, Ran and Boyce (1996)

describe a macroscopic model where network users are stratified based on

driver characteristics, such as driving behaviour (cautious, rushed, ruthless),

on driver’s income and age, or on route diversion willingness (one route, few

alternative routes, en route diversion).

1.3 Road congestion at intersections

Congestion at intersections is a complex matter that has received a lot of at-

tention from traffic engineering and an exhaustive review is beyond the scope

of this thesis. Here we simply review some simple determinist approaches,

and summarize the physical mechanisms undermining intersection’s conges-

tion.
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Unsignalized intersections. When a set of flows meet at an intersections

there is a competition for the limited amount of capacity available. A popular

model of unsignalized intersections has been developed by Daganzo (1995)

as part of its cell transmission model. The model treats two specific cases of

intersections, with either two incoming arcs and one outgoing (a converge)

or two outgoing arcs and one incoming (a diverge). In Frame 2, Daganzo’s

main assumptions of for both types of intersections are presented.

In a nutshell, the converge model is ruled by priority coefficients that

specify the minimal share of the junction capacity that is aloted to each flows

while the diverged model relies on a FIFO principle and capacity limits at

the entry of the outgoing arcs. Daganzo’s model was extended in (Durlin and

Henn, 2008) to deal with general intersections with any numbers of incoming

and outgoing arcs.
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Daganzo’s intersection model

• Consider the converge described in Figure 1.2. The flows arriving

at the two incoming arcs’ tails are x+1 and x+2 and we wishes to

determine what are the flows x−1 and x−2 that will actually enter in

the intersection. The differences between the flows arriving and the

ones actually entering remains on the corresponding incoming arcs.

A convergent intersection is characterized by a capacity kint, that

represents the maximal flow that can go through the intersection. If

x+1 + x+2 > kint then it is necessary to determine the proportions kj
that will be assigned to each arc. This is achieved by introducing

two reals α1 and α2 such that α1 + α2 representing the priority

of each flows with respect to the other one. More precisely αi

represents the alloted share of the capacity to flow from arc i. This

yields the following rule: x+1 > αikint implies x−1 ≥ αikint.

• Consider the diverge described in Figure 1.2. The incoming flows

are described by x+1 , the flow of users wishing to enter arc 1 and x+2
describing the one wishing to enter arc 2. Our aim is to determine

what are the flows x−1 and x−2 that will actually enter in the junction.

The difference between remains on the incoming arc. A convergent

junction is characterized by the capacities k1 and k2 of the entrance

of arc 1 and 2, that represents the maximal flow that can go inside

each arcs. Daganzo’s main assumption is that vehicles are unable to

exit prevent all those behind, regardless of destination, do continue.

That is to say that users wait under a FIFO discipline at the diverge.

Mathematically that is to say that x+1 /x
+
2 = x−1 /x

−
2 . Incorporating

the two physical constraints yields the compact formulation: x−1 =

min
{
x+2 , k1,

x−1
x−2
.k2
}
and x−2 = min

{
x+1 , k2,

x−2
x−1
.k1
}
.

Frame 2: Daganzo’s intersection model
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To our knowledge no precise analysis of the intersection’s congestion ex-

ternalities have ever been conducted. This is quite surprising as intersection

congestion is known to be predominant over arc congestion in urban con-

texts. Now Daganzo’s model gives interesting economic insights regarding

this topic. Consider a set of flows of vehicles arriving on a congested inter-

section from arcs i ∈ I and leaving the intersection from arcs j ∈ J . If one

of them, call it x+ij slightly increases, then the waiting time to enter the in-

tersection may increase in return for all of them through two effects. If x+ij is

smaller than αikint, than the amount of capacity aloted to x+ij might increase,

thus reducing the capacity available for the other flows. This is the converge’s

part of the intersection’s congestion externalities. Then if x+ij is bigger than

kj, this will slow down the overall flow on the intersection through the FIFO

waiting discipline. This is the diverge’s part of the intersection’s congestion

externalities.

Figure 1.2: Converge (left) and diverge (right) in Daganzo’s model

Signalized intersections. In signalized intersections, the capacity assigned

to each flows is mostly predetermined by the traffic signal plan. Thus the

intersection simply imposes a capacity on the arc’s exit and from a modelling

perspective it can be represented directly in the arc congestion model. The

capacity assigned to each arc might be consider as constant or time-varying

in order to represent finely the succession of green and red phases.

Spillback congestion. When the traffic repartition on the arc is explicitly

represented, for instance by LWR or horizontal bottleneck models, there

might be situations when the incoming traffic on an arc is limited because
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of a hight traffic density at the head of it. Such a phenomenon is known

as the queue spillback. Several models incorporate such a feature, which is

known to be qualitatively important (Adamo, Astarita, Florian, Mahut and

Wu, 1999; Gentile, Meschini and Papola, 2007b). The traditional approach

is simply to use the unsignalized intersection model and to set the arc entry

capacities accordingly.

1.4 Other forms of congestion

Congestion in public transport. Congestion in public transport is present

under various forms. Leurent (2010) reviews some of them by identifying

the various capacity bottlenecks occurring in the public transport system.

Among others, Leurent identifies vehicle related capacities (maximum num-

ber of passengers per vehicle, number of seats, maximum number of passen-

gers that can board during a stop), station related capacities (maximum of

passengers per platform, maximum of flows of passengers in the corridors),

and mission related capacities (maximum number of passengers per mission).

When one of those capacities is overflowed by the number of passengers, it

results in some form of congestion, either by an increase in the waiting time,

in passenger’s discomfort (e.g. seat congestion) or in service disturbances

resulting in a global increase in the travel times.

The representation of public transport in dynamic transport network

models is a recent and non mature topic. The least cost route algorithm in-

troduced by Ziliaskopoulos and Wardell (2000) provides an interesting frame-

work to represent route that accounts for both highway and transit mode.

When it comes to dynamic user equilibrium models, the only form of con-

gestion modelled is the one arising from the limited capacity of vehicles,

that might cause queuing. Examples of such models are presented in (Tong

and Wong, 1999; Tong, Wong, Poon and Tan, 2001; Nguyen, Pallottino and

Malucelli, 2001).

Parking congestion and costs. Parking is important for a number of

reasons. The monetary costs of parking, when it is not freely provided or

strongly subsidized, represents a large part of the total monetary costs of

a car trip. Finding cheap and convenient parking spaces typically entails
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cruising for parking and this contributes to traffic congestion4; when the free

spaces are rare, this search for parking spaces might represents a significant

part of the total travel time. Street parking also interacts with traffic flows

in a complex ways resulting in capacity drops.

Recently some theoretical works focused on the externalities generated by

parking decisions (e.g. Anderson and de Palma, 2004). A parking externality

arises because individuals neglect the increase their parking causes on the

mean density of occupied parking spaces and thus on the average parking

searching time.

Parking congestion essentially results from the accumulation of parked

vehicles. It is essentially a stock congestion and consequently the correct

framework to represent is dynamic. To our knowledge, only a few studies

deals with parking, and all of them are simulation-based.

2 A model of dynamic transport network

Now that the main modelling approaches in transport networks have been

reviewed, let us introduce a few notations. They will be of great use for the

rest of the chapter.

Time Time variables will be denoted in two different ways. h represents a

clock time and t a travel time (or more generally a difference between

two clock times). The allowable departure time period for the users is

a bounded interval H = [hm, hM ] although the time period under study

will be a longer time interval H̄ = [hm, h̄M ]. Note that H and H̄ have

the same initial instant.

Network topology Let (N,A) denote a transport network composed of a

set N of nodes n and a set A of arcs a. Let OD ⊆ N × N denote

the set of origin-destination (O-D) pairs. A route r = a1, . . . , an is a

sequence of arcs without repetition. The notation r ≺ a (resp. r � a)

represents the sub-route composed of the arcs in r before a, a excluded

(resp. a included). Rod is the set of routes connecting the origin of the

4 Shoup (1997, Table 11-5) displays the results of 16 studies on cruising for parking in

downtown cities. The mean share of parking cruising among the total traffic flow was 30%

and the average search time was 8.1 minutes. While the study locations were not chosen

randomly, the results still indicate the importance of cruising for parking.
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O-D pair od to its destination. The set R := ∪od∈ODRod is the set of

routes.

Route and arc flow vectors Two types of (cumulated) flows will be con-

sidered, route cumulated flows and arc cumulated flows. Route cu-

mulated flows are defined on H while arc cumulated flows are defined

on H̄. A vector XR = (Xr)r∈R is a route flow vector while a vector

Y A = (Ya)a∈A is an arc flow vector. Recall that the formal definition of

cumulated flows is exposed in 1 and that their set is denoted L(H,R+).

A useful operation on flows is their restriction on [hm, h]: for any h ∈ H

and any flow X, the quantity X|h is a cumulated flow defined on the

same interval than X and such that X|h(u) = X(u) for u < h and

X|h(u) = X(h) otherwise.

Travel time and exit time functions A travel time function is a function

of the (clock) time that gives the travel time on an arc when entering

a route or an arc at a given instant. An exit time function gives the

exit time for a given entrance time. Travel time functions are denoted

h 7→ τa(h) (travel time on arc a) and h 7→ τr(h) (travel time on route

r) while exit time functions are denoted h 7→ Ha(h) and h 7→ Hr(h).

Arc travel time model An arc travel time model is a function from the

space of arc cumulated flows to the space of travel time functions.

It maps a time-varying flows defined for every h ∈ H̄ to a travel time

function defined on h ∈ H̄. In other words, an arc travel model is simply

a compact notation to describe the physical phenomena underlying

traffic congestion. It can represent most of the models presented in the

previous section. Arc travel time models are denoted Ya 7→ ta[Ya] = τa.

With these notations, it is easy to formalize the causality and FIFO prin-

ciples that were qualitatively exposed earlier.

Definition 1.1 (Causality principle). An arc travel time model is said to

obey the causality principle if:

ta[Ya](h) = ta[Ya|h](h) for any Ya ∈ L(H,R+) and h ∈ H

Definition 1.2 (FIFO principle). An arc travel time model is said to obey

the FIFO principle if the map h 7→ h + ta[Ya](h) is increasing for any Ya ∈

L(H,R).
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Finally let us introduce the concept of dynamic transport networks, which

is the essential component of our modelling approach of the transport supply.

Definition 1.3 (Dynamic transport network). t

- A dynamic transport network is a triple G = (N,A,T A) where (N,A)

is a directed graph and T A = (ta)a∈A are the associated arc travel time

models.

- A dynamic transport network state is a triple (N,A,HA) where (N,A)

is a directed graph and HA = (Ha)a∈A are the associated arc exit time

functions.

Notes. The notations presented here are adapted from the ones used in

LADTA, which were in turn a dynamic adaptation of the one introduced by

(Sheffi, 1985). The use of arc exit time functions for dynamic network mod-

els dates back to the origin of dynamic network modelling and was already

adopted in Merchant and Nemhauser’s (1978) model.

3 The continuous dynamic network loading

problem

This section is dedicated to the continuous Dynamic Network Loading Prob-

lem (DNLP). In the DNLP, given time-varying route flows on a transport

network, one aims to find arc volumes, arc travel times, and route travel

times over a finite time period. The term “loading” originally comes from

static user equilibrium literature and initially designated the algorithmic op-

eration of computing the arc flows from the flows assigned on the routes of

the network.

The problem may be considered as a subproblem of the dynamic user

equilibrium problem, as it allows to build the transport supply (here the

route travel times) from a transport demand (here the route flows). We will

focus on a specific network model, with a single user class, a volume-delay

travel time model and no intersection model. However, most of the results

presented here can be extended to other travel time models.

Volume-delay travel time models On each arc a of the transport net-

work, the arc travel time of a user arriving on a at instant h is solely
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determined by the total traffic volume still on a at h. Thus for each arc

a a volume-delay function fa taking a traffic volume as input, and re-

turning a travel time. Thus, denoting Sa : h 7→ Sa(h) the time-varying

volume on arc a, the travel time for a vehicle entering a at h is given

by fa
(
Sa(h)

)
.

The section presents an analytical formulation of the problem (Originally

presented in Wu, Chen and Florian, 1998), the existing results on existence

and uniqueness (From Xu, Wu, Florian and Zhu, 1999), and exposes a few

existing computation procedures. The text is structured along those lines.

3.1 Formulation of the DNLP

Informally, the DNLP consists in determining arc volumes and arc travel

times given the route flow vector XR. In order to precisely state the DNLP,

it is necessary to expose the fundamental equations of the network flowing

model. This set of equations is exposed below. It implicitly assumes that the

travel time functions resulting from the loading are FIFO i.e. that the maps

h 7→ h+ τa(h) are increasing. Since the volume-delay travel time model does

not respect the FIFO principles, this needs to be enforced by some ways.

This formulation is essentially the one presented in (Wu et al., 1998) with

the notations introduced in the previous section.

Consider a dynamic transport network (A,N, T ) with T = (ta)a∈A. Let

us introduce the following definitional equations.

Cumulated flow on arc a The cumulated flow on an arc is the sum of

the route cumulated flows on each route traversing this arc, translated

by the corresponding travel times. The travel times on each arc are

assumed to be FIFO5. Under this assumption the vehicles following

route r have entered on the arc a before h if and only if they departed

before H−1
r�a(h). Formally6:

Xa(h) =
∑

r:a∈r

Xr ◦H
−1
r≺a(h) ∀a (1.5)

5In some cases no loading solutions will satisfies this assumptions and thus the question

of the consistency of the FIFO behaviour with the other assumptions is relevant. More

comments on this problem will be given latter.
6Note that thanks to the FIFO assumption the functions H−1

r≺a are well defined.
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Evolution of the traffic volume on arc a The evolution of the volume

of traffic on arc a is then described by:

Sa(h) = Ya(h)− Ya ◦H
−1
a (h) ∀h, a (1.6)

Arc Travel time model In the simple flowing model considered in this sec-

tion, the arc traversal time of a vehicle stems straighforwardly from the

traffic volume on this arc at the time of arrival in the node. Formally:

τa(h) = fa
(
Sa(h)

)
and Ha(h) = h+ τa(h) ∀h, a (1.7)

Route travel time and route exit time computation The route travel

time on route r for a departure at h is defined as the summation of arc

travel times along r. Each arc travel time function is evaluated at the

arrival time on that arc or equivalently at the departure time of the

preceding arc (since no waiting is allowed on nodes).

for any r = a1, . . . , an: Hr(h) = Han ◦ . . . ◦Ha1(h) : (1.8)

and:

τr(h) = Hr(h)− h (1.9)

The continuous dynamic network loading problem can now be formally

stated:

Definition 1.4 (The continuous dynamic network loading problem). Assume

a transport network represented by a graph (N,A,T A) where each arc travel

time model ta is a volume-delay travel time model and denote fa the corre-

sponding volume-delay function. Given a route cumulated flow vector XR,

find an arc cumulated flow vector Y A, together with the associated (Hr)r∈R,

(τr)r∈R, (τa)a∈A and (Sa)a∈A, satisfying Equations (1.5-1.9) on H with initial

conditions Ya(hm) = Sa(hm) = 0 for all a ∈ A.

3.2 Comments about the formulation of the DNLP

Cyclic dependency. Equations (1.5-1.9) describe a cyclic sequence of re-

lationships between the state variables of the problem. Given the route exit

time functions (Hr)r∈R, the arc cumulated flow vector can be deduced (Equa-

tion (1.5)), and the arc volumes as well as the travel time then straightfor-

wardly derive from Equations (1.6) and (1.9). Finally Equation (1.8) yields

(Hr)r∈R. The dependency circle is represented in Figure 1.3.
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This structure yields the question of the adequate output variables to

consider. In Definition 1.4, the problem is formulated in terms of arc cumu-

lated flows and the other quantities are seen as deriving from them. Yet the

problem might be similarly formulated in terms of route travel time or arc

travel times functions, route exit time or arc exit time functions, or even in

terms of arc volumes.

Figure 1.3: Relationship structure in the dynamic network loading problem

adapted from (Leurent, 2003a)

FIFO assumption. The network loading model presented in subsection 3.1

is only valid if the travel time functions corresponding to the solution of the

DNLP are FIFO i.e. for all a ∈ A the map h 7→ h + τa(h) is increasing. In

the general case volume-delay model does not respect the FIFO principle so

it might not always be the case. As already mentioned there are two ways for

imposing the FIFO principle on a volume-delay model: either by restricting

to linear volume-delay function or by restricting the set of admissible arc

cumulated flows. Both methods strongly limit the scope of the model.

3.3 Formal properties of the continuous dynamic net-

work loading problem

The following theorem is due to Wu et al. (1998).
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Theorem 1.5 (Adapted from Wu et al. (1998)). Assume the volume-delay

functions are strictly positive, non-decreasing and continuously differentiable

functions. Then if the arc FIFO condition is guaranteed the DNLP has a

unique solution.

Theorem 1.5 thus states the conditions under which the problem is well-

posed. Its main flaw is the FIFO conditions – as mentioned earlier it can

not be guaranteed without strongly restricting the scope of the model. Nev-

ertheless it is to our knowledge the only existence theorem available for the

problem and its proof is constructive thus providing interesting insights into

the problem structure. Although we are not going to provide the details of

the proof, the general ideal is sketched just below.

Idea of the proof. The proof works with a reformulation of the problem that

introduces a new quantity Ya,r := Xr ◦ Hr≺a defined for all a and r. Ya,r
physical interpretation is the cumulated flow of traffic entering on arc a while

following route r. it is sensible to replace Equation (1.5) by the two following

equations:

Ya(h) =
∑

r:a∈r

Ya,r(h) (1.10)

for any a ∈ r = a1, . . . , an: Ya,r(h) =







Xr(h) if a = a1
Yai−1,r ◦H

−1
ai−1

(h) if a = ai 6= a1
0 otherwise.

(1.11)

It is possible (and relatively easy) to show that solving the DNLP as

presented in Definition 1.4 is equivalent to find a set of quantities Y A,

(Ya,r)a∈A,r∈R, (Hr)r∈R, (τr)r∈R, (τa)a∈A and (Sa)a∈A, satisfying Equations

(1.10), (1.11) and (1.6-1.9) onH, with initial conditions Ya(hm) = Sa(hm) = 0

for all a ∈ A.

The proof then proceeds by induction.

Base case. Denote τm := mina fa(0). The quantity τm represents the min-

imum time to traverse an arc of the network. For any r = a1 . . . an, set

Ya,r(h) :=

{
Xr(h) if a = a1 and

0 otherwise,
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for any h ∈ [hm, hm + τm]. Then use Equations (1.10), (1.6), and (1.9) to

derive the quantities Ya, Sa and τa for all a on the interval [hm, hm + τm].

Induction step. Assume Ya,r, Sa, τa are known until hk and set τk :=

mina fa
(
Sa(hk)

)
(note that τk ≥ τm). Set Ya,r on [hk, hk + τk] according to

(1.11). Derive the quantities Ya, Sa and τa accordingly.

It is then necessary to show that the induction terminates in a finite

number of steps i.e. that all the traffic will have exited the network after

a certain time. It is easy to check that the arc cumulated flow vector Y a

hereby built is a solution to the DNLP. The quantity Hr and τr can be

derived straightforwardly from Equations (1.8) and (1.9). The uniqueness

property requires a few more mathematical precautions that can be found in

the original article.

An important consequence of this theorem is that, given a specific dy-

namic network G = (A,N, T ), one can build a set of route travel time models

that associate to a route flow vector XR the corresponding route travel time

vectors. In the following, we will often denote those functions tr[XR].

3.4 Solution methods

Mathematical programming. To our knowledge the first attempt to

solve the DNLP is a mathematical programming approach due to Wu et al.

(1998). In their method the output variables are the route exit time func-

tions Hr. The global idea is to note that given a candidate vector of route

exit time functions ĤR := (Ĥr)r∈R, one can compute a second sequence of

route exit time functions H̃R := (H̃r)r∈R from Equations (1.5-1.9). If ĤR

and H̃R are equal then ĤR yields a solution to the DNLP.

The authors propose to formalize this idea under the following minimiza-

tion program:

min
Ĥ−1

r

∑

r∈R

||Ĥ−1
r ◦ H̃r − idH||2 (1.12)

subject to:



3 The continuous dynamic network loading problem 65

Xa(h) =
∑

r:a∈r

Xr ◦ Ĥ
−1
r≺a(h), for all a ∈ A

Sa(h) = Ya(h)− Ya ◦ Ĥ
−1
a (h), for all a ∈ A

H̃r≺a(h) = h+
∑

a′∈{r≺a}

ta′
(
Hr≺a′(h)

)
, for all r ∈ R

(1.12) is a non-convex infinite dimensional minimization program whose

solutions are solutions to the DNLP. Wu et al. (1998) propose an approx-

imation of the program by discretizing the set of departure times H and

by considering polynomial approximations of the inverse exit time functions

Ĥ−1
r . The program is then expressed under a GAMS implementation and

solved using MINOS solvers. GAMS (for General Algebraic Modelling Sys-

tem) is computer langage designed to represent and solve large and complex

mathematical programming problems. MINOS solvers are state of the art

solvers for non-linear and non-smooth optimization problems (Brooke, Kend-

erick, Meeraus and Release, 1996).

The results are not very convincing. For small size networks (approx. 10

arcs), it is possible to solve the problem within a reasonable computing time

and efficiency, but for larger networks it quickly becomes untractable. This is

not very surprising since global (i.e. in this context non-convex) optimization

is a difficult topic especially when dealing with some much dimensions and

when the optimization program has no specific mathematical property.

Chronological computation. An alternative approach has been proposed

by Xu et al. (1999) under the name of the DYNALOAD algorithm and then

improved by Rubio-Ardanaz, Wu and Florian (2003). These methods, which

may be considered as event-based simulations, represent a major improve-

ment over the mathematical programming approach exposed previously.

This method requires a specific assumption: the volume-delay functions

fa are assumed to be strictly positive, so the travel times on an arc of the

network is never 0. The algorithm is based on the constructive proof of The-

orem 1.5. It is made explicit below (Algorithm 1.1). Numerical benchmarks

have shown that the algorithm can be used efficiently on large size networks

(a few thousands arcs). Yet the number of iterations is possibly very high

and strongly depends on the network’s topology: when short (in terms of

travel time) arcs exist the number of iterations naturally increases.



66
Chapter 1

Dynamic network modelling and algorithmics

Algorithm 1.1 Dynaload(XR,(fa)a∈A,H,H̄)

Inputs: H = [hm, hM ], the set of departure times

H̄ = [hm, h̄M ], the simulation period

XR = (Xr)r∈R, a route cumulated flow vector

Outputs: An arc cumulated flow vector (Ya)a∈A
Initialize hk := hm +mina fa(0)

Ya,r(h) := Xr(h) for all (a, r) : r = a . . .

Sa(h) := 0 for h ∈ [hm, hk] and all a ∈ A

While hk < h̄M
Compute Sa on [hm, hk] from Eqn (1.9) for all a ∈ A

Set hk+1 := hk +mina fa(Sa)

Derive Ya,r on [hk, hk+1] from Eqn (1.11) for all a ∈ A

Set k := k + 1

End While
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Fixed point approaches. Finally let us introduce a last category of al-

gorithms that we termed as fixed point procedures. To our knowledge it was

initially proposed by Chabini (2001) but since then it has widely been embed-

ded in dynamic traffic assignment algorithms (see next chapter). Essentially

the method recognizes the fixed point structure of the DNLP. Indeed one

need to find arc travel time that are consistent with arc cumulated flows (i.e.

(ta)a∈A that yield to Y a by Equations (1.6) and (1.7)). The procedure is an

adaptation of the method of successive averages to this case.

Algorithm 1.2 FixedPointLoading(XR,(fa)a∈A,H)

Inputs: H = [hm, hM ], the set of departure times

XR = (Xr)r∈R, a route cumulated flow vector

(fa)a∈A, the arc volume-delay functions

Outputs: An arc cumulated flow vector Y A = (Ya)a∈A
Parameter: wk a decreasing sequence from 1 to 0.

Initialize τ
[0]
a (h) := fa(0) for all a and h and k := 0

Do

Set k := k + 1

Compute the cumulated flows Za from τ
[k]
a (h) and Eqn (1.8) and (1.5)

Set Y
[k]
a := wk.Y

[k−1]
a + (1− wk).Za for all a ∈ A

Compute τ
[k]
a from Y

[k]
a and Eqn (1.6) and (1.7)

Until Y
[k]
A satisfies a certain criterion

Note that this algorithm can be applied to virtually any arc travel time

models. Algorithm 1.2 has been tested in details on medium size networks

(i.e. a few hundreds arcs) in (Chabini, 2001) and was shown to converge well

although at a slower rate than chronological methods. Now its integration

by Bellei et al. (2005) in a dynamic traffic assignment procedure showed it

was very useful to quickly compute approximate solutions to the DNLP.

4 Dynamic shortest and least cost routes

Shortest route problems are among the most studied problems in graph the-

ory and their resolution is known considered as routine (Deo and Pang, 1984).

An important number of extensions have been considered, for instance shor-

test routes within a time windows (Desrosiers, Soumis and Desrochers, 1984)
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or shortest route with non-linear value of time. The great majority of this

extensions are dealing with static networks that have fixed travel times and

fixed costs. The present section focus on dynamic shortest and least cost

route problems. There are two understandings for a dynamic shortest route

problem. In the first, one must recompute shortest routes due to frequent,

instantaneous, and unpredictable changes in network data. This is essen-

tially a reoptimization problem, involving the resolution of a sequence of

closely-related static shortest route problems. The second understanding is

the time-dependent shortest route problem, in which network characteristics

change with time in a predictable fashion. This is the version usually studied

in transport science and the topic of this section.

The problem was initially introduced by Cooke and Halsey (1966) with

the costs limited to the travel times and under a discrete time formulation. A

well known result from Dreyfus (1969) is that under the assumptions that the

travel times follows a First In First Out discipline, the question of finding the

shortest route in this case boils down to a static shortest route by extending

the network through time. Recently a renewed interest in those algorithms

has appeared due to its applications for transport forecasting (or more exactly

dynamic user-equilibrium computation) and in intelligent transport system

research.

The section is divided in three subsections. First we expose in details

the shortest route problem on FIFO networks, then a review of the known

solution algorithm is proposed and finally some extensions are considered.

4.1 Dynamic shortest route on a FIFO network: state-

ment and properties

Notations and comments. The notations are the one exposed in Sec-

tion 2. In a dynamic shortest route problem, we consider a dynamic transport

network state G = (N,A,HA) with HA = (Ha)ainA. The quantity Ha(h),

assumed to be such that Ha(h) > h gives the exit time of a if one enters at

time h. Note that papers in the literature tend to work with arc travel time

functions rather than exit time functions. Obviously this is equivalent but

exit time functions leads to simpler formulations. In this section the network

is said to be a FIFO network if all exit time functions Ha are FIFO in the

sense of the previous section i.e. Ha is non-decreasing.

There are two essential variants of the shortest route problem, whether



4 Dynamic shortest and least cost routes 69

time is represented continuously or not. In discrete-time settings, the arc exit

time functions Ha can be identified to integer valued functions of an integer

argument. In continuous-time settings, Ha are real-valued functions defined

on a real set. Most of the results presented here are valid for the two settings.

In this first subsection, we study in detail the shortest route problem in

FIFO networks. We will see that this assumption leads to very rich theoret-

ical properties that are no longer valid in general networks.

Statement of the shortest route problems in FIFO networks. Recall

that Rod denotes the set of routes serving the origin destination pair od. We

introduce the two basic quantities that one might want to find in a dynamic

shortest route.

Hod(h) := min
r∈Rod

Hr(h) (1.13)

H̄od(h̄) := max
r∈Rod

H−1
r (h̄) (1.14)

Hod is the earliest arrival time function while H̄od(h̄) is the latest departure

time function.

The simplest variants of the dynamic shortest route problem are to find

Hod(h) or H̄od(h̄) for a fixed OD pair od and a fixed departure time h or a

fixed arrival time h̄. Many other variants are possible whether one wishes to

consider a range of origins, destinations or departure times. Table 1.1 sum-

marizes the variants using a wildcard notation introduced by Dean (2004b).

For instance the problem of computing Ho∗(∗) is the problem of computing

Hod(h) for all d and h. The wildcard notation allows to distinguish 16 vari-

ants of the problem, but at the end only two fundamental problems need to

be addressed.

This reduction requires a time-reversal transformation to change earliest

arrival time problems into latest departure time problems. The operation

simply consists in reversing the direction of the arcs and inverting the asso-

ciated exit time functions.

Note that we choose the length of the routes as output for the dynamic

shortest route problem rather than the routes themselves. In practice the

structure of the algorithms used in practice to solve the dynamic shortest

route problem always allows to compute explicitly the shortest routes.

It is important to understand that all the problems of Table 1.1 are of in-

terest for dynamic user equilibrium computation. Early arrival problems are
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required when considering dynamic user equilibrium models with only route

choice, while late departure problems needs to be solved for models combin-

ing route and departure time choice. When considering morning commute,

Chabini (1998) argues that as users tend to converge from an important

number of origins to a few destinations, all origin to one destination shortest

route problems are important for transport modellers. The same argument

stands for evening commutes and all destinations to one origin problems.

Desired output Method of computation

Ho∗(h), The two fundamental problems. All other variants can be

expressed with these two.Ho∗(∗)

Hod(h), As in the static case, single-origin, single destination

problems are as difficult as multiple-origin multiple

destinations ones. Therefore they can be solved by

computing the more general Ho∗(h), Ho∗(∗).

Hod(∗)

H∗∗(h), Perform a computation of Ho∗(h) or of Ho∗(∗) for each

origin.H∗∗(∗)

H∗d(h) This problem is no easier than computing H∗∗(∗).

H̄od(∗)
Find and invert the corresponding earliest arrival time

function. Alternatively perform a time-reversal

transformation of the network.

H̄o∗(∗)

H̄∗d(∗)

H̄∗∗(∗)

H̄o∗(h) This problem is no easier than computing H̄∗∗(∗).

H̄∗d(h̄) Perform a time-reversal transformation of the network and

compute Ho∗(h).

H∗d(∗) Perform a time-reversal transformation of the network and

compute H̄o∗(∗).

H̄od(h̄) Solve the more general problem H̄∗d(h̄).

H̄∗∗(h̄)
Perform a computation of H̄o∗(h̄) for each origin.

Table 1.1: Reduction of the dynamic shortest route problem to two fundamental

variants (adapted from Dean, 2004b)

Shortest route problems’ properties for FIFO networks and opti-

mality condition. For early arrival time problems, the following proper-
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ties of FIFO networks have been formally established by Kaufman and Smith

(1993) for the discrete case and by Dean (2004b) for the continuous case.

Proposition 1.6 (Shortest route problems’ properties for FIFO networks).

The following properties stand for any shortest route in a FIFO network:

No-waiting In a FIFO network, waiting at nodes is never beneficial i.e. it

never reduces the arrival time at destination.

Acyclicity In a FIFO network, one may always find shortest routes which

are acyclic.

Route consistency In a FIFO network, one may always find shortest routes

whose subroutes are also shortest routes.

Idea of the proof of Proposition 1.6. See (Kaufman and Smith, 1993) for a

detail proof of the discrete case and (Dean, 2004b) for the continuous one.

The no-waiting property follows directly from the fact that arc arrival

time functions are non-decreasing. Acyclicity is a consequence of the no-

waiting property: assume a shortest route with cycle and replace the cycle

with the corresponding waiting time. Then, either the route is not a shortest

route of the travel time (a contradiction from the no-waiting property) or

the cycle has null travel time.

These properties highlight the interest of the FIFO assumption for dy-

namic shortest route problems. The no waiting and acyclicity properties

guarantee that the problem, as we stated it, is consistent. The route consis-

tency property allows to state the optimality principle above, which is the

base of most algorithmic approaches for dynamic shortest route computation.

It is important to note that this property is not true if the FIFO assumption

is not valid as depicted in Figure 1.4.

Proposition 1.7 (Optimality condition). The following condition is neces-

sary and sufficient for the dynamic shortest route problems Ho⋆(⋆) and Ho⋆(h)

on FIFO networks. For Ho⋆(h) it must hold for a fixed h, while for Ho⋆(⋆)

for any instant h in H.

Hom(h) =

{
min

n∈N−(m)
Ha

(
Hon(h)

)
if m 6= o

0 if m = o
(1.15)

where N−(m) denote the set of the parents nodes of m.
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The optimality condition was first proposed by Cooke and Halsey (1966)

without a formal proof, and then properly established by Orda and Rom

(1991). The proof straightforwardly stems from the route consistency prop-

erty.

Figure 1.4: Route inconsistency in non-FIFO networks

4.2 Algorithms

In this subsection we describe the main algorithm addressing the shortest

route problem in FIFO networks. We denote n = |N | the number of nodes,

and m = |A| the number of arcs.

Computing Ho⋆(h). The problem of computing Ho⋆(h) was the first to

be addressed from a computational perspective. Cooke and Halsey (1966)

consider the problem by viewing a discrete dynamic network as a static net-

work by using a time-space expansion of the network. Later Dreyfus (1969)

showed the problem could be treated in a similar manner as the static case.

In particular the classic label setting (Dijkstra’s) and label correcting (Ford

Bellman’s) algorithm can be straightforwardly extended to cope with dy-

namic network and their resulting complexity is the same than for the cor-

responding static network. The running time are thus in O(m+ n ln(n)) for

label-setting algorithm and O(mn) for label-correcting ones. The pseudocode

for both algorithms is given in Algorithms 1.3 and 1.4.

Computing Ho⋆(h) - the näıve approach. Let us now turn to the prob-

lem of computing the earliest arrival for all departure times simultaneously.
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Algorithm 1.3 DynamicDijsktra(o, h, (Ha)a∈A)

Inputs: (Ha)a∈A, arc arrival time functions

o, the origin node

h, an instant

Outputs: (Hod(h))d∈N
Initialize S := N

Foreach n ∈ N : Hon(h) := +∞

Initialize Hoo(h) := h

While S 6= ∅

Find and remove n ∈ S minimizing Hon(h)

Foreach a = (n1, n2) ∈ A

Hon2
(h) := min{Hon2

(h), Ha

(
Hon1

(h)
)
}

End While

Algorithm 1.4 DynamicFordBellman(o, h, (Ha)a∈A)

Inputs: (Ha)a∈A, arc arrival time functions

o, the origin node

h, an instant

Outputs: (Hod(h))d∈N
Initialize Q := {o}

Foreach n ∈ N{o}: Hon(h) := +∞

Initialize Hoo(h) := h

While Q 6= ∅

Pop n ∈ Q

Foreach a = (n1, n2) ∈ A

If Ha(h) 6= min{Hoj(h), Ha

(
Hoj(h)

)
} Then:

Haj(h) := min{Hoj(h), Ha

(
Hoj(h)

)
}

Q := Q ∪ {a}

End While
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Naturally it can be solved by using repeatedly the previous algorithmic ap-

proaches. In a discrete setting, this allows to solve exactly the problem, while

in a continuous setting only an approximation is obtained. When T is the

number of time steps, the running time is in O
(
T (m+ n lnn)

)
.

Computing Ho⋆(⋆) - Label correcting algorithms. One may also notice

that the label correcting algorithm (Algorithm 1.4) can be straightforwardly

extended to the problem of computing Ho⋆(⋆) rather than Ho⋆(h). This

is achieved by updating functions h 7→ Hon(h) rather than scalars Hon(h).

With this modification one simultaneously computes Ho⋆(h) for all departure

times h. This algorithm was proposed in discrete time by Ziliaskopoulos and

Mahmassani (1993) for the symmetric problem of computing H̄⋆d(⋆) and by

Orda and Rom (1991) for continuous time settings.

In discrete time setting, the running time is O(mnT ). In the continuous

time case, computation time depends on the representation of exit time func-

tions and on the computation of the basic operations on the functions (i.e.

addition, minimum and comparison). If they are implemented as piecewise

linear continuous linear functions, then this operations depends on the aver-

age number of linear pieces in the functions Hon(h). Denoting them P the

running time has a complexity of O(mnP ). As there is no way of guessing a

priori P , the running time of the algorithm is impossible to predict.

Computing Ho⋆(⋆) - Label setting algorithms. The label setting algo-

rithm (Algorithm 1.4) can not be extended directly to treat simultaneously

all the departure instants. However, label setting algorithms, in the sense

that they compute the solutions in small pieces without updating them dur-

ing the process. Contrary to the previous cases no unified algorithm has been

established for both discrete and continuous settings.

In discrete settings, label-setting algorithms have been initially introduced

by Cai, Kloks and Wong (1997) and Chabini (1998). They rely on the fact

that the time-expansion of the network is acyclic as soon as the arc travel

time are strictly positive (i.e. for all arc Ha(h) > h). Now in acyclic graph

shortest routes might be computed in linear time with respect to the number

of arcs, once a topological ordering has been computed. The static shortest

route problem corresponding to the dynamic one is thus easy to compute.

This is even more the case as the topological ordering in the time-expansion

of a dynamic network is straightforward to compute, it may be obtained by
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Figure 1.5: time-expansion of a dynamic network

enumerating the nodes in the time-expanded network in chronological order.

This approach has a running time in O
(
T (n +m)

)
which matches with the

lower bound on the problem complexity. The pseudo-code is presented in

Algorithm 1.5, where the problem of computing H̄o⋆(⋆) is first solved and

then Ho⋆(⋆) is deduced. It is noteworthy that the time expanded network is

not built explicitly when running the algorithm.

In continuous setting, a label-setting algorithm has been proposed by

Dean (1999) for piecewise linear inputs. the algorithms essentially consists

in a single chronological scan through time. The resulting complexity is in

O(mP lnn+ n) where P is the average number of linear pieces in an output

function.

The question of the difference in running times of the discrete and con-

tinuous time algorithms is an interesting one. The algorithmic complexity

in continuous setting depends on the arc exit time functions by the mean

of P , while in the discrete setting only the topological characteristics of the

network (and the time step) plays a role. One may wonder if the use of the

discrete-time algorithm might not be adequate to obtain a good approxima-

tion of the continuous problem. The question to answer is then the choice

of an appropriate time step to discretize the set of departure times. Ideally

one would choose a discretization such that T is significatively larger than
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P , so that the discrete time solution correctly approximates the exact one.

This rises two comments: first there is no way to a priori estimate P so in

practice T should be chosen to be very large in order to deal with worst case

scenarios; second assuming m = O(n) then the complexities of the two algo-

rithms only differ from a lnn factor. In practice the discrete approximation

of dynamic shortest route is of little interest regarding the loss of accuracy

it causes.

Algorithm 1.5 AllDepartureTimeDynamicLabelSetting(o,H, (Ha)a∈A),

N

Inputs: (Ha)a∈A, arc arrival time functions

o, the origin node

H = 1, . . . , T , the set of departure times

Outputs: (Hod(⋆))d∈N
Initialize Q := {o}

Foreach n ∈ N{o} and h ∈ H: Hon(h) := +∞

Initialize Hoo(h) := h

For h̄ = 1, . . . , T

Foreach a = (n1, n2) ∈ A

If H̄on2
(h) ≤ T then

H̄on2
(H̄a(h̄)) := max{H̄on2

(H̄a(h̄)), H̄on1
(h)}

End For

Set Hon := H̄−1
on for all n

4.3 Dynamic least cost route problem

There are at least three ways to generalize the previous shortest route prob-

lem in FIFO networks:

- Non-FIFO travel time functions may be considered.

- Least cost route rather than shortest route problems can be introduced by

associating time-varying costs functions to each arc.

- Waiting might be allowed. In FIFO networks this was not an issue, as

waiting is never beneficial. When least cost route rather than shor-

test route problems are considered, one need to specify waiting costs.

Dean (2004a) distinguishes three cases: infinite waiting costs (waiting
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Shortest routes

in FIFO networks

Least cost routes

in non-FIFO networks

Algorithm Discrete time Continuous time Discrete time Continuous time

Label correcting O(mnT )

(Ziliaskopoulos

et al., 1993)

O(mnP )

(Orda and Rom,

1991)

O(mnT 2)

(Ziliaskopoulos

et al., 2000)

Not polynomial

(Orda and Rom,

1991)

Repeated

Ho⋆(h)

O
(
T (m +

n lnn)
)

(Dreyfus, 1969)

Not applicable Not applicable Not applicable

Label setting O((m+ n)T )

(Chabini, 1998)

O(mP lnn + n)

(Dean, 1999)

O((m+ n)T )

(Dean, 2004a)

Unknown (for-

bidden waiting)

(Leurent, 2004)

Table 1.2: Running times of the algorithm for the computation of Ho⋆(⋆). The

least cost route running time are for non-FIFO networks with location

dependent waiting costs or forbidden waiting.

is forbidden), duration dependent waiting costs (the waiting costs is

a function of the waiting time) or location dependent waiting costs

(each node is endowed with a functions of the time and its integration

on the period of waiting gives the waiting costs). Note that duration

dependent waiting costs can be used to encode bounded waiting time

constraints.

We call the problems obtained by extending the shortest route problems

in FIFO networks the dynamic least cost route problems. From a transport

modelling perspective, dynamic least cost route problem are especially ap-

pealing. Non-FIFO networks allow to represent relevant traffic phenomena,

such as overtaking. Second some commonly used travel time model typically

generate non-FIFO travel time function (e.g. volume-delay functions). Con-

sidering least cost route problems rather than shortest route allows to model

the trade-off between travel time and monetary cost on tolled networks. But

the most promising extension is probably the addition of the various waiting

costs. Obviously it can be exploited directly to model some observed travel

behaviours. For instance in London subsequent to the congestion charge im-

plementation, some users started to wait for the end of the charged period

(at 6pm) before entering the charged zone causing important congestion in

the parking spaces nearby. A second important application is the use of the
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waiting costs to encode possible activities at stops. This can be achieved by

considering negative waiting costs that represent the utility derived from the

performance of a specific activity.

From a computational perspective in non-FIFO networks are more com-

plicated to handle as the interesting properties of Proposition 1.6 are no

longer valid. For instance a route might be cyclic. Moreover the problem is

proved to be NP-complete in discrete setting as a reduction from the knap-

sack problem (Cai, Sha and Wong, 2007).

In discrete time, the algorithms presented below can be easily adapted

to dynamic least cost route problems although with some degradation in

computation time. When costs are limited to travel times in a non-FIFO

network, Algorithm 1.5 can be applied with no modification. Table 1.2 sum-

marizes the known complexity results for dynamic least cost route problems

assuming that waiting costs are duration dependent. Note that the algo-

rithms based on the time-expansion of the dynamic networks still remain the

most efficient way to deal with the problem.

A complex issue is the one of taking account of the waiting costs. Location

dependent costs can trivially be incorporated in a discrete time network by

adding fictionnous arcs with constant unit travel times and adequate costs

functions. However duration dependent costs are much more complicated to

deal with. A good survey of the algorithmic techniques to deal with this case

is presented in (Dean, 2004b).

In continuous time setting the general problem is complex and exhibits

some surprising features. Orda and Rom (1990) showed that no finite op-

timal route exist in some networks. Now by taking into account infinite

routes, one could guarantee the existence of an optimal route (Orda and

Rom, 1991). Moreover with some reasonable assumptions on the arc travel

time and costs functions, the optimal route is finite. The existing algorithms

are rare. Leurent (2006) presents a general theory, the so-called dynamic net-

work theory, allowing to treat very general shortest path problem with a label

setting or label correcting algorithms. Notably least cost route problems in

non FIFO networks falls under that category. Additionally the theory allows

to deal easily with constrained least cost route problems. Orda and Rom

(1991) designed a label correcting algorithms for least cost route problems

with location dependent waiting costs, again with piecewise linear exit time

and costs functions. To the author’s knowledge the design of an algorithm

for location dependent costs is still an open question.
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4.4 Other issues of interest

Parallelization. As transport applications require to perform dynamic

least cost route problem on large networks, parallelization strategies have

been explored in the literature. Chabini and Ganugapati (2002) present

a parallelization method for their label-setting algorithms using a network

decomposition technique. Ziliaskopoulos, Kotzinos and Mahmassani (1997)

introduce parallel designs for shortest route problems in non FIFO networks.

The most efficient is based on a destination decomposition technique. In both

cases, significant speed up of the equivalent sequential algorithm is achieved.

Zero travel time. Recall that we assume that Ha(h) > h i.e. that all

travel times were strictly positive. Dealing with networks where zero travel

times arc might exist is more complicated than it seems. Cai et al. (1997)

deals with this issue, but the corresponding running times incur a slight

increase in computing time. This is due to the fact that the time expanded

network might not be acyclic anymore and that a static shortest route is now

required within each “time level”.

Conclusion

This chapter has presented an overview of the main modelling approaches of

dynamic transport networks in the context of network equilibrium. It has

revealed that road arc congestion has received considerable attention, but

that other issues of importance such as congestion in public transport are

still poorly taken in account. The two subsequent sections exposed in detail

the two main algorithmic problems related to dynamic transport networks.

The dynamic network loading problem has been extensively studied for

the volume-delay travel time models, but little attention has been paid to

other analytical travel time model. In Appendix D we present an algorithm

dedicated to the dynamic network loading problem with bottleneck travel

time, thus fulfilling this gap in the literature. The algorithm is strongly in-

spired by the formalization of the dynamic network loading problem proposed

in Chapter 3.

The second problem, the dynamic least cost route, has received consid-

erable attention. Several variants of the problem have been considered, and

most of them have real interest from a transport modelling perspective. Al-
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though interesting issues remain to be addressed (e.g. non additive route

costs or bi-criteria problems, both in a time-varying context), to the author’s

point of view the real challenge is to spread those results among the transport

science community. Until now few applied works in transport research use or

even quote those works, despite their usefulness. This is especially true for

works dealing with the computation of the dynamic user equilibrium.



Chapter 2
Mathematical formulations for the dynamic user

equilibrium

In the previous chapter, the focus was on transport supply. In the present

one, we will study transport demand and the precise formulation of the equi-

librium between supply and demand. In static models, the seminal works

of Wardrop (1952) and Beckmann et al. (1956) set up the reference frame-

work on which state of the art models still draw upon. Following Wardrop

and Beckmann, the static user equilibrium principle has been extended to

dynamic transport networks. Yet, unlike in the static case, the transport sci-

ence community is lacking of a unified modelling framework for the dynamic

user equilibrium.

There exists a wide variety of alternative equilibrium principles. For

example the Boston equilibrium principle1 proposed by Friesz, Luque, Tobin

and Wie (2003) requires that for each instant the instantaneous flows and

instantaneous travel costs (i.e. costs perceived at the moment of departure)

constitute a static user-equilibrium. This situation is sometimes also referred

to as a quasi-dynamic traffic equilibrium or reactive user equilibrium. One

could also mention all sorts of dynamic stochastic equilibrium principles or

the dynamic system optimal equilibrium, although the term equilibrium here

is slightly abusive.

One of the most simple and widely used equilibrium principles is the so-

1 The name Boston equilibrium comes from the authors’ experience of driving in Boston

where, at that time, an very accurate description of the traffic situation was available by

the radio. The generalization of intelligent traffic system caused a renewed interest in

those kind of models at the end of the 90s although it is now admitted that they poorly

predict reality.
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called dynamic Wardrop principle, which states that:

At all instants the journey times on the route actually used are equal and

less than those which would be experienced by a single vehicle on any unused

route.

Note that the terminology varies according to the authors and that some

might speak of route choice user equilibrium principle. From a behavioural

perspective, the dynamic Wardrop principle assumes that the users of the

transport network are homogeneous, have perfect information, and that their

departure time is exogenous. That said, it can be shown, with the adequate

assumptions, that this is equivalent to a “no incentive to change” criterion:

given the current pattern of route travel times and given users’ route choice,

no user would gain by choosing an alternative route. In that sense, a Wardrop

equilibrium is closely related to the concept of Nash equilibrium in game

theory.

The problem of computing the dynamic Wardrop equilibrium is some-

times refer to as the dynamic Wardrop assignment problem and is often

presented as a variant of the assignment step of the well known four step

model. Now the no incentive criterion can be used to generalize the con-

cept of dynamic Wardrop principle to dynamic user equilibriums (DUE). In

DUE models, more advanced representations of the transport demand are

considered, for instance by allowing users to choose their departure time or

considering generalized costs rather than travel times. In this review, we

focus on this type of equilibriums i.e. it is assumed that the users of the con-

sidered transport network have perfect information and are acting as selfish

cost-minimizing agents.

The chapter is structured as follows. The first section presents the dy-

namic Wardrop assignment problem. The second and third sections present

two specific formulations as standard problems, namely variational inequal-

ity and fixed point problems. The associated algorithms are reviewed. The

last section presents extensions of the dynamic Wardrop assignment to the

dynamic user equilibriums that consider more complex representations of the

transport demand.

1 The dynamic Wardrop assignment problem

We use the notations introduced in the previous chapter. Assume we have

a traffic demand represented by an OD matrix XOD := (Xod)od∈OD. The
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quantity Xod is a cumulated flow defined on the set of departure times H for

the origin-destination pair od. An assignment of the traffic demand is a route

cumulated flow vector XR such that
∑

r∈Rod
Xr = Xod. The route travel

times functions arising from the loading of an assignment of the demand

on the network are denoted tr[XR] and the map XR 7→ tr[XR] is a route

travel time model. Recall that route travel time models XR 7→ tr[XR] can

be computed by solving the dynamic network loading problem and are well-

defined according to the existence theorem stated in Chapter 1, Subsection

3.3.

Recall that we model route flows Xr as absolutely continuous functions

on a set of instants H = [hm, hM ]. Consequently Xr admits a derivative

almost everywhere that is denoted xr (see Chapter 1, Section ). As abso-

lutely continuous function on a closed interval is continuous, so are route

flow functions.

The dynamic Wardrop assignment is then defined as:

Definition 2.1 (dynamic Wardrop assignment). Consider a dynamic trans-

port network described by its route travel time models tR = (tr)r∈R and an OD

matrix XOD. An assignment XR of XOD is a dynamic Wardrop assignment

if and only if all r, r′ ∈ Rod

xr(h) > 0⇒ tr[XR](h) ≥ tr′ [XR](h) for almost every h ∈ H (2.1)

The condition “almost every h ∈ H” might seem surprising even for

someone familiar with the dynamic Wardrop assignment. Recall that the

route flow functions Xr are differentiable almost every where and that con-

sequently xr is defined almost everywhere. In most of the literature, the

dynamic Wardrop assignment problem is defined with instantaneous route

flows xr as base variables, rather than with route cumulated flows as base

variables. Thus the condition almost everywhere is unnecessary, but the

model is less general.

Note that here route travel time models are the only network input, as

they completely summarize the dynamic network loading procedure. The

following proposition gives a characterization where the network structure

appears explicitly.

Proposition 2.2 (Arc-based characterization of the dynamic Wardrop as-

signment). Let:
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- XR be an assignment on a dynamic network (N,A, (ta)a∈A),

- Y A = (Ya)a∈A be the arc cumulated flows resulting from its loading on

the dynamic network and Ha := idR + ta[Ya].

Then XR is a dynamic Wardrop assignment if and only if there exists a

sequence HON = (Hon)o∈O,n∈N of continuous increasing functions such that:

Ha ◦Hon(h)−Hom(h) ≥ 0 ∀a = (n,m), ∀o, h (2.2)

[
Ha ◦Hon(h)−Hom(h)

]
.
∑

r∈Rod:a∈r

xr ◦Hon(h) = 0 ∀a = (n,m), ∀o, h (2.3)

The proof of Proposition 2.2 is straightforward. Note that (Hon)o∈O,n∈N

are the earliest arrival functions corresponding to the dynamic network state
(
N,A,HA

)
as they satisfy Equation (2.2). The dynamic Wardrop principle

is embedded in Equation (2.3).

An interesting application of this proposition is to reformulate the dy-

namic Wardrop assignment problem with arc cumulated flows as primary

variables rather than route cumulated flows. The formulation presented here

it can be found in (Ran and Boyce, 1996). However, it is a pretty common

way to formulate the dynamic Wardrop assignment and a similar formula-

tion can be found in (Leurent, Aguiléra and Mai, 2007). To do so let us

first denote Yad :=
∑

o

∑

r∈Rod
Xr ◦Hr≺a the arc cumulated flows of vehicles

originated from o. Note that Ya =
∑

d Yad.

Definition 2.3 (Arc-based formulation of the dynamic Wardrop assign-

ment). An cumulated flow vector Y A is an arc-based dynamic Wardrop as-

signment if there exists a sequence Y AD = (Yad)a∈A,d∈D of arc cumulated

flows and a vector HON = (Hon)o∈O,n∈N of continuous increasing functions,

satisfying the following constraints:

∑

d∈D

Yad = Ya ∀a ∈ A (2.4)

Xod +
∑

a:a=(n,o)

Yao =
∑

a:a=(o,n)

Yad ∀od ∈ OD (2.5)

∑

o 6=n2

Yad ◦Ha =
∑∑

d,a:a=(n2,n)

Yad ∀a = (n1, n2) (2.6)
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Ha ◦Hon(h)−Hom(h) ≥ 0 ∀a = (n,m), ∀o, h (2.7)

[
Ha ◦Hon1

(h)−Hon2
(h)
]
.
∑

d∈D

yad ◦Hoa(h) = 0 ∀a = (n1, n2), ∀o, h(2.8)

letting Ha := idH̄ + ta[
∑

d Yad].

Definition 2.3 allows to formulate the dynamic Wardrop assignment with-

out making explicit route travel times and route cumulated flows. Equations

(2.4), (2.5), and (2.6) are traffic conservation laws. If an arc cumulated flows

vector Y A verifies (2.4), (2.5), and (2.6) then it results from the loading of

an assignment of the OD matrix XOD. Equation (2.7) defines the earliest

arrival time functions and (2.8) states that the arc cumulated flows Yad are

consistent with the shortest routes.

Recall that given a route assignment XR one can easily construct the

corresponding arc cumulated flows decomposed by destination i.e. Y AD.

Conversely from an assignment Y AD, one can construct a (non-unique) route

assignment XR by building the tree of possible routes from a given origin

to a given destination. The two definitions are equivalent in the following

sense:

Proposition 2.4 (On the equivalence between the formulations). If Y AD is

a solution to the dynamic Wardrop assignment in the sense of Definition 2.3,

then a corresponding route assignment XR is a dynamic Wardrop assignment

in the sense of Definition 2.1. The reverse is also true.

A proof can be found in (Ran and Boyce, 1996, pp. 100-101).

2 Variational inequalities

2.1 Route-based Formulation

Friesz et al. (1993) were the first to cast a dynamic user equilibrium model

as a variational inequality problem. The version we present here is an adap-

tation of their original formulation for the dynamic Wardop assignment that

can be found in (Daniele, Maugeri and Oettli, 1998).
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Proposition 2.5 (Variational formulation of the dynamic Wardop assign-

ment). Consider a dynamic transport network described by its route travel

time models tR = (tr)r∈R and an OD matrix XOD. Then X⋆
R is Wardrop

assignment if and only if it satisfies the following variational inequality:

∑

r

∫

H

tr[X
⋆
R](h).

(
xr(h)− x

∗
r(h)

)
dh ≥ 0, for all assignments XR of XOD

(2.9)

Proof of proposition 2.5 (adapted from Daniele et al.) (i) ⇒

Assume X∗
R is a dynamic Wardrop assignment and consider any other as-

signment XR. Let µod(h) = min
r∈Ro,d

tr[X
∗
R](h). As X∗

R and XR are both

assignments of the same OD matrix:

∑

r∈Rod

xr(h) =
∑

r∈Rod

x∗r(h)

This yields:

∑

r∈Rod

∫

H

(tr[X
∗](h)− µod(h)).(xr(h)− x

∗
r(h))dh

=
∑

r∈Rod

∫

H

(tr[X
∗](h)).(xr(h)− x

∗
r(h))dh

It is enough to show that the right hand side of the previous equation is

positive. Now
(
tr(X

∗(h)) − µod(h)
)
.
(
xr(h) − x∗r(h)

)
≥ 0 by definition of

dynamic Wardrop assignment. Thus the result.

(ii) ⇐

Let X∗
R be an assignment satisfying (2.9). Define µod(h) as previously.

The proof proceeds by contradiction. Assume that the Wardrop principle is

not satisfied for a route r1 ∈ Rod. Then the set S =
{
h ∈ H : x∗r1(h) >

0 and tr1(X
∗)(h) > µod(h)

}
is of non null measure.

Let us now apply the inequality to an assignment XR defined as follows.

XR is differing rom X∗
R only on S and on the routes r ∈ Rod. Moreover

xr1(h) = 0 over S and xr(h) = x∗r(h) if (r, h) is such that tr[X
∗](h) 6= µod(h).

One easily verifies that such an XR exists. When replacing in (2.9):
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∑

r

∫

H

tr[X
∗(h)].

(
xr(h)− x

∗
r(h)

)
dh

=
∑

r∈Rod

∫

H

(
tr[X

∗(h)]− µod(h)
)
.
(
xr(h)− x

∗
r(h)

)
dh

=

∫

H

(
tr1 [X

∗(h)]− µod(h)
)
.
(
xr1(h)− x

∗
r1
(h)
)
dh

=

∫

H

(
tr1 [X

∗(h)]− µod(h)
)
.
(
− x∗r1(h)

)
dh < 0

Thus the result.

2.2 Arc-based Formulation

The following proposition is due to Chen and Hsueh (1998).

Proposition 2.6 (Arc-based variational formulation). An arc cumulated

flow vector Y ⋆
A is an arc-based Wardrop assignment if and only if it sat-

isfies the quasi-variational inequality:

∫

H

∑∑

d,a=(n1,n2)

ta[Y
⋆
a ].(ya − y

⋆
a) ≥ 0 ∀ Y A ∈ Ω(Y ⋆

A) (2.10)

where Ω(Y ⋆
A) is the set of Y A such that there exists Y AD satisfying the

following constraints:
∑

d∈D

Yad = Ya ∀a (2.11)

Xmd +
∑

a:a=(n,m)

Yad ◦ (idH̄ + ta[Y
⋆
a ]) =

∑

a:a=(m,n)

Yad ∀d ∈ D, m ∈ N :m 6= d

(2.12)

The proof of the proposition consists in showing that the solutions of

Proposition 2.6 are solutions to the (dynamic) Wardrop assignment problem

as exposed in Definition 2.3. A well-written proof can be found in (Bliemer

and Bovy, 2003).

The following points are noteworthy:
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- Inequation (2.10) is not a variational inequality as such but a quasi-

variational inequality since the set of auxiliary variables Ω depends on

Y ⋆
A. This has consequences in the algorithmic design.

- Arc-based formulations are especially interesting in large networks where

enumerating all the possible routes serving a pair OD is a tedious tasks.

2.3 Algorithms

Here we will focus on the algorithms that adress the arc-based variational

inequality. Route-based algorithms are essentially variants of the route swap-

ping algorithm that is presented in the next section.

Philosophy. Most of the algorithms proposed to solve the quasi-variational

inequality of Proposition 2.6 rely on a nested relaxation method or nested

projection method. They decompose the problem in two conceptual steps:

solving the variational inequality for a fixed the set of auxiliary variables Ω

and then dealing with the general problem where Ω depends on the candidate

solution Y ⋆
A.

The relaxation method (also known as diagonalisation method) is a stan-

dard technique to solve variational inequality problems (for a review see

Patriksson, 1999). In a nutshell, the relaxation method cast a variational

inequality into a sequence of subproblems which are, in general, non-linear

programming problems.

To deal with the quasi -variational nature of the inequality, it is necessary

to solve a sequence of regular variational inequalities, which is why those

methods are said to be nested. At each iteration the solution changes, thus

inducing a new set of auxiliary variables and yielding the new variational

inequality to solve.

To sum up a two loop algorithm has to be designed. At each step

in the outer loop, the current solution Y
n,⋆
A is updated and so is the set

Ω := Ω(Y n,⋆
A ). In the inner loop, the variational inequality obtained by con-

sidering (2.10) on Ω and not on Ω(Y ⋆) is solved. This can be achieved by an

iterative procedure inspired by the relaxation method, where Y n,⋆ is progres-

sively approximated by a sequence of cumulated flows Y k. Other possibilities

include projection methods.
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Details of an algorithm. We are going to present a nested relaxation

method due to Chen and Hsueh (1998). To state it, it is first necessary to

discretize the quasi-variational inequality. We reinterpret the previous nota-

tions as follows. The set of departure times is now a finite set of integers,

H = [1;H] and ya are H-dimensional vectors, denoted ya = (y1a, . . . , y
H
a ).

We restate arc travel time models as functions of the (discretized) instan-

taneous flows ya rather than the cumulated flows, and they are assumed to

be integer-valued. In the same order of idea, travel time models are de-

noted yA := (y1a, . . . , y
H
a ) 7→ ta[y

1
a, . . . , y

H
a ] =

(
tha[y

1
a, . . . , y

H
a ]
)

h∈H
and the

travel time vector is now tA := (tha[yA])a∈A,h∈h. Assuming that the causality

principle is respected by the arc travel time models, we can write:

ta[y
1
a, . . . , y

H
a ](h) = ta[y

1
a, . . . , y

h
a ](h) ∀a

The problem stated in Proposition 2.6 can then be straightforwardly dis-

cretized by replacing the time integration signs by sum signs. This yields:

< tA[y
⋆
A], (yA − y⋆

A) >≥ 0 ∀ yA ∈ Ω(y⋆
A) (2.13)

where < ., . > denotes the standard scalar product in a real vector space

and Ω(y⋆
A) is the set of flows defined by Equations (2.11-2.12), adapted for

a discrete-time setting and restated in terms of instantaneous flows.

Recall that to deal with the quasi-variational nature of inequality (2.10),

we first fix the set of auxiliary variables to Ω(y⋆,n
A ), where y⋆,n

A is a flow vector

that is updated at each iteration of the outer loop. The relaxation procedure

then consists in relaxing most of the dependencies of the travel time vector

More precisely, for each coordinate tha
[
y⋆
A

]
of the travel time vector tA

[
y⋆
A

]

we are going to fix all the arc flows to the value of yk
A except for yha . Thus in

the relaxed version of the variational inequality, the travel time models are

replaced by the expression:

tha
[
yk
A,yA

]
= tha

[
yk,1a , . . . , yk,h−1

a
︸ ︷︷ ︸

current state

, yha
︸︷︷︸

new flows

]

which yields the following variational inequality:

< tA[y
k
A,y

⋆
A], (yA − y⋆

A) >≥ 0 ∀ yA ∈ Ω(y⋆,n
A )

Now this variational inequality problem can be shown to be equivalent to:

min
yA∈Ω(y⋆,n)

Z(yk
A,yA) =

∑

h

∑

a

∫ yha

0

tha
[
yk,1a , . . . , yk,h−1

a , x
]
dx (2.14)
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The program (2.14) is a convex optimization program as soon as the maps

x 7→ tha
[
yk,1a , . . . , yk,h−1

a , x
]
are strictly increasing. It can be solved by classic

non-linear programming techniques such as the Frank-Wolf algorithm, which

is well-known and widely used in the transport science community.

The overall algorithm is presented in pseudo-code in Algorithm 2.1.
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Algorithm 2.1 NestedRelaxationMethod(tA,xOD,H)

Inputs: H = [1;H], the set of departure times

xOD = (xhod)od∈OD,h∈H, an OD matrix of time-varying flows

tA = (tha)a∈A,h∈H, a vector of arc travel time models

Outputs: An arc instantaneous flow vector yA = (yha)a∈A,h∈H

Parameter: wn a decreasing sequence from 1 to 0.

Initialization. n := 0. Set yk
a with any heuristic assignment procedure

such as all or nothing assignment or incremental assignment. Set τha :=

tha[0, . . . ,0] for all a and h.

Outer loop: Do

Set n := n+ 1 and y⋆,n
a := yk

a

Update τha := (1− wn)τ
h
a + wnt

h
a[y

⋆,n
a ] for all h and a

Set k := 0, yk
a := y⋆,n

a and Ω := Ω(y⋆,n
a )

Inner loop: Do

Solve the optimization program (2.14) on Ω by any suitable method.

(e.g. the FW method)

Set the results to yk+1
a .

Until yk+1
a ≈ yk

a

Until τha ≈ tha[y
⋆,n
a ] for all h and a

Variants and Convergence. Variants of the latter relaxation method for

the resolution of the arc-based quasi-inequality have been proposed by Ran

and Boyce (1996). Projection methods have been proposed by Bliemer and

Bovy (2003) and Szeto and Lo (Lo and Szeto, 2002; Szeto and Lo, 2004).

This category of algorithms has been tested extensively on small net-

works (less than one hundred arcs) and the algorithms showed reasonable

convergence. However, to our knowledge there has been no large size im-

plementation of such methods. This is quite surprising since the rationale

behind arc-based formulation is to avoid route enumeration, which is typi-

cally infeasible for large networks.



92
Chapter 2

Mathematical formulations for the dynamic user equilibrium

3 Fixed point problems

3.1 A route-based formulation and its applications

Statement. The formulation exposed here is based on route swapping pro-

cesses. A route swap process can be informally interpreted as a re-routing

strategy of users in a non-equilibrium state given a route travel time pat-

tern. For instance assigning all the users in an all or nothing fashion is a

form of route swapping process, although very crude. Obviously there is a

wide collection of possible route swapping processes (for a review see Mounce

and Carey, 2010), and although the ones exposed below are fairly realistic

they have no empirical validity. Here we consider the route swapping as a

theoretical and algorithmic device so this question is out of our scope.

Let us now precisely define some commonly used route swapping pro-

cesses. Formally a route swapping process is a function from the set of the

possible assignments of an OD matrix XOD into itself. The following nota-

tions will be useful. For r, r′ ∈ R, δrr′ is the vector that has −1 in the r-th

coordinate, 1 in the r′-th coordinate and 0 elsewhere. (.)+ is the positive

part and r ∼ r′ means that the routes r and r′ connect the same OD pair.

Definition 2.7 (weighted pairwise swapping). A weighted pairwise swapping

process is a function XR 7→ RS[XR] such that:

RS[XR](h) = XR(h) + α
∑

r,r′:r∼r′

Xr(h)
(

tr[XR](h)− tr′ [XR](h)
)

+
δrr′

where α is a (small) positive real.

In weighted pairwise swapping, flow transfers occur between each pair of

route connecting the same OD where one of the routes is longer. The swap

rate is proportional to the flow on the longer route multiplied by the travel

time difference on the two routes. Pairwise swapping has been introduced by

Smith and Wisten (1995). Note that α needs to be chosen sufficiently small

to ensure that RS[XR](h) stays positive.

Definition 2.8 (weighted shortest route swapping). The weighted shortest

route swapping process is the function XR 7→ RS[XR] such that:

RS[XR](h) = XR(h) + α
∑ ∑

r r′∈Rr
min(h)

Xr(h)
(

t[Xr](h)− t[Xr′ ](h)
)

+

|Rr
min(h)|

δrr′
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where Rr
min(h) is the set of early arrival paths when departing at h on the

OD pair that connects r and α is a (small) positive real.

In weighted shortest route swapping, flow transfers are still proportional

to the flow on the longest route multiplied by the travel time difference but

here swapping occurs only towards the shortest paths on each OD pairs.

Definition 2.9 (unweighted shortest route swapping). The unweighted shor-

test route swapping process is the function XR 7→ RS[XR] such that:

RS[XR](h) = XR(h) + α
∑ ∑

r r′∈Rr
min(h)

Xr(h)

|Rr
min(h)|

δrr′

where Rr
min(h) is the set of shortest paths when departing at h on the OD

pair that connects r and α is a positive real between 0 and 1.

In unweighted shortest route swapping, flow transfers are not proportional

to the difference in travel times anymore and occur only towards the shortest

paths on each OD pairs.

An important (and straightforward) property of the route swapping pro-

cesses we presented is that their fixed points are the Wardrop equilibriums

of the dynamic network represented by tR and reversely. This can easily

be seen by noting that the second terms in the definition of each swapping

process is some kind of measure of the users’ incentives to change route.

An existence result. Using this formulation, an existence result can be

established using the Schauder fixed point theorem which is a generalization

of the one of Brouwer for infinite dimension spaces. Such a proof is presented

by Mounce (2003) assuming given route travel models that are continuous

for a certain topology on the set of flows. It is then shown in (Mounce, 2007)

that the route travel time models arising from networks with bottleneck travel

time models are indeed continuous.

The route swapping algorithm: statement and convergence results.

A natural algorithm for finding the fixed point of a function is to iteratively

apply this function until convergence. Obviously this convergence is only

guaranteed under certain restrictive assumptions. Up to now no such result

exist and the route swapping algorithm has to be viewed as heuristic only.



94
Chapter 2

Mathematical formulations for the dynamic user equilibrium

Yet, route swapping algorithms are widely used methods especially in

micro-simulation based dynamic network models (see for instance the work

of Mahmassani and colleagues: Mahmassani et al., 1995; Jayakrishnan, Mah-

massani and Hu, 1994; Hu and Mahmassani, 1997). Among their empirical

findings is that α, the route swap parameter, as well as the route swapping

process greatly influences the quality of the results. In particular the un-

weighted shortest route swapping is inefficient compared to the others and

the resulting algorithms tends to have oscillating behaviours. Large scale

implementations have been proposed and shows good convergence results,

although this last point has to be mitigated due the poor convergence mea-

sures used in these studies.

3.2 Arc-based formulations and related algorithms

Statement. The formulation presented here is due to Leurent (2003b) in

the context of the LADTA model. Let us introduce the following notations

for a given assignment problem characterized by a dynamic network G =

(N,A, tA) and an OD matrix XOD.

- The loading function associates with a route cumulated flow vector the

arc flows resulting from the resolution of the corresponding dynamic

network loading problem. It is denoted XR 7→ FS[XR] = XA.

- The constrained loading function that associates with a route flow vec-

tor and an arc travel time function vector, the arc flows obtained by sim-

ply translating the route cumulated flows by the corresponding route

travel time functions. It is denoted XR 7→ F̃S[XR; τA] = XA.

- The shortest route function that associates to each travel time function

vector the corresponding earliest arrival time functions. It is denoted

τA 7→ FSR[τA] = HON .

- The user function that gives the set of possible assignments XR of

XOD on the shortest routes. HON 7→ FD[HON ] = {XR}.

Note that Equation (2.8) in Definition 2.3 rewrites XR ∈ FD[HON ], that

the vector HON satisfying Equation (2.7) is exactly FSR[tA
[
Y A]

]
and the arc

flow vector such that there exists a flow vector Y AR is unique and is exactly
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XR 7→ FS[XR] = Y A. Thus the dynamic Wardrop assignment problem is

equivalent to the following fixed point problem:

Find Y A such that: Y A ∈ FS ◦ FD ◦ FSR ◦ tA[Y A] (2.15)

Now by definition of the loading procedure FS[XR] = F̃S

[

XR; tA ◦FS[XR]
]

,

so we have the following formulation:

Definition 2.10 (Arc-based fixed point formulation). Find Y A such that:

Y A ∈ F̃S

[

FD ◦ FSR ◦ tA[Y A]; tA[Y A]
]

(2.16)

It is important to understand the difference between the formulation in

Equation (2.15) and Definition 2.10. Essentially, in the first formulation in

addition to the demand-supply circular dependency, there is a second circular

dependency between arc flows and route travel times for given route flows,

accounting for the dynamic network loading problem. On the contrary, in

the latter formulation, the dynamic Wardrop assignment is expressed as a

single fixed point problem. The dependencies between the main variables of

the problems are depicted in Figure 2.1.

3.3 A convex combination algorithm.

The algorithm proposed by Leurent (2003b) to solve the arc-based fixed point

formulation is a classic convex combination algorithm. It is presented in

pseudo-code in Algorithm 2.2. When the parameter wk = 1/k the method is

termed the method of successive averages.
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Figure 2.1: Relationship structure in the dynamic Wardrop assignment (Figure

of the top adapted from (Leurent, 2003b))
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Algorithm 2.2 LADTA RouteChoice(XC)

Inputs: An OD matrix XOD

Outputs: Y A the arc cumulated flows for each user category.

Parameter: wk a decreasing sequence from 1 to 0.

Initialize Y
[0]
A := 0 and k := 0

Repeat

τA := tA[Y
[k−1]
A ]

HON := FSP (τA)

Y A := FD(HON ;XOD)

ZA := F̃L(XR, τA)

Y
[k]
A := wk.Y

[k−1]
A + (1− wk).ZA

Until Y
[k]
A satisfies a certain criterion.

End For

Algorithm 2.2 has been tested in details on small networks (Leurent, Mai

and Aguilèra, 2006), as well as numerous variants of the previous compu-

tation scheme. For the occasion they have developed advanced convergence

criteria in order to provide a detail assessment of the convergence property

of the algorithm. The results look promising. Numerical experiences on

very large networks (approx. 10.000 arcs in Aguiléra and Leurent, 2009)

have shown that the algorithm could provide a reasonable solution to the

dynamic Wardrop assignment problem in a reasonable computation time.

Bellei et al. (2005) developed a similar algorithm, although for a slightly

different model where a stochastic user equilibrium paradigm is used. The

algorithm has been tested on both route-based and arc-based fixed point for-

mulations. For the first formulation the dynamic network loading problem

is solved by applying the convex combination procedure presented in sub-

section 3.4 of the previous chapter. Numerical experiments have shown that

the second formulation achieved similar degrees of convergence in many time

less than when using the first formulation. This result is not surprising as

the first formulation is a bi-level problem. A more surprising fact is that the

number of iterations required for both algorithms is approximately the same.

A method of successive averages was proposed by Tong and Wong (2000)

for a route-based formulation where the loading problem is solved with an

heuristic based on a decomposition of the traffic flows in “platoons” of vehi-

cles.
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4 Extensions to dynamic user-equilibrium prob-

lems

In the simple dynamic Wardrop assignment, only one dimension of travel is

taken in account: which routes to undertake. The range of travel decisions

is in fact much wider and includes whether or not to travel, at which time

to start the trip and possibly intermediate stops on the way to perform

activities. Taking account of those decision leads to consider more general

Dynamic User Equilibrium models (DUE models).

When it comes to the introduction of advanced choice model in dy-

namic transport modelling two trends can be observed. Sequential approaches

are essentially a variant of four-stage models and where a simple dynamic

Wardrop assignment is used instead of a static one. The choice models and

the assignment procedures are sequentially applied with feedback until some

sort of convergence if any. On the contrary integrated models formalize the

transport supply and demand model in a unique framework and clearly spec-

ify a user equilibrium principle. In this thesis we focus on the latter.

4.1 User equilibriums with generalized costs and multi-

class users modelling

Trade-off between time and money. A first generalization of the dy-

namic Wardrop equilibrium is to take account of the monetary costs incurred

by the users. This requires to model the possible trade-offs of users between

time and money. This is generally achieved using the economic theory of

consumers. In this framework, consumers (in our case the transport network

users) are assumed to maximize their utilities subject to a budget constraint.

The introduction of time-money trade-offs was discussed thoroughly in the

economic literature starting by the paper of Becker (1965). Becker considered

time as a necessary input to consume goods but may also be assigned to work

hours which results in an increase of income by the mean of a fixed hourly

wage. The budget of time within a day being constrained to 24 hours, the op-

timum for the users is obtained when time is valued at the fixed hourly wage.

More complex value of time models can be established leading to more subtle

definition of the value of time (DeSerpa, 1971; Evans, 1972), that notably

varies with the type of activities undertaken.

These theoretical results suggested the introduction of a generalized cost
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of travel including both monetary costs and travel time costs, the latter being

expressed in monetary terms thanks to a value of time. Denoting t and p the

travel time and monetary costs of a trip, the generalized cost incurred by a

user with value of time ν is thus:

g(t, p; ν) = ν.t+ p

As stated earlier ν might depend on the trip purpose and on the user’s

income.

Representing user classes. We have already seen that users can be seg-

mented according to the traffic performance of their vehicles and their driving

behaviour. The previous paragraph also shows that they might differs ac-

cording their values of time and the next section introduces preferred arrival

times that might vary from within the users populations.

This leads to the concept of user classes. A user class is a set of character-

istics summarizing all the relevant data about a type of users. For instance

Bliemer (2001) suggests that user should be categorized according their vehi-

cle types (e.g. passenger cars, trucks and vans. . . ), the driver characteristics

(ability to drive, economic preferences such as his value of time. . . ), their

network access restriction (to take in account dedicated road infrastructure

such truck or high-occupancy vehicle lanes), purpose of travel and level of

information.

From a formal perspective the segmentation can be addressed in two

manners. Discrete sets of user classes might be considered with a population

associated to each of these. A second option is to introducing continuous

user classes by allowing some characteristics to take all the possible values

within a real interval. The user population repartition among the classes is

then described by the mean of distributions over the set of the characteristics.

For instance one might want to describe a user population where the value

of time is distributed according a log-normal law.

Formulation and algorithms. With discrete users classes the formula-

tions and algorithmic approaches presented earlier can be straightforwardly

extended. The new user equilibrium condition is the same as the one of

Definition 2.1, replacing route travel times by route generalized costs. Im-

portantly the variational inequality formulation can be extended to deal with
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the new equilibrium. However, the resulting algorithms tends to be less sta-

ble and have slower convergence.

Continuous user classes have been commonly used in static models but

are nearly absent from dynamic models. To our knowledge the only excep-

tions are the analytical models dealing with DUE with departure time choice

on small one- or two-arcs networks. They are presented in the following

subsection.

4.2 Departure time choice modelling

Vickrey’s model. In Vickrey’s model a set of commuters wish to reach

a central business district accessible by one route with bounded capacity.

Each user is characterized by a preferred arrival instant hp and assesses the

decision of departing at an instant h using a cost function of the form:

G(h; t(h)) = ν.t(h)
︸ ︷︷ ︸

traversal costs

+

schedule delay costs
︷ ︸︸ ︷

α.(h+ t(h)− hp)− + β.(h+ t(h)− hp)+

(2.17)

where:

- t(h) is the travel time on the route when departing at h,

- ν is the value of time of the commuter,

- α [resp. β] is the marginal cost of arriving earlier [resp. later] than

preferred,

- (.)+ and (.)− stand for the positive and negative part of the scedule

delay.

There are two standard ways of describing the set of users. Either one con-

siders a finite number of categories of commuters, differing by their preferred

arrival times (and also possibly their value of time, value of arriving late or

early); or one considers that users have preferred arrival instants distributed

among a set of possible values. In the later case, the“S-shape” assumption

is made: there is a single interval during which the density of commuters

exceeds capacity. This assumption makes the model analytically tractable,

and induces a travel time pattern similar to the one with a unique hp shared

by all commuters.
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When t is assumed to follow a bottleneck travel time model, an equi-

librium departure time distribution can be found. The typical equilibrium

situation is depicted in Figure 2.2 for a bottleneck of capacity k. The set of

users is modelled by a cumulative distribution Xp over the set of their pre-

ferred arrival instants. Their choices of departure instants are given by the

cumulative distribution X+. The bottleneck model allows one to compute

the cumulative distribution X− of users at the exit of the bottleneck.

Figure 2.2: Vickrey’s bottleneck model

Figure 2.2 can be interpreted as such: the horizontal difference between

X+ and X− (i.e. t(h)) gives the amount of time needed to traverse the bot-

tleneck, when entering the bottleneck at instant h. The horizontal difference

between X− and Xp (i.e. l(h)) gives the schedule delay at arrival. The travel

time function t is a piecewise function with only two admissible slopes and

a single maximum. It increases at the beginning of the congestion period,

when users are arriving earlier than preferred. When t is decreasing, users are

arriving later than preferred. Note that the simple form of the schedule delay

cost function (i.e. the two last terms of Equation 2.17) implies the piecewise
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linear shape of the travel time function. Under more general assumptions, it

would be smoother.

Since Vickrey, the transportation community has investigated the field in

two main directions. Some works, mainly from transport economists, have

focused on users heterogeneity. Others have proposed extensions to whole

networks.

Trip scheduling with users heterogeneity Heterogeneity in preferred

arrival times can be addressed either in a discrete manner, by allowing only

a finite set of preferred arrival times, or continuously using a distribution.

The finite case has been studied extensively by Lindsey (2004) while the

continuous case was first treated by Hendrickson and Kocur (1981). Het-

erogeneity pertaining to the costs of travel time and of schedule delay has

been studied, among others, by Arnott, de Palma and Lindsey (1993) and

Van der Zijpp and Koolstra (2002). Other extensions include the modelling

of stochastic demand and capacity, multiple routes or elastic demand (see

Arnott et al., 1998, for a review). When users are at equilibrium, the bottle-

neck model predicts a congestion pattern with a single peak in travel time.

In the numerous extensions, the resulting congestion patterns are very simi-

lar to the homogeneous case. When considering a finite number of preferred

arrival instants, there is a limited number of peaks in travel time (at most

one per preferred arrival instant) and a spontaneous segregation among users

is observed. Commuters with different preferred arrival instants depart at

different instants (Lindsey, 2004). The case where users’ preferences are

distributed over an interval has received less attention. Papers in this line

mainly considered “S-shape” distribution (Smith, 1984; Daganzo, 1985). As

exposed in the previous paragraph this case is practically equivalent to the

one with a single preferred arrival time and produces exactly the same travel

time pattern.

DUE with departure time choice on networks Vickrey’s model has

been extended to networks, in an attempt to produce operational planning

models. The computation of the user equilibrium in such a context is known

as the DUE problem with departure time choice. Friesz et al. (1993) first

proposed a formulation of the user equilibrium with both route and depar-

ture time choice as a variational inequality. Their model considers users

dispatched among several origin-destination pairs, with a unique preferred
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arrival time by OD. Since then most of the models proposed in the litera-

ture rely on Friesz’s original paradigm (e.g. Wie, Tobin and Carey, 2002).

Rather than focusing on users heterogeneity, this part of the literature has

made considerable efforts to improve congestion representation by integrating

sophisticated traffic models.

To our knowledge the only network model considering distributions of

preferred arrival times is by Bellei et al. (2005). Their approach is stochastic

and uses an extension of Vickrey’s model given by the following stochastic

continuous logit model (see Ben-Akiva and Lerman, 1985)). The probability

for a user to choose to arrive in the interval [h, h+∆h] is given by:

P (h; tr)∆h =
exp

(
− g(h; tr)/µ

)

∫

H

exp
(
− g(h; tr)/µ

)
du

∆h (2.18)

where µ is the heterogeneity parameter. A similar approach is used in the

METROPOLIS model developed by de Palma and colleagues (e.g. De Palma

and Marchal, 2002) but applied to a model with a single preferred arrival time

window shared by all users. The rationale for such a continuous logit model is

essentially to ease computation processes and is not justified by behavioural

considerations. Indeed in transport science the use of logit model is more

frequent for discrete choice modelling where a stochastic approaches allows

to avoid “step-like” behaviours.

Conclusion

In this chapter, different formulations and algorithms for the dynamic traffic

assignment problem were reviewed. It was shown that dynamic traffic as-

signment models can be stated in a rather unified framework and that in this

framework some mathematical results already exist. Although there are still

some work to do to establish a solution method with theoretical guarantees

regarding convergence, empirically efficient algorithms exists.

However, when it comes to more complex dynamic user equilibrium mo-

dels, there is a clear lack of a common framework.
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Part introduction

The bibliographic review presented in Part I showed that the standard model

of dynamic traffic assignment is a mature topic both regarding its formula-

tion and the solution methods developed to solve it. It is not the case of more

complex dynamic user equilibrium models that incorporate refined represen-

tations of the transport demand.

A possible explanation is that existing formulations of the dynamic user

equilibrium often quote Nash equilibrium as the equilibrium concept but

never formally express it as a game. This is quite surprising as the be-

havioural assumptions retains for the great majority of DUE models, e.g.

users have perfect information and are selfish cost minimizing agents, are

also the one of the Nash equilibrium. The question of whether current DUE

models can be formalized as Nash games is thus fundamental: if it can not,

then it is important to understand why and what it means from a behavioural

perspective; if it can, then the numerous results from game theory may be

applied.

Objectives

1. To set up a general framework for analytical DUE models. By general it

is meant here that no specific travel time models will be used and that

models of demand including departure time choice and multi-class user

models will be allowed. The framework proposed is not compatible

as such with an activity-based approach but we will discuss that it

provides a suitable starting point to provide a true framework for

2. To provide an existence result for a user equilibrium in this model. The
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corresponding theorem is an efficient tool to show existence in current

models due to the generality of the framework.

3. To formulate the dynamic user equilibrium as a Nash equilibrium.

Structure

This part is organized as follows. Chapter 3 presents the so-called dynamic

congestion games are presented and an existence result for dynamic conges-

tion games is proved. Then, in Chapter 4, it is shown that the dynamic

Wardrop assignment problem can be formulated as a dynamic congestion

game and that the existence theorem allows to show previously established

existence results.



Chapter 3
Dynamic congestion games: presentation and a

simple illustration

Consider over a time interval, say a day, a network prone to congestion. A

set of users travel along directed paths, called routes, connecting origins to

destinations. At the beginning of the day users are at origins and wish to

reach a specific destination by the end of the day. In order to do so, they

make a travel decision on the network, i.e. choose a route and a departure

time. Yet users’ decisions depend on route travel time over the network, itself

depending on the flow of users taking each route and thus on the decisions

of the other users.

Finding an equilibrium (in the Nash sense) of such a problem is, roughly

speaking, the Dynamic User Equilibrium (DUE) problem. Up to now few

theoretical results have been established regarding the DUE problem (with

the notable exceptions of Mounce (2006; 2007) and Zhu and Marcotte (2000)

all in the area of dynamic Wardrop assignment), and no general existence

result is known.

The purpose of this chapter is to propose a suitable framework in which

to study this problem and to give a general equilibrium result that covers

most of the previous ones.

We model our problem as a game. In our search for a framework for the

dynamic user equilibrium we naturally define a new class of games: dynamic

congestion games.
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Dynamic congestion games

Let G = (N,A) be a directed graph. We define a dynamic congestion game

to be a nonatomic (in the sense of Mas-Colell, 1984) game in which each user

chooses a route (an acyclic directed path), together with a departure time.

Denoting by R the set of routes and by H the set of admissible departure

times, the user’s possible strategies are in S = H×R. Note that S is not user

dependent; however upper semicontinuous utilities will be considered, giving

an indirect way to restrict a user strategy set. For instance, if a user wants to

start at a specific origin and reach a specific destination, this can be encoded

in the utility function by defining it to be −∞ on any route not connecting

these two vertices. Moreover, H will be assumed to be a (bounded) interval

[hm, hM ].

The travel times on an arc a are modelled by an arc travel time function

taken in C(R). If τa is the travel time function on arc a, then the quantity

τa(h) is the time required to go through the arc when entering a at h. Each

arc is endowed with an arc travel time model ta. A travel time model ta
is a function taking as input a cumulated flow and returning an arc travel

time function. Physically, an arc travel time model is simply a compact

notation for traffic models. A more detailed description of travel time models

is provided below.

A dynamic congestion game can be seen as a temporal extension of the

congestion games introduced by Rosenthal (1973).

Organization of the chapter

Section 1 gives the main tools and notations used. Since continuity results

will be the main technical aspect of our work, we will carefully define the

topologies of our different sets in this section. Section 1 also presents a

theorem from Khan (Theorem 3.4), a powerful existence result on games

with a continuum of users. In Section 2, we precisely describe the model we

are working with. The following section – Section 4 – exposes our two main

results: the consistency of our model (Proposition 3.7) and the existence

theorem (Theorem 3.10). The proofs are presented in Section 5. The proof

of Theorem 3.10 consists mainly of establishing that Khan’s theorem can be

applied.
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1 Mathematical tools and notations

1.1 Sets and topologies

1.1.1 Measures

We useM(E) to denote the set of finite (Borel) measures on a metric space

E. The measures will be denoted by capital letters, in order to be consistent

with the traditional notation for dynamic user equilibrium models where

cumulated flows are denoted by capital letters. A cumulated flow is a quantity

of users on a time interval – in particular, it can be seen as a measure on

time.

We will systematically use the weak convergence topology on any set of

measures encountered in the chapter. A sequence of measuresMn defined on

a set E is said to converge weakly toward a measure M on E if

(i) lim supn→+∞Mn(F ) ≤M(F ) for any closed subset F of E, and

(ii) lim supn→+∞Mn(E) =M(E).

There exists a metric ρ (the Prohorov metric for instance), such that

convergence for this metric is equivalent to weak convergence. It will be used

in the proof of Lemma 3.14.

A setM(E) with the weak topology has the following property: when E

is a compact metric space (for instance when E = H = [hm, hM ]),M(E) is

compact (Hildenbrand, 1974, page 49).

For more information about weak convergence, see (Topsoe, 1970).

1.1.2 Restrictions and marginals of measures

LetM be a measure on a Cartesian product A×B. ThenMA – also called the

marginal ofM on A – denotes the measure on A such thatMA(I) =M(I×B)

for each measurable subset I ⊆ B.

Let M be a measure on R. For any h ∈ R, we denote by M |h the

restriction of M on ] −∞, h], defined such that M |h(J) := M(J∩] −∞, h])

for all measurable subsets J of R. We extend this notation to the measure

on R × R. If M is such a measure, M |h(J × R
′) = M((J∩] −∞, h]) × R′)

for all measurable subsets J of R and all subsets R′ of R.

Claim 3.1. If h2 > h1, then for any measure M , we have M |h1
=M |h2

|h1
.

The proof is straightforward.
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1.1.3 Continuous mappings

Let E and F be two metric spaces, and let C(E,F ) denote the set of all

continuous maps from E to F . When F = R, the set C(E,F ) is denoted, for

short, by C(E).

When E is compact, the set C(E,F ) is endowed with the topology of

uniform convergence. In particular when E and F are subsets of R, it is

equivalent to the topology induced by the || · ||∞ norm. As no topological

arguments are used on sets C(E,F ) when E is not compact, such sets are

not endowed with any topology.

The following lemma will be useful:

Lemma 3.2. Let I be a closed interval of R and f : M(I) → C(R) and

g : M(I) → C(I) be two continuous functions. Then Y 7→ f [Y ] ◦ g[Y ] is

continuous.

Proof. Let ǫ > 0 and Y ∈M(I).

By continuity of f , there is an η1 > 0 such that ρ(Y, Y ′) ≤ η1 implies

||f [Y ]− f [Y ′]||∞ ≤ ǫ/2.

By uniform continuity of f [Y ] on the image of g[Y ], which is compact,

there is an η2 > 0 such that for all h, h′ ∈ Im g[Y ], when |h − h′| ≤ η2, we

have |f [Y ](h)− f [Y ](h′)| ≤ ǫ/2.

By continuity of g, there is an η3 > 0 such that ρ(Y, Y ′) ≤ η3 implies

||g[Y ]− g[Y ′]||∞ ≤ η2.

Now define η := min(η1, η3). For all Y ′ ∈ M(I) such that ρ(Y, Y ′) ≤ η,

we have

||f [Y ] ◦ g[Y ]− f [Y ′] ◦ g[Y ′]||∞ ≤ ||f [Y ] ◦ g[Y ]− f [Y ] ◦ g[Y ′]||∞
+||f [Y ] ◦ g[Y ′]− f [Y ′] ◦ g[Y ′]||∞

≤ ǫ/2 + ǫ/2

≤ ǫ.

1.1.4 Upper semicontinuous functions

The utility of a player of dynamic congestion game given the other players

strategy is modelled as a semicontinuous function. Consider a strategy set

S and assume that S is a compact metric space. The function u : E →

R̄ = R ∪ {−∞,+∞} is said to be upper semicontinuous if its hypograph is



1 Mathematical tools and notations 113

closed. Recall that the hypograph of a function f : E → R̄ is given by the

set {(x, y) ∈ E × R̄ : f(x) ≥ y}. We denote by SS the space of upper

semicontinuous functions S → R̄.

For the space SS the sup norm topology is no longer available, so we

endowed it with the hypotopology. Hypotopology has been introduced by

Dolecki, Salinetti and Roger (1983) and simply relies on the observation

that that every upper semicontinuous function has a closed hypograph. Two

functions are “close” if their hypographs are “close’. The chosen topology

on the space of closed subsets of S is the closed convergence topology. It

has the following valuable property: when S is a compact metric space, the

set of all closed subsets endowed with the closed convergence topology is a

compact metrizable space (see for instance Hildenbrand, 1974, page 19).

Note that C(S) ⊂ SS . A natural question is then to ask if whether the

hypotopology and the sup-norm topology are comparable. From Khan (1989,

page 135) we have the following result: when S is compact, the sup-norm

topology is finer than the hypotopology. That is to say that convergence

in the sup-norm topology implies convergence in the hypotopology. The

converse is not true.



114
Chapter 3

Dynamic Congestion Games

Notation Definition Topology

M(E) The set of finite (Borel) measures on a

topological space E

Weak convergence

topology

C(E,F ) Set of all continuous maps from E to

F

Topology of the uni-

form convergence

(when E is compact)

C(SS)
a Compact notation for C(M(S),SS)

for a metric space E

Topology of the uni-

form convergence

SE Set of upper semicontinuous functions

E → R̄

Hypotopology

Table 3.1: Summary of the notations for sets (E is a metric space)

aWill be introduced in the following section

1.2 Games with a continuum of users and Khan’s the-

orem

1.2.1 Mas-Colell Games

One of the main approaches to games with a continuum of players was intro-

duced by Mas-Colell (1984) as a reformulated version of Schmeidler (1973).

On the basis of Hart, Hildenbrand and Kohlberg (1974), Mas-Colell repre-

sents a game as a probability measure U on the space of utility functions U ,

where U is defined as the space of continuous mappings from S ×M(S) to

R. Given the strategy s chosen by a player characterized by u in U and the

strategy distribution of all players X ∈M(S), u(X, s) is the utility enjoyed

by the player1. A Nash equilibrium is then defined as:

Definition 3.3. For a game U , a probability measure D on S ×U is a Nash

equilibrium if

1. DU = U .

1Note that in a Mass-Colell game players differ only by their utility functions and only

the distribution of played strategies matters i.e. who plays what is irrelevant. Hence there

are said to be anonymous games. This notably implies that the introduction of a space of

players’ names is unnecessary.
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2. D
({

(s, u) ∈ S × U : u(X, s) ≥ u(X, s′) for all s′ ∈ S
})

= 1, with

X := DS .

Essentially, the formulation of the equilibrium states that the volume of

players with a decision that is optimal relative to the overall strategy distri-

bution is the total volume of players. Here the probability measure D is to

be interpreted in terms of repartition and does not imply that users act prob-

abilistically. Definition 3.3 interprets itself easily in terms of pure strategies.

Informally D({s}×{u}) simply gives the number of players characterized by

u playing the strategy s.

1.2.2 Khan’s generalization and existence result

Mas-Colell (1984) proved the existence of an equilibrium under the assump-

tion of S being a compact metric space. In an attempt to generalize this

approach to upper semicontinuous utility functions, Khan proposes a slightly

different model. In a Mas-Colell game, each player is characterized by a util-

ity function u : S ×M(S) → R. Khan uses an alternative view: a utility

function is seen as a family of functions from S to R̄ parameterized by el-

ements of M(S). In simpler terms, one can rewrite u(X, s) = û[X](s) in

the previous definition, hence seeing a game as a distribution on the space

of continuous mappings M(S) → SS . For the sake of readability, we will

denote the set of such functions C(SS) instead of C(M(S),SS).

In Khan’s extension, a Nash equilibrium is defined exactly as above, with

U now being C(SS) and once we have substituted u(X, s) and u(X, s′) re-

spectively by û[X](s) and û[X](s′). Khan showed the following theorem

(Khan, 1989):

Theorem 3.4 (Khan). Assume that the strategy set S is a compact metric

space and let a probability measure U ∈ M(C(SS)) be a game. Then there

exists a Nash equilibrium.

Mas-Colell games have been applied to static user equilibrium, a suc-

cessful approach which leads to important theoretical advances. They are

known as congestion games in the game theory community (see for instance

Milchtaich, 2005). In a congestion game players are drivers on a road network

and their strategies are the possible routes on this network. The strategy dis-

tribution X hence gives the proportion of drivers choosing each route, which

in transport science terminology would be the flows assigned to each route.



116
Chapter 3

Dynamic Congestion Games

Quantity Notation Mathematical nature

Set of the possible

player’s strategies

S Non-empty compact, metric space

Strategy distribution

of all players

X A finite Borel measure on S

Set of strategy distri-

butions

M(S) Endowed with the weak convergence

topology

Set of utility functions U C(SS) Endowed with the uniform con-

vergence topology

Set of pay-off functions

of a player given the

other players’ strate-

gies

SS The set of upper semi-continuous func-

tions on S endowed with the hypo-

topology

Game U A probability measure on U

Table 3.2: Summary of the notations for Mas-Colell games (with Khan’s

formalism)

In the following section, the dynamic user equilibrium is formulated as

a Mas-Colell game and the corresponding games are referred to as dynamic

congestion games. To do so, we build a set of specific utility functions so that

each of them encode the behaviour of a network user of a specific OD pair. A

dynamic congestion game is defined as a measure on this latter set. It is then

shown (Section 4) that these functions are continuous and consequently that

dynamic congestion games are Mass-Colell games (or more precisely Khan’s

extensions of Mass-Colell games).

2 The model

In a dynamic congestion game, we have, on one hand, a directed graph G =

(N,A,T A) where T A = (ta)a∈A are the travel time models associated with

each arc (precisely defined below). This is the supply side. On the other
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hand, we have a continuum of road users endowed with utility functions.

This is the demand side.

Denoting by R the set of acyclic directed paths (the set of routes) and

by H a vompact time interval H ⊂ R, the strategy set is S := H×R. Each

user chooses his strategy from S, that is, a departure time h and a route

r = a1, a2, . . . , an and goes through arcs in the order they appear in the

route, entering ai+1 as soon as he leaves arc ai.

The exclusion from consideration of a sequence of arcs that does not

encode a route between the origin-destination pair of a user is treated by the

utility function, which will be infinitely negative for such choices.

The presentation of the model will be divided in two parts. First we

introduce the network flow model: given a measure on the set of strategies

representing the choices of the users, how do we compute the departure times

of a user for each arc of his chosen route? Then, we define dynamic congestion

games using the formalism of Definition 3.3.

2.1 Network flow model

Each arc a is endowed with a travel time model ta :M(R) → C(R). If Y is

a measure such that for each measurable subset J , the quantity Y (J) is the

number of users having entered arc a at an instant in J , the value ta[Y ](h)

is the time needed to travel along arc a when travel is started at h. Such

a measure Y is called the cumulated flow on a. Consequently, the following

question arises: once all users have made a choice of strategy, how do we

deduce the entering instant of each user for each arc of his chosen route?

To do so, we are going to introduce the cumulated flow function on arc

a, denoted Φa, which is entirely determined by the arc travel times ta. The

physical meaning of Φa will be the following: for a distribution of user’s

strategy X ∈ M(S), the quantity Φa[X] is the cumulated flow of users on

arc a resulting from the propagation of the users over the network.

It remains to explicit formally each function Φa using the travel time

models ta. A useful notion is that of arc exit time function, Ha :M(R) →

C(R) which is defined by

Ha[Y ](h) := h+ ta[Y ](h) for Y ∈M(R) and h ∈ R (3.1)

Given a cumulated flow Y on an arc a, the number Ha[Y ](h) is the instant

at which the arc a is left when it has been entered at h. If we choose J ⊂ R,
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the subset Ha[Y ]−1(J) is all the instants at which arc a can be entered in

order to leave it at some instant in J .

The arc cumulated flows (Ya)a∈A can now be formally derived from a

strategy distribution.

Definition 3.5 (Dynamic network loading problem). The arc cumulated

flows (Ya)a∈A induced by a strategy distribution X ∈M(S) is a collection of

(Borel) measures on R such that there exists (Y r
a ) for all r ∈ R and a ∈ A

satisfying the system:

Ya =
∑

r∈R: a∈r

Y r
a (3.2)

and for all r = a1, . . . , an ∈ R

Y r
a1

= Xr (i)

Y r
ai

= Y r
ai−1
◦ (Hai−1

[Yai−1
])−1 for i = 2, . . . , n (ii)

Y r
a = 0 if a /∈ r. (iii)

(3.3)

With Xr the measure define by Xr(J) := X(J × {r}) for all measurable

subsets J of R.

Finding the arc cumulated flows (Ya)a∈A for a given strategy distribution

X ∈M(S) is the dynamic network loading problem.

We say that Y r
a is the cumulated flow on arc a with respect to route r for

each J ⊆ R. Indeed the quantity Y r
a (J) is the number of users whose chosen

route is r and who enter arc a for some instant in J . Similarly Xr is denoted

as the cumulated flow on r, which counts the number of users starting route

r on any interval: for each J ⊆ R, the quantity Xr(J) is the number of users

who start route r for some instant in J .

Equation (3.2) simply states that users going through arc a can be decom-

posed by routes. Equality (i) of Equation (3.3) expresses that the number

of users entering the first arc of a given route r during an interval J is the

number of users entering the route r during J . Equality (ii) expresses that

the number of users having chosen route r and entering arc ai in J is equal

to the number of users having chosen route r and leaving arc ai−1 in J (in

our model, there is no delay between the arcs). Equality (iii) expresses that

if an arc a does not belong to a route r, nobody having chosen r will travel

along a.

Until now we have no guarantee that the arc entry time and cumulated

flows functions are unambiguously defined in Definition 3.5. A proposition



2 The model 119

below (Proposition 3.7) will ensure that under five assumptions on ta, ex-

istence and uniqueness of the solutions of system (3.2-3.3) are guaranteed

for all X ∈ M(S). In this case, the functions Φa can be properly defined

through

Φa[X] := Ya for all a ∈ A.

We define another function – the route exit time function – that will be useful.

For all r = a1, . . . , an ∈ R, let

Hr[X] := Han [Yan ] ◦Han−1
[Yan−1

] ◦ . . . ◦Ha1 [Ya1 ].

Note that even if the notations Hr and Ha are similar and their physi-

cal meanings are close, the first one depends on the whole measure on the

strategies, while the second depends only on the cumulated flow on the arc.

2.2 The set of utility functions

Assume given a set (ta)a∈A of travel time models and the corresponding arc

entry and cumulated flow functions. Each user is identified by a collection

of functions ur : R
n+1 → R̄, one for each route r in R (where n denotes the

number of arcs of route r). Denote by (Ur)r∈R the set of admissible functions

ur. (Ur)r∈R can be interpreted as the space of the user characteristics.

The utility function of a user characterized by (ur)r∈R in the sense of

Mas-Colell then comes from the following expression:

û[X](h, r = a1, . . . , an) := ur(h0, h1, . . . , hn) (3.4)

with h0 = h and hi = Ha1,...,ai [X](h).

û[X](s) is the pay off of the user represented by (ur)r∈R when he plays s

(i.e. when he takes the travel decision s = (h, r)) against the distribution X

of users’ strategies (i.e. while the decisions of the other users are summarized

by X). h0, h1, . . . , hn−1 are the instants at which the arcs a1, a2, . . . , an are

entered by the user, and hn is the instant at which he leaves the last arc.

Equation (3.4) expresses that the utility depends not only on the time to

complete the whole routes, but also on the instants at which the arcs have

been entered. Such a feature enables to represent a large number of interest-

ing situations. For instance there is an increasing interest for time-varying

tolling policies and DUE models are typically used to assess such schemes

(see Aguiléra and Wagner, 2009, or Chapter 10). This could also accounts
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for short intermediate stops that are only possible within a restricted time

window e.g. picking up dry cleaning before the outlet closes.

Note that at this point, we have no idea on the mathematical properties

of û[X] except it is a map S 7→ R̄. In the following, we will introduce

assumptions on the travel time models ta and on the route utility functions

ur and prove they imply û[X] ∈ SS . It will also be shown that û ∈ C(S).

The set of utility functions û is denoted U
[
(Ur)r∈R , (ta)a∈A

]
. We are now

ready to set the dynamic congestion game definition:

Definition 3.6. A dynamic congestion game is a probability measure U over

U
[
(Ur)r∈R , (ta)a∈A

]
.

From definition 3.6, it is possible to define the Nash equilibrium of a

dynamic congestion games in a similar fashion as for Mas-Colell’s games (see

definition 3.3).

3 A simple example of dynamic congestion

game

Up to now the concept of dynamic congestion game is rather abstract. We

detour briefly to present a simple illustration of the basic idea: the two-

routes problem with heterogeneous users w.r.t. their value of time. This

case study is classical in the transport economics literature (e.g. Verhoef and

Small, 1999) and has been studied extensively for static congestion. In a few

words, users are allowed to choose between two routes: one is slow but has

a low toll while the other is faster but more expansive. As users value time

savings differently, what is the resulting equilibrium?

3.1 Presentation

The considered network is shown in Figure 3.1. It is composed of two arcs,

a1 and a2, and has just one origin destination pair, o-d, connected by two

routes, r1 = a1 and r2 = a2. Both routes are priced with a flat toll, denoted

respectively p1 and p2. Arc a1 and a2 have an exit capacity of k and a

free flow travel time of t0 that we will set to 0 for the sake of simplicity.

Each arc is endowed with the corresponding bottleneck travel time model

(see Chapter 1). The presentation of how we formally define the bottleneck
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model on the space of cumulated flowsM(R) is delayed until Chapter 4. For

now, we just consider cumulated flows Y that admit a density y and define

the bottleneck model by the standard relation:

ṫai [Y ](h) =







y(h)− ki
ki

if tai [Y ](h) > t0,ai or y(h)− ki > 0

0 otherwise
, (3.5)

where (̇) is the differentiation w.r.t. to h. Note that, in this case, the dynamic

network loading problem presented in (3.3) is straightforward and that we

have Xri = Yi for i ∈ {1, 2}.

Figure 3.1: A simple network

Now assume a set of users wish to go from o and d. Each user is char-

acterized by two parameters h ∈ H, his departure time, and ν ∈ [νm, νM ],

his value of time. A user chooses the route ri that minimizes his generalized

cost νt[Yi](h)+pi. Let us introduce the spaces Ur1 and Ur2 of functions u
(h,ν)
r

of the type:

u(h,ν)ri
(h0, h1) =

{
−
(
ν.(h1 − h0) + pi

)
if h0 = h

−∞ otherwise
(3.6)

One might wonder if these sets of utility functions allow us to encode the

assumed users’ behaviour on our small network. As utility is reduced to the

general cost of transport and that the departure times other than h are forbid

to the user by the second line of (3.6), the route utility functions u
(h,ν)
r1 ,u

(h,ν)
r2

correctly represents the behaviour of a user characterized by (h, ν).

Having defined Ur1 and Ur2 as well as ta1 = ta2 , the global setting of

the dynamic congestion game is in place and a game is simply represented

by a distribution2 on U [(Ur)r∈{r1,r2} , (ta)a∈{a1,a2}]. This distribution can be

identified to a distribution on the space of user characteristics C = H ×

[νm, νM ].

2Naturally, not all the possible distributions on U
[

(Ur)r∈{r1,r2}
, (ta)a∈{a1,a2}

]

corre-



122
Chapter 3

Dynamic Congestion Games

3.2 Analytical resolution for a uniform distribution

Consider a given game denoted U and understood as a distribution over

C = H × [νm, νM ]. Assume it is a uniform distribution of density µ. This

subsection exposes how to compute an equilibrium of U . Our approach is

the following. We assume there exists an equilibrium D, a measure on S ×C

and derive the necessary conditions it must satisfy.

Denote Y1(J) := DS(J×{r1}) and Y2 := DS(J×{r2}) the corresponding

cumulated flows on arc a1 and a2, respectively, and ∆t[Y1, Y2](h) := t[Y1](h)−

t[Y2](h). As D is an equilibrium, a user (h, ν) must be assigned to his optimal

route r given by the following rule:

r = 1 if ν >
p2 − p1

∆t[Y1, Y2](h)

r = 2 if ν <
p2 − p1

∆t[Y1, Y2](h)

This leads us to introduce the quantity ν⋆(h) :=
p2 − p1

∆t[Y1, Y2](h)
for any

h ∈ H. The quantity ν⋆(h) is the critical value of time dividing [νm, νM ] into

two sets of value of times, [νm, ν
⋆(h)] and [ν⋆(h), νM ] representing respectively

the users patronizing route 1 and 2. When ν⋆(h) ∈ [νm, νM ], this yields the

following relationships on Y1 and Y2:

Y1([0, h]) =

∫ h

0

∫ ν⋆(h)

νm

µ dνdh = µ

∫ h

0

(ν⋆(h)− νm)dh

Y2([0, h]) =

∫ h

0

∫ νM

ν⋆(h)

µ dνdh = µ

∫ h

0

(νM − ν
⋆(h))dh

By differentiating the previous equations, the densities of Y1 and Y2, denoted

respectively y1 and y2 can be expressed relatively to ν⋆(h):

y1(h) = µ.(ν⋆(h)− νm) and y2(h) = µ.(νM − ν
⋆(h)) (3.7)

Now assume that both ta1 [Y1] and ta2 [Y2] are congested travel times i.e.

that they satisfy the first equation of (3.5) for almost every h ∈ H. Combin-

ing (3.7) and (3.5) and replacing ν⋆(h) by its expression w.r.t. ∆t[Y1, y2](h),

spond to the situation presented above. Indeed we wish that a user has the same value

of time and departure time on both routes. Thus the considered distribution U should

be such that the measure of the set of utility functions build from pairs of route utility

functions with different values of times and/or departure times is zero.
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yields:
k1k2
µ

∆̇t[Y1, Y2](h)

= (k1 + k2)µ
(p1 − p2)

∆t[Y1, Y2](h)
+ k2νM − k1νm

(3.8)

Equation (3.8) is an explicit differential equation in ∆t[Y1, Y2] and it thus

admits a unique solution satisfying the initial condition ∆t[Y1, Y2](0) = t0,a1−

t0,a2 . Once (3.8) is solved the cumulated flows Y1 and Y2 can be immediately

derived from the expressions a few lines above. The equilibrium distribution

D can also be established as follows:

For any E ⊂ C and J ⊂ H,

D(J × r1 × E) := U(E ∩ {(h, ν) : h ≤ v⋆(h) and h ∈ J}

For any E ⊂ C and J ⊂ H,

D(J × r2 × E) := U(E ∩ {(h, ν) : h ≥ v⋆(h) and h ∈ J}

Recall that this reasoning is only valid if the resulting arc travel time func-

tions ta1 [Y1] and ta2 [Y2] are congested on H, i.e. if tai [Yi] > t0,ai almost

everywhere on H. Treating the general case would require to consider a set

of differential equations, one for each congested and uncongested periods and

to iteratively resolve them. This case is not treated here but a very similar

situation can be found in Chapter 5.

The analytical resolution of (3.8) is tedious and requires the use of non

elementary functions, namely product log functions. However it can be solved

numerically. The results for the parameters of Table 3.3 are shown in Figure

3.2. The interpretation is very simple: at first the value of ν⋆(0) is exactly

8 e/h so the users are evenly dispatched among the two routes. As the

capacity of arc a1 is higher than the one of arc a2, at first the difference of

travel times is decreasing. As time goes, route r1 becomes less attractive for

the users with high values of time and the flow on route r1 decreases while

the one on route r2 increases. This results in a decrease in ∆̇t[Y1, Y2] and

after 0.2 hour the system reaches a steady state where the flows on each route

as well as the difference of travel time between each route is constant.
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k1 (pcu/h) k2(pcu/h) p2 − p1 (e)

2000 1000 4

t0,a1 − t0,a2 (h) H [νm, νM ](e/h) µ

0.5 [6, 10] 800 0.5

Table 3.3: Numerical parameters for the illustration

Figure 3.2: Equilibrium of a simple dynamic congestion game
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4 Main results

4.1 Existence and uniqueness of the solution of the

dynamic network loading problem

To establish the existence and uniqueness of the solutions to the dynamic

network loading problem as defined in Subsection 2.1 and hence show that the

functions Φa are well-defined, we need to introduce five (natural) assumptions

on the nature of the travel time models ta.

Assumption I. [Continuity] ta :M(R)→ C(R) is continuous.

Assumption II. [No infinite speed] There exists tmin > 0 such that for all

Y ∈M(R) and all h ∈ R, we have ta[Y ](h) > tmin.

Assumption III. [Finiteness] There exists a continuous map tmax : R+ →

R+ such that ta[Y ](h) ≤ tmax(Y (R)) for all h ∈ R.

Assumption IV. [Strict FIFO] Let Y ∈M(R). The map h 7→ h+ ta[Y ](h)

is non decreasing. Moreover, for h1 < h2 in R such that Y [h1, h2] 6= 0, we

have h1 + ta[Y ](h1) < h2 + ta[Y ](h2).

Assumption V. [Causality] For all h ∈ R and Y ∈ M(R), we have

ta[Y |h](h) = ta[Y ](h).

Assumption I states that a small variation on the cumulated flow on an

arc leads to a small variation of the arc travel time function. Assumption II

amounts to say that the time needed to travel along an arc is bounded from

below. The finiteness condition (Assumption III) assumes that if we wait

for a sufficiently long time, there will be no user left on any arc. The FIFO

condition (Assumption IV) states that if two users enter an arc in a given

order, they leave it in the same order. Finally, Assumption V implies that

the arc travel time depends on the users that have already entered this arc,

but not on the ones that will.

We then have:

Proposition 3.7. Given a strategy distribution X ∈ M(S), system (3.3)

has a unique solution (Ya)a∈A. Moreover X 7→ Ya is continuous for each

a ∈ A. Hence Φa : X ∈M(S) 7→ Ya ∈M(R) is well-defined and continuous

for all a ∈ A.

Corollary 3.8. Hr is well-defined and continuous for all r ∈ R.
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4.2 Existence result

In order to establish the existence result we will focus on a specific category

of utility functions. A general existence result on dynamic congestion games

remains an open problem.

Definition 3.9 (Route utility with departure time penalty). A route utility

function ur incorporates a departure time penalty if there exists an upper

semicontinuous function pr ∈ S (H) and a function τr ∈ C(R
n+1) such that:

ur(h0, . . . , hn) = pr(h0) + τr(h0, h1, . . . , hn)

pr can be interpreted as a departure time penalty. In the context of

transport science, the departure time penalty is a standard modeling feature

(see Heydecker and Addison, 2005). For instance during evening commutes,

travelers might be unable to leave before the end of the work period. As-

suming pr upper semicontinuity is particularly desirable as it allows to forbid

certain departure times for specific users by arbitrary setting pr to −∞ on

open subsets of H. The main reason of Definition 3.9 is technical as keeping

the general definition of utility functions introduced in Subsection 2.2 makes

it difficult to compose them with route exit time functions while keeping

well behaved functions. Indeed whereas we have Lemma 3.2 for continuous

functions, there is no equivalent for upper semicontinuous ones.

Note that it is still possible to impose forms of penalty at arrival, by en-

compassing it in τr. However, those penalties will continuously vary with the

arrival time. Although it would be of clear interest to relax this assumption,

it is important to remind that most of the transport models in fact assume

continuous penalty at arrival.

Theorem 3.10. Given a set of arc travel time functions (ta)a∈A satisfying

Assumptions I-V and compact sets (Ur)r∈R of route utility functions with

departure time penalty, every measure U on U
[
(Ur)r∈R , (ta)a∈A

]
) admits a

Nash equilibrium distribution.

5 Proofs

5.1 Proof of Proposition 3.7

We first introduce:
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1. for an arc a, Y a is the collection (Y r
a )r∈R. It can alternatively be seen

as an element ofM(R×R);

2. for an arc a, the function ψa fromM(R×R) to itself, defined as follows

for each measurable subset J of R. For any r let:

ψr
a(Y a)(J) :=

{
Y r
a (Ha(Ya)

−1(J)) if a ∈ r

0 if not,

with Ya =
∑

r∈R: a∈r Y
r
a (Equation (3.2)). Then ψa(Y a) := (ψr

a(Y a))r∈R,

which we also see as an element ofM(R×R).

Note that the fact that ψr
a(Y a) is a measure is a consequence of the

continuity of Ha[Ya] (Assumption I).

ψa can be interpreted as a kind of “transfer function”, which, given a

cumulated flow on arc a – that is a distribution of users entering arc a –

returns a distribution of users leaving arc a, and this, decomposed for each

route r containing arc a.

Let us first state two lemmas regarding ψa properties, used in the proof

of Lemma 3.13, which in turn is used in the proof of Proposition 3.7.

Lemma 3.11. Consider a bounded interval I ′ ⊆ R and an arc a. Then ψa

is continuous on the set of measures having their support in I ′.

Proof. Take a converging sequence Y n → Y of measures on R × R hav-

ing their support in I ′ and define as usual Yn :=
∑

r∈R: a∈r Y
r
n and Y :=

∑

r∈R: a∈r Y
r.

Consider fn := Ha[Yn] and f := Ha[Y ]. Note that the sequence ||fn−f ||∞
converges to 0 by continuity of Ha.

Choose r ∈ R. We want to prove that lim supn Y
r
n (f

−1
n (J)) ≤ Y r(f−1(J))

for any interval J ⊆ R with equality when J = R. This latter case (that is

when J = R) is straightforward since Y r
n (f

−1
n (R)) = Y r

n (R) → Y r(R) when

n goes to infinity.

Take an interval J = [h1, h2] in R. The interval J can be assumed to be

bounded since all measures are assumed to have support in I ′ and since the

Assumption III is satisfied.

We can assume that Y r
n (f

−1
n (J)) 6= 0 for an infinite sequence of n, other-

wise there is nothing to prove.
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Define now

h1,n := inf f−1
n (J), h2,n := sup f−1

n (J)

h̃1 := inf f−1(J), h̃2 := sup f−1(J)

h∗1 := lim infn h1,n, h∗2 := lim supn h2,n

We have

h1 ≤ fn(h1,n)− f(h1,n) + f(h1,n).

Hence, using the fact that f is an increasing function we get

f(h∗1) ≥ h1.

Similarly, we get

f(h∗2) ≤ h2,

and thus

h2 ≥ f(h∗2) ≥ f(h∗1) ≥ h1.

Hence we have:

h̃1 ≤ h∗1 and h̃2 ≥ h∗2 (3.9)

Let us now prove the following result: Let ǫ > 0. There exists h′1 < h∗1 and

h′2 > h∗2 such that Y r([h′1, h
′
2]) ≤ Y r([h∗1, h

∗
2]) + ǫ.

Take a sequence of closed intervals (In) converging to [h∗1, h
∗
2] such that

[h∗1, h
∗
2] is strictly included in In for any n. According to the sequential conti-

nuity of measures (Hildenbrand, 1974, page 43) limn Y
r(In) = Y r(limn In) =

Y r([h∗1, h
∗
2]), so there exists n′ such that Y r(In′) ≤ Y r([h∗1, h

∗
2]) + ǫ. Take

[h′1, h
′
2] = In′ .

Now, for n big enough, we have f−1
n (J) ⊆ [h′1, h

′
2]. Hence, for n big enough

Y r
n (f

−1
n (J)) ≤ Y r

n ([h
′
1, h

′
2]) (by monotonicity of a measure)

≤ Y r([h′1, h
′
2]) + ǫ (Y r

n converges to Y r)

≤ Y r([h∗1, h
∗
2]) + 2ǫ

≤ Y r([h̃1, h̃2]) + 2ǫ (according to (3.9)).

Lemma 3.12. For all h ∈ R and Y a ∈M(R), we have

ψa(Y a)|Ha[Ya](h) = ψa(Y a|h)|Ha[Ya|h](h) (3.10)

and

ψa(Y a)|h+tmin
= ψa(Y a|h)|h+tmin

. (3.11)
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Let us interpret Equation (3.11) – Equation (3.10) is only a step in the

proof of Equation (3.11). It means that the distribution of users leaving arc a

before h+ tmin depends only on the distribution of users entering arc a before

h. Recall that tmin is a lower bound on the time needed to travel along an

arc a.

Proof of Lemma 3.12. As soon as the first equality is true, the second one is

also true, as a consequence of Claim 3.1 and of Assumption II.

Let us prove the first equality. Fix h ∈ R, Y, Y ′ ∈ M(R) and E a

measurable subset of R. We first prove two properties.

Property 1: Ha[Y |h]
−1(E)∩ ]−∞, h] = Ha[Y ]−1(E)∩ ]−∞, h].

Indeed, for h′ ≤ h, we have Ha[Y |h](h
′) = Ha[Y |h|h′ ](h′) = Ha[Y |h′ ](h′) =

Ha[Y ](h′) with the help of Claim 3.1 for the second equality and of Assump-

tion V for the first and third equalities.

Property 2: If E ⊆]−∞, Ha[Y ](h)], and if Y ′ ≤ Y , then Y ′ (Ha[Y ]−1(E)∩ ]h,+∞[) =

0.

Indeed, let h′ ∈ Ha[Y ]−1(E)∩ ]h,+∞[. We have h′ > h and Ha(Y )(h′) ≤

Ha[Y ](h). According to Assumption IV, we have then Y [h, h′] = 0, and

hence Y ′[h, h′] = 0.

Take now h ∈ R, Y a ∈ M(R × R), r ∈ R and J a measurable subset of

R. Define E := J∩]−∞, Ha[Ya](h)]. The set E is a measurable subset of R

and it is such that E ⊆]−∞, Ha[Ya](h)]. Note that Y r
a ≤ Ya when a ∈ r.

ψr
a(Y a)|Ha[Ya](h)(J) = Y r

a (Ha[Ya]
−1(E)) (by definition)

= Y r
a (Ha[Ya]

−1(E)∩ ]−∞, h])

+Y r
a (Ha[Ya]

−1(E)∩ ]h,+∞[) (since Y r
a is a measure)

= Y r
a (Ha[Ya]

−1(E)∩ ]−∞, h]) (according to Property 2)

= Y r
a (Ha[Ya|h]

−1(E)∩ ]−∞, h]) (according to Property 1)

= Y r
a |h(Ha[Ya|h]

−1(E)) (by definition of |h)

= Y r
a |h(Ha[Ya|h]

−1(E)) (since Y r
a |h is a measure)

= ψr
a(Y a|h)|Ha[Ya|h](h)(J) (by definition).

The following lemma states how the user strategies X induce the cumu-

lated flows (Y r
a )a∈A,r∈R on each arc a with respect to each route r.
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Lemma 3.13. Fix k ∈ N. Given a measure X ∈M(S) (a strategy distribu-

tion), there exists a unique collection (Y r
a )a∈A,r∈R of elements ofM(R) such

that for all routes r = a1, a2, . . . , an

(Ek)







Y r
a1

= Xr|ktmin

Y r
ai

= ψr
ai−1

(Y ai−1
)
∣
∣
∣
ktmin

for i = 2, . . . , n

Y r
a = 0 if a /∈ r

Moreover, for any a, the map Φk
a : X 7→ Ya :=

∑

r: a∈r

Y r
a , where (Y

r
a )a∈A,r∈R

is the solution of (Ek), is continuous.

Informally, Lemma 3.13 says that it is possible to construct a sequence

of measures on S, with each of its elements representing the users’ progress

over their routes, with a time step of tmin. The proof of the lemma relies

on Assumption II (an arc can not be traversed at an infinite speed), which

highlights the crucial importance of this assumption in our approach.

Proof of Lemma 3.13. The proof works by induction on k. For k = 0, define

Y r
a := 0 for all r and a. (Y r

a )a∈A,r∈R is a solution of Ek, which gives the

existence part of Lemma 3.13 for k = 0. Uniqueness is straightforward.

Suppose now that k ≥ 0 and that we have proved the lemma till k.

Existence and continuity: Let (Y a)a∈A = (Y ′r
a )a∈A,r∈R be the solution of

(Ek). We want to prove that (Ek+1) has a solution. Define (Y r
a )a∈A,r∈R for

all routes r = a1, a2, . . . , an by

Y r
a1

:= Xr|(k+1)tmin

Y r
ai

:= ψr
ai−1

(Y ′
ai−1

)
∣
∣
∣
(k+1)tmin

for i = 2, . . . , n

Y r
a := 0 if a /∈ r

According to this definition and Lemma 3.11, Y a depends continuously

on X.

Note that, according to Claim 3.1, we have then for all a ∈ A, r ∈ R

Y ′r
a = Y r

a |ktmin
(3.12)

We check that the collection (Y r
a ) is solution of (Ek+1). The first and the

last equalities of (Ek+1) are straightforward. Let us check the second one.

Let r = a1, a2, . . . , an be a route in R.
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Y r
ai

= ψr
ai−1

(

Y ′
ai−1

)∣
∣
∣
(k+1)tmin

(by definition of Y ai)

= ψr
ai−1

(

Y ai−1

∣
∣
ktmin

)∣
∣
∣
(k+1)tmin

(according to Equation (3.12))

= ψr
a′ (Y a′)|(k+1)tmin

(according to Equation (3.11) of Lemma 3.12)

Uniqueness: Assume that we have two collections (Y a)a∈A and (Za)a∈A so-

lutions of (Ek+1). Yet, (Y a|ktmin
)a∈A and (Za|ktmin

)a∈A are solutions of (Ek).

Hence, by induction,

(Y a|ktmin
)a∈A =

(
Za|ktmin

)

a∈A
(3.13)

We can write the chain of equalities for any a ∈ A

Y r
a = ψr

a′ (Y a′)|(k+1)tmin
(since Y a is solution of (Ek+1))

= ψr
a′

(
Y a′ |ktmin

)∣
∣
(k+1)tmin

(according to Equation (3.11) of Lemma 3.12)

= ψr
a′

(
Za′ |ktmin

)∣
∣
(k+1)tmin

(according to Equation (3.13))

= Zr
a (since Za is solution of (Ek+1)).

We are now in position to prove Proposition 3.7.

Proof of Proposition 3.7. Recall that X(H × R) =
∑

r∈RX
r(H) = 1. Let

τ := maxx∈[0,1] tmax(x). According to Assumption III, for any route r =

a1, a2, . . . , an, a direct induction on i leads to Y ai = Y ai |iτ (no one leaves arc

ai after iτ). Hence, any cumulated flows (Y a)a∈A solution of (3.3) is solution

of Equation (Ek) for a large enough k. It means that for a k large enough,

we have Φk
a = Φa. Existence, continuity, and uniqueness are consequences of

Lemma 3.13.

It remains to prove Corollary 3.8.

Proof of Corollary 3.8. Since we have by definition

Ha1,...,an [X] = Han [Φan [X]] ◦ . . . ◦Ha1(Φa1 [X]),

the corollary is a straightforward consequence of Proposition 3.7 and Lemma

3.2.
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5.2 Proof of the main theorem

Proof of Theorem 3.10. Theorem 3.10 is a direct consequence of the following

lemma (Lemma 3.14) and of Theorem 3.4.

Lemma 3.14. The set of utility functions U
[
(Ur)r∈R , (ta)a∈A

]
considered in

a dynamic congestion game is a measurable subset of C(SS).

Proof. For any r = a1, . . . , an denote φr[X](h) := (h,Ha1 [X](h), Ha1,a2 [X](h),

. . . , Ha1,...,an [X](h)).

To prove that X 7→ û[X] is continuous, it is enough to prove that X 7→

ur ◦ φr[X] is continuous for any r (see Equation (3.4)). Yet, according to

Corollary 3.8, φr is continuous. Lemma 3.2 applied to τr ◦ φr(X) and the

fact that the sup-norm topology is finer than the hypotopology implies that

X 7→ ur ◦ φr[X] is continuous.

Finally, the measurability comes from the fact that for each r, the map

J : (pr, τr) 7→ (X 7→ pr + τr ◦ φr[X])

is continuous (since φr[X] is continuous) and Ur is compact. Indeed, U
[
(Ur)r∈R , (ta)a∈A

]

is then the image of a compact set by the continuous map J .

Conclusion

This chapter introduces dynamic congestion games as a general framework for

the dynamic user equilibrium problem, bringing new results into the trans-

port field from the field of mathematical economics. It is shown that the

existence of a Nash equilibrium in dynamic congestion games is guaranteed

under five natural assumptions on the arc travel time models. This was

achieved by studying the property of the dynamic network loading problem

and showing it is well posed i.e. that it admits a unique solution and that

the resulting map between the route cumulated flows and the arc cumulated

flows is continuous. As this latter proof is constructive, a numerical algo-

rithm can naturally be derived for the dynamic loading problem. This is the

object of the Appendix D.

It is important to note the wide range of modelling possibilities that

dynamic congestion games offer. Correctly defining the set of route utility

functions allows an incredibly large set of variations. For instance, utilities

that varies non linearly with travel time might be considered. Road pricing
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strategies can be embedded in the utility functions by adding maluses on

specific routes, possibly only for specific types of users. As the route utility is

expressed as a function of the time of entrance on every arc of the route, those

pricing schemes might be time-varying. Finally the possibility of intermediate

stops from which the user might derive some utility, typically short shopping

stops, might be represented. As far as congestion modelling is concerned,

the assumptions we considered seems a priori weak and it is reasonable to

think that they include a wide range of specific travel time models.

Although dynamic congestion games allow to represent most of the classic

physical features of dynamic transport models, the question of the formal

equivalence between this formulation of the user equilibrium and standard

ones has yet to be examined. This is the topic of the next chapter.





Chapter 4
Application to the dynamic traffic assignment

problem on a network of bottlenecks

The existence result of Chapter 3 is fairly general and notably apply to most

of the problems of dynamic equilibrium assignment. Those models, although

commonly used in practice for transport planning, lack theoretical founda-

tions and results of existence have been established only in very restrictive

cases.

In Chapter 2, the most common dynamic assignment problem, the so-

called dynamic Wardrop assignment problem is presented. We begin this

chapter by recalling the standard formulation of this problem, with a par-

ticular emphasis on the difference with the formalism of dynamic congestion

games (Section 1). In Section 2, it is shown the dynamic Wardrop assign-

ment problem can be written as a dynamic congestion game and thus has a

solution under the general arc travel time assumptions we stated in the pre-

vious Chapter. In the last section (Section 3), a common travel time model

of the transport literature, the bottleneck model, is reviewed and it is shown

that it is a well-behaved travel time model in the sense stated in the previous

chapter.

1 Dynamic Wardrop assignment

The simplest assignment model can be formulated as follows. Consider a

travel demand, described by flows of users between each origin-destination

pair, and assume each user is allowed to choose his travel route, but not his

departure time. We study the possible assignments of traffic flows to routes
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connecting each origin-destination pair. The question is the following: is

there an assignment such that no route is assigned with a non-zero flow of

vehicles at a time h if there are routes with smaller travel times? Such an

assignment is said to satisfy the dynamic Wardrop principle. Note that the

terminology in the transport literature varies from one author to another,

and that what we call dynamic Wardrop assignment is also termed user

equilibrium assignment.

A formal statement of the dynamic assignment problem is presented be-

low. Before doing so, let us raise a few comments on the mathematical

nature of traffic flows in transport models other than ours. Existing models

represent vehicle flows by integrable functions, whereas our formulation is

based on measures on a bounded interval H (route flows) or on a larger in-

terval H̄ (arc flows), so it is useful to associate each element of L1(H,R+),

the sets of positive integrable functions on H with an element of M(H).

Thus to a flow x ∈ L1(H,R+) we associate the cumulated flow X defined by

X(]−∞, h]) =
∫ h

−∞
x(h′)dh′.

Given a map x in L1(R,R+), we can associate with x a measure X on R

defined by X(] −∞, h]) =
∫ h

−∞
m(h′)dh′. If X can be written in this form,

it is said to have a density. Physically if M is a cumulated flow, m is the

corresponding instantaneous flow.

A measure X is said to be absolutely continuous with respect to X ′ if

X(A) = 0 for every set A for which X ′(A) = 0. In finite-dimensional spaces,

the absolutely continuous measures with respect to the Lebesgue measure

are exactly the ones that have a density.

Recall that in this case X is an absolutely continuous measure (see Chap-

ter 3, Section 1). To guarantee a unique mapping between an absolutely con-

tinuous measure and a measurable function, the functions in L1(H,R+) equal

almost everywhere are quotiented out1. A similar operation is performed on

L1(H̄,R+)

We can now formulate the dynamic Wardrop assignment problem. Con-

sider a dynamic transport network G = (N,A,T A), with arc travel time

models T A = (ta)a∈A and an origin-destination matrix (xod)o∈N,d∈N , each

element of the matrix being a function in L1(H,R+). The arc travel time

models are defined from L1(H̄,R+) to C(R+), using the identification exposed

in the paragraph above, from the set of absolutely continuous measures on H̄

1In other terms we consider the set obtained by identifying the elements f and g such

that f equals to g almost everywhere.
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to C(H̄,R+). These arc travel time models are thus restrictions on L1(H̄,R+)

of the arc travel time models as they are defined in the Section 2 of Chap-

ter 3. Hence we call them restricted arc travel time models. We will see below

(Subsection 2.1) how to extend them to the whole setM(H̄).

An assignment of the traffic is an element x = (xr)r∈R of L1(H,R+)
R

such that
∑

r∈Rod
xr(h) = xod(h) for all (o, d) ∈ N ×N and h ∈ H, with Rod

denoting the set of routes connecting o to d. For each route r = a1, . . . , an,

let us define a route travel time model tr by

tr[X](h) := Hr[X](h)− h, (4.1)

where X is the measure whose density is x. The quantity tr[X](h) is then

the time needed to traverse route r when leaving at instant h for an assign-

ment x. Note that tr is well defined as long as Φai [X] returns an absolutely

continuous measure when X is one. Indeed, Hr[X] is defined by the ex-

pression Han [Φan [X]] ◦ . . . ◦Ha1 [Φa1 [X]] with r = a1, . . . , an. Under a sixth

assumption on the arc travel time functions ta (Assumption VI), we will see

that this condition can be satisfied.

We have intentionally used the same notations for the users’ strategy

distributions and the traffic assignments, as it is natural to interpret Xr as

a cumulated flow of vehicles ; Xr (]−∞;h]) counts the number of vehicles

that have already entered route r.

Definition 4.1 (Dynamic Wardrop Assignment Problem). Find an assign-

ment x ∈ L1(H,R+)
R such that whenever r, r′ ∈ Rod

xr(h) > 0⇒ tr[X](h) ≤ tr′ [X](h), for almost every h ∈ H

Note that at each instant the flow of vehicles leaving an origin is fixed,

i.e. vehicles can not adjust their departure time. Without loss of generality,

it is assumed below that
∑

od∈N×N

∫

H
xod(h) = 1.

2 An existence result for the dynamicWardrop

assignment problem

Assumptions I-V have been stated for standard travel time models not for

restricted ones. Now they can straightforwardly be adapted to restricted
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travel time models. We claim that if the restricted travel time models sat-

isfy Assumptions I-V, as well as an additional one, the so-called bounded

variations assumption, there exists an equilibrium assignment.

Assumption VI. [Bounded variations] There is a real number K such that

for any absolutely continuous measure Ya with derivative ya, the map h 7→

ta[Ya](h) is differentiable almost everywhere (a.e.) on R and h 7→
1

ya(h)
.
dta[Ya]

dh
(h)

is smaller than or equal to K a.e. .

Assumption VI is slightly less intuitive than the ones in Section 4 of

Chapter 3, but for traffic propagation it makes physical sense. Intuitively, if

a flow of vehicles x enters an arc a then the outgoing flow would be something

like x/
(

1 + dta(x)
dh

)

. Consequently, Assumption VI implies that if the inflow

on an arc is bounded by a constant K, then the outflow is bounded by a

constant K ′ that depends only on K and ta. In other words, Assumption VI

ensures that for a given assignment problem, there is a bound on the flows

on each arc of the network (i.e. on the density of Φa[X]) so that for any

traffic assignment unreasonably high flows of traffic will not be observed.

Let us construct a game from the assignment problem. We have already

started with our choice of notations, but a few issues still need to be ad-

dressed. First, we have to extend the definition of the restricted arc travel

time functions, as they are still only defined on L1(H̄,R+) – this is the pur-

pose of Subsection 2.1. Then, using an adequate set of utility functions

(Subsection 2.2), Theorem 3.10 of Chapter 3 will tell us that there is an

equilibrium, but this equilibrium is a measure D leading to an assignment

Xr := DS(H × {r}) that might not have a derivative in L1(H,R+). Our

equilibrium might not be an equilibrium is the sense above. This last issue

is the object of Lemma 4.3 in Subsection 2.3.

2.1 Extension of the travel time models

Consider K a constant and denoteM≤K(R) the set of positive measurable

functions essentially bounded by K, i.e. measures M such that for any

interval J , one has M(J) ≤ Kµ(J) (where µ is the usual Lebesgue mea-

sure on R). It is easy to see that these measures are absolutely continuous

and that their set is closed. As ta is continuous on M≤K(R), there exists

a continuous extension t′a of ta on M(R) by the Tietze-Dugundji extension

theorem (Dugundji, 1951). Since we can require the extension to remain
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within the convex hull of the arc travel times functions (defined for abso-

lutely continuous measures) whose derivative are bounded a.e. by K, we

will have continuous extensions that will satisfy Assumptions I-III and the

first sentence of Assumption IV. To enforce the satisfaction of the last two

assumptions, we make the following redefinition:

ta[Y ](h) := t′a[Y |h](h) +

∫ h

0

ρ
(
Y |h′ ,M≤K(R)

)
dh′,

where ρ is the Prohorov metric.

Hence, for any constant K, we can construct well defined arc travel time

models (for a given assignment problem) that extend the restricted arc travel

time models. By abuse of notation, they will also be denoted ta. Note that

although the extension depends on K, we have omitted any explicit reference

to it.

Finally, it remains to choose a constantK. What would be an appropriate

value for K? It should be high enough such that no equilibrium assignment

induces flows Ya = Φa[X] such that ya ≥ K on a non null measurable set of

R. Assumption VI guarantees the existence of such a constant.

2.2 Utility functions

We can now build the game associated with the dynamic Wardrop assignment

problem. Consider a distribution of users U on the set RC (which stands for

“route choice”) of continuous utility functions of the following type

ûh∗,od[X](h, r) =

{
−tr[X](h) if h = h∗ and r ∈ Rod,

−∞ otherwise.
(4.2)

Here, tr is defined on any measure X ∈M(S). It is the extension of the

tr defined by Equation (4.1) when we use the extension of the arc travel time

ta in Subsection 2.1 (and hence the extension of the Ha and Hr).

The interpretation is straightforward: each user is characterized by a

departure time h∗ he will always prefer, and an origin-destination pair od on

which he will always travel. The utility of a travel decision is limited to the

travel time on the route.

Denote t̃r the map defined by

t̃r,h∗(h0, . . . , hn) =

{
hn − h0 if h0 = h∗ and r ∈ Rod,

+∞ otherwise.
(4.3)
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for any r = a1, . . . , an ∈ R and any h∗ ∈ H. Then taking Ur := {−t̃r,h∗ : h∗ ∈

H} ∪ {+∞}, RC is obviously a measurable subset of U
[
(Ur)r∈R , (ta)a∈A

]
.

Hence we are in the framework defined in the previous chapter (Subsection

2.2 of Chapter 3).

2.3 Properties of the equilibrium distribution.

The set RC can be identified with N ×N ×H and according to the context

a measure on RC is seen either as a measure on C(SS), or as a collection of

measures (Uod)o∈N,d∈N on H. The latter point of view is of particular interest

because of the following proposition:

Proposition 4.2. If U is a measure on RC seen as a collection (Uod)o∈N,d∈N ,

the equilibrium assignment X satisfies:

Uod =
∑

r∈Rod

Xr (4.4)

Proof. Consider a measure U on RC such that U(C(SS)) = U{ûh,od : h ∈

H, od ∈ N × N}. Let D be an associated Nash equilibrium. Recall that

X := DS and U = DC(SS). Then for all measurable subsets E of H:

X(Rod × E) =

= DS(Rod × E) (by definition of X )

= D(Rod × E × C(SS)) (by definition of a margin)

= D(Rod × E ×RC) (U is a measure on RC)

= D(Rod × E × {ûh∗,od such that h∗ ∈ E}) (D is an equilibrium measure)

= D(S × {ûh∗,od such that h∗ ∈ E}) (idem)

= U({ûh∗,od such that h∗ ∈ E}) (idem)

= Uod(E) (identifying RC with N ×N ×H)

Proposition 4.2 simply restates in measure terms that an assignment is a

decomposition of these flows over the set of the routes. The following lemma

is an important consequence.

Lemma 4.3. Let U be a measure on RC, seen as measure on C(SS). If U

is absolutely continuous, every equilibrium assignment X is also absolutely

continuous.
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Proof. Consider an absolutely continuous measure U on C(SS) such that

U(C(SS)) =

U ({ûh,od : h ∈ H, od ∈ N ×N}), letD be an associated Nash equilibrium

and let X := DS . According to Proposition 4.2:

Uod =
∑

r∈Rod

Xr

Then if we have E a measurable subset of H such that Uod(E) = 0, for all

r ∈ Rod we have X
r(E) = 0. Thus, absolute continuity of U implies absolute

continuity of X.

2.4 Theorem

We can now state the main result of the section:

Theorem 4.4. Given a dynamic transport network G = (N,A,T A) whose

arc travel time function satisfy Assumptions I-VI and given an origin-destination

matrix, there is a Wardrop assignment.

Proof. Assume we are given an origin-destination matrix (xod). Define U a

measure on C
(
SS

)
such that

- U(C(SS)) = U (RC) = 1 and

- for a given pair od ∈ N × N and any measurable subset J ⊆ H, we

have U ({ûh,od : h ∈ J}) =
∫

h∈J
xod(h)dh.

We have just encoded our origin-destination matrix as a measure on the set

of users. Note that U is absolutely continuous.

According to Theorem 3.10 of Chapter 3, there exists a Nash equilibrium

D, and according to Lemma 4.3 the equilibrium assignment X := DS is ab-

solutely continuous with respect to the Lebesgue measure. Hence X admits

a density, which we will denote x. Recall that the cumulated flows induced

by x (i.e. the Φa[X]) are essentially bounded by the constant K set at the

end of Subsection 2.1. Consequently we are in the part of M(R) on which

the restricted arc travel time functions were originally defined.

Let h ∈ H and take any route r such that xr(h) > 0. Let od be the origin-

destination pair connected by r. The proof proceeds in two steps. First, we

show that whenever xr is continuous in h, xr(h) > 0⇒ tr[X](h) ≤ tr′ [X](h)
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for all r′ ∈ Rod. Then, we show that this inequality holds almost everywhere.

First step. Let h ∈ H be such that s is continuous in h. Now, take any

route r such that xr(h) > 0. Let od be the origin-destination pair connected

by r. For all ǫ > 0, we have Xr([h − ǫ;h + ǫ]) > 0, which can be rewritten

D ({r} × {h′} × ûh′,od : h
′ ∈ [h− ǫ, h+ ǫ]) > 0. Therefore, we know that for

all ǫ > 0, there is h′ ∈ [h−ǫ, h+ǫ] such that ûh′,od[X](r′, h′′) ≤ ûh′,od[X](h′, r)

for all h′′ ∈ H and r′ ∈ R, or, directly in terms of route travel times:

for all ǫ > 0, there is h′ ∈ [h− ǫ, h+ ǫ] such that

tr′ [X](h′) ≥ tr[X](h′) for all r′ ∈ Rod.

By continuity of h 7→ tr[X](h), we get the required inequality.

Second step. For a given r consider E the set of points such that

xr(h) > 0 and tr[X](h) > tr′ [X](h) for a r′ on the same origin-destination

pair as r. From the previous paragraph xr is discontinuous at every h ∈ E.

E is measurable since tr, tr′ and xr also are. Now assume µ(E) = ǫ 6= 0,

denoting µ the Lebesgue measure on R. Then, xr being measurable, there

exists a set F such that the measure of its complementary µ(F c) < ǫ/2 and

xr is continuous in every h ∈ K (Lusin Theorem (Lusin, 1912)). So E ⊆ F c,

a contradiction. Hence µ(E) = 0.

Thus, the required inequality is valid almost everywhere.

3 Formal properties of the punctual bottle-

neck model with time-varying capacity

The bottleneck model has already been encountered in Chapter 1. The ob-

jectives of this section are twofold. First, the bottleneck model is generalized

to the case where the exit capacity is time-varying. Second its formal prop-

erties are studied; more specifically its continuity and the satisfaction of

Assumptions (I-VI) are examined.

The formalization of the bottleneck model retained in this section is a

restricted travel time model in the sense exposed in Section 1. It takes as

input Y , an absolutely continuous measure on H̄ (or equivalently a function

y ∈ L1(H̄,R)) and returns a continuous travel time function t[Y ] : H̄ → R+.
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3.1 Statement of the bottleneck model with non-time-

varying capacity

From the seminal work of Vickrey there has been various statements of the

bottleneck model. We present a simple intuitive one below, widely used by

the transport science community (see for instance Arnott et al., 1998).

Denote k the capacity of the bottleneck and consider Y a cumulated

volume on H with density y and t0 its free flow travel time.

Let us first define Q[Y ], the stock of users waiting in the bottleneck by

the following equation:

Q̇[Y ](h) =

{
y(h)− k if Q(h) > 0 or y > k

0 otherwise
, (4.5)

where (̇) is the differentiation w.r.t. to h. So that Equation (4.5) defines

Q[Y ] on R rather than H, extend y on R by letting y(h) = 0 for h /∈ H.

The interpretation of (4.5) is straightforward: when the entrance flows

exceed capacity users began to accumulate in a punctual queue until a suffi-

cient drop in demand allows to clear all the stock of traffic. Then the travel

t[Y ] is simply given by:

t[Y ](h) = t0 +
Q[Y ◦H0]

k
(4.6)

where H0 := idH̄ + t0. The relation between t[Y ] and Q expresses that a

user arriving at h has to wait for all the users already in the queue when

he arrived have left before going through the bottleneck. It reflects a first

in first out discipline. The use of the quantity Y ◦H0 rather than Y simply

express that the bottleneck is located at the arc’s exit.

3.2 Statement of bottleneck model with time-varying

capacity and free flow travel time

We introduce a variant to the former model, that represents a more general

case. In this formulation both capacity and free flow travel time are functions

of the time. In term of assumptions and formulation, this is no new approach.

A similar model can be found in (Smith and Wisten, 1995) for instance. Two

equivalent formulations are proposed.
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Integral form. Let Y be a cumulated flow of users, y its density, h 7→

k(h) a function of the time representing the capacity of the bottleneck at

each instant, and h 7→ t0(h) the time-varying free flow travel time. Denote

K =
∫ h

0
k(h)dh. It is assumed that k > 0 on R and thus K is strictly

increasing. Moreover t0 is assumed to be continuous, differentiable almost

everywhere and such that ṫ0 > −1 and t0,min < t0(h) < t0,max. In this case,

the stock evolution equation, Equation (4.5), becomes:

Q̇[Y ](h) =

{
y(h)− k(h) if Q[Y ](h) > 0 or y(h) > k

0 otherwise
(4.7)

Then t[Y ](h) is the solution of the following equation:

K
(
h+ t[Y ] (h)

)
−K ◦H0(h) = Q[Y ◦H−1

0 ] ◦H0(h) (4.8)

where H0 := idH̄ + t0. Equation (4.8) is simply a reformulation of Equa-

tion (4.6) for a time-varying capacity. It states that the travel time t[Y ](h)

can be found by integrating k from h until the value of the integral is equal

to the stock i.e. until all the users waiting at h have been served. Note

that Equations (4.8) and (4.7) define a system in t[Y ](h), that can be solved

chronologically for all h ∈ H.

Differential form. For a given entrance flow Y , the travel time function

t[Y ] is a continuous functions of h. Thus sets {h : t(h) = 0} [resp. {h : t(h) =

0}] are countable unions of closed [resp. open] intervals. We refer to those

intervals as unqueued [resp. queued ] periods. We denote Q1 =]q0, q1[, Q2 =

[q1, q2], . . . , Q2n+1 the sequence of unqueued and queued periods, q2k and q2k+1

being transition instants from an unqueued period to the next queued period,

and from queued to unqueued, respectively. The travel time function t[Y ]

satisfies the following equations on queued and unqueued periods.

On any queued interval the derivative of Q[Y ◦H−1
0 ] ◦H0 w.r.t. time is

Ḣ0(h).(y(h)− k ◦H0(h)), so differentiating Equation (4.8) yields:

y(h).Ḣ0(h) = k
(
h+ t[Y ](h)

)
.
(
1 + ṫ[Y ](h)

)
(4.9)

On any unqueued interval, by definition:

y(h) ≤ k(h) and t[Y ](h) = t0(h) (4.10)

We claim that Equations (4.9) and (4.10) are sufficient to uniquely define

t[Y ].
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Proposition 4.5. Consider a continuous travel time function t[Y ] : H̄ 7→ R+

such that t[Y ](h) ≥ t0(h) for all h and t[Y ](hm) = t0(hm). The function

t[Y ] is a solution to Equation (4.6) if and only if there exists a sequence

of instants (qi)i=0..2n+1, such as t[Y ] is a solution to Equation (4.9) on any

Q2i+1 = [q2i, q2i+1] and to Equation (4.10) on any Q2i = [q2i−1, q2i].

Proof of Proposition 4.5. We already demonstrated the “only if” part. For

the “only if” it is sufficient to consider a function t[Y ] as described in Propo-

sition 4.5 and integrate it iteratively on the intervals Q2i and Q2i+1 to show

that t[Y ] is a solution to Equation (4.6).

3.3 Continuity

Topologies. Before treating of continuity, recall the topologies endowed

with the space of flows (i.e. the set of absolutely continuous measures on H)

and the set of travel time functions (i.e. C(H̄,R+)). The set of travel times

is endowed with topology of the uniform convergence. The topology on the

set of flows is defined with respect to the cumulated flows rather than the

instantaneous flows. Formally it is the weak convergence topology. Yet the

weak convergence of Yn toward Y is equivalent to the pointwise convergence

of the cumulative distribution function of Yn (i.e. h 7→ Yn] −∞, h]) toward

the cumulative distribution function of Y (i.e. h 7→ Y ] − ∞, h]). This

result is known as the Portmanteau theorem on the convergence of measures

(see Billingsley, 1995, pp 327). Now pointwise convergence of a sequence of

increasing continuous functions toward a continuous function implies uniform

convergence. The topology on the set of cumulated flows is thus the one

induced by the following norm: ||Y ||∞ is the uniform norm of the cumulative

distribution function of Y .

A continuity statement. We then have the following proposition:

Proposition 4.6. For any capacity k : R→ [kmin,+∞[ and continuous free

flow travel time function t0, the bottleneck travel time model is continuous.

Proof of Proposition 4.6. Let us consider the case where t0 = 0. The result

can straightforwardly be extended to the case where t0 6= 0.

Consider η > 0 and Y1 and Y2 such that ||Y1 − Y2||∞ < η. By abuse of

notation, we write Yi(h) for Yi(]∞, h]). We are going to show that for every

ǫ > 0 we can choose η such that ||t[Y1]− t[Y2]||∞ < ǫ.
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For every h ∈ R, define q1(h) and q2(h) as qi(h) := max{h′ : h′ ≤ h and

t[Yi](h
′) = 0}. For a given h assume w.l.o.g. that q2(h) > q1(h). Let us first

remark that:

|K
(
q2(h))−K(q1(h)

)
− Y2

(
q2(h)

)
+ Y2

(
q1(h)

)
|

< Y1
(
q2(h)

)
− Y1

(
q1(h)

)
− Y2

(
q2(h)

)
− Y2

(
q1(h)

)

< 2.η

Then, using Equation (4.8):

K
(
h+ t[Y1](h)

)
−K

(
h+ t[Y2](h)

)
=
(
Y1(h)−K(q1(h))

)
−
(
Y2(h)−K(q2(h))

)

So:

|K
(
h+ t[Y1](h)

)
−K

(
h+ t[Y2](h)

)
| <

∣
∣Y1(h)− Y1(q

1(h))− Y2(h) + Y2(q
1(h))

∣
∣

+ |K(q2(h))−K(q1(h))− Y2(q
2(h)) + Y2(q

1(h))|

⇒ |h+ t[Y1](h)− h− t[Y2](h)|.kmin < |(Y1(h)− Y2(h))− (Y1(q
1(h)− Y2(q

1(h))|

+2.η

⇒ |t[Y1](h)− t[Y2](h)| <
4η

kmin

Taking η =
kminǫ

4
leads to the conclusion.

3.4 Satisfaction of the Assumptions

The previous subsection showed that the bottleneck travel time model satis-

fied Assumption I, continuity. Assumptions II to VI still need to be examined.

Consider a bottleneck model travel time with the assumptions of Proposition

4.6. Then:

• Assumption II, No infinite speed. As for any Y , t[Y ] ≥ t0 ≥ t0,min, it

is straightforward.

• Assumption III, Finiteness. Taking tmax(Y (R)) = t0,max + Y (R)
kmin

is

enough.
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• Assumption IV Strict fifoness. Consider h1 < h2 in R such that

Y [h1, h2] ≥ 0. Then there exists a non null subset I ⊆ [h1, h2] where

y > 0. From Equation (4.9), ṫ[Y ](h) > −1 during a queued period,

whereas ṫ[Y ] = 0 during an unqueued period. The the result follows

directly.

• Assumption V, Causality. This is straightforward from the specification

of the arc travel time model.

• Assumption VI, Bounded variation. The assumption is expressed by

Equation (4.9).

A consequence is that there always exists a dynamic Wardrop assignment

on a network of bottlenecks. This result is already known and is due to

Mounce (2006).

4 Conclusion

This previous chapter introduces dynamic congestion games as a general

framework for the user equilibrium problem. It is shown that the problem is

well-posed in the sense that the existence of a Nash equilibrium is guaranteed.

In this chapter, as an illustration, we exposed how to exploit this result to

prove the existence of a dynamic Wardrop assignment. This result could be

extended without much efforts to incorporate tolls or utilities that varies non

linearly with travel time.

The application of Theorem 3.10 of Chapter 3 to prove Theorem 4.4 is

quite instructive. The main difficulty lies in adapting Assumption I to com-

monly used travel time models. Indeed in bottleneck models, as well as

in delay-volume models, when a sequence of arc incoming flows converges

toward a Dirac function, the resulting travel times converge toward a discon-

tinuous function. Hence if we try to extend straightforwardly classical travel

times on the whole set of measures, this extension won’t satisfy Assump-

tion I. Thus a less rough extension was introduced so that Theorem 3.10

of Chapter 3 can be applied. Under the assumptions of Theorem 4.4, it

was then verified that the equilibrium obtained by Theorem 3.10 is also a

Wardrop assignment in the sense of Theorem 4.4. However, it seems unlikely

that Assumption I could be alleviated as travel times need to be continu-

ous to correctly formulate the game. For further existence results based on
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Theorem 3.10, the strategy we adopted in the last section of the chapter will

certainly be useful.

A possible future work could be to formulate the user equilibrium model

proposed in (Lindsey, 2004) as a dynamic congestion game in an attempt to

generalize Lindsey’s result to a network.

Finally it remains to address the problem of the uniqueness and the stabil-

ity of the equilibrium. Although the game theory standard toolbox has been

helpful in this matter for the static case (see for instance (Milchtaich, 2005)),

to the author’s opinion the framework proposed here is too general to deal

with those two issues.



Part III

Analytical resolutions of simple

games





Part introduction

Objectives and structure

The previous part presented a general framework to model Dynamic User

Equilibrium, the so-called dynamic congestion games. This part deals with

two instances of DUE models that can be seen as simple dynamic congestion

games. The focus here is on the modelling of departure time choice and user

heterogeneity. In both games, the network is either a one-arc network (Chap-

ter 5) or a two-arc network (Chapter 6) with a bottleneck travel time model.

Each game is focused on a specific user characteristic that is continuously

distributed.

- In Chapter 5, it is the users’ preferred arrival times that are continu-

ously distributed.

- In Chapter 6, it is the users’ value of time that are continuously dis-

tributed.

For each game a dedicated method is designed, resulting in a straightfor-

ward way to compute the DUE. Each game allows to analyse a specific issue

that is of interest in transport science and economic theory. In Chapter 5,

the linkage between peaks in demand, understood here as a high density of

users preferring to arrive in a small time window and the congestion periods

are investigated. For instance we will see that several peaks in demand might

merge in a single congested period or alternatively give rise to a congested

period each. In Chapter 6, different pricing strategies for one arc of the two-

arc network are tested and assessed. A noteworthy result is that under some

specific assumptions a profit maximizing toll allows nearly as much welfare

gains as a welfare maximizing toll.
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Interest for the rest of the thesis

An important contribution of this Part to the rest of the thesis is the insights

it gives on DUE with distributed users’ characteristics. Part II demonstrates

that correctly representing such an equilibrium is a complex matter and Part

IV shows that computing a DUE also is. The experience gained from the

analytical resolution of simple examples will be of great help in the design of

the computation methods proposed in the last Part.



Chapter 5
User equilibrium with general distribution of

preferred arrival times

The seminal paper on trip scheduling is due to Vickrey (1969), who consid-

ered a fixed number of commuters traveling from an origin to a destination

by a single route where congestion occurs at a bottleneck, each user being a

microeconomic agent minimizing a cost function that involves travel time as

well as schedule delay. In the simplest version of the model, Vickrey consid-

ered homogeneous users that have same preferred arrival time and same cost

function. Many extensions of the model have been provided in the literature,

with focus on user heterogeneity. That pertaining to preferred arrival times

has been treated by Hendrickson and Kocur (1981) with no solution algo-

rithm. Heterogeneity pertaining to the costs of travel time and of schedule

delay has been addressed by e.g. Van der Zijpp and Koolstra (2002), Arnott

et al. (1993). Other extensions include the modelling of stochastic demand

and capacity, multiple routes or elastic demand - for review see (Arnott

et al., 1998).

The known results about the equilibrium pattern of departure times can

be summarized as follows. When the preferred arrival time is common to

all users, a single congestion period emerges with queue at bottleneck first

increasing to a maximum and then vanishing. Smith (1984) and Daganzo

(1985) showed that this simple departure pattern holds for a distribution

of preferred arrival times, under the so-called “S-shape” assumption of a

unique peak period, i.e. a single interval on which the density of preferred

arrival times exceeds the bottleneck capacity rate. However, in the case of a

finite number of preferred arrival schedules and heterogeneous cost functions,
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(Lindsey, 2004) and (Van der Zijpp and Koolstra, 2002) showed that the

resulting departure pattern may be much more complex with possibly several

congestion periods and multiple maxima in queuing time.

The purpose of this chapter is to extend the model of Smith and Daganzo

to a general distribution of preferred arrival times. Indeed, this induces a

complex pattern of departure times, as in (Van der Zijpp and Koolstra, 2002)

and (Lindsey, 2004). The core principle in our analysis is to express the

equilibrium distribution of departure times as the solution of a differential

equation. This equation involves the distribution of preferred arrival times,

as mediated by bottleneck flowing, together with the costs of schedule delay

and travel time. The differential equation also inspires a solution algorithm,

which consists in searching for the initial instants of queued periods.

The chapter is organized into four main sections and a conclusion. First,

Section 1 states the modelling assumptions and provides intuitive reason-

ing into the structure of the equilibrium pattern. Then, in Section 2 the

characteristic differential equation is obtained by mathematical analysis of

the optimality conditions. Next, Section 3 states the solution algorithm and

provides a theorem of existence of a departure time equilibrium under gen-

eral distribution of preferred arrival times. Section 4 is devoted to numerical

illustration. Lastly some concluding comments are given.

1 The model

Consider a single origin-destination pair connected by a single route, and a

set of N users with heterogeneous preferred arrival times. In a game-theoretic

perspective, every user is modelled as a microeconomic agent seeking unilat-

erally to minimize his travel cost by adjusting his departure time h. This

travel cost is parameterized by a travel time function τ : h 7→ τ(h) giving for

every instant of entrance the associated travel time on the route. The dis-

tribution of individual choices gives rise to a distribution of departure times

which makes a cumulated trip volume at the entrance of the route, which

may be called the demand. In turn this macroscopic entry trip volume, de-

noted as X+ : h 7→ X+(h), determines the route travel time τ on the basis of

queuing dynamics. The travel time function τ represents the supply state.

The demand function linking τ to X+, and the supply function linking X+ to

τ , make up a circle of dependency, typical of an equilibrium problem between

supply and demand.
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This section is purported to specify the assumptions first on the supply

side, then on the demand side, so as to state the equilibrium problem in a

formal way.

The following notations will be used:

- H+, H− and Hp respectively are the domains of departure, arrival and

preferred times. Without going into the details, let us assume that

these are sufficiently large intervals so that no departure nor arrival

takes place out of them.

- X+ is a distribution of departure time over H+ i.e. X+ represents the

number of users having departed before h hence also the cumulated

trip volume. X+ is assumed to be continuous and differentiable nearly

everywhere, with time derivative x+(h) to be interpreted as the flow

rate of departing users at h. A last requirement on X+ is that at a

maximum instant hMax, it holds that X+(hMax) = N the total number

of users.

- k the bottleneck capacity, a flow rate.

- τ defined on H+ is a travel time function assumed to be continuous

and differentiable nearly everywhere.

- t the function that maps a distribution X+ to a travel time function τ .

- The derivative of function f with respect to the clock time (i.e. to a

variable h) is denoted as ḟ .

1.1 Transport supply - Flowing model

Let us first consider the derivation of travel time function τ from departure

time distribution X+. Travel along the route is assumed unqueued except

perhaps at a single bottleneck of deterministic capacity k. If the entry flow

coming in bottleneck has rate in excess of k, then a waiting queue develops

where users wait to leave queue according to a First In - First Out (FIFO)

discipline. Thus the supply function t is a standard pointwise travel time

model. The following relationship in which Q(h) denotes the number of

users queuing at h in the bottleneck, and τ0 is the free flow travel time:

t(h) = τ0 +
Q(h)

k
(5.1)
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where Q stems from the following differential equation:

Q̇(h) =

{
x+(h)− k if Q(h) 6= 0 or x+(h)− k > 0

0 otherwise
(5.2)

When X+ is continuous, the resulting travel time τ is well defined and is

continuous and differentiable nearly everywhere. Without loss of generality,

we assume that τ0 = 0 thus letting τ be the queuing time.

The flowing model is represented in a compact way by the following no-

tation:

τ = t[X+]

1.2 Demand side

User behaviour. Every user is characterized by a preferred arrival time

hp ∈ Hp and a travel cost function representing a trade-off between a travel

time and a schedule delay, defined as the difference between the actual arrival

time h̄ and hp. Given travel time function τ , the cost to a user with preferred

arrival time hp upon departing at h is defined as:

g(h, hp; τ) = ντ(h) +D(h+ τ(h)− hp) (5.3)

where D is the schedule delay cost function and ν the trade-off between cost

and time also referred to as the value of time. Let also assume:

Assumption I (On the Schedule Delay Cost function). The following as-

sumptions are made on D.

a) D is continuous.

b) D is differentiable on R with derivative Dl.

c) D is convex.

d) D achieves a minimum at 0 and D(0) = 0 .

These are standard assumptions, (e.g. Arnott et al., 1993; Lindsey, 2004)

and yield a cost of schedule delay that increases with the lag between actual

and preferred arrival time. Assumptions Ic and Id make D to decrease on

R− and increase on R+.

Each user is an economic agent modeled as a rational decision-maker with

perfect information: he chooses his departure time so as to minimize his cost
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function. Given his preferred arrival time hp and the travel time function τ ,

his choice of departure time amounts to the following mathematical program:

min
h
g(h, hp; τ)

The distribution of users. Consider now a set of N users with a same

cost function g, but heterogeneous preferred arrival times. This is represented

by a cumulative distribution Xp on Hp: Xp(hp) is the number of those users

with preferred arrival time that is less than hp. The derivative of Xp, denoted

as xp, is defined almost everywhere and is readily interpreted as the flow rate

of users with preferred arrival time hp. From its definition, Xp is increasing

and semi-continuous. Let also:

Assumption II (On the Distribution of Preferred Arrival Times). The fol-

lowing assumptions are made on Xp.

a) Xp is continuous.

b) xp > k on a finite number of intervals.

c) xp 6= k almost everywhere.

Assumption IIb generalizes the “S-shape” assumption considered in Hen-

drickson and Kocur (1981), Smith (1984) and Daganzo (1985), which could

be stated as “xp > k on a single interval”. Those intervals are called peak

periods as along each of them there are more users that would prefer to ar-

rive than allowed by the route capacity. Intuitively a higher number of peak

periods will give rise to a more complex distribution of departure time, with

potentially several distinct queuing periods. Assumption IIa is purely tech-

nical, so is IIc which is required only to make precise the statement of the

algorithms in Section 3.

The order of departure. In the literature, little consideration has been

given to represent the departure choice decision of a continuous distribution

of users. A natural approach is to introduce a departure choice function H

mapping a user with preferred arrival time hp to his chosen departure time

h. Then distribution X+ stems from:

X+(h) =

∫

Hp

1H(hp)≤hdXp(hp) (5.4)

Yet, relation 5.4 is not convenient to handle. For the sake of analytical

simplicity, let us assume:
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Assumption III (On Natural order of departure). The departure time func-

tion is continuous and increasing.

This implies that users depart in the order of increasing preferred arrival

time, and hence is referred to as the natural order assumption. An obvious

issue pertains to the existence of an equilibrium choice function which would

not satisfy to a natural order. Daganzo (1985) investigated the case with a

strictly convex schedule delay costs function and showed that natural order

is satisfied by measurable equilibrium choice functions. With barely convex

schedule delay costs, all the equilibrium choice functions do not satisfy the

natural order, but at least one does (Arnott et al., 1998).

Under the natural order assumption, Equation 5.4 becomes1

X+ = Xp ◦H
−1 (5.5)

1.3 User Equilibrium statement

Each user tries to minimize his cost function under perfect information. By

definition, the user equilibrium (UE) is a situation where no user can reduce

his cost by unilaterally changing his decision, here of departure time.

A natural statement of the problem is:

Definition 5.1 (User equilibrium based on departure time function). Find

an increasing function H such that, letting X+ := Xp ◦H
−1:

g(H(hp), hp; τ) ≤ g(h′, hp; τ) for almost every hp ∈ Hp, h
′ ∈ H+ (5.6a)

τ = t[X+] (5.6b)

The associated distribution of departure times stems from natural order.

Equation (5.6a) expresses the impossibility for any user to improve on his

departure time decision; Equation (5.6b) is the flowing equation.

Let us provide a simpler, alternative formulation:

1For an increasing function F such as X+ or H, our definition of its reciprocal function

F−1 is as follows:

F−1(x) := inf
{
h : F (h) > x

}
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Definition 5.2 (User equilibrium based on departure time distribution).

Find an increasing function X+ such that, letting Hp := X−1
p ◦X+:

g(h,Hp(h); τ) ≤ g(h′, Hp(h); τ) for almost every h, h′ ∈ H+ (5.7a)

τ = t[X+] (5.7b)

In (5.7a) the optimality condition is expressed by enumerating the users

in order of departure time, whereas in (5.6a) each user is labelled by his

preferred arrival time. The relationship between the two arises from the fact

that, in natural order, the n-th user to depart is also the n-th user in the order

of preferred arrival time. The two problems are equivalent in the following

way.

Proposition 5.3 (Equivalency of equilibrium statements). (i) A solution

X+ of (5.7) yields a solution H := X−1
p ◦X+ of (5.6). (ii) Conversely, if H

is a solution of (5.6) then X+ := Xp ◦H
−1 is a solution of (5.7).

Proof. (i) Assume that X+ is a solution to (5.7) and consider H := X−1
+ ◦Xp.

Then H is defined, an increasing function of h as the composition of two

increasing functions, and X+ = Xp ◦H. Consider h ∈ Hp and apply (5.7a)

to h = H(hp): then for all h′ ∈ H+ it holds that g(H(hp), hp; τ) ≤ g(h′, hp; τ)

and hence (5.6a).

(ii) Same argument in reverse order.

This enables us to study the equilibrium by focusing on X+ rather than

H. In the sequel, we address the UE problem in departure time distribution.

2 Properties of the equilibrium departure time

distribution

In this section, necessary conditions are derived on an allegedly optimal pat-

tern X+ from the optimality equation (5.7). Then these conditions are shown

to be also sufficient. This line of attack had already been taken by Smith

(1984), but in the specific case of an S-shape distribution of preferred arrival

time.
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2.1 On queued and peak periods

Assuming that X+ is a solution of the UE problem, let us consider τ = t[X+].

As τ is continuous, the sets {h : τ(h) = 0} [resp. {h : τ(h) = 0}] are

countable unions of closed [resp. open] intervals. We refer to those intervals

as unqueued [resp. queued ] periods. Consider first an unqueued period U :

users departing during U incur only a cost of schedule delay. Thus, it is

optimal for a user with preferred arrival time hp to choose a departure time

h interior to U if and only if h = hp. Otherwise he could lower his cost

by marginally changing h towards hp. Then at equilibrium Hp = IdH+
and

x+ = xp on U .

Now consider a queued period Q. As τ is continuous, non negative and

is zero at the endpoints of its definition interval, it has a least one maximum

value and possibly minima. The general pattern of travel time is therefore

expected to be a sequence of increasing then decreasing sub-periods.

This gives us a crucial insight into the structure of an equilibrium state.

First, whenever there is no queue, users arrive (and depart) at their preferred

arrival time and thus incur no cost. Second, the peak periods defined above

(when xp > k), play an important role in the problem: as unqueued departure

flow is equal to scheduled flow at arrival, an unqueued period cannot intersect

a peak period except perhaps at isolated points (since τ = 0 cannot be

sustained when x+ > k). Therefore, the maximum number of queued periods

is bounded by the number of peak periods; whereas the number of unqueued

periods is limited to one plus that bound.

To sum up, we have highlighted two important features of H+ and Hp

under an equilibrium distribution. The set of departure times is divided

into alternated periods of unqueued and queued states. Provided that H+

is “large enough”, the first and last periods should be unqueued. To state

this principle explicitly, we denote Q1 =]q0, q1[, Q2 =]q1, q2[. . . , Q2n+1 the

sequence of unqueued and queued periods, q2k and q2k+1 being transition in-

stants from an unqueued period to the next queued period, and from queued

to unqueued, respectively. Similarly, we denote by P1 =]p0, p1[, . . . , P2n+1

the sequence of successive peak (when xp > k) and off peak (when xp < k)

periods in Hp.



2 Properties of the equilibrium departure time distribution 161

2.2 Necessary conditions

Given a solution X+ of the UE problem (5.7), consider the associated func-

tions of travel time τ = t[X+], preferred time Hp = X−1
+ ◦Xp and cost g (the

reference to τ is omitted for the sake of legibility). Our aim is to turn the

optimality conditions on the basis of g into conditions on X+ by means of

the flowing equation. To do so, the two states of unqueued versus queued

traffic must be addressed as distinct cases.

About unqueued periods, we already established that:

x+ = xp (5.8)

and it holds that τ(h) = 0 and Hp(h) = h. Then h = X−1
+ ◦ Xp(h)

or equivalently X+(h) = Xp(h). This applies notably to each instant qi of

transition between queued and unqueued state, yielding that

X+(qi) = Xp(qi) for any i ∈ {0, 1, . . . 2nq} (5.9)

About a queued period Q, consider a given h′ ∈ Q together with

Hp(h
′) the preferred arrival time of users departing at h′ and let g(h

′) : h 7→

g(h,Hp(h
′); τ). As the functions h 7→ τ(h) and h 7→ D(h + τ(h) − Hp(h

′))

are differentiable a.e. so is g(h
′). Denote ġ(h

′)(h) =
dg

dh

(h′)

(h). From Equation

(5.7a), it must hold ġ(h
′)(h) = 0 for almost every h′ ∈ H+.

Yet as D is differentiable on R
⋆, whenever h+ τ(h)−Hp(h

′) 6= 0:

ġ(h
′) = ντ̇(h) +Dl(h+ τ(h)−Hp(h

′))(1 + τ̇(h′)) (5.10)

Equation 5.10 is easily extended on R by defining Dl(h) := 0. For h′ in

Q and h in Hp, we thus have:

ντ̇(h) +Dl

(
h+ τ(h)−Hp(h

′)
)
(1 + τ̇(h′)) = 0 (5.11)

Evaluating the previous equation in h = h′ and introducing the flowing

equation in a queued state, we get that:

x+ = k.
ν

Dl(l) + ν

where l(h′) := h′ + τ(h′)−Hp(h
′) is the schedule delay of the user departing

at h.
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Equation (5.11) has two remarkable features. First x+ > k whenever l > 0

and reversely x+ > k whenever l > 0. The function l can be interpreted as

the schedule delay incurred by a user departing at h. Consequently, each

queued period can be divided in early sub-periods when users depart early

(that is, depart at a time yielding arrival earlier than preferred ex-ante),

during which the entry flow rate is beyond capacity and the queue builds

up; and late sub-periods when users depart late, during which the entry flow

rate is under capacity and the queue diminishes. Second, (14) can be stated

as a differential equation in X+ over Qi =]qi−1; qi[. Indeed, according to the

flowing equation (5.2) we have ṫ = (x+ − k)/k on Qi, so by integrating over

]qi−1;h[:

τ(h) + h = qi−1 +
X+(h)−X+(qi−1)

k

Taking the definition of Hp = X−1
p ◦ X+, the lateness l can now be ex-

pressed as a function of X+, so that (5.11) yields a differential equation in

X+.

To sum up, we have shown that the equilibrium departure time distri-

bution satisfies the differential equations (5.8) and (5.11) respectively on

unqueued and queued periods. Successive integrations of these equations

along the Qi periods with an appropriate initial condition coming from the

previous period yields the equilibrium departure time distribution, provided

that the Qi periods are given.

2.3 Necessary and Sufficient Conditions

Let us now demonstrate that the necessary conditions are also sufficient

conditions, owing to the following property:

Proposition 5.4 (NCS for the UE). Let X+ be a departure time distribution

with associated sequence Qi of unqueued and queued periods. Then X+ is an

equilibrium solution if and only if it satisfies (5.11) and (5.9) on Q2i and

(5.8) on Q2i+1 for all i.

Proof of Proposition 5.4. Having demonstrated the “only if” part in the pre-

vious subsection, let us tackle the “if” part by taking a departure time dis-

tribution X+ with associated functions τ = t[X+] and Hp = X−1
p ◦ X+ of

travel time and preferred time, respectively.

Assume that X+ satisfies (5.11) and (5.9) on Q2i and (5.9) on Q2i+1

for all i. Let us fix any h in H+ and consider the function g(h) : h′ 7→
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ντ(h′) + D(h′ + τ(h′) − Hp(h)). The quantity g(h)(h′) represents the cost

incurred by a user of preferred arrival timeHp(h) when leaving at h′. Our aim

is to show that g(h) admits a global minimum at h′ = h. From its definition

g(h) is continuous and differentiable almost everywhere, with derivative ġ(h)

given by (5.10), with interchange between h and h′. Since Hp is an increasing

function (as composition of two increasing functions), as is Dl because of the

convexity of D, h′ 7→ ġ(h) is a decreasing function. Around point h′ = h we

have that:

ġ(h)(h′) ≷ ġ(h)(h) if h′ ≶ h

Yet ġ(h)(h) = 0 almost everywhere on the basis of either (5.11) in a queued

state or (5.8) in an unqueued state. It holds that for almost every h, h′ ∈ H+,

ġ(h)(h′) ≷ 0 if h′ ≷ h

which means that h′ = h is the unique minimum of function g(h). Thus X+

satisfies the optimality condition (5.7a), as well as (5.7b) by assumption.

2.4 Graphical interpretation of the NSC under V-shape

schedule delay costs

From here it is assumed that D has the simple, V-shaped form:

D(h+ t− hp) = α.(h+ t− hp)
+ + β.(h+ t− hp)

− (5.12)

where α [resp. β] are the marginal cost of arriving early [resp. late] with

respect to the preferred time hp and ()+ [resp. ()−] denotes the positive [resp.

negative] part. Under this V-shaped form, equation (5.11) can be restated

in the following simple way:

x+(h) =







xE+ :=
kν

ν − α
if h+ τ(h) < Hp(h)

xL+ :=
kν

ν + β
if h+ τ(h) > Hp(h)

(5.13)

Therefore only two departure flows are admissible in a queued period,

one made of users planning to arrive early regarding their preferred time

and the other of users planning to arrive late. These are denoted by xE+ and

xL+, respectively, E and L standing for early and late. From their definition

xE+ > k and xE+ < k. Let us now use the cumulated volume representation
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Figure 5.1: Cumulated volume representation of an equilibrium situation

to comment the conditions on X+. Figure 5.1 depicts X+, Hp and X− =

X+ ◦ (IdH+
+ t), the arrival time distribution.

First, note that X− can be easily deduced from the sequence of the Qi.

Indeed, according to the simple flowing model, the exit flow rate is the ca-

pacity k on a queued period and so X− has slope k; out of queued periods

X− simply coincides with Xp and X+. Second, in Figure 5.1 one can read

τ and l from the horizontal distance between respectively the graphs of X+

and X−, and those of X− and Xp. Moreover the intersection points between

the graphs of X− and Xp divide each queued period Q into early and late in-

tervals regarding the preferred arrival time. The transition instants between

two successive periods make critical times at arrival, denoted as h̄i. Such

instants on a period Q = [qm; qM ] are the solutions of the equation:

k.(h̄− hm) = Xp(h̄)−Xp(hm) (5.14)

Clearly there cannot be more than one h̄i per peak or off peak period,

and their total number over a queued period must be odd. To each critical

time at arrival h̄i let us associate the corresponding departure time hi, so
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that they are related by the equation:

h̄i = hi + τ(hi) (5.15)

The critical times at departure hi also divide each queued period Q2i in

intervals of earliness or lateness regarding the departure, i.e. in periods where

users depart at a time such that they arrive early or late. Those instants cor-

respond to a switch in the departure flow from xE+ to xL+ or conversely. Figure

5.2 illustrates the definition of critical times at arrival and at departure.

Figure 5.2: Critical times at arrival and at departure

3 UE algorithm under V-shaped cost of sched-

ule delay

This section provides an algorithm to compute the equilibrium departure

time distribution based on the properties established previously. The objec-

tive of the algorithm is to build the distribution of departure time by deter-

mining the queued periods. The principle is that, given the beginning of a

queued period, both X+ and τ are easy to compute by integrating equations
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(5.11) and (5.1) and stopping when τ = 0: thus the main unknown variable

is the initial instant of a queued period, and the algorithm is purported to

test candidate initial instants.

Two questions arise about a candidate initial instant. First, will the

associated queued period induce an equilibrium state? Then, how to search

for all queued periods in such a way as to delimit precisely each of them?

Both issues are addressed in an integrated way, by progressive identification

of the successive queued periods. A criterion is provided that both guarantees

the current queued period to be correct and ensures that the search for the

next queued period should focus on later instants. We shall first present

an algorithm for testing a candidate initial instant ~̂0, then expose the full

computation method and next give the proof of convergence. Lastly, based

on the algorithm termination we derive the following existence result:

Theorem 5.5 (Existence of equilibrium). The user equilibrium problem with

general preferred arrival time distribution and V-shaped cost of schedule delay

admits at least one solution.

3.1 Testing a candidate initial instant of a queued pe-

riod

Assuming that a sequence of queued periods has been identified up to time

hm, our aim is to identify the initial instant ~̂0 of the next queued period,

prior to the beginning of the next peak period.

The algorithm is as follows. First equation (5.14) is solved on [~̂0; +∞),

yielding a sequence of solutions ~̂i, which is referred to as the sequence of

intersection times at arrival. Then the sequences (ĥi) and (t̂i) are derived in

a recursive way, by setting initial value to ĥ0 = ~̂0 and t̂0 = 0, and then by

using the following, recursive formulae:

xi+.(~̂i+1 − ~̂i) := k.(~̂i+1 − ~̂i) (5.16)

with xi+ = xE+ if i is even and xL+ otherwise,

and,

t̂i := ~̂i − ĥi (5.17)

The sequences (~̂i), (ĥi) and (t̂i) are purely geometric constructions, as

illustrated in Figure 5.3. Yet intuitively (~̂i) and (ĥi) would correspond to
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the i-th critical times at arrival and departure derived from a given candi-

date ~̂0 and (t̂i) to the corresponding travel times. They define a candidate

distribution X̂+ that a priori is not flow-consistent with the candidate arrival

time distribution X̂−. Two unphysical phenomena may occur:

- “Travel time becomes negative”: for some i, ~̂i < ĥi or equivalently

t̂i < 0. This typically corresponds to a situation where the candidate

queued period started too early.

- “Queue does not vanish”: for all i, ~̂i > ĥi or equivalently t̂i > 0, which

corresponds to a situation where the candidate queued period started

too late.

Figure 5.3: Testing a candidate initial instant

We claim that the sequence (t̂i) allows us to assess the suitability of ~̂0 as

initial instant of queuing in an equilibrium state. The intuition is as follows:

assume that there exists j such that t̂j = 0 and τ̂i > 0 for i < j. Then,

by deriving X+ from the sequence (ĥi)i≤j, (5.11) hold on Q = [q, ĥi] and

Q indeed describes a queued period. Therefore, the condition “∃j such as

τ̂j = 0 and τ̂i ≥ 0 for i < j ” is a necessary condition for ~̂0 to be the instant

we are looking for. Yet, it will be seen later on to be too weak for sufficiency;

the appropriate criterion is in fact “∃j such as τ̂j = 0 and τ̂i ≥ 0 for all i” or

equivalently ”mini τ̂i = 0 ”. Intuitively, this guarantees that the candidate

queued period “leaves enough space” for the subsequent ones. The algorithm

is stated below in explicit pseudo-code.
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Algorithm 5.1 QTest(~̂0)

Inputs: A candidate initial instant ~̂0
Outputs: he, mini t̄i
Set t̄0 to 0 and ĥ0 to ~̂0 and Set the n solutions to the sequence (~̂i)i=0...n−1

in increasing order.

For i = 1 . . . n− 1 do

Set ~̂i := ~̂i−1 + k/xi+.(~̂i − ~̂i−1)

Set τ̂i :=

End For

Set k to argmini τ̂i and Set he to ĥk

3.2 Main algorithm

The general philosophy of our method is to find successively the queued

periods in the UE departure time distribution, starting from the first peak

period. Algorithm 5.2 consists in searching over an interval [hm, hM ] for the

initial instant of a queued period, by testing candidate initial instants ~̂0

on the basis of Algorithm 5.1. The search method is a dichotomy process

oriented by the sign of mini τ̂i = 0. Algorithm 35.3 uses Algorithm 5.2

repeatedly until all peak periods have been addressed; it returns the sequence

of queued periods which fully determines X+. The computation process is

illustrated in Figure 5.4.

Algorithm 5.2 findqueuedPeriod([hm, hM ])

Inputs: A search period [hm, hM ]

Outputs: [qm, qM ]

Parameters ǫ a tolerance level

Repeat

Set qm := (hm + hM)/2

Set {qe,min τ} to QTest(qm)

If min τ > 0 then Set hM := qm
else Set hm := qm

Until |min τ | < ǫ
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Algorithm 5.3 equilibriumComputation(H+)

Inputs: The set of admissible departure time H+

Outputs: The sequence of queued periods Q2k

Set k := 1

Set hM to the initial instant of the first period

Set hm := infH+

Repeat

Set Q2k to findqueuedPeriod([hm;hM ])

Set k := k + 1

Set hm := supQ2k

Set hM to the initial instant of the first period after Q2k

Until there is no peak after hm

Figure 5.4: User equilibrium algorithm

3.3 Proofs

Consider the functions τ̂i(h0) defined by (5.16) and (5.17) on a given period

[hm, hM ]. The proofs of existence and termination essentially derive from the

following property.

Proposition 5.6. Wm(h0) := mini τ̂i(h0) is a continuous and decreasing

function.

The proof of Proposition 5.6 is given in Appendix A.

The proposition implies that the equation Wm = 0 has a solution on

[hm, hM ] if “Wm(hm) ≥ 0 and Wm(hM) ≤ 0”. Then Algorithm 5.2 applied
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to an off-peak period with adequate inputs must terminate and yield a suit-

able initial crtitical instant h0. Moreover, by progressive identification of

the successive queued periods in the equilibrium state, Algorithm 5.3 must

terminate.

Let us finally address the issue of existence for an equilibrium departure

time distribution.

Proof of Theorem 5.5. Consider the departure time distribution X+ com-

puted from the outputs (Q2k) of Algorithm 5.3 together with its associated

functions τ and Hp of travel time and preferred time, respectively. Then for

all k, τ ≥ 0 on Q2k and τ = 0 elsewhere. Moreover X+ satisfies (5.11) and

(5.9) by construction on queued periods and (5.8) on unqueued periods. The

existence theorem then follows directly from Proposition 5.4.

4 Numerical experiments

Having implemented the algorithm in a computer program under the Scilab

environment (Scilab Consortium, 2010), a series of numerical experiments

were performed by progressively moving two peak periods closer to each other

(Figure 5.5). Initially there are two distinct queued periods, each of them

with a single maximum of travel time. Then the two periods are merged

into a single one with two maxima. Further, when the peak periods are

close enough, the two maxima collapse into a single one yielding the same

pattern as with a single peak period: the well-known pattern made up of one

queue-loading sub-period followed by an unloading one.
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Figure 5.5: Numerical experiments
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5 Conclusion

This chapter showed that relaxing the S-shape assumption on the pattern of

preferred arrival times in the single bottleneck may give rise to a much more

complex pattern of departure times, with potentially several queued periods

and travel time maxima. Applications of such a model may include the

assessment of transportation policies, such as congestion pricing or flextime

promotion.

Among the improvements that would make sense, a major one is to intro-

duce heterogeneity in the cost of schedule delay. Indeed, complex road pricing

schemes are based on the principle that one can segregate high schedule costs

from lower ones by imposing time varying tolls. Therefore the heterogeneity

in schedule delay cost functions and in the user cost of time is essential in

assessing the benefits of such schemes.
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values of time

Facing ever rising levels of traffic congestion, many local authorities have

given serious consideration to road pricing. Among the existing schemes,

value pricing has enjoyed a reasonable success especially in the US. A famous

instance is the one currently operating on the SR91 in California. In a

value pricing scheme, travellers choose between two roadways: one is free

but congested, while the other one is priced but free flowing.

An important literature has already explored the design and the assess-

ment of value pricing. It has mainly focused on two features of the prob-

lem. On one hand, it has been pointed out that the welfare gain is highly

affected by the level of heterogeneity among the travellers, especially regard-

ing their value of time (e.g. Papon, 1992; Verhoef and Small, 1999; Small

and Yan, 2001). These results have been achieved using static models, thus

neglecting the time-varying nature of congestion and the possibility for trav-

ellers to adjust their departure time, e.g. by leaving earlier than preferred to

avoid traffic jams. On the other hand, dynamic models of congestion, most

of them inspired by Vickrey’s bottleneck model, have been used to assess

value pricing. Most of these works tend to neglect the heterogeneity among

travellers, or to have a crude representation of it, for instance by considering

only two possible values of times (e.g. De Palma and Lindsey, 2002). Papers

accounting for both aspects are very rare.

A notable exception is van den Berg and Verhoef (2010) who considered

a bottleneck model with two routes, where heterogeneity is represented by a

continuum of values of time. Under this framework, they assessed two pricing
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policies. In both of them a time-varying and queue clearing toll is set on one

roadway, while the other one is untolled. However in the first policy the toll is

set to maximize revenue while in the second it is set to maximize the welfare

gains. This gives very interesting results: as in the static case, the level of

heterogeneity impacts the welfare gains of both schemes but in an adverse

way. In the static case the relative efficiency of a private pricing scheme

decreases with heterogeneity. With a bottleneck model, it is the contrary.

This is saying that changing the representation of congestion from a static

to a dynamic framework leads to radically different results when it comes to

the impact of heterogeneity.

Now Van den Berg and Verhoef’s treatment of the problem is only valid

for time-varying and queue clearing tolls. This chapter aims at investigating

in an analytical approach if their result stands for flat tolls. Indeed, in

practice, a fully time-varying toll is rarely set and tolling schemes usually

have one fixed toll during the entire peak or day. To achieve this goal, it is

required to state and derive a dynamic user equilibrium model for two route

networks, which leads to some reasonably complex analytic.

The chapter is structured in three sections and a conclusion. In the first

section, a bottleneck model with one route and continuous heterogeneity in

the value of time is exposed. It is shown that the problem can be reduced to

the resolution of a differential equation and examples of resolution are given

in the case of a uniform distribution of the values of time. The second section

extends the model for two routes. Finally, the results are exploited to assess

a value pricing scheme under two ownership regimes (Section 3). In the first

case the priced roadway is publicly owned and the toll is set to maximise the

welfare gains; in the second one, it is privately owned and the toll is set to

maximise profits.

1 Model with one route

1.1 Model statement

Consider a single OD pair connected by a single route of deterministic capac-

ity k. A set of users wish to go from the origin to the destination and prefer

to arrive at a given instant h. All the users share the same preferred arrival

instant hp but they might proceed to a trade-off between effectively arriving

at that instant and avoiding high travel times. This trade-off depends on
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how much they value a decrease in travel time and a reduction in schedule

delay, the latter being defined as the lag between their effective arrival time

and their preferred one.

For a given arrival pattern, the congestion on the route is modelled by

a travel time function τ : R → R+ that associates to an arrival time h, the

travel time τ(h) required to arrive at that time.

The following alineas describe how the users and the equilibrium are

represented.

Demand Users only differ w.r.t. their value of (travel) time (VoT). They

have the same preferred arrival time and schedule delay cost. Users are

modelled as a continuum: V is a cumulative distribution representing a set

of users whose value of time varies within [νm, νM ]. The quantity V (ν) is

the volume of users whose value of time is under ν. The distribution V is

assumed continuously differentiable and its derivative is denoted v. Given

a travel time τ , a user with a value of time ν within [νm, νM ] appraises the

option of arriving at h using the following cost function:

g(h; ν, τ) = ντ(h) + α(h− hp)
− + β(h− hp)

+ (6.1)

where (.)− and (.)+ denote the negative and the positive part. Equation (6.1)

expresses a trade off between the travel time and the arithmetical lateness

with respect to a preferred arrival time.

In our framework an assignment of the demand is described by a pair of

functions (h−, h+), where h− : [νm, νM ] →] −∞, hp] and is increasing, and

h+ : [νm, νM ] → [hp,+∞[ and is decreasing. That is to say that for each

value of time ν in [νm, νM ], users divide themselves in two categories: part

of them will decide to arrive before hp while the others will arrive after.

Without loss of generality, hp is set to 0 for the rest of the chapter.

Supply Travel time on the route is assumed to follow standard pointwise

bottleneck model with zero free flow travel time (see Chapter 4). Recall that

a bottleneck model can be compactly represented by a function t that maps

a cumulated inflow X+ in the bottleneck to a travel time function τ = t[X+].

We say that a function τ is a V -feasible travel time if there exists a

cumulated flow X+ such that (1) X+(+∞) = V (νm) and that (2) t[X+] = τ .

As a consequence of the properties of the bottleneck model, all V -feasible

travel time τ are continuous, differentiable nearly everywhere and τ̇ ≥ −1.
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Moreover, τ has a compact support i.e. there exists a bounded interval I

such that h /∈ I implies τ(h) = 0.

Dynamic User Equilibrium problem Solving the general equilibrium

problem would imply to consider a distribution on the space [νm, νM ] × H.

In this chapter, we will focus on a special type of user equilibrium where

for a given value of time, the corresponding users are assigned to two arrival

times, one before hp and the other after. We state the equilibrium formally

as follows:

Definition 6.1 (Dynamic User Equilibrium problem (DUE)). Find a state

of the demand (h−, h+), and a V -feasible travel time τ whose support is

[h−(νM), h+(νM)], such that:

g
(
h−(ν); ν, τ

)
= min

h
g(h; ν, τ) ∀ν (6.2a)

g
(
h+(ν); ν, τ

)
= min

h
g(h; ν, τ) ∀ν (6.2b)

k.
(
h+(ν)− h−(ν)

)
= V (ν) ∀ν (6.2c)

The interpretation is as follows. Equations (6.2a) and (6.2b) express the

optimality of the solution while Equation (6.2c) is the constraint imposed by

the bounded capacity at exit. For the sake of analytical simplicity, we will

look for solutions (h−, h+, τ) of the DUE that are continuously differentiable

almost everywhere.

1.2 Comments about the equilibrium formulation

Scope of the formulation The DUE problem, as presented above, states

a specific type of equilibrium and has an implicit assumption embedded in

its definition. Users arrive according to a specific discipline: a user with VoT

ν has only two optimal arrival instants, one before hp = 0, given by h−(ν)

and one after, given by h+(ν) (see Equations (6.2a) and (6.2b)). Moreover

users arrive in the order of their VoT before hp and in the reverse order after

hp (as h− and h+ are respectively increasing and decreasing by definition of

an assignment of the demand). This implies an equilibrium structure with

a single peak in travel time, centred on hp and where users with high VoT

arrive near the preferred arrival time while users with lower VoT arrive on

the flanks of the peak period.
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A formal approach to justify this assumption would be to formulate the

equilibrium in a larger framework, as the dynamic congestion games intro-

duced in Chapter 6 and show the assumption holds. Now the following

two-step qualitative reasoning shows that the equilibrium structure assumed

here is sensible:

1. In equilibriums with a single peak in travel time centred in hp, the as-

sumption hold. Indeed, with this structure of travel times, a user with

high VoT has always more incentive to arrive closer to hp, where the

the travel times are higher, than a one with low VoT. The order of

arrival described by a pair of functions (h−, h+) is the only compatible

with an equilibrium.

2. No equilibrium with multiple peaks in travel times exists. If multiple

peaks in travel times exist, there at least one peak at an instant h 6= hp.

Assume there exists an equilibrium with a peak at h < hp. Then the

user arriving at h has an incentive to arrive slightly later, at an instant

h + δh closer to hp and at which the travel time is lower. This travel

time structure is incompatible with an equilibrium. The case h > hp is

similar.

From an arrival time to a departure time perspective The DUE’s

formulation retained here is based on the arrival time functions h+ and h−.

On the contrary the one presented in the previous chapter was based on

departure time functions. This latter point of view is more intuitive: from

a behavioural perspective it is simpler to consider that users choose their

departure time and that their arrival time results from the FIFO queue at

the bottleneck. On the contrary, when considering the arrival time as users’

choice variable, one has to impose Equation (6.2c) to guarantee the physical

constraint of the bottleneck on the outcoming flow. However the arrival time

approach leads to simple analytics and that’s why it was chosen here.

1.3 Derivation

The philosophy of our derivation method is the following. An additional

quantity, the map ν → g̃(ν), is first introduced. g̃(ν) physical interpretation

is the generalized cost incurred by a user with value of time ν. It is then
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showed that the DUE problem is equivalent to the second order differential

equation in g̃ presented in Definition 6.2.

Definition 6.2 (Equilibrium Cost Problem (ECP)). Solve the following dif-

ferential equation on [νm, νM ]:

∂2g̃

∂ν2
(ν) = −

αβ

k.(α + β)
.
v(ν)

ν
(6.3)

with boundary conditions:
∂g̃

∂ν
(νM) = 0 (6.4)

g̃(νM) =
αβ

k.(α + β)
.V (νM) (6.5)

The Equilibrium Cost Problem (ECP) is a simple second order differential

equation that admits a unique solution. We claim that the ECP is equivalent

to the DUE problem in the following sense.

Proposition 6.3 (Equivalency of the DUE and the ECP). rien

(i) If (h−, h+, τ) solves the DUE problem, then g̃(ν) := ν.τ(h−(ν))−α.h−(ν),

or equivalently g̃(ν) := ν.τ(h+(ν)) + β.h+(ν), solves the ECP.

(ii) If g̃ solves the ECP then the triple (h−, h+, τ) defined by:

h−(ν) := −
α

k.(α + β)
V (ν) (6.6)

h+(ν) :=
β

k.(α + β)
V (ν) (6.7)

τ(h) :=
∂g̃

∂ν

(
h−1
− (h)

)
(6.8)

is a solution to the DUE problem.

1.4 Proof of the equivalency result

The two following alineas give the proof of Proposition 6.3. The first one

deals with the part (i) of the proposition while the second one deals with

the part (ii). Although the proof can be omitted without loss of continuity,

it is not devoid of interest and it gives useful insights into the equilibrium

structure.
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Necessary conditions for the equilibrium Assume given (h−, h+, τ) a

solution to the equilibrium travel time problem such that h−, h+ and τ are

continuously differentiable. First we define:

g̃(ν) := ν.τ(h−(ν))− α.h−(ν) = ν.τ(h+(ν)) + β.h+(ν) (6.9)

g̃(ν) thus gives the cost incurred by a user with value of time ν. Note that

Equation (6.9) is well defined as (h−, h+, τ) is a solution of (6.2a) and (6.2b).

Then remark that g(.; ν, τ) has the following property as a consequence

of Equations (6.2a) and (6.2b):

∂g

∂h
(h+(ν); ν, τ) =

∂g

∂h
(h−(ν); ν, τ) = 0

Consequently: 





∂τ

∂h
(h−(ν)) =

α

ν

∂τ

∂h
(h+(ν)) = −

β

ν

(6.10)

Equations (6.10) and (6.2c) can be used to derive an equation on g̃(ν).

Indeed:







∂g̃

∂ν
(ν) = τ(h−(ν)) ⇒

∂2g̃

∂ν2
(ν) =

∂τ

∂h
(h−(ν))

∂h−
∂ν

(ν)

∂g̃

∂ν
(ν) = τ(h+(ν)) ⇒

∂2g̃

∂ν2
(ν) =

∂τ

∂h
(h+(ν))

∂h+
∂ν

(ν)

(6.11)

Combining the Equations (6.11) and (6.10) then yields:

∂2g̃

∂ν2
(ν) =

αβ

ν(α + β)

(
∂h−
∂ν
−
∂h+
∂ν

)

Using (6.2c) we finally get the equation of Definition 6.2:

∂2g̃

∂ν2
(ν) = −

αβ

k.(α + β)
.
v(ν)

ν

This is a simple second order differential equation that can be easily solved

knowing the two boundary conditions:

∂g̃

∂ν
(νM) = 0
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g̃(νM) =
αβ

k.(α + β)
.V (νM)

The top equation comes from the fact that τ
(
h+(νM)

)
= 0 and Equation

(6.11). The bottom equation comes from the Equations (6.2c) and (6.9)

applied in νM .

Finally note that the quantities h+, h− and τ can be expressed directly

with respect to g̃. Combining Equations (6.11) and (6.10) yields:







∂h−
∂ν

(ν) = −
α

k.(α + β)
v(ν)

∂h+
∂ν

(ν) =
β

k.(α + β)
v(ν)

Note that τ(h−(νM)) = τ(h−(νM)) = 0 as required in the DUE definition for

an equilibrium travel time function, so h−(νM) = −g̃(νM)/α and h+(νM) =

g̃(νM)/β. Integrating the previous equations with these boundary conditions

yields:







h−(ν) = −
g̃(νM)

α
+

β

k.(α + β)
(V (νM)− V (ν)) = −

β

k.(α + β)
V (ν)

h+(ν) =
g̃(νM)

β
+

α

k.(α + β)
(V (ν)− V (νM)) =

α

k.(α + β)
V (ν)

Finally, from Equation (6.10):

τ(h) =
∂g̃

∂ν

(
h−1
− (h)

)
= −

∂g̃

∂ν

(
h−1
+ (h)

)

Sufficiency conditions for the equilibrium Consider g̃ the solution to

the ECP and let h−, h+ and τ be defined by Equations (6.6), (6.7) and (6.8).

They have the following properties: τ is defined on [h−(νM), h+(νM)], and is

continuous on this interval and differentiable on [h−(νM), 0[ and ]0, h+(νM)].

The functions (h−, h+) are continuous and differentiable on [νm, νM ]. More-

over τ(h−(νM)) = τ(h+(νM)) = 0.

Let us prove that the triple (h−, h+, τ) thus defined is a solution to the

DUE problem. The proof proceeds by demonstrating the three following

claims for a given ν.

Claim 1 g(h−(ν); ν, τ) = g(h+(ν); τ, ν)
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This is straightforward by definition of (h−, h+) from Equation (1.4) and

by definition of g(.; ν, τ).

Claim 2
∂g

∂h
(h−(ν); ν, τ) =

∂g

∂h
(h+(ν); ν, τ) = 0

Note that

∂g̃

∂ν
(ν) = τ(h−(ν))⇒

∂2g̃

∂ν2
(ν) =

∂τ

∂h
(h−(ν))

∂h−
∂ν

(ν)

The quantity g̃ is a solution of the ECP and thus satisfies (6.3). h− is defined

by (6.6), so we have:
∂τ

∂h
(h−(ν)) = −

α

ν

Finally:
∂g

∂h
(h−(ν); ν, τ) = −α + ν

∂τ

∂h
(h) = 0

Using the same arguments, it can be shown that
∂g

∂h
(h+(ν); ν, τ) = 0.

Claim 3 g(h−(ν); ν, τ) = min
h∈R⋆

−

g(h; ν, τ) and g(h+(ν); ν, τ) = min
h∈R⋆

+

g(h; ν, τ)

As the pair (h−, h+) satisfies Equations (6.10), they are respectively de-

creasing and increasing functions. From Equations (6.11), it comes that

∂τ/∂h is increasing on R
⋆
− and R

⋆
+ and thus that τ is convex on these two in-

tervals. g(.; ν, τ) is hence clearly convex on R
⋆
− and R

⋆
+. As h−(ν) and h+(ν)

are local minimums of g(.; ν, τ) (Claim 2), it yields that they are global min-

imums, respectively on R
⋆
− and R

⋆
+.

From Claims 1, 2 and 3, the triple (h−, h+, τ) satisfies Equations (6.2a)

and (6.2b). Equation (6.2c) is straightforward.

1.5 General properties of the DUE

The equivalency result of Proposition 6.3 directly leads to some general prop-

erties of the user equilibrium. Some of them are listed below.

Property 6.4 (Existence and uniqueness of the DUE). There exists a unique

DUE as expressed in Definition 6.1.

This is a direct consequence of Proposition 6.3 and of the existence and

uniqueness of the solutions of the ECP.
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Property 6.5 (On the equilibrium cost properties). The function g̃ is convex

and increasing.

According to Property 6.5, users with the highest VoT incur the highest

costs. As on the contrary they incur the lower travel time costs, this implies

that schedule delay costs decrease with the VoT at a lower rate than travel

time costs.

Proof of Property 6.5. The function g̃ is convex as a solution of the ECP. It

is increasing as ∂g̃/∂ν is increasing and ∂g̃/∂ν(νM) = 0.

Property 6.6 (On the sensitivity to the distribution of VoT). The two

following quantities depend on V (νM) but not directly on V :

• the cost incurred by the users of maximum VoT, i.e. g̃(νM) = αβ
k.(α+β)

.V (νM),

• the support of τ , i.e. [h−(νM), h+(νM)] =
[

− α
k.(α+β)

V (νM), β
k.(α+β)

V (νM)
]

.

The very object of this chapter is to investigate the impact of user het-

erogeneity on the equilibrium properties. In this context, Property 6.6 is es-

pecially interesting and rather surprising. Naturally the expression of g̃(νM)

is the generalized cost in Vickrey’s original model with homogeneous users.

Note that g̃(νM) is also the maximum value incurred by any user.

1.6 Application in the case of a uniform distribution

In this subsection we set V (ν) = θ.(ν−νm), hence choosing a uniform repar-

tition of the values of time. Equation (6.3) then becomes:

∂2g̃

∂ν2
= −

αβ

k(α + β)
.
θ

ν

The integration is straightforward:

g̃(ν) = −θην ln(ν/νM) + θη(νM − ν) + g̃(νM)

letting η = αβ/k(α+ β). g̃ is an increasing function of ν, which implies that

at equilibrium, users with high values of times incur the highest generalized

costs. It is not that straightforward as, on the contrary, they experience a

lower travel time. Indeed from Equations (6.11) and (1.6) we get:

τ(h−(ν)) = τ(h+(ν)) = −θη ln(ν/νM) (6.12)
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which is clearly decreasing with ν. Note that these two remarks are still true

in the general case. At equilibrium users with high value of time experience

higher costs but lower travel times.

The two figures below illustrate the influence of the heterogeneity w.r.t

value of time. The numerical setting is the following: we considered a pop-

ulation of 9000 users undertaking a route with a bounded capacity of 3600

pcu/hour. This means that the peak lasts 2.5 hours. The average value of

time is 8 euros and it is spread uniformly across the population between νm
and νM . The scheduling cost parameters are α = 4 and β = 15.6. This

values have been chosen to get a comparable framework as in van den Berg

and Verhoef (2010).

Figure 6.1 and Figure 6.2 show respectively the generalized costs g̃ as a

function of the value of time and the travel time as a function of the entrance

time for an equilibrium situation. Several distributions are tested, each of

them with a different spread (i.e. with a different value for (νM − νm)) but

sharing the same average value. This allows seeing the sensitivity of the

equilibrium to user heterogeneity.
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Figure 6.1: Travel time for different spreads of the values of time as a function of

arrival time
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Figure 6.2: Generalized Cost as a function of the value of time
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A first remark is that the support of τ is invariant. This is a general

property as shown in the previous section. Secondly the convexity of the

travel time function increases with heterogeneity so that the travel time is

higher in the centre of the peak period but lower on its flanks. At first sight

it could lead to think that the aggregate cost is higher when heterogeneity is

high. Figure 6.5 shows it is not the case: the aggregate cost decreases with

heterogeneity. This gain is in fact due to a decrease in the costs incurred by

the lowest VoT, while the cost incurs by the highest VoT is unaffected by

the changes in heterogeneity.

In order to investigate this last phenomenon, the travel time costs and the

schedule delay costs are plotted below. First no that in this case, the schedule

delay costs are varying linearly with ν. As it can be seen from Equation

(6.11) and (6.3), this is solely due to the choice of a uniform distribution and

it would be different otherwise. Second, for high heterogeneity, the travel

costs are no longer monotously varying with the VoT and admit a maximum

for a value of time ν̄ > νm. Finally, from the two figures it is clear that the

decrease in the aggregate cost is solely due to a decrease in travel time costs

and that the schedule delay costs remain unchanged.



186
Chapter 6

UE with continuously distributed values of time

3 4 5 6 7 8 9 10 11 12 13
0

1

2

3

4

5

6

Value of time (Euro/h)

T
ra

ve
l t

im
e 

co
st

s 
(E

ur
o)

2

4

6

8

10

Figure 6.3: Travel time cost as a function of the value of time
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Figure 6.4: Schedule delay cost as a function of the value of time
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Figure 6.5: Aggregate Ccst as a function of the spread of the distribution

2 Extension with two routes

2.1 Model

We are going to define the extension to the two-route problem by analogy

with the single route case. Consider a single OD pair served by two routes,

1 and 2, with respective capacity (1 − ρ).k and ρ.k. Both routes are priced

at flat (i.e. time invariant) tolls p1 and p2 and have free flow travel times

t1 and t2. As in this problem only the difference of costs on the two route

matters, we assume without loss of generality that p1 = 0 and t2 = 0 and

denote p2 = p and t1 = t > 0. With loss of generality, we assume p2 > 0.

We will say that route 1 is the untolled route and that route 2 is the tolled

route.

Demand In the two route case, an assignment of the demand has two com-

ponents: the assignment of users between the two routes and the assignment

between the arrival times within each route.

The users route decision is modelled by two values of time ν⋆1 and ν⋆2
such that ν⋆2 < ν⋆1 . The interval [νm, ν

⋆
1 ] corresponds to the VoT of users pa-

tronizing route 1, while [ν⋆2 , νM ] corresponds to the VoT of users patronizing
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route 2. Remark that this description of demand is very specific; the implicit

assumptions it carries will be discussed in the next subsection.

The arrival time choice is described by two pairs of functions, (hi−, h
i
+)i∈{1;2},

as it was done in the model with one route. For both routes, the functions

(hi−, h
i
+)i∈{1;2} are continuously differentiable and are respectively increasing

and decreasing. Moreover it is assumed that h1−(νm) = h1+(νm) = 0 and

h2−(ν
⋆
2) = h2+(ν

⋆
2) = 0. To be consistent with the users route decision, the

functions (h1−, h
1
+) should be defined on [νm, ν

⋆
1 ] and the functions (h2−, h

2
+)

on [ν⋆2 , νM ]. To simplify the analytics, let us extend them continuously on

[νm, νM ] by setting h1−(ν) = h1−(ν1) and h1+(ν) = h1+(ν1) on [ν⋆1 , νM ], and

h2−(ν) = h2−(ν2) = 0 and h2−(ν) = h2−(ν2) = 0 on [νm, ν
⋆
1 ].

A state of the demand is thus represented by two triples Θ1 = (h1−, h
1
+, ν

⋆
1)

and Θ2 = (h2−, h
2
+, ν

⋆
2). Consider given a state of the demand, it is then

possible to define the patronage of each route conditional to Θ1 and Θ2:

N1(ν; Θ1) := (1− ρ)k.(h1+(ν)− h
1
−(ν)) (6.13)

N2(ν; Θ2) := ρk.(h2+(ν)− h
2
−(ν)) (6.14)

The functions N1 and N2 have the following interpretation: Ni(ν; θi) repre-

sents the volume of users with a VoT under ν that patronize route i. Note

that Ni can then be interpreted as the VoT distribution of users patronizing

route i.

Supply The travel time on each route is assumed to follow the standard

pointwise bottleneck model. The state of supply is represented by two travel

times functions, (τi)i∈{1;2}. To be consistent with a state of the demand, a

function τi needs to be Ni(.; Θi)-feasible.

Additional notations To state the model in a concise manner, let us

introduce some additional notations. Consider given triples Θi = (hi−, h
i
+, ν

i
⋆)

and τi for i ∈ {1; 2}. As in the previous section, we introduce:

gi(h; τi, ν) := ντi(h) + α.(h− hp)
− + β.(h− hp)

+ + νti + pi

and

g̃i(ν; Θi, τi) := ν.τi(h
i
−(ν)) + α.(hi−(ν)− hp) + νti + pi
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g̃i(ν; Θi, τi) expresses the cost incurred by a user with value of time ν under-

taking route i and choosing to arrive at hi−(ν).

User equilibrium statement We are now ready to generalize Definition

6.1 in the two-route case.

Definition 6.7 (Dynamic User Equilibrium problem with two routes (DUE2R)).

Find a state of the demand (Θi)i∈{1;2} = (hi−, h
i
+, ν

i
⋆)i∈{1;2} together with two

travel time functions (τi)i∈{1;2} such that:

1. The triple (h1−, h
1
+, τ1) is a solution to the DUE problem with one route

of capacity (1− ρ)k and a VoT distribution of N1(.; Θ1).

2. The triple (h2−, h
2
+, τ2) is a solution to the DUE problem with one route

of capacity ρk and a VoT distribution of N2(.; Θ2).

3. The following equations are satisfied:

min
i
g̃i(ν; Θi) =







g̃1(ν; Θ1, τ1) on [νm, ν
⋆
2 ]

g̃1(ν; Θ1, τ1) = g̃2(ν; Θ2, τ2) on [ν⋆2 , ν
⋆
1 ]

g̃2(ν; Θ2, τ2) on [ν⋆1 , νM ]

(6.15)

N1(ν; Θ1) +N2(ν; Θ2) = V (ν) (6.16)

The two first conditions express that the assignment of the demand rep-

resented by (hi−, h
i
+)i∈{1;2} is optimal within each route for a travel time τi.

In other words for a given value of time ν, there is no best arrival time choice

on the route i than hi−(ν) and h
i
+(ν). Equation (6.15) expresses that ν⋆1 and

ν⋆2 are consistent with an optimal assignment of the demand between the two

routes. It is interesting to see that this statement of the problem is related

to a formulation in a two stage decision problem: hi− and hi+ encompass

the optimal arrival time decision on each route, while ν⋆1 and ν⋆2 encompass

the optimal route choice. Finally, Equation (6.16) is a volume conservation

equation.

2.2 Comments about the equilibrium formulation

Scope of the formulation As for the single route case, the DUE problem,

as presented here, states a specific equilibrium. The assumptions of the
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previous model have been retained, so here again the travel time of each

route admits a single peak centred on hp = 0. Now users of each route needs

to be at equilibrium w.r.t. their arrival time choice, so these assumptions

can be justified by the same qualitative reasoning as for the one route model.

To obtain a simple route choice model, we introduced two critical VoT,

namely ν⋆1 and ν⋆2 . This assumption requires some explanations. If ν⋆1 = ν⋆2 =

ν⋆, it simply expresses that the low values of time patronize the untolled

route while the high value of time prefer the tolled route, the limit being at

certain critical value of time ν⋆. Now, we also account for the existence of an

intermediate category of users that patronize both routes, although possibly

for different arrival times. In this latter setting there are two critical values

of time ν⋆1 6= ν⋆2 , dividing the transport demand among the two routes as

illustrated in Figure 6.6. Accounting for this kind of equilibriums is critical,

as we will see later that otherwise there might be cases where no equilibrium

exists.

Figure 6.6: Illustration of the route choice model

Influence of t and p on the equilibrium In this extension to two routes,

we introduced a non null free flow travel time on route 1 as well as a flat

toll on route 2. Note that they do not appear in the two first conditions of

Definition 6.7. This is natural: as they are both time-invariant, they have

no impact in the arrival time choice of users on a given route. Now, they do

influence users’ route choice: the higher p is the less attractive route 2 is; the

higher t is, the less attractive route 1 is. While deriving the solutions of the

DUE2R problem, it will be shown that ν⋆1 and ν⋆2 depends of p and t.

2.3 Derivation

The two types of equilibriums To derive the solutions of the DUE2R

problem, it is easier to distinguish between two types of equilibriums. The

first type of equilibrium is referred to as equilibriums of type a and is such
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that ν⋆1 6= ν⋆2 . The second type of equilibrium is referred to as equilibriums

of type b and is such that ν⋆1 = ν⋆2 .

The equilibrium cost problems for two routes As in the problem with

one route, the analytical resolution leads to consider second order differential

equations in ν → g̃(ν), a quantity that can be interpreted as the cost incurred

at equilibrium by a user with VoT ν. Two equilibrium cost problems are

introduced, one for equilibriums of type a, the other one for equilibriums of

type b.

Definition 6.8 (Equilibrium Cost Problem for equilibriums of type a (ECP2Ra)).

Letting η := αβ/(α + β)ρk, solve the following differential equation on [νm, νM ]:

∂2g̃

∂ν2
(ν) =







−
ηv(ν)

ρν
if ν > ν⋆1

−
ηv(ν)

ν
if ν⋆2 < ν < ν⋆1

−
ηv(ν)

(1− ρ)ν
otherwise

(6.17)

where ν⋆1 and ν⋆2 are characterized by the following relationships:

g̃(ν⋆2) = ηV (ν⋆2) + ν⋆2t+ ρp

ηV (ν⋆1) = (1− ρ).p

and with the following boundary conditions:

∂g̃

∂ν
(νM) = 0

g̃(νM) =
η

ρ

(

V (νM)− V (ν⋆2)(1− ρ)
)

+ ρp

Equation (6.17) describes a second order differential equation in g̃ that can

be solved knowing ν⋆1 and ν⋆2 as well as boundary conditions. This equation

is the same as in the one route case for ν in [ν⋆2 , ν
⋆
1 ]. The second derivative of

g̃ is lower for ν /∈ [ν⋆2 , ν
⋆
1 ], as a result of a lack of use of the total capacity of

the system. This gives a hint regarding the non optimality of the equilibrium

situation: a better use of the capacity would certainly results in lower total

costs.
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Definition 6.9 (Equilibrium Cost Problem for equilibriums of type b (ECP2Rb)).

Letting η := αβ/(α + β)ρk, solve the following differential equation on [νm, νM ]:

∂2g̃

∂ν2
(ν) =







−
ηv(ν)

ρν
if ν > ν⋆

−
ηv(ν)

(1− ρ)ν
otherwise

(6.18)

where ν⋆ is defined by:

g̃(ν⋆) =
η

1− ρ
V (ν⋆) + ν⋆t

and with the following boundary conditions:

∂g̃

∂ν
(νM) = 0

g̃(νM) = p+
η

ρ

(
V (νM)− V (ν⋆)

)

There again the ECP2Rb is a second order differential equation which is

similar to the one route case.

Equivalency statement In order to concisely state an equivalence be-

tween the ECP2Ra, the ECP2Rb and the DUE2R problem, it is first required

to introduce the following definition.

Definition 6.10 (Restatement of the DUE2R). Consider a continuous, con-

vex and increasing function ν → g̃(ν) as well as two values of time ν⋆1 ≥ ν⋆2 .

Let the quantities (hi+, h
i
−)i∈{1;2} and (τi)i∈{1;2} be defined from the equations

below:

h1−(ν) = −
g̃(ν⋆1)− ν

⋆
1t

α
+

∫ ν

ν⋆
1

ν

α

∂2g̃

∂ν2
(ν) dν

h1+(ν) =
g̃(ν⋆1)− ν

⋆
1t

β
−

∫ ν

ν⋆
1

ν

β

∂2g̃

∂ν2
(ν) dν

τ1
(
h1−(ν)

)
= τ1

(
h1+(ν)

)
=
∂g̃

∂ν

(
ν
)
− t

and
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h2−(ν) = −
g̃(νM)− p

α
+

∫ ν

νM

ν

α

∂2g̃

∂ν2
(ν) dν

h2+(ν) =
g̃(νM)− p

β
−

∫ ν

νM

ν

β

∂2g̃

∂ν2
(ν) dν

τ2
(
h2−(ν)

)
= τ2

(
h2+(ν)

)
=
∂g̃

∂ν

(
ν
)

The triple (g̃, ν⋆1 , ν
⋆
2) is said to solve the DUE2R problem if and only if

the state of the demand (Θi)i∈{1;2} = (hi+, h
i
−, ν

⋆
i )i∈{1;2} and the two travel

times (τi)i∈{1;2} does.

Although its formulation is rather tedious, this definition is expressing

a simple idea: it is restating the DUE2R with the triple (g̃(ν), ν⋆1 , ν
⋆
2) as

the base variable. Note that the equations stated in the definition have no

specific justifications yet. They should be taken for granted for now and will

make sense in the proof of the Proposition 6.11.

Let us now state how the problems ECP2Ra and ECP2Rb are equivalent

to the DUE2R problem.

Proposition 6.11 (Equivalency of the DUE2R and the two ECP2R). rien

(1) If the two quadruples Θi = (hi−, h
i
+, τi, ν

⋆
i ), for i ∈ {1; 2}, solves the

DUE2R problem, then g̃ := mini g̃i(.; Θi) solves either the ECP2Ra (and

then ν⋆1 6= ν⋆2) or the ECP2Rb (and then ν⋆1 = ν⋆2).

(2) Consider (g̃a, ν
⋆
1 , ν

⋆
2) and (g̃b, ν

⋆) the respective solutions of the ECP2Ra

and the ECP2Rb. Then:

(i) ν⋆1 = ν⋆2 ⇒ ν⋆ = ν⋆1 = ν⋆2 and g̃a = g̃b are solutions to the DUE2R

problem.

(ii) ν⋆1 < ν⋆2 ⇒ (g̃a, ν
⋆
1 , ν

⋆
2) is a solution of the DUE2R problem.

(iii) ν⋆1 > ν⋆2 ⇒ (g̃b, ν
⋆, ν⋆) is a solution of the DUE2R problem.

Proposition 6.11 shows that the DUE2R problem is either equivalent to

the ECP2Ra or the ECP2Rb, depending on the exogenous variables of the

problem.
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2.4 General properties of the DUE

As in the one route case, the equivalency result of Proposition 6.11 directly

yields some general properties of the user equilibrium. The two first ones are

the same as for the one route DUE.

Property 6.12 (Existence and uniqueness of the DUE). There exists a

unique DUE as expressed in Definition 6.7.

This is a direct consequence of Proposition 6.11 and of the existence and

uniqueness of the solutions of the ECP2Ra and the ECP2Rb.As both equi-

librium cost problems have a unique solution, also has the DUE2R problem.

This highlights the importance of formulating the DUE2R so that equilibri-

ums of both types, a and b, might be considered. Not formulated as such,

there would not be any guarantee of existence of DUE2R and the problem

would thus be ill-posed.

Property 6.13 (On the equilibrium cost properties). The function g̃ is con-

vex and increasing.

As in the one route case the total cost incurred by a user increases with

his value of time.

Property 6.14 (On the travel times of users sharing the same value of time).

At equilibrium, two users with the same value of time incur the same travel

times.

This is a rather surprising property: although they might use a different

route and arrive at a different time, users with the same value of time experi-

ence the same travel time. This latter case happens for equilibriums of type

a for users with VoT between ν⋆2 and ν⋆1 . The toll is then only compensated

by a reduction in the schedule delay costs: at equilibrium, users of the tolled

route arrive closer to their preferred time than their best alternative on the

untolled route, but they have to pay for this privilege.

Property 6.14 allows predicting the general travel time pattern that will

be observed at equilibrium. This is depicted in Figure 6.7 for an equilibrium

of type a. From this figure, it is easy to understand how one switches from

an equilibrium of type a to a one of type b. When t and p are high enough

the red part parts of the travel times curves completely disappear, leading to

a total segregation between users with high VoT and the ones with low VoT.



2 Extension with two routes 195

Arrival time (Hour)

T
ra

v
e

l 
ti
m

e
 (

H
o

u
r)

p/α p/β

t t

The users represented by these

points have the same value of time

Travel time on the untolled route

Travel time on the tolled route

Travel times experienced by

users with value of time

Figure 6.7: Travel time pattern in an equilibrium of type a

2.5 Proof of the equivalency result

The three following paragraphs give the proof of Proposition 6.11. The two

first ones deals with the part (1) of the proposition, while the last one deals

with the part (2). The proof is essentially an adaptation of the one of Propo-

sition 6.3. The most technical parts of the proof have been transferred to the

Appendix B for the sake of readability.

Necessary conditions for equilibriums of type a Assume given (Θi)i∈{1,2} =

(hi−, h
i
+, ν

i
⋆)i∈{1,2} and (τ)i∈{1,2}, a solution to the DUE2R. Assume moreover

that this solution is an equilibrium of type a.

Then denote g̃(ν) = min
i
g̃i(ν; Θi). By definition of a DUE2R:

g̃(ν) =







g̃1(ν; Θ1, τ1) for ν in [νm, ν
⋆
1 ]

g̃1(ν; Θ1, τ1) = g̃2(ν; Θ2, τ2) for ν in [ν⋆1 , ν
⋆
2 ]

g̃2(ν; Θ2, τ2) for ν in [ν⋆2 , νM ]

(6.19)

As in the previous section, let us first write the first order conditions of
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optimality on gi:

∂gi
∂h

(
hi+(ν); Θi, τi

)
=
∂gi
∂h

(
hi−(ν); Θi, τi

)
= 0 (6.20)

Consequently: 





∂τi
∂h

(hi−(ν)) =
α

ν

∂τi
∂h

(hi+(ν)) = −
β

ν

(6.21)

Equations (6.21) and (6.16) can be used to derive an equation on g̃(ν). In-

deed:

∂g̃

∂ν
(ν) =







τ1
(
h1−(ν)

)
= τ1

(
h1+(ν)

)
for ν in [νm, ν

⋆
2 ]

τ1
(
h1−(ν)

)
+ t = τ2

(
h2−(ν)

)
for ν in [ν⋆2 , ν

⋆
1 ]

τ1
(
h1+(ν)

)
+ t = τ2

(
h2+(ν)

)
for ν in [ν⋆2 , ν

⋆
1 ]

τ2
(
h2−(ν)

)
= τ2

(
h2+(ν)

)
for ν in [ν⋆1 , νM ]

(6.22)

The Equation (6.17) on the second derivative of g̃ can be derived from

(6.22) and (6.16).

∂2g̃

∂ν2
(ν) =







−
αβ

(α + β)ρk
.
v(ν)

ν
if ν > ν⋆1

−
αβ

(α + β)k
.
v(ν)

ν
if ν⋆2 < ν < ν⋆1

−
αβ

(α + β)(1− ρ)k
.
v(ν)

ν
otherwise

It remains to identify ν⋆1 and ν⋆2 as well as the boundary conditions. They

are given by the two following lemmas.

Lemma 6.15. Assuming a DUE of type a, ν⋆1 and ν⋆2 are characterized by

the following relationships:

g̃(ν⋆1) = ηV (ν⋆1) + ν⋆1t+ ρp

and

ηV (ν⋆2) = (1− ρ).p



2 Extension with two routes 197

Lemma 6.16. The boundary conditions are:

∂g̃

∂ν
(νM) = 0

g̃(νM) =
η

ρ

(

V (νM)− V (ν⋆1)(1− ρ)
)

+ ν⋆1t+ ρp

The proofs of Lemma 6.15 and 6.16 are given in Appendix B.

Necessary conditions for equilibriums of type b Assume given (Θi)i∈{1,2} =

(hi−, h
i
+, ν

i
⋆)i∈{1,2} and (τ)i∈{1,2}, a solution to the DUE2R. Assume moreover

that this solution is an equilibrium of type b.

Then denote g̃(ν) = min
i
g̃i(ν; Θi) and ν

⋆ = ν⋆1 = ν⋆2 . Expressing the first

order conditions eventually gives:

∂g̃

∂ν
(ν) =

{
τ1(h

1
−(ν)) = τ1(h

1
+(ν)) for ν in [νm, ν

⋆]

τ2(h
2
−(ν)) = τ2(h

2
+(ν)) for ν in [ν⋆, νM ]

(6.23)

The two properties expressed in the previous Subsection are thus also

true for equilibriums of type b. The equation on the second derivative of g̃

is given by:

∂2g̃

∂ν2
(ν) =







−
αβ

(α + β)ρk
.
v(ν)

ν
if ν > ν⋆

−
αβ

(α + β)(1− ρ)k
.
v(ν)

ν
otherwise

(6.24)

Finally ν⋆ and the boundary conditions are given by the two following

Lemmas.

Lemma 6.17. Assuming a DUE of type b, ν⋆ is characterized by the follow-

ing relationship:

g̃(ν⋆) =
η

1− ρ
V (ν⋆) + ν⋆t

Lemma 6.18. The boundary conditions are:

∂g̃

∂ν
(νM) = 0

g̃(νM) = p+
η

ρ

(
V (νM)− V (ν⋆)

)

The proofs of Lemma 6.17 and 6.18 are similar to the one of Lemma 6.15

and Lemma 6.16.
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Sufficient conditions for the equilibrium cost problem with two

routes The previous paragraphs have exhibited necessary conditions for

the equilibrium under for two different types of equilibriums, a and b. In

both case they describe a unique candidate solution as a solution of a second

order differential equation. It remains to be shown that for a given set of

parameters, there is always a unique valid solution among the two candidates.

The proof of the “sufficiency” part of Proposition 6.11 is given in Appendix B.

2.6 Analytical example with a uniform distribution

Let us now assume a distribution V in order to get some insights regarding

the user repartition between the untolled route and the tolled route. In the

following, we set V (v) = θ.(ν − νm), hence choosing a uniform distribution

of the values of time with density θ. Assuming an equilibrium of type a and

with ν⋆1 and ν⋆2 known, the integration is straightforward:

g̃(ν) =







θην

ρ
ln(ν/νM) +

θη

ρ
(ν − νM) + g̃(νM) if ν > ν⋆2

θην ln(ν/ν⋆2) + (θη + t)(ν − ν⋆2) + g̃(ν⋆2) if ν⋆1 < ν < ν⋆2

θην

1− ρ
ln(ν/ν⋆1) +

θη

1− ρ
(ν − ν⋆1) + g̃(ν⋆1) otherwise

Similarly, assuming an equilibrium of type b:

g̃(ν) =







θην

ρ
ln(ν/νM) +

θη

ρ
(ν − νM) + g̃(νM) if ν > ν⋆2

θην

1− ρ
ln(ν/ν⋆) +

θη

1− ρ
(ν − ν⋆) + g̃(ν⋆) otherwise

It remains to explicit the expressions of ν⋆1 and ν⋆2 with respect to the

parameters of the problem. There are given by:

ν⋆1 = νm + (1− ρ)p/θη

ν⋆2 = νMe
−ρt/θη

While ν⋆ can only be expressed by the implicit equation:
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ν⋆
θη

ρ
ln

(
ν⋆

νM

)

+ ν⋆t+
ηθ

1− ρ
(ν⋆ − νm) = p

In the two following alineas, some numerical illustrations are given. The

common numerical setting is presented in Table 6.1.

Variable Value

Capacity 1800 users/hour

% of the capacity assigned 30%

to route 2

Average value of time 8e

Toll 5e

Free flow travel time 0.7 h

Nb of users 3000

[νm, νM ] [3, 13]

α 4 e/h

β 16 e/h

Table 6.1: Numerical values for the illustration

Influence of the parameters on the equilibrium type The expressions

of ν⋆1 , ν
⋆
2 and ν⋆ allow us to study how the parameters p and t lead to one

of the two possible equilibriums. Figure 6.8 depicts the distribution of the

patronage between the two possible routes for t = 0.7 hour and a toll varying

between 0 and 12 e. Figure 6.9 depicts the same situation except the toll is

fixed at 5 eand t is varying between 0 and 1.2 hours.
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Finally, Figure 6.10 shows the partition of the space of parameters (t, p)

according to the two types of equilibriums of the system. The interpretation

is as follow: when the differentiation between the two routes is low in terms

of price as well as in term of free flow travel times an important part of the

users patronize both routes. The observed equilibrium is of type a. When

the two routes are more differentiated, the system switches to an equilibrium

of type b and there is a total segregation between the users with high VoT,

patronizing the tolled route, while users with low VoT use the untolled route.
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Figure 6.10: Equilibrium type according the parameters

Influence of the VoT heterogeneity on the equilibrium Let us study

the impact of the VoT heterogeneity on the travel time and on the costs incur

by the users. Two cases are considered. In the first one, a low toll of 3e is

set which leads to an equilibrium of type a. In the second one, a high toll of

6e and an equilibrium type b is observed.

Let us first deal with the low toll case. Figure 6.11a shows the generalized

costs g̃ as a function of the value of time. , Figure 6.11b and Figure 6.11c show

respectively the travel time as a function of the exit time for the two routes.

Several values of θ = νM − νm have been tested. Globally the impact of an

increase in heterogeneity is similar as in the one-route case: the peak tends
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to concentrate on both routes. Yet an important difference can be observed:

the support of the travel time is now varying. On the untolled route the more

heterogeneous the user population is the shorter is the congested period. On

the congested route, the contrary happens. This is related to the fact that

the generalized cost of the user with the highest VoT is no longer a constant,

as it was in the one-route case, but it is increasing with user heterogeneity.

Let us now expose the high toll case. As the travel time patterns are

relatively similar to the low toll case, only the user costs are presented.

Figure 6.12a, Figure 6.12c and Figure 6.12d depict the generalized costs,

the travel time costs, and the schedule delay costs w.r.t. the VoT. Figure

6.11c is especially interesting as it shows a strong discontinuity in the travel

time costs. Also note that in this case the generalized cost is decreasing for

all VoT i.e. when heterogeneity is increasing, everybody is better off.
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3 Pricing under two ownership regimes

We can now return to our initial objective. How is the relative efficiency of

public and private pricing affected by user heterogeneity? In other words

are there cases where the tolled route can be operate by a private company

without public control and still guarantee a reasonable economic efficiency

from a collective perspective? With the analytical model developed earlier,

the answer to that question can now be precisely established.

Before going into the analysis, let us first define the tolling policies that

are examined. In the two main policies that are tested, a flat toll (i.e. a

time-invariant toll) is set on the tolled route. In the first policy, the toll is

set to minimise of users costs minus the toll revenue, i.e. the social cost. Note

that this first policy is equivalent to maximize welfare, as here no demand

elasticity is introduced. In the second policy, the toll is set to maximise the

toll revenue as if a private operator was setting it. In addition to those two

policies, the no toll policy will be considered in order to give a benchmark.

Table 6.2 summarizes the studied policies.

Abbreviation Description

NT No toll

PBTI Flat toll set by a public operator

PRTI Flat toll set by a private operator

Table 6.2: Abbreviation of the analysed policies

For analytical as well as numerical simplicity only uniform distributions

of the VoT will be considered in the following. The no toll DUE is then

computed directly from the formulas of the previous section. Both policies

PBTI and PRTI requires the resolution of an optimization program to find

the two corresponding flat tolls. They are computed numerically with a

simple grid search. This search is helped by the fact that social costs and

profits seem globally concave for all values of the time-invariant toll that have

been tried.

The relative efficiency of the PRTI policy compared to the PBTI policy

will be evaluated using the index:

ω :=
cNT − cPRTI

cNT − cPBTI
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where cX is the social cost of policy X. A similar index has previously been

used for similar studies (among others in Arnott, de Palma and Lindsey

(1991) or Verhoef, Nijkamp and Rietveld (1996)).

The section is structured as follows. First, numerical results summarizing

the impact of different policies are analysed. Then, a sensitivity analysis is

conducted on relevant parameters, namely ρ, t and k. Finally, the impact

of user heterogeneity w.r.t. the VoT is studied specifically. The numerical

setting is the one presented in Table 6.1.

3.1 Numerical results for the different policies

Table 6.3 presents the results of the different policies. As expected the toll in

the PRTI policy is significantly higher than in the PBTI case. This results

in slightly higher travel times on the untolled route but much smaller travel

times on the untolled route. Note that the efficiency of the PRTI policy is

negative which implies it is less efficient than a no toll policy: in this case the

private operator has no incentive to internalize part of the congestion costs

of his users. This not always true and in some cases the PRTI policy might

be efficient.

The difference in social costs between the PBTI and NT policies can be

interpreted as such. When no toll is set, the route 2 (the “tolled” route) is

highly congested and the schedule delay costs as well as the queuing costs are

much higher than on route 1 (the “untolled” route). This is due to the high

free flow travel times that are incurred on route 1. When a toll of 3.4 e is

set on route 2, part of the users leave it in favour of route 1. As the external

congestion costs are higher on route 2, this results in a global decrease of

the queuing costs. The cost related to the free flow travel time naturally

increases but it is compensated by a decrease in schedule delay costs. The

switch from the NT policy to the PBTI policy thus leads to a decrease in

social costs.

When it comes to the PRTI and PBTI policies, the higher toll set in

the PRTI case still induce a slight decrease in the queuing costs and in the

schedule delay costs. However, the increase in cost related to the free flow

travel time is much more important. Thus the global cost increases and is

even higher than in the no toll case.
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Policy PRTI PBTI NT

Efficiency -0.17 1 0

User costs minus toll revenue (ke) 26.6 25.1 26.4

Travel time costs (ke) 18.5 16.6 15.9

Queuing costs (ke) 8.0 8.5 10.5

Schedule delay costs (ke) 7.2 7.8 9.2

Toll (e) 7.15 3.45 0

Average travel time on the untolled route (h) 1.05 0.97 0.92

Average travel time on the tolled route (h) 0.25 0.48 0.71

Patronage of the tolled route 818 1263 1665

Table 6.3: Numerical results for the different policies

3.2 Sensivity analysis

Sensivity to the difference in free flow travel times Figure 6.13 shows

the influence of the parameter t on the index ω. Two comments can be made.

First, the efficiency of the PRTI policy relatively to the efficiency of the

PBTI policy is concavely increasing with τ . Indeed when τ = 0, the optimal

public toll is 0, so the index ω is clearly −∞. On the contrary the higher

τ gets, the higher the optimal public toll should be, while the private toll is

less affected by this change of parameters.

Second, note that the relative efficiency of the PRTI is significatively

positive for high values of τ , with an index ω close to 0.5. This is especially

interesting from a policy perspective: when the difference in free flow travel

time is important, a private operator acts as if it was partially internalizing

the congestion costs of its users and thus prices his route in consequence.

On the contrary for low values of τ , the PRTI is especially ω close to 0.5

inefficient, with an index ω close to −2.5.
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Figure 6.13: Sensibility of the relative efficiency of the PRTI policy to τ

Sensivity to the global capacity The influence of k on the relative

efficiency of the PRTI policy has a simple pattern as shown by Figure 6.14.

As in the previous case, the index ω is concavely increasing with k. Indeed,

as ρ = 0.3 an increase in the global capacity strongly lower congestion on

route 1 while it has fewer impacts on route 2. Consequently a private firm

operating route 2 has to lower its toll in order to keep its patronage.

Sensivity to the relative capacity between the two routes Figure

6.15 shows that the index ω is extremely sensitive to ρ. The PRTI policy

quickly decreases in efficiency. This is natural as for ρ = 1, there is no

more alternative to the tolled route and thus the toll can be set as high as

wanted by a private operator. This last comment is rather obvious, a more

surprising fact is that even for moderately high values of ρ, the PRTI policy

is dramatically inefficient: for ρ = 0.5 the index ω is already under −3.
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Figure 6.14: Sensibility of the relative efficiency of the PRTI policy to k
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Figure 6.15: Sensibility of the relative efficiency of the PRTI policy to ρ
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3.3 Impact of user heterogeneity on the relative effi-

ciency of public and private pricing

Let us now investigate the impact of the user heterogeneity w.r.t. the VoT

on the relative efficiencies of the policy. The intuitive result is that revenue

maximizing policies should be more efficient with high heterogeneity. Indeed

high heterogeneity favours such policies because product differentiation offers

a greater advantage: those with high values of time reap more benefits from

the high-priced option, while those with low values of time still enjoy the

unpriced option. Such results are well known in static frameworks (see Small

and Yan, 2001, for instance).

This intuition was proven wrong by van den Berg and Verhoef (2010)

for time-varying toll policies. A possible interpretation is that as the level

of heterogeneity in VoT grows the users naturally assign themselves more

efficiently. This reduces the need for a toll-driven coordination.

The analytical model developed in this chapter allowed us to carry on

this study with great precision for flat toll policies. Our main finding is that

in fact the relative efficiencies of revenue maximizing policies are impacted

positively by the heterogeneity in value of time. Numerical experiments lead

us to think that this result is robust to changes in the numerical settings.

Thus, the previous results established for static congestion seem to be still

valid.

Figure 6.16 depicts this phenomenon for two values of τ : the shape of

each of the resulting curves is very similar. Note that when the difference

in free flow travel time is high, the relative efficiency of the PRTI policy is

more sensible to the level of heterogeneity in VoT. In this later case and for

high values of the spread in VoT, the PRTI is nearly as efficient as the PBTI

policy.

Now a closer look to the values reveals that on the whole the efficiency

of the PRTI is rather low except when heterogeneity (the spread in value of

time) and differentiation between the two routes (the difference in free flow

travel time) is extreme. This was confirmed by numerous numerical tests.
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Figure 6.16: Sensibility of the relative efficiency of the PRTI policy to the spread

of the VoT distribution for τ = 0.7 (up) and τ = 1 (down)
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Conclusion

This chapter demonstrates the importance of heterogeneity in value of time

for evaluating congestion policies that offer pricing as an option. Our contri-

butions are twofold.

First from a methodological point of view, a model that properly accounts

for heterogeneity in VoT has been proposed and derived. General properties

have been demonstrated. For instance at equilibrium, there might be users

with the same VoT travelling on different routes although not at the same

time ; contrary to the static case there is not necessarily a critical value of

time dividing users between the two routes. Another surprising finding is

that users with the same VoT always incur the same travel time and thus

that the difference in costs induced by the toll is solely compensated by the

schedule delay costs.

From a policy perspective, two strategies for flat toll pricing on the tolled

route have been assessed. The first one is revenue maximizing while the

second one is social cost minimizing. It has been shown that heterogeneity

in VoT impacts positively the relative efficiency of the revenue maximizing

policy. Consequently, when the heterogeneity is high, the social efficiency

of a revenue maximizing policy can be very close to the one of a welfare

maximizing policy. This is a known result for static congestion, and this

chapter thus show it is still valid with dynamic congestion.
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Chapter 7
A user equilibrium model with departure time

choice

This chapter presents a model of Dynamic User Equilibrium (DUE) with de-

parture time choice. The model is formulated in a supply-demand framework

where the supply is a network of bottlenecks and the demand a set of mi-

croeconomic agents. Those agents are characterized by economic preferences

(a value of time and a schedule delay cost function), a scheduling preference

(a preferred arrival time) and physical characteristics (a vehicle class). The

network is subject to congestion and tolled. Hence to a given demand the

supply model associates time-varying travel time functions and toll functions

with each route. Similarly demand reacts to supply by adjusting the time-

varying flows at the entrance of each route of the network according to the

level of congestion.

The main features of the model are:

1. time is represented continuously;

2. scheduling preferences are represented by continuous distributions of

the preferred arrival times;

3. traffic flowing is multi-class;

4. time-varying tolls can be imposed on each arc.

In Chapter 10 we argue this set of assumptions is particularly well suited

for interurban applications. The main technical technical difference between

this model and the ones currently developed in the literature is that the

trip scheduling model is deterministic. For examples of DUE models with
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stochastic trip scheduling see for instance (De Palma and Marchal, 2002) or

(Bellei et al., 2005).

Objectives of the Chapter

In this chapter, our purpose is to present a DUE model compatible with the

dynamic congestion games introduced in Chapter 3. In particular, the first

formulation proposed allows users with the same characteristics to choose

different departure times. This imposes a representation of the assignment

of the transport demand, in the form of a joint distribution between the space

of users and the space of travel decisions.

Now, from a computational perspective, this representation is inconve-

nient. Most of the existing models in the literature, rather assume that

users’ choices are symmetric with respect to their departure time i.e. where

users with the same characteristics choose the same departure time. It is

shown here that this representation is incorrect for a tolled network, as no

equilibrium might exists with such a property. However a correct formula-

tion is introduced, where users’ choices are symmetric with respect to their

arrival time.

1 A new formulation for the dynamic user

equilibrium problem with departure time

choice

In this model a set of users belonging to different categories wish to travel on

a congestion-prone network. The travel time they experience on the network

varies with their category, as they can drive vehicles of different classes (e.g.

cars or trucks) and arcs on the network might be subject to time-varying

tolls. Thus the level of a service of a route r for a user of category c leaving

at h is represented by a pair (τrc(h), prc(h)) where τrc(h) is the travel time

of the route when departing at h and prc(h) is the sum of the tolls along the

route.

Let us first specify some technical details and notations.

Simulation period Denote H = [hm, hM ] the simulation period, assumed

to be “large enough” for all the trips to start and end in H.
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Network The sets (A,N) models the network topology represented by a

directed graph with nodes n ∈ N and arcs a ∈ A. The set of OD pairs

is a subset of N ×N and each od ∈ O ×D is served by a set of routes

Rod.

Route flows The flows are integrable functions and hence taken in L1(H,R);

they are denoted by lowcase x and the associated uppercase symbol X

is the cumulated flow corresponding to x. The quantity X can be seen

either as a measure (X(I) then counts the number of users passing

during an interval I) – or as an increasing function – (X(h) is then the

number of users that have passed before h). The flows on the network

are described by route cumulated flows of users from a given category

c. There are denoted Xrc.

Travel time and toll functions Travel time and toll functions are taken

in C(H,R∗
+), the set of continuous functions from H into R

∗
+.

Vectors Vector of travel time functions, toll functions and cumulated vol-

umes are the main objects of this chapter. Let us adopt the following

convention: for a quantity Xij subscripted with two variables i and j

denote: XIj := (Xij)i∈I , X iJ := (Xij)j∈J and XIJ := (Xij)i∈I,j∈I . In

particular:

◦ the route flow vector is denoted XRC := (Xrc)r∈R,c∈C ;

◦ the route flow vector of a user category c is denoted XRc :=

(Xrc)r∈R;

◦ the travel time functions and the toll functions vectors are denoted

respectively by τRC := (τrc)r∈R,c∈C and pRC := (prc)r∈R,c∈C .

1.1 Transport Demand

User model Each user is characterized by:

- an OD pair od;

- a pair e = (D, ν) that represents his economic preferences. D is a

schedule delay cost function that associates to a delay l (l stands for

lateness) his schedule cost. The quantity ν is a value of time;

- a vehicle class u;
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- and hp his preferred arrival time.

Now consider a user c = {od, (D, ν), u} with arrival preference hp. Assume

he is leaving at an instant h and incurring a travel time τrc(h) together with

a monetary cost of prc(h). In this context, one can write his generalized travel

cost as:

g
(
h, τrc(h), prc(h)|c, hp

)
= ν.τrc(h) + prc(h)
︸ ︷︷ ︸

traversal costs

+D
(
hp − (h+ τrc(h))

)

︸ ︷︷ ︸

schedule delay costs

(7.1)

Equation (7.1) states that the generalized travel cost is divided in two parts:

(1) a traversal cost composed of the travel time costs and the tolls and (2) a

schedule delay cost.

Users are assumed to be microeconomic agents seeking to minimize their

generalized travel cost. Thus, given a set of route travel time functions

τRC = (τrc)r∈Rod
and tolls functions pRC(prc)r∈Rod

, a user characterized by

(c, hp) is solving the following program:

min
h,r

g
(
h, τrc(h), prc(h)|c, hp

)
(7.2)

User population The economic preferences and the vehicle classes are

taken respectively from the two finite sets E = {e1, . . . , ene
} and U =

{u1, . . . , unu
}. Arrival preferences are taken from a continuous interval Hp

strictly included in H. For technical reasons let us group all the discrete

characteristics in one single set C = N2 × E × U . The elements c of C are

said to be user categories. Note that a pair (c, hp) fully characterizes a user.

The transport demand can be represented by collections (one for each

user category) of cumulative distributions Xp
c over Hp. The quantity Xp

c (h)

represents the volume of users of category c leaving from o that would prefer

to arrive at d before h. The distribution Xp
c is called the distribution of

preferred arrival times of category c.

In our approach users are thus represented by a sequence of continuums

of agents, one for each category. Each distribution Xp
c represents one of these

continuums.

User travel choices Assume pRC and τRC given. Each user belonging to

category c has to choose a route among the possible routes of the network

R and a departure time in H. Hence their possible travel decisions lie in
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S = H × R. Choices of the users belonging to a category c are represented

by a measure Dc on Hp×S such that the marginal1 of Dc on Hp is X
p
c . The

distribution Dc can be seen as an assignment of the demand represented by

Xp
c on the network. It will be referred to as a departure distribution.

One might wonder what is the relationship the distribution Dc with

more physical quantities such as the route cumulated flows. Denote Xc the

marginal of Dc over S = H × R. Informally Xc is simply giving the distri-

bution of the travel decisions of the users belonging to c. It is then natural

to define the cumulated flows of the users of category c following route r as:

Xrc(I) := Xc({r} × I) for all I ⊆ H (7.3)

Remark 7.1. This very general representation of the user choices might seem

more complicated than required. Indeed the distribution Dc allows to repre-

sent non-discrete choice distributions for the users characterized by (c, hp).

Informally in our approach for each (c, hp), we have a probability distribu-

tion representing the spread of the users (c, hp) over the possible departure

times. In traditional transportation models, the problem is downsized to the

much more specific case where users with the same characteristics choose the

same departure time. Obviously this is very attractive from a computational

perspective. However we will see later that on network with tolls this has

some severe drawbacks, notably regarding the existence of an equilibrium. It

is worth noting that this specific case can easily be embedded in our general

approach by the introduction of the following concept.

Definition 7.2. A departure distribution Dc is said to be symmetric with

respect to the departure times if there exists a measurable function Hc : Hp →

H such that:

Dc(R× graph Hc) = Xp
c (Hp)

Hc is referred to as the symmetric reduction of the measure Dc.

This concept is initially due to Mas-Colell (1984).

1The definition of a Marginal is given in Chapter 3 pp 111. If M is a measure on a

Cartesian product A × B, then the marginal of M on A is the measure on A such that

MA(I) = M(I ×B) for each measurable subset I ⊆ A.
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Users are assumed to be selfish cost minimizer agents and thus their travel

decision is the solution of the mathematical program (7.2). For given travel

time and toll vectors (τRc,pRc) the resulting distribution Dc should lie in the

set:

F c
D(τRc,pRc) ≡

{

(h, r, hp) ∈ S ×Hp :

g(h, τrc(h), prc(h)|c, hp) = min
(h,r)

g(h, τr(h), pr(h)|c, hp)
}

(7.4)

The set F c
D(τRc,pRc) can be interpreted as the best response set and

thus F c
D is the best response correspondence. For a given state of the supply

(τRc,pRc), it gives all the possible demand states resulting from the opti-

mization of the travellers.

1.2 Transport supply

Arc travel time and cost model. Each arc is composed of two parts.

The first part is a free flow part where users drive at a speed depending

on their vehicle class (and thus on their category). The second part is a

queuing part where all users, whatever their vehicle class, wait to exit the

arc according to a FIFO discipline. The physics of an arc a is summarized

by:

1. an exit capacity ka,

2. and a vector of free flow travel time functions τ 0aC := (τ0ac)c∈C .

Both ka and τ 0aC can be time varying. Moreover, it is assumed that for all

c, the free flow travel time function τ0ac is continuous, differentiable almost

everywhere and such that τ̇0ac > −1.

The travel time function of a given user category, i.e. τac, depends on

the incoming flows of each user’s categories. In other terms, it depends on

the vector of cumulated flows Y aC . The computation of the travel time

functions τ ac is essentially the same as in Section 3 of Chapter 4 apart from

the computation of the cumulated volume at the entrance of the queue.
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Figure 7.1: Arc travel time model principle

Let us now precise the arc travel time model. It is denoted ta. As in

previous Chapters, it is represented as a function on the space of cumulated

flows Y , but returns a vector of arc travel time functions (tac[Y ])c∈C . , we

can express the travel time model of an arc with the following system of

equations. The stock of vehicle Q, seen as a function of the flow entering in

the queue, denoted Ỹ , arises from the equation:

Q̇[Ỹ ](h) =

{
ỹ(h)− ka(h) if Q[Ỹ ](h) > 0 or ỹ(h) > k

0 otherwise
(7.5)

The flow entering in the queue is Ỹ :=
∑

c∈C Yac ◦H
−1
0ac where H0ac := idH +

τ0ac. Then τac = τac[Y aC ] is the solution of the following equation:

Ka

(
h+ t[Y aC ] (h)

)
−Ka ◦H0(h) = Q[Ỹ ] ◦H0(h) (7.6)

where Ka(h) =
∫ h

−∞
ka(u)du. More details on travel time computation can

be found in (Leurent, 2003b).

Each arc of the network is endowed with a toll function vector paC =

(pac)c∈C . Toll functions are functions of the time that indicates the monetary

costs to cross an arc when entering at a given time. They are assumed to be

continuous and differentiable almost everywhere.
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Route travel time and cost model. When there is a single category of

users, Chapter 3 formally defines the linkage between the route travel time

functions and route vehicle flows. The problem of computing the route travel

times is the Dynamic Network Loading problem (DNL) and an algorithm is

presented in Appendix D.

Note the DNL can easily be extended to multi-category flows using the

following procedure. Divide each arc in one arc for the queuing part and an

arc by user category for the free flow part. Then adapt the flows to fit this

new network. The new dynamic loading problem for multi-category flows is

then equivalent to the one for single category flows. Figure 7.2 depicts this

operation.

Figure 7.2: Multi-class dynamic loading principle

A simple example for one arc with three vehicle classes. The flow

represented by (Yc1 , Yc2 , Yc3) is dispatched among three different

routes on the new network.

The toll of a route is simply derived by summing the toll functions of

each arc along the route, each of them being evaluated at the correct time of

entrance.

For the sake of readability, we will adopt the compact notation (τRC ,pRC) =

FS(XRC). An important property of the supply model is that the resulting

route travel time functions (τRC ,pRC) are continuous, FIFO and differen-

tiable almost everywhere.

1.3 Equilibrium statement

In the previous subsections, a dynamic framework for transportation mod-

elling has been set up. Supply is represented by a dynamic transport network

(A,N, tAC ,pAC). Each arc of the network endowed with a bottleneck model

ta and toll functions pac. Demand is represented by a vector of preferred
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arrival time distributions X
p
C := (Xp

c )c∈C . Let us now define precisely the

notion of equilibrium in this context.

Definition 7.3 (Dynamic User Equilibrium (DUE) ). Find a departure

distribution vector DC such that for all c ∈ C :

Dc(B
c) = Xp

c (Hp) (7.7)

with:

Bc = F c
D(τRc,pRc) (7.8)

(τRC ,pRC) = FS(XRC) (7.9)

Equation (7.9) encompasses the supply model while Equation (7.8) guar-

antees the optimality of the user travel decision and thus represents the de-

mand model. Equation (7.7) simply states the balance between supply and

demand. Note that apart from the fact that users are minimizing travel costs

rather than maximizing utilities, this is the framework of dynamic congestion

games as defined in Chapter 3.

2 A general property of the user equilibrium:

the natural order of arrival

It has been shown in Chapter 5 that, on a single, untolled arc, the DUE

exhibited a singular property. There always exists an equilibrium where

users leave in the order of their arrival preferences. This so-called natural

order of departure does not stand in the general case that has just been

exposed.

Although the natural order of departure is no longer valid on a network

with tolls, a similar property can be stated on the order of arrival. Before

stating it, let us consider the problem from a new perspective. Consider a

distribution Dc representing an assignment of the demand and (τRc,pRc) =

FS(XRC) with Xrc the marginal of Dc on S × {r}. Then denote Hrc :=

idH + τrc the route exit time function for category c. We define the arrival

distribution D̄c as:

D̄c({r} ×Hrc(I)× J) := D̄c({r} × I × J) (7.10)

for all r in R, I ⊂ H and J ⊂ Hp
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D̄c simply reinterprets Dc by representing travel decisions under the form

of a route and an arrival time rather than a route and a departure time. As we

have defined symmetric departure distributions Dc, we can define symmetric

arrival distributions D̄c.

Definition 7.4. An arrival distribution D̄c is said to be symmetric with

respect to the arrival times if there exists a measurable function H̄c : Hp → R

such that:

D̄c(R× graph H̄c) = Xp
c (Hp)

H̄c is referred to as the symmetric reduction of the measure D̄c.

This definition is the exact transposition of Definition 7.2 to arrival dis-

tributions. Redefining the users’ travel decisions with respect to the arrival

times rather than departure times might seem awkward in a model of depar-

ture time choice. Yet this point of view, although less natural, is extremely

fruitful, as illustrated by the following results.

Proposition 7.5. Assume given a state of the supply (τRC ,pRC) and con-

sider a user category c with convex schedule delay cost function D such that

D(0) = 0. If two elements (r1, h1, h
1
p) and (r2, h2, h

2
p) of S×Hp are such that

(ri, hi) is the solution of the user optimization program for (c, hip), h
1
p ≤ h2p

and h1 + τr1c(h1) ≥ h2 + τr2c(h2) then:

g(h1, τr1c(h1), pr1c(h1)|c, h
i
p) = g(h2, τr2c(h2), pr2c(h2)|c, h

i
p) for i = 1 or 2

Proposition 7.5 may seem technical, but it has a simple interpretation.

Consider two users (c, h1p) and (c, h2p) such that h1p ≥ h2p and assume they have

chosen their arrival time in the reverse order of their arrival time preference

(i.e. that they have chosen to arrive at h1, h2 : h1 ≤ h2). Then Proposition

7.5 states they can switch their arrival decisions costlessly.

The proof of Proposition 7.5 is given in Appendix C.

To produce a general result on the order of arrival, let us introduce an

additional assumption on the demand i.e. on X
p
C . We say that X

p
C is

atomless if for any c the cumulative distribution Xp
c is continuous. A positive

discontinuity (a cumulative distribution is increasing so it has no negative

discontinuity) inXp
c at an instant hp practically means that a large number of

users have exactly the same arrival preferences. For instance, such a feature

can be used to model the opening time of a factory.

Using Proposition 7.5, the following result can be established.
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Theorem 7.6 (On the order of arrival). Consider a DUE problem with atom-

less demand X
p
C. Let DC be a dynamic user equilibrium. Then there exists a

dynamic user equilibrium D′
C such that the arrival distributions (D̄′

c)c∈C are

symmetric and that the symmetric reductions of (D̄′
c)c∈C are non decreasing.

Moreover for each category c the marginal of D′
c and Dc on S are the equal.

This theorem is especially interesting from a computational perspective.

Indeed it states that when we are only interested in the flows on the networks

(i.e. on the marginal of the equilibrium distributions), we can focus on

symmetric distributions with respect to the arrival times. Now the set of

symmetric distributions is much more easy to represent, as it allows to deal

with functions, rather than distributions. In the following section, a reduced

formulation of the DUE exploiting this result is presented.

The proof of Theorem 7.6 is technical in its details but simple in its

principle. It uses Proposition 7.5 which states that given a DUE DC , one

can rearrange all the users in their natural order of arrival i.e. such that if

(c, h1p) and (c, h2p) are assigned respectively to h1 and h2 then h
1
p > h2p ⇔ h1 >

h2. This concept is obviously very similar to the natural order of departure

exposed in Chapter 5.

The fact that such a general model reveals such a strong property is

particularly puzzling.

The proof of Theorem 7.6 is given in Appendix C.

3 A reduced formulation of the DUE prob-

lem

The previous section exposed an important property of the DUE problem.

Whenever there exists a DUE, there also exists an equilibrium with a sym-

metric arrival distribution. Now the symmetric reduction of a distribution is

much more easier to represent numerically so it is interesting to see how the

dynamic user equilibrium definition can be restated in terms of symmetric

arrival distributions.

3.1 The user’s optimization program with arrival times

Let us first reformulate the program (7.2) with respect to arrival times rather

than departure times. First note that route travel times and tolls can be eas-
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ily reformulated as functions of the arrival time rather than of the departure

time. For any route with travel time τrc, this is achieved by composing τrc
and prc by the inverse of Hrc. We will denote them t̄rc and p̄rc. For a given

category c = {od, (D, ν), u}, the new user’s optimization program is

min
h̄,r

νt̄rc(h̄) + p̄rc(h̄) +D(h̄− hp)

Note that this program is equivalent to:

min
h̄

min
r
νt̄rc(h̄) + p̄rc(h̄) + min

h̄
+D(h̄− hp) (7.11)

Equation (7.11) expresses that the user’s optimization program can be de-

composed in two steps: first find the optimal route r for all optimal arrival

times h̄ and then find the optimal arrival time h̄∗. In term of computing

time, this is interesting as instead of scanning all the space H× R to find a

travel decision (h̄, r), it is possible to explore H and R subsequently.

3.2 Representing travel decisions from an arrival time

perspective

Route choices. At an aggregated level, the users route choices can be

represented by functions h̄ 7→ R̄rc(h̄, r) returning the proportions of users

following a route r and arriving at h̄. This is the route choice function

of category c. To be consistent with the optimal routes, the route choice

function has to verify the following property:

R̄rc(h̄) > 0⇒ r is an optimal route to arrive at h̄ for users of category c

(7.12)

Arrival time choices. To represent the arrival time choices, a natural

approach is to introduce an arrival time choice function H̄c that maps to each

user of the category c with preferred arrival time hp to his chosen arrival time

h̄ = H̄c(h). The function H̄c will be assumed to be continuous and strictly

increasing. Under this formalism, define the cumulative flow of a category c

at arrival as:

X−
c := Gc ◦ H̄

−1
c (7.13)

The demand Xrc on each route is then obtained by a multiplication and

a translation:

xrc ◦Hrc := R̄rc.x
−
c with Hrc := idH + τr (7.14)
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The operation of constructing the cumulated flows on each route from

the route and arrival time choice functions of each user category (R̄RC , H̄C)

is denoted FD(R̄RC , H̄C).

3.3 Alternative formulations for the dynamic user equi-

librium

Using the concepts introduced in the previous subsections, an alternative

definition for the user equilibrium based on the variables (H̄c, R̄c) rather

than Dc can easily be stated.

Definition 7.7 (Dynamic user equilibrium based on arrival time functions).

Find (R̄RC , H̄C) such that for every c =
(
od, (D, ν), u

)
and hp:

h̄⋆ = H̄c(hp) and R̄c(r, h̄) > 0

⇒ ν.t̄rc(h̄
⋆)+prc(h̄

⋆)+D(h̄⋆−hp) = min
h̄,r′

ν.t̄r′c(h̄)+pr′c(h̄)+D(h̄−hp) (7.15)

with:

(τ̄RC , p̄RC) = FS(XRC) (7.16)

XRC = FD(R̄RC , H̄C) (7.17)

This formulation is much more suited for computational purposes than

the original definition adopted in the first section of the chapter. As shown

in Theorem 7.6 this is a natural approach, as a solution of the alternative

formulation leads to an equilibrium in the sense of Definition 7.3. Reversely as

soon as an equilibrium departure distribution DC has been found, a solution

(R̄RC , H̄C) of the problem exposed in Definition 7.7 can be computed. Note

that in Definition 7.7 the unknown variables are the arrival time and the

route functions. It is might be more convenient to work directly with the

cumulated volumes. Hence the following definition.

Definition 7.8 (Dynamic user equilibrium based on cumulated volumes).

Find XRC such that (R̄RC , H̄C) is a solution to the DUE as stated in Defi-

nition 7.7, letting for all r, c:

(τ̄RC , p̄RC) = FS(XRC) (7.18)
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H̄c := (
∑

r

X̄rc)
−1 ◦Xp

c (7.19)

R̄rc := x̄rc/
∑

r′

x̄r′c (7.20)

X̄rc := Xrc ◦ (idH + τrc) (7.21)

The difference between Definitions 7.7 and 7.8 is merely a question of

notations.

3.4 Measuring the quality of a solution

The analytical resolution of the DUE problem on a general network is hard.

Instead, approximate methods are used. This requires a way to state if a

candidate equilibrium is acceptable or not. Fortunately having a precise for-

mulation at our disposal allows us to establish rigorous criterion to measure

the quality of candidate solutions.

Definition 7.9 (Least cost criterion). Consider route flow vector XRC and

define H̄c and X̄rc for all r, c as in Definition 7.8. The least cost criterion

I(XRC) is then:

I(XRC) :=
∑

c∈C

1

Nc

∑

r∈R

∫

hp∈Hp

g̃rc(hp)− g
⋆
c (hp)

g̃rc(hp)
dXp

c (hp) (7.22)

with for all r, c:

Nc := Xp
c (Hp)

g̃rc(hp) := νt̄rc
(
H̄c(hp)

)
+ p̄rc(H̄c(hp)) +D

(
H̄c(hp)− hp

)

g⋆c (hp) := min
r,h̄

νt̄rc(h̄) + p̄rc(h̄) +D(h̄− hp)

In Definition 7.9, the function g̃rc can be interpreted as the cost incurred

by a user of category c and preferred arrival timer hp following the route r.

The function g⋆c gives the minimal cost for a user characterized by (c, hp).

This gives a simple economic interpretation to the least cost criterion: it is

the average cost that users could save by rerouting and rescheduling their

trip. Naturally I(XRC) = 0 if and only if XRC is an equilibrium.
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Conclusion

This chapter explores various formulations for the dynamic user equilibrium

with departure time choice on a tolled network. At first a general formulation

inspired by the framework of dynamic congestion games is proposed. In this

approach users with the same characteristics can choose different departure

times. Then it is shown that it is possible to search only for equilibriums

with symmetric arrival distributions (i.e. where users with the same char-

acteristics always choose the same arrival time) without compromising the

existence of an equilibrium. Finally two reduced formulations for symmetric

equilibriums are proposed. The first one is based on arrival time and route

choice functions whereas the second one is based on route flows.





Chapter 8
A convex combination algorithm to compute the

dynamic user equilibrium

In this chapter a numerical scheme is proposed to compute the restricted

formulation of the dynamic user equilibrium presented in Chapter 7. It was

initially designed to extend the LADTA model introduced by Leurent (2003b)

whose original implementation did not account for departure time choice. As

we had at our disposal the LADTA toolkit, a powerful implementation of the

main procedures of LADTA, one of our goals was to keep as much as possible

the same philosophy as the original computation algorithm. The principle of

LADTA is to consider the DUE computation as a fixed point problem, and

to compute by a convex combination procedure.

In a nutshell the procedure is the following. Initialize the state of the

network by assigning null traffic flows to the arcs and setting the travel

times their free flow values. Then repeat iteratively the following process:

(1) compute the least cost routes for each OD pairs and assign the flows of

traffic accordingly; (2) load the traffic on the arcs of the network and update

the travel times (3) compute a convex combination of the resulting arc flows

with the previous ones and store the results.

The most natural approach to extend this algorithm to incorporate a de-

parture time choice model is to redesign step (1) in order to assign user not

only according to the optimal route but according to the optimal transport

service i.e. to the optimal pair of route and departure time. In this perspec-

tive extending LADTA to incorporate departure time choice is essentially

being able to solve efficiently the users’ minimization program.

This chapter is divided into four parts. First, a general overview of the
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algorithm is presented (Section 1). Second, the two main steps, the arrival

time assignment and the spreading procedure are presented in details (Sec-

tions 2 and 3). Finally, the algorithm performance is assessed in numerical

examples on different networks (Section 4).

1 General presentation

1.1 Context of application

The notations of the previous chapter are used.

For computational reasons we restrict ourselves to piecewise linear func-

tions (PWL functions). A PWL function will be encoded by a list of triple

(xi, yi, si). A triple is said to be a piece. x belongs to the ith piece if

x ∈ [xi, xi+1].

In particular Xp
c , prc, τ0ac, D and Ka are PWL functions. As a conse-

quence, equilibrium route flows Xrc are also PWL. The resulting travel times

functions τrc are then PWL from the properties of the bottleneck model.

1.2 LADTA solution method overview

LADTA is a model proposed for dynamic user equilibrium in (Leurent,

2003b). The physical and economic assumptions are the same as the one

retained in our model except no departure time choice model exists in the

current version of LADTA. In LADTA demand is described by a OD matrix

XC := (Xc)c∈C where C is the set of user categories.

The solution method of LADTA is based on four procedures:

1. The loading procedure, to obtain the flows on each arc. It loads route

traffic flows using a travel time function vector tAC . It is denoted

Y AC = FL(XRC , tAC).

2. The traffic flowing procedure, that computes the actual travel times on

each arc from the arc inflow. It is denoted tAC = FF (Y AC).

3. The formation of services, that computes the least cost route based

on the arc travel time and toll functions. It is computed for each user’s

category i.e. on each origin destination pair and for all possible values

of time and departure instants. It is a classical operational research
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problem (see Chapter 1 for a review). The procedure stores the results

in a least cost route tree denoted RAC . The procedure is denoted

RAC = FLC(tAC ,pAC).

4. The user’s choice, that computes route flows by assigning the OD ma-

trix flows (XC) to the optimal route. It is denotedXRC = FD(RAC ,XC).

For more information on each of the procedures see (Leurent, 2003b).

Some more details are also available in Chapter 2, section 3, page 94. The

algorithm then consists of iteratively applying these four procedures in a

convex combination scheme. The algorithm is made explicit below (Algo-

rithm 8.1).

Algorithm 8.1 LADTA RouteChoice(XC)

Inputs: An OD matrix XC

Outputs: Y AC the arc cumulated flows for each user category

Parameter: wk a decreasing sequence from 1 to 0

Initialize Y
[0]
AC := 0 and k := 0

Repeat

Set tAC := FF (Y
[k−1]
AC )

Set RAC := FLC(tAC ,pAC)

Set XRC := FD(RAC ,XC)

Set ZAC := FL(XRC , tAC)

Set Y
[k]
AC := wk.Y

[k−1]
AC + (1− wk).ZAC

Set k := k + 1

Until Y
[k]
AC satisfies a certain criterion.

End For

1.3 Philosophy of the algorithm for combined route

and departure choice

As mentioned in the introduction, a guideline in the design of the algorithm

was to make the most of the LADTA ToolKit (LTK). That’s why for the

supply side, we (purposely) adopted the same modelling choices. Essentially,

only the user choice procedure (FD) and the demand description (XC) have

to be changed.
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The demand is now an OD matrix in preferred arrival times and not

in actual times as before. The quantity X
p
C = (Xp

c )c∈C represents the OD

matrix: each element od of the OD matrix is a sequence of distributions

(Xp
c )c:od∈c that can be interpreted as cumulated flows. The user decision

procedure was assigning flows to the optimal route. It will now assign the

flows to the optimal route and departure time.

To state the new algorithm, the previous procedures need to be slightly

redefined. Except from the user’s choice procedure, they need to be expressed

with variables from an arrival time perspective. Overall the changes are

minor.

1 The loading procedure now loads route flows at arrival on the network.

It propagates backward the arrival flows, using a travel time function

vector tAC . It is denoted Y AC = FL(X̄RC , tAC).

2 The traffic flowing procedure is the same. It is still denoted Y AC =

FF (XRC , tAC)

3 The formation of services, now computes least cost routes to arrive

at a given arrival instant. The review in Chapter 1 presents efficient

algorithms for this procedures. In addition to the least cost route tree,

it now returns a vector of least cost functions ḡC = (gc)c∈C . For a

given category c, the least cost function maps an arrival time with

the least cost to arrive at this time. The procedure is now is denoted

R̄AC , ḡC = FLC(tAC ,pAC).

4 The user’s choice now computes route flows by assigning the OD matrix

flows XC to the optimal route and arrival times. It is denoted XRC =

FD(R̄AC , ḡC ,X
P
C).
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The pseudo-code of the new algorithm is now:

Algorithm 8.2 LADTA RouteDepartureChoice(Xp
C)

Inputs: An OD matrix in preferred arrival times Xp
C

Outputs: Y AC the arc cumulated flows for each user category

Parameter: wk a decreasing sequence from 1 to 0

Initialize Y
[0]
AC := 0 and k := 0

Repeat

Set tAC := FF (Y
[k−1]
AC )

Set R̄AC , ḡC := FLC(tAC ,pAC)

Set X̄RC := FD(R̄AC , ḡC ,XC)

Set ZAC := FL(X̄RC , tAC)

Set Y
[k]
AC := wk.Y

[k−1]
AC + (1− wk).ZAC

Set k := k + 1

Until Y
[k]
AC satisfies a certain criterion.

End For

The user’s decision still need to be precisely defined. The global philos-

ophy of the user’s decision problem have already been stressed out by the

second formulation of the DUE problem (see previous Chapter), whose pri-

mary aim was to ease the algorithmic. Figure 8.1 exposes how to compute

route flows from the OD matrix and travel time and toll functions on the

arcs. It can be summarized as follows. By computing the optimal arrival

times for each user, one can deduce the traffic volumes at arrival. Then,

by computing the optimal route in order to arrive at a destination d for ev-

ery instant h, one can obtain in turn the route flows at arrival. However

we will see later that directly computing the arrival flows from the optimal

arrival times would lead to discontinuous cumulated flows on the arcs. As

this is inconvenient from a computational viewpoint, a spreading procedure

is proposed.

Consequently the user’s choice procedure is divided in three sub-procedures:

• The arrival time choice procedure that computes a PWL function vector

H̄C := (H̄c)c∈C on the basis of the least cots routes. For a given

category c, the function H̄c maps a preferred arrival time with the

corresponding optimal arrival time.
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• The spreading procedure computes the flows at arrival from H̄C and

the least cost routes. The flows at arrival are denoted X̄C .

• The route choice procedure simply splits the flows X̄C among the

routes. For each category, it assigns the cumulated flows X̄c on the

corresponding least cost routes. It returns a route flow vector X̄RC

expressed as a function of the arrival times.

Figure 8.1: Chart of the route flows computation

To complete the precise description of algorithm 8.2, the user’s choice

procedure needs to be precisely defined. This is achieved in the two sub-

sequent sections. The first one (Section 2) is dedicated to the arrival time

choice, while the second one (Section 3) describes the spreading procedure.

2 Optimal trip scheduling

In this section, an exact algorithm to compute the optimal arrival time for all

users of a given category c is presented. The idea is to treat conjointly all the

users in an event based approach. For the sake of clarity, it is first assumed

that the users’ schedule delay cost function has the V-shaped form: D(l) :=

αl+ + βl−. The last subsection explains how to alleviate this assumption.
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2.1 Algorithm statement

Let the travel time and toll functions t̄rc and p̄rc be given for all the routes

of the network and consider a specific user category c = (od, (ν,D), u). The

functions (t̄rc, p̄rc)r∈R are expressed as functions of the arrival time. Define

gc(h̄) := min
r∈Rod

νt̄rc(h̄) + p̄rc(h̄)

In this subsection the problem of computing the function H̄c, described by

the following equation, is addressed.

H̄c(hp) = min
{
h̄⋆ such that:

gc(h̄
⋆) +D(hp − h̄

⋆) = min
h̄∈H

gc(h̄) +D(hp − h̄)
} (8.1)

This problem boils down to the resolution of a continuum of optimization

programs, one for each hp ∈ Hp. One might be tempted to discretize Hp and

then to solve distinctly the resulting problems. However it is natural to think

that the program corresponding to hp has something to do with the program

for hp + dh. The global idea of this algorithm is to work in this direction.

First consider a given hp. Let us write the first order condition. As the

functions t̄rc, p̄rc and D are not differentiable everywhere on H, the concept

of subdifferential is used1.

0 ∈ ∂(gc −D)(~) (8.2)

∂D(h̄) can be either {α}, {β} or [α, β]. This leads to three cases to consider:

1. For h̄ < hp, only the arrival times such that α ∈ ∂gc needs to be

considered.

2. For h̄ > hp, only the arrival times such that β ∈ −∂
{
− gc

}
needs to

be considered.

3. For h̄ = hp, the first order condition is met if and only if ∂gc∩[α; β] 6= ∅.

1In real analysis, the subdifferential of f in x is the set [limx→a− f ; limx→a+ f ] (or ∅ if

it does not make sense) and is denoted ∂f(a). Then 0 ∈ ∂f(a) is a necessary condition

for f to admit an extrema in a.
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That is to say that we can group candidate optimal arrival times in three

categories: early candidates h̄ei , late candidates h̄
l
i and possibly the preferred

arrival time. These three cases are depicted in Figure 8.2.

Figure 8.2: The first order condition

When the functions considered are limited to continuous PWL functions,

computing those three groups is straightforward. Indeed ∂gc(x) is easy to

compute. If x belongs to a single piece i then ∂gc(x) = {si}. Otherwise it

belongs to two successive pieces, say i and i + 1, and ∂gc(x) = [si, si+1] (or

∅ if it does not make sense). A simple scan of the list of the pieces is hence

enough to compute the candidate arrival times h̄ei and h̄
l
i.

Algorithm 8.3 explicits in pseudo code the method FindTangencyPoint(gc, z).

It finds for any PWL function gc and real α, the list of points (hi) such that

z ∈ ∂gc(hi). Applying FindTangencyPoint on (gc, α) and on (−gc, β) then

allows to compute the lists (h̄ei ) and (h̄li).

Now let us return to the original problem. Once the optimal departure

time h̄ for a preferred arrival time hp has been computed, how can we deduce

the optimal h̄′ for hp+dh? The answer arises from two remarks. First, if dh is

sufficiently small, the candidate arrival times resulting from FindCandidate

are roughly the same (see Figure 8.2). The only possible changes are: the

withdrawal of h̄l1 because h̄
l
1 < hp+dh or the addition of an early instant h̄e1.

Second, the variation between gc(h̄)+D(h̄−hp) and gc(h̄)+D(h̄−hp+dh) is

straightforward to establish for any h̄. Thus while varying hp one can easily

track the evolution of the generalized cost for early candidate instants (i.e.

gc(h̄
e
i ) + D(h̄ei − hp)), for late ones (i.e. gc(h̄

l
i) + D(h̄li − hp)) as well as the
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generalized cost for the preferred arrival time (i.e. gc(hp)). The only point

to be careful about is to update the two lists of candidate arrival times when

necessary.

This gives the general lines of the master procedure (Algorithm 8.5). First

we find the optimal h̄ for hmin
p = min Hp the function H̄ is initialized with

(hmin
p , h̄, 1) if h̄ = hp and (hmin

p , h̄, 0) otherwise. Then the next “event” is a

change in the slope (if h̄ = hp) or in the optimal arrival time. The pseudo-

code of the sub algorithm 8.4 details how to compute the next event. For the

event of type (1) H̄ is updated, while for event of type (2) the list of candidate

arrival times is. The process is iterated until all Hp has been covered. The

iteration is described in Algorithm 8.5.
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Algorithm 8.3 FindTangencyPoint(g, z)

Inputs: A function g and a real z

Outputs: A list of real (h̄i)

Set sprevious ← 0

Foreach pieces (xi, yi, si) of g

if z ∈ [sprevious; si] then Add xi to the list (h̄i)

End For

Algorithm 8.4 FindNextEvent(g, hp, (h
e
i ), (h

l
i), α, β)

Inputs: A PWL function g, three positive reals and two lists

Outputs: A triple (h̃p, h̄, s)

Set hem = argmini g(h
e
i ) + α(hp − h

e
i ) : h

e
i < hp

and hlm = argmini g(h
l
i) + β(hli − hp) : h

l
i > hp

Switch

Case: g(hem) = min{g(hem), g(h
l
m), g(hp)}

Solve g(h̄) = g(hem) + α.h̄ and g(hem) + α.h̄ = g(hel )− β.v forh̄ > hp
Set h̄ to the minimum of the two solutions and h̃p and s to respectively

hp and 1 or hlm and 0 accordingly.

Case: g(hel ) = min{g(hem), g(h
l
m), g(hp)}

Solve g(h̄) = g(hem)− βh̄ and g(hem) + αh̄ = g(hlm)− βh̄ forh̄ > hp
Set h̄ to the minimum of the two solutions and h̃p and s to respectively

hp and 1 or hem and 0 accordingly.

Case: g(hp) = min{g(hem), g(h
l
m), g(hp)}

Solve g(h̄) = g(hlm)− βh̄ and g(h̄) = g(hem) + αh̄ forh̄ > hp
Set h̄ to the minimum of the two solutions and h̃p to hlm or hem accord-

ingly and s to 0

End Switch
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Algorithm 8.5 FindOptArrivalTime(g, α, β)

Inputs: A PWL function g and two positive reals

Outputs: A PWL function H

Set hp to minHp

Set(hei ) to FindTangencyPoint(g, α)

Set (hli) to FindTangencyPoint(g, β)

While hp < maxHp

Set (hp, h̄, s)←FindNextEvent(g, hp, (h
e
i ), (h

l
i), α, β)

If h̄ < min{hli : h
l
i > hp} then add (hp, h̄, s) to H

set hp to minhli : {h
l
i : h

l
i > hp}

else set hp to h̄

End While

Remark 8.1. In Algorithm 8.4, the computation of argmini gc(h
e
i )+α(hp−

hei ) : h
e
i < hp and argmini g(h

l
i) + β(hli − hp) : h

l
i > hp can be optimized by

keeping in memory the values gc(h
e
i ) and gc(h

l
i) while executing Algorithm 8.3.



242
Chapter 8

A convex combination algorithm

 0

 5

 10

 15

 20

 25

 30

 0  1  2  3  4  5
 0

 1

 2

 3

 4

 5

C
os

t (
in

 e
ur

o)

C
lo

ck
 ti

m
e 

  (
in

 h
ou

rs
)

Clock time   (in hours)

Optimal arrival time for a single peak generalized cost

Optimal arrival time
Generalized cost

 0

 10

 20

 30

 40

 50

 60

 70

 0  2  4  6  8  10  12  14
 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

C
os

t (
in

 e
ur

o)

C
lo

ck
 ti

m
e 

  (
in

 h
ou

rs
)

Clock time   (in hours)

Optimal arrival time for a two peaks generalized cost

Optimal arrival time
Generalized cost

Figure 8.3: Two simple numerical illustrations
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2.2 Numerical illustrations, complexity analysis and

benchmark

Numerical illustrations. Figure 8.3 gives two simple illustrations of opti-

mal arrival time functions. In the first example the generalized cost at arrival

has the shape of a Gaussian centered in h̄ = 5 and hence admits a unique

maximum. The optimal arrival time function for α = 0.5 and β = 1.5 is

plotted on the same figure. When users have preferred times close enough

to the peak in generalized cost, their optimal arrival time is either delayed

after or before the peak according to the relative value of α and β. In the

second example gc admits two maxima. The pattern of H̄ is quite similar:

at the beginning or at the end of the period, as well as between the two

peaks, users choose to arrive at their preferred time. On the contrary they

reconsider their arrival time in peak periods.

Figure 8.4 shows two examples of the results generated with more complex

generalized cost functions obtained by summing 50 Gaussian functions with

random mean. Note that it is still easy to interpret H̄c by examining the

multiple peaks in gc.

Complexity analysis. Denote n the number of pieces in gc and p the

number of the function returned by the procedure FindOptArrivalTime. In

Algorithm 8.5 the running time can be divided in two parts. The initializa-

tions of the tangency points (hei ) and (hli) requires a full scan of gc which

can be achieved in O(n). The main loop running time is the number of

events treated (i.e. approximatively p) times the amount of time required to

compute an event. In Algorithm 8.4 the time-consuming operations are the

resolution of the equations involving gc; they can be solved using a simple

scan forward which lasts approximately n/p. Consequently the main loop

has a complexity of O(n+ p). The following proposition comes:

Proposition 8.2. The running time of H̄ =FindOptArrivalTime(g, α, β)

is O(n+ p), where n is the number of pieces in gc and p the number of pieces

in the resulting PWL function H̄.

Obviously this proposition only partially answers the question of the com-

plexity of our algorithm as the relation between p and gc is not established.

To the author’s opinion this is a priori a difficult question, as there are
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seemingly no other options than actually computing H from gc to establish

p. Hence a numerical investigation is conducted below.

Second it is interesting to compare this result to the complexity of the

näıve computing procedure consisting in discretizingHp in k reals and solving

independently the corresponding sequence of minimization programs. Each

minimization program has a complexity of O(n) so the global running time

is in O(kn). The question arising is how k should be chosen to give an

acceptable approximation of H̄. It is quite clear that more pieces H̄ has,

the higher k should be. A reasonable choice for k is thus a few orders of

magnitude over p. The running time of the naive computing procedure is

then O(pn) which is worse than Algorithm 8.5. The numerical experiment

proposed below confirm this finding.

Benchmark. In order to confirm the efficiency of our approach compared

to the näıve one, we have been conducting a numerical experiment depicted

in Figure 8.5. A sequence of randomized generalized cost PWL functions gc
with an increasing number of pieces have been generated. The generation

process is the following. At each step, k Gaussian-shaped PWL functions

with random mean are summed. Each Gaussian-shaped function had 50

pieces and its discretization is centred in its mean so the total number of

pieces in gc is k functions times 50. For a given k, 20 generalized cost func-

tions gc have been generated and tested in order to have a stable estimation

of the total computing time. The näıve optimization procedure is performed

by discretizing the set of preferred arrival times in 200 pieces.

Figure 8.5 shows that the event based approach is always faster than the

naive approach. The running time seems to evolve linearly with the number

of pieces n. According to Proposition 8.2, this would imply that p is either

stable or increases linearly with the number of pieces. Yet the noise on the

running time curve makes it difficult to confirm the assumption. A closer look

at the results reveals that the number of pieces in the arrival time functions

is fairly independent from the number of pieces in gc and varies within 10 to

20 pieces.
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generalized costs for the näıve and the event based procedures

2.3 Extension to convex PWL schedule delay costs

functions

As it has been said in the previous chapter, it is of great interest to consider

DUE with more general schedule delay costs functions. There would be sev-

eral way of extending the previous approach. Most would imply to change

the way function are encoded so that the procedure can treat non PWL func-

tions. Yet, for computing reasons, we do not wish to do so. Consequently the

approach proposed here is limited to convex PWL cost functions. Consider a

continuous and convex PWL schedule delay cost function D. The algorithm

is quite similar to the one exposed in the previous Subsection. The extension

consists in considering several set of candidate instants, one for each pieces

of the schedule delay cost function D. The rest of the treatment is essentially

the same. As its exposition in pseudo-code is rather tedious, it is not done

here.
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A few examples are given here for successive schedule delay cost functions

Di, which are the approximation of the quadratic function:

D(l) = α(l+)2 + β(l−)2

using PWL functions with respectively 10, 20 and 50 pieces.

The results, shown on Figure 8.6, exhibit an interesting property. Unlike

the comparable cases presented in Figure 8.3, the corresponding optimal

arrival time functions are “nearly” strictly increasing. The more pieces the

schedule delay cost function has, the more this last remark is true. In other

terms, there are still constant pieces, but there are much more numerous,

hence giving the illusion of a smooth, increasing function.
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This is due to the strict convexity of D or more precisely to the strict

monotony of its derivative. Indeed following the same line of reasoning as

in Subsection 2.1, one would find that in this case the instants satisfying

the first order condition are varying continuously with hp as soon as both

(1) the derivative of D and (2) the derivative of g are varying continuously.

None of those two conditions are true, as we have chosen to encode functions

using the PWL format. However, when g and D are good approximations of

functions actually satisfying (1) and (2), the resulting property also remains

“approximately” true.

3 Computation of the OD flows from the op-

timal arrival time functions: the spreading

procedure

3.1 Motivations

Once for each user’s category c, an optimal arrival time function H̄c has been

obtained, it remains to deduce X̄c, the corresponding flows at arrival. The

most straightforward approach would be to use the following relationship:

X̄c = Xp
c ◦H

−1
c

Yet, this would lead to discontinuous X̄c, as the functions H−1
c are discon-

tinuous (see the numerical example below in Figure 8.7). Note that this is

due to the characteristic assumptions we have retained in our model: flows

represented by PWL functions and a V-shaped schedule delay cost function.

However discontinuous X̄c are not desirable for several reasons. First it

causes numerical difficulties in the computation of travel times in the bottle-

neck model. Second such an approach leads to a non-converging algorithm.

A simple interpretation is the following: by concentrating departures at given

instants, one only consider discontinuous volumes while we are interested in

continuous one. Hence the exploration of the solution space is inefficient. In

order to overcome this difficulty, spreading procedures are proposed. They
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basically consist in finding all the discontinuities in X̄c and spread the cor-

responding volume of user “around” the optimal arrival time.
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Figure 8.7: Arrival flows before a spreading procedure

3.2 Statement

Let us first define what would be an ideal spreading procedure. It is reason-

able to expect the following properties:

1. The level of spreading should be affected by the generalized cost func-

tion gc.

2. At equilibrium, the spreading procedure should have no effect on the

volume.

3. It should be fast to compute.

The two last properties are straightforward, but the first one requires

some explanations. Let us take as an example the situation in Figure 8.7.

One could simply spread the two volumes corresponding by replacing the

discontinuity gap by a piece with a very high slope. In other words, one
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could spread the volume using a limit flow thus bounding the maximal flow

that can be obtain at equilibrium.

Yet in this approach, one does no to adapt the flows to the current struc-

ture of costs. It is natural that when the costs are increasing fast the volumes

should not be spread with a low flow, otherwise some users would incur very

high costs while other would not. Reversely low variations in the travel cost

should lead to high spreading flows.

Thus we propose the following procedure. For each points of discontinuity

h in H−1
c , compute the interval I such that for all hp ∈ H

−1
c (h), hp ∈ I and

optimal route r′, one has:

|g(h′, τr′c(h
′), pr′c(h

′); c, hp)−min
r,h

g(h′, τrc(h
′), prc(h

′); c, hp)| < dg

Then spread uniformly Xp
c ◦ H

−1
c (h) over I. The quantity dg is a positive

real parameter and is assumed to be small with respect to the “standard”

travel costs. It is referred to as the user’s to costs. Intuitively this is stating

that beyond a certain difference of costs users are indifferent to two travel

alternatives.

Figure 8.8 depicts the application of the spreading procedure on the pre-

vious example.
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Figure 8.8: Arrival flows after a spreading procedure

4 Numerical examples

The algorithm has been implemented in TCL as part of a toolbox called Lab-

DTA (stands for Laboratory for Dynamic Traffic Assignment) presented in

Appendix E. The following numerical examples were obtained thanks to this

implementation. The prototypes developed in LabDTA were used as a basis

to extend the LTK to deal with departure time choice. Some experiments

using this latter implementations are presented in Chapter 10.

The first subsection gives the most simple case study: a single OD pair

served by a single arc. Therefore the only travel decision of the users regards

departure time and no route choice is possible. Moreover we choose uniform

users regarding their vehicle type and economic preferences so they are only

differentiated by their arrival preferences. The scenario is tested with a V-

shaped cost of schedule delay as well as with a strictly convex one.

The second example, called SR91, is a small network with one origin, one

destination, two routes and two user categories. Albeit simple, it illustrates

combined route and departure time choice. It is also a well known case study



4 Numerical examples 253

for transportation economists and as such most of the data regarding both

scheduling cost functions and value of time are available in the literature.

4.1 No route choice

The simple one arc example has already been studied analytically in previous

chapters. It is hence especially interesting to see how test the algorithm on

those cases in order to compare with the theoretical results.

V-shaped schedule delay cost function. The first example we consider

is very basic. A single arc with a bottleneck of capacity k = 20 uvp/min

is subject to a demand where users belongs to c = (od, (D, ν), vl). The

distribution of preferred arrival time is Xp
c (h) = 20.h for h ∈ Hp = [0, 10]

and D is a V-shaped schedule delay cost function of parameters α = 1.5 and

γ = 0.5, and the value of time is normalized to ν = 1.

Figure 8.9 shows the cumulated volumes after 50 iterations of the algo-

rithm together with the theoretical solution of the problem. Clearly the com-

puted results are very similar to the theoretical one as far as the cumulated

flows are concerned. When the instantaneous flows rather than the volumes

are represented (Figure 8.10), the similarity between the two is less obvious.

Indeed the convex combination on route volumes used in the algorithm leads

to oscillations in the cumulated volumes which in turn are present on the

instantaneous flows with an amplification due to differentiation.
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Figure 8.9: Numerical results of the DUE computation algorithm with a

V-shaped schedule delay cost function - volumes after 50 iterations.
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V-shaped schedule delay cost function - flows
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Figure 8.11: Convergence criterion for a V-shaped schedule delay cost function



256
Chapter 8

A convex combination algorithm

Figure 8.11 presents the evolution of the convergence criterion with the

number of iterations. It depicts a clear converging behaviour with a final

value of approximately 0.05. Informally this amounts to say that after 50

iterations, on average users can not lower their costs of more than 5 %.

Non linear schedule delay cost function. Now let us apply the UE

computation algorithm on the same example except D is now given by a non-

linear schedule delay cost function. The chosen schedule delay cost function:

D(l) = 40α.

(
l+

40

)3/2

+ 40γ.

(
l−

40

)3/2

The results are presented in Figure 8.12. As in the previous case, the

cumulated volumes are qualitatively very similar to the theoretical results,

which leads to think the algorithm is converging correctly. This is confirmed

by the convergence criterion which is lower than 0.03 after 40 iterations. This

is better than for V-shaped schedule delay cost functions and in this case the

convergence criterion decreases faster. A possible interpretation is given by

the comments made in Subsection 2.3 i.e. the less linear a schedule delay

cost functions is, the less homogeneous the users’ choices are. This eases the

computation as the users then naturally spread over the space of departure

times.
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4.2 The SR91 example

The State Route 91 is located in the orange county (California, USA) and

was faced to an important congestion problem at the beginning of the 90’s.

The road is connecting a residential zone to a labour pool. Before 1995, it

had a capacity of 8000 pcu/h, and four lanes in each direction. In 1995 two

lanes were added in each direction. The two additional lanes are equipped

with time-varying tolls. The tolls are used as a congestion management tool

to alleviate traffic on peak hours by spreading demand. Yet this management

is complex: a variation in the toll fare can induce both trip rescheduling and

rerouting. Commuters are highly heterogeneous regarding their arrival time

preference (Sautter, 2007), so the travel time pattern at equilibrium is likely

to have a non trivial form.

User categories. Two user categories, subscripted r and p, are considered.

Both of them have a schedule delay cost function D under the classic V-shap

form. They differ only by their value of time ν, their unit cost of arriving late

α and their unit cost of arriving early β. For user class p, νp is taken from

Lam and Small (2001) in its study on SR91. α and β are the ratios obtained

by Small (1982) in its study for San Francisco. In dollars, the values are

νp = 22.87, αp = 12.20 and γp = 38.12. For user class r, along the line of the

technical report from Sautter (2007), it is assumed that the ratios αr/νr and

βr/νr are the same as for p, and that νr = 2νp.

Demand and supply. The distributions of desired arrival instants for each

user class are also taken from Sautter (2007) and are estimated on the baisis

of historical data from the road operator Cofiroute, in charge of the SR91

since 1995. With these assumptions, there are over 100 000 users evenly

distributed between the two categories. The capacities of two routes are set

to 8000 pcu/hour for the free route, and 2500 pcu/hour for the two additional

lanes.

Scenarios. Two scenarios have been simulated. The first is called untolled.

The amount of the toll fare on the two additional lanes was set to 0, and

the user equilibrium with departure time choice has been computed using

LabDTA. The second scenario is called tolled. The time-varying toll fare was
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set equal to the curve plotted in Figure 8.13 (d). A comparative study allows

us to discuss the net effect of tolling.

Results. The results of each route and each scenario are plotted in Figure

8.13 (a-d). In both cases the results are consistent with the theoretical results

from Chapters 5 and 6. In the untolled scenario, the travel time pattern

shows a double peak with slopes corresponding to the one induced by the

ratios αr/νr and βr/νr. The travel time maxima are obtained when delays

are close to 0. Users are using indifferently the two routes and the travel

time is rigorously the same. In the tolled scenario, the two users types are

segregated by the toll; only users of the category r use the tolled route. Note

that the tolling scheme globally reduces travel times. This is achieved by two

mechanisms. On the tolled route the toll tends to spread the traffic, thus

reducing congestion. On the untolled route, the peak is more spread and

slightly less pronounced.

Table 8.1 exemplifies the results of an hypothetical socio-economic analy-

sis based on the results of the simulation. The benefit of the toll is driven by

the time savings made by the category r, which is natural as they have the

entire benefit of the faster tolled lanes. On the contrary users of the category

p incur an increase in traversal costs. This increase is nearly compensated by

a decrease in schedule delay costs. The explanation is not straightforward. A

closer inspection reveals that in the untolled scenario the users of category p

are always late w.r.t. to their preferred arrival time. However as there is no

toll on their route they tend to schedule their trips regarding to congestion

costs, so the benefit of this additional capacity results mainly in a decrease

in schedule delay cost.

Untolled Tolled Difference

Category p r p r p r

Traversal Costs 2947 2525 3000 2432 -53 93

Delay Costs 1873 2923 1823 2934 50 -12

Total/Category 4820 5448 4823 5343 -3 81

Total/Scenarii 10268 10190 78

Table 8.1: Results from an hypothetical socio-economic analysis (values are in

thousands of $ per day).
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5 Some comments about the user tolerance

to costs

The main parameter of the convex combination algorithm is the user toler-

ance to costs dg. In order to achieve good convergence it is necessary to set

it correctly. From the numerical experiments that have conducted, we draw

the following empirical conclusions:

- The algorithm is sensitive to the value of dg.

◦ When dg is too low (typically over 0.1% of the average costs) the

algorithm tends to stop on a “local minimum”.

◦ When dg is too high (typically over 10% of the average costs) the

algorithm behaves as a random walk. It seems however that the

appropriate dg depends of the level of congestion in the considered

case.

- The optimal value of dg varies with the level of congestion.

- A progressive decrease of dg along the execution of the algorithm im-

proves convergence. Sequences dgn = b/(a+n) are quite effective. This

is the approach retained for the numerical examples.

- PWL approximations of quadratic schedule delay costs functions, as

opposed to V-shaped ones, results in situations where the algorithm is

less sensitive to dg.

Up to now there is no general method to correctly set dg. The approach

we used in the previous examples was to conduct a sequence of trials guided

by the evolution of the convergence criterion over the iterations. Although

it leads to reasonable results, this is rather time-consuming.





Chapter 9
A user equilibrium algorithm based on user

coordination

In the previous chapter, an algorithm based on the optimal reaction of users

to a state of supply – represented by the travel times and the monetary costs

on each route of the network – is presented. This algorithm has proven to

be efficient but has some preoccupying flaws. Its efficiency highly depends

on the appropriate choice of a parameter, the user tolerance to costs, and

there is no systematic approach to correctly estimate it. One is bound to

proceed to a sequence of trials which is time-consuming on large networks.

The introduction of this parameter is justified by the fact that as users do not

coordinate with each other, they tend to choose at the same departure times.

Thus the resulting cumulated flows slowly converge toward equilibrium. A

spreading procedure parametrized by the previously mentioned ad-hoc user

tolerance to costs was introduced in order to speed up convergence.

In this chapter, an alternative algorithm that does not rely on a spread-

ing procedure is proposed. It is based on a powerful property that can be

informally be stated as such. If all users have taken travel decisions such that

they can not decrease their generalized costs by marginally changing their de-

parture time, then the departure distribution describes an equilibrium. This

non-intuitive property naturally leads to a more efficient algorithm.
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1 Context of application and mathematical

preliminaries

1.1 The restricted model

In this chapter, we consider a specific case of the general model that has been

developed in Chapter 7. It is likely that the solution method developed here

could be extend to this general model, but it will not be explore here.

The assumptions can be summarized as follows. First, all tolls will be

assumed to be null and thus the generalized cost is solely composed of the

travel time costs and schedule delay costs. Without loss of generality, the

value of time of all users is assumed to be ν = 1, so that the travel time costs

can be identified with the travel times. Finally, it is assumed that all users

have the same schedule delay cost function and vehicle type. Consequently

users only differ by their origin-destination pair and preferred arrival time ;

the set of user categories is thus limited to OD.

In this context, for any origin-destination pair od the shortest routes to

arrive at an instant h̄ define a continuous, FIFO travel time function τ̄OD

as a minimum of continuous FIFO route travel time functions. Note that

this not the case when they are tolls on the networks. In this latter case the

travel times associated to the least cost paths on an OD are not continuous.

Frame 3 gives a simple example.

It is then always possible to express it as a function of the departure

time rather than of the arrival time, i.e. to consider the function τOD :=

τ̄OD ◦
(
IdH − τ̄OD

)−1
. The quantity τOD(h) gives the travel time on the

optimal route from o to d in order to arrive at h+ τOD(h). Note that τOD is

well defined as in this case the map IdH − τOD is inversible. Thus to a given

arrival time there is a single corresponding departure time. This is why the

problem can be stated from a departure time perspective rather than from

an arrival time perspective as done in Chapter 8.

It is interesting to redefine some quantities.

Supply. First let us deal with the supply function FS: it now takes as

output a sequence of OD flows, denotedXOD and returns a sequence of

travel times τOD which represents the shortest paths travel times when
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Consider the simple two-arc network below and a set of users wishing to go

from o to d. Assume they have a value of time ν = 1. Then the least cost

path is a1 until h = 0.5 and a2 for any h > 0.5. The travel time on the least

cost path written as a function of the departure time is then:

τOD(h) =

{
1 + 0.5h for h < 0.5

1 for h > 0.5

Frame 3: Example of the discontinuity of the travel times w.r.t. the departure

time on the least cost path

the volumes XOD are assigned at the dynamic Wardrop equilibrium1.

In other words, FS is a compact notation for a dynamic assignment

algorithm.

Demand. Users now only differ from their origin-destination and

their preferred arrival time. Thus the set of user categories is lim-

ited to C = OD and the set of users is described by a sequence Xp
od

of distributions on Hp. Their cost function will simply be denoted

g(h, hp; τod) = τod(h)+D(h+ τOD(h)−hp). A sequence XOD such that

Xod(∞) = Xp
od(∞) is called an assignment of the demand.10

We can now state the dynamic user equilibrium (DUE) in the restricted

model:

Definition 9.1 (Dynamic User Equilibrium in the restricted model). Find

an assignment of the demand XOD = (Xod)od∈OD such that, letting Hod :=

1Recall from Chapter 2 that the dynamic Wardrop equilibrium is a dynamic user equi-

librium with no departure time choice.
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X−1
od ◦X

p
od and τOD = FS(XOD), for almost every hp ∈ Hp, h

′ ∈ H+ and all

od ∈ OD

xod(h) > 0⇒ g(h,H−1
od (hp); τod) ≤ g(h′, hp; τod) (9.1)

Note that in Definition 9.1, the dynamic assignment problem is a sub-

problem of the DUE computation. This feature is interesting as current

dynamic assignment algorithms are already able to treat large scale problems,

while DUE with route and departure time choice are still difficult to compute.

1.2 The fundamental property

In Chapter 5 an interesting characterization of the DUE has been derived

from the first order condition of the user’s optimization programs. It has

been shown that this characterization was necessary and sufficient and lead

to an efficient solution method. In the case of a network (as opposed to the

single route case of Chapter 5), a similar proposition can be established.

To do so, let us introduce the concept of departing periods on an origin-

destination pair with respect to a given assignment XOD. The departing

periods P od
1 , . . . , P od

n are the biggest intervals such that {xod > 0} = ∪iPi.

Proposition 9.2. Consider XOD an assignment of the demand, τOD =

FS[XOD] the associated travel times, and denote P od
1 = [hod1 , h

od
2 ], . . . , P od

n =

[hod2n+1, h
od
2n+2] the departing period for each od. Assume moreover D is convex

and denote Dl its derivative. Then the assignment is at equilibrium if and

only if:

for all od ∈ OD and all h ∈ H,

h ∈ P od
i ⇒ τ̇od(h) = −Dl

(
h+ τOD(h)−H

−1
od (h)

)(
1 + τ̇od(h)

)
(9.2)

and for all od ∈ OD and any i,

h = hodi ⇒ g(h,H−1
od (h); τod) = min

h′
g(h′, H−1

od (h
′); τod) (9.3)

Proposition 9.2 has a simple physical interpretation. Equation 9.2 states

that for a user departing at an instant h within a departing period, a marginal

variation in the departure time causes no marginal variation in its costs i.e.

that the function h′ 7→ τod(h
′) − D(h′ + τod(h

′) − H−1
od (h)) admits a local

minimum in h′ = h. The fact that this is necessary condition for equilibrium



1 Context of application and mathematical preliminaries 267

is obvious but the other side of the equivalence is quite surprising. Within a

departing period, it is sufficient to know that all users are at a local minimum

w.r.t. their departure time to guarantee they reached a global maximum on

that departing period.

Equation 9.3 states a boundary condition. It concerns users leaving at

the boundary of a departing period: their departure time needs to minimize

globally their cost function.

Proof of Proposition 9.2. The “only if” being obvious, let us tackle the “if”

part. Take any cumulated flows XOD together with the associated functions

τOD = FS(XOD) and Hod := X−1
od ◦ X

p
od of travel time and preferred time,

respectively.

Consider an od ∈ OD. Assume that Xod satisfies (9.2) and (9.3). Now

consider for any h the function g(h) : h′ 7→ τod(h
′)−D(h′+ τod(h

′)−H−1
od (h)).

The quantity g(h)(h′) represents the cost incurred by a user of preferred arrival

time H−1
od (h

′) when leaving at h′.

Let us show that g(h) admits a global minimum at h′ = h.

Denote P od = [hodm , h
od
M ] the departing period containing h. Let us first show

that g(h)(h) = min
h′

g(h)(h). From its definition g(h) is continuous and differ-

entiable almost everywhere, with derivative ġ(h) given by:

ġ(h)(h′) = τ̇od(h
′) +Dl

(
h′ + τod(h

′)−H−1
od (h)

)(
1 + τ̇od(h

′)
)

(9.4)

H−1
od (h) is an increasing function (as the inverse of an increasing function) and

as is Dl because of the convexity of D, so the quantity ġ(h)(h′) is decreasing

with h. Around point h = h′ we have that:

ġ(h)(h′) ≷ ġ(h
′)(h′) if h′ ≷ h

Yet ġ(h
′)(h′) = 0 is zero almost everywhere by Equation (9.2), so

ġ(h)(h′) ≷ 0 if h′ ≷ h

which means that the function g(h) admits a minimum on P od in h′ = h.

Then for h′ /∈ P , either h′ < hodm or h′ > hodM . Assume there exists h′ < hodm
such that g(h)(h′) = min

h′
g(h)(h′). Then as hodm = min

h′
g(h

od
m )(hodm ), Proposition

7.5 of Chapter 8 applies and gives g(h)(h′) = g(h)(hodm ) ≤ g(h)(h). Using

the same arguments for the case where h′ > hodM leads to conclude that the

function g(h) admits a minimum on H. Thus XOD satisfies the optimality

condition (9.1).
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2 The algorithm

2.1 General philosophy

An interesting feature of Equation 9.2 is that for a given assignment of the

demand it allows to state if the variation of the corresponding travel times

is too high or too low at an instant h on an od. Informally, the algorithm

proceeds as follows. When the travel time variation is too low at an instant

h the flow at this instant is increased. If it is too high, it is decreased.

There is a clear relationship between this method and the approach we

proposed in Chapter 5 for the one arc case. Equation 9.2 has been derived

in the same way as the differential equation of Chapter 5. However, when in

the single arc case, the flowing equation gave an explicit expression of τ̇od(h)

as a function of xod(h). There is no such explicit function in the network

case. That’s why we are going to proceed as if the function τod was a black

box. When we increase the flow at a time h it is likely to induce an increase

in τ̇od(h), but it is extremely difficult to know of how much; the only way is

to test it.

This approach can be related to control engineering. The system is the

dynamic assignment procedure, the inputs are the OD flows, the outputs are

the travel times and the control law is given by Equation 9.2.

2.2 Formal statement

The algorithm is iterative. At every step an update procedure is applied to

each OD flows. This procedure modifies them according to the outputs of

the system represented by τOD = (τod)od∈OD and the corresponding HOD =

(Hod)od∈OD. This is achieved in two parts. First, the demand on each origin

destination pair, represented by Xp
od is divided in sub-demandsXp,1

od , . . . , X
p,n
od

by discretizing the set Hp in n subintervals. This part of the algorithm is

called the divide procedure. Then from each subdemands Xp,k
od are derived

new od flows X ′
od. This is called the coordinate procedure.

Division. The divide procedure takes a demand Xp
od and divide it

accordingHod. This done by choosing a parameter dhmax and scanningHod =

(hpi , hi, si). If one find i such that there is a discontinuity higher than dhmax

then the demand is divided in hpi . In PWL format this writes: i is such that

hi − si−1.(h
p
i − h

p
i−1) > dhmax. The exact algorithm of procedure divide is

written in pseudo-code below.
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Algorithm 9.1 divide(Xp
od, Hod)

Inputs: A demand Xp
od, a departure time function Hod

Outputs: A sequence of sub demands Xp,k
od

Parameters: dhmax the maximum admissible gap

Set hpprev to min
hp

Hp

For each (hpi , hi, si) in Hod

If hi − si−1.(h
p
i − h

p
i−1) > dhmax then

Set Xp,k
od (h) := Xod(h) for h ∈ [hpprev;h

p
i ]

Set hpprev to hpi
End For

Set Xp,k
od (h) := Xod(h) for h ∈ [hpprev; max

hp

Hp]

Figure 9.2: Illustration of the divide procedure

Coordination. The coordinate procedure takes a demand Xp
od and



270
Chapter 9

An algorithm based on user coordination

assigns it according to the actual travel time τod and the previous assignment

Xod.

Define η as:

η(h; τod, Hod) :=
(

τ̇od(h) +Dl

(
h+ τod(h)−H

−1
od (h)

)(
1 + τ̇od(h)

))

(9.5)

The quantity η(h; τod, Hod) summarizes the gap between the actual variations

of the travel time and the one that satisfies the optimality condition stated

by Equation (9.2). Note that xod(h).η(h; τod, Hod) = 0 for all h and od is a

necessary condition for the equilibrium.

The first step is to find the optimal departure instant hM for the preferred

arrival time hMp = sup
{
hp : xpod(hp) > 0

}
. Note that hMp can be interpreted

as the user with the highest preferred arrival time. Then the new cumulated

flow X ′
od is obtained by the solving the following functional system:







Xod(h) = X ′(hM)−

∫ H′
od

(hM )

H′
od

(h)

max(αηx+, 0)dH
′
od

H ′
od(h) =

(
Xp(h

M)−Xp(h)
)−1
◦
(
X ′

od(h
M)−X ′

od(h)
)

(9.6)

Algorithm 9.2 explicits a discretized version of the procedure presented

above. The right approach here would be an exact resolution of (9.6), so it

is merely given here to ease the understanding of the procedure, rather than

for a direct implementation.

Algorithm 9.2 coordinationProc(Xp
od, τod, Xod)

Inputs: A demand Xp
od, a travel time τod and a cumulated volumes Xod

Outputs: A new volumes X ′
+

Parameters: xm the minimal admissible flow

Discretize Xp into a sequence ((h1p, V1),. . . ,(h
n
p , Vn))

Consider hnp and Set hn to the associated optimal departure time w.r.t.

τod
Set X ′

od(hn) :=
∑

k Vk
For i = n− 1, . . . , 1 do

Set xk+ := max(x+(hk+1).
(
1 + αη(hk+1)

)
, xm) where η is given by (9.5).

Set hk := hk+1 − Vk/x
k
+ and X ′

+(hk+1) := Vk
End For
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3 Numerical example

The user coordination algorithm has been implemented in LabDTA (see ap-

pendix). The result on the simple one-arc network of Chapter 8, Section 4

is presented and assessed in this section. The numerical setting is rigorously

the same. The stress is on the comparison with the convex combination

algorithm.

Figure 9.3 presents the cumulated flow representation of the results after

20 iterations. Graphically the results perfectly fit the theoretical ones. The

convergence criterion is under 0.01 whereas with the convex combination

algorithm it was 0.1. Moreover Figure 9.3 shows that the convergence is

much faster in terms of iteration. Let us add that each iteration is faster

to compute, so at the end the algorithm with user coordination is especially

efficient on this simple case.
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Conclusion

This chapter has presented a proposal for a new algorithm for the Dynamic

User Equilibrium computation. The algorithm was tested and assessed on a

small example and the results are especially encouraging.

The algorithm remains to be tested more extensively to control how it

behaves on larger networks. Moreover it would be interesting to see how to

extend it on wider case of applications and especially to see how to take in

account tolls on the network. This gives perspectives for future works.





Chapter 10
An application to a large interurban network

during summer holiday departures

During summer holidays, a significant part of the trans-european road traffic

is concentrated in the Vallée du Rhône (VDR) area. Tourists coming from

northern Europe (including Belgium, the Netherlands, Germany and Great

Britain), travel across France to reach (or return from) southern countries

(e.g. Italy and Spain), meeting on their way people from the Paris area. The

situation is depicted in Figure 10.1. The map shows the location of the VDR

area and sketches the structure of traffic flows from foreign countries. The

main axis in the VDR area in the A7 motorway, located between Lyon and

Orange. The distance between those two cities is around 200km. During

summer Saturdays, traffic conditions on motorways are usually very bad,

especially on the A7, because of high levels of congestion.

To better operate the network, motorway operators have shown interests

in studying time varying tolling strategies. Among the possible schemes, a

toll varying within the day and from day to day is especially appealing for

summer holidays trips as it enables the operator to influence the departure

day as well as the departure time. The aim of this chapter is to assess such

a strategy.

Results presented in the sequel illustrate the ability of our model and the

associated algorithms to handle such kind of studies on large networks and

to give reasonable orders of magnitude. However it does not intend to show

the algorithm convergence on large networks or to provide accurate prevision

of the traffic level. This issue is state-of-the-art research problems and an
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important amount of work is still required before designing effective methods

to compute DUE with departure time choice on large networks.

This chapter is divided in three sections. First, it is argued that the

model of Chapter 7 is suited to inter-urban travel. Second, the details of the

numerical set up are presented. Finally, some numerical results are presented

and commented.

Figure 10.1: Vallée du Rhône (VDR) location and main traffic flows during

holiday departures.

1 Empirical evidences on inter-urban travel

and their practical implications for depar-

ture time choice modelling

Dynamic user equilibrium model with departure time choice essentially draw

upon Vickrey’s bottleneck model (see Chapter 1). Two assumptions underlie

the bottleneck model and its various extensions for networks: (1) preferred

arrival times are taken from a discrete set of values and (2) delay cost func-

tions are convex. As discussed in this subsection, those two assumptions

appear not to be appropriate means of modelling economic preferences of

inter-urban trip makers.
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Figure 10.2: (Top) Travel time pattern between Narbonne and Orange on the

14th of July 2007. (Bottom) OD flows between Narbonne and

Orange (courtesy of ASF).
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Let us first have a look at the travel time patterns and flow rates observed

in inter-urban trips. Figure 10.2 (Top) shows the variations of travel time

between Narbonne and Orange, two cities of southern France, on a holiday

departure day. The pattern is quite far from the single peak predicted by

the bottleneck model: at least two peak periods can be observed, along

with significant variations elsewhere. The flow rate on the same OD pair

is plotted in Figure 10.2 (Bottom). One can observe significant flow rates

during the whole day. This is clearly not consistent with a single preferred

arrival instant.

Another interesting point is the diversity of inter-urban travellers. As

opposed to the morning peak where the road traffic is mainly composed

of commuters, inter-urban trips have a wide variety of purposes, inducing

significant differences in value of time and delay cost functions. In the same

order of idea, a significant part of the traffic is composed of heavy vehicles,

which has important consequences on congestion modelling.

Finally the results of a survey organized in 2008 by three French motorway

operators show that, during summer holidays, trip makers can be divided into

two categories:

- Unflexible users can absolutely not afford arriving later than sched-

uled (e.g. because they need catching the key for their rental) and are

not ready to change their day of arrival.

- Flexible users are far less constrained at arrival. They may change

their day of arrival or/and arrive after their preferred arrival time.

They are even ready to reschedule their departure day, if they can

benefit from lower congestion or toll fares.

This last point is especially interesting as it shows that in inter-urban context

the convexity of delay cost functions can no longer be assumed. Indeed in

this case the cost of the delay does not necessarily decrease as the arrival

time gets closer to the preferred schedule. A traveller considering to leave

one day in advance to avoid traffic jams will not necessarily consider arriving

at 2 a.m. a better option.

To sum it up, empirical observations show that, for inter-urban trips, a

departure time choice model should differ from the classical “bottleneck-like”

approach, with respect to the three following requirements:

1. A high level of heterogeneity regarding both preferred schedules (several
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preferred arrival times per OD pair) and economic characteristics (value

of times and schedule delay cost functions) is required.

2. Multi class congestion modelling is to be considered.

3. Users should be able to choice their day of departure as well as the

time of the day.

This justifies the use of the modelling framework presented in Chapter 7

in this case. The following section presents the model set up.

2 Model set up

2.1 Modelling details

Two user classes, named const and flex, were considered. Those two classes

correspond to passenger cars1. They share most of their characteristics (same

free flow travel time, same toll prices,. . . ). They are distinguished only by

their schedule delay cost functions. For user category const, the penalty of

arriving later than scheduled grows linearly at a very high rate, while the

penalty of arriving sooner grows at a lower rate. The schedule delay cost

function of user category flex is a little bit more complex. Around 0, it

has a classical V-shape, except that the cost of a early arrival grows faster

than the cost of a late arrival. Between 6 and 18 the cost of the delay is

infinite. Around 24, the shape of the delay cost function is similar than

around 0, except that it is shifted up by an amount that corresponds to

the cost of rescheduling the departure to the day after. The values of the

delay cost evolve similarly around 24. This expresses the cost of rescheduling

the departure to the day before. The schedule delay cost function of user

category flex is depicted in Figure 10.3.

1 The traffic of heavy vehicles is ignored since traffic regulation rules forbid truck traffic

during some of the most congested days in summer.
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Figure 10.3: Schedule delay cost of the user category flex. The values given here

are just orders of magnitude. The actual values used for the

simulation are not given for confidentiality reasons.

Figure 10.4: Schedule delay cost of the user category const. The value of β given

here are just orders of magnitude. The value of γ is taken sufficiently

high, that it is numerically close to infinity. The actual values used

for the simulation are not given for confidentiality reasons.
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2.2 Input data and calibration

Most of the data was provided to us by courtesy of companies of the Vinci

Group (ASF, APRR and Cofiroute) operating the motorway network in the

area of interest. The network comprises 2404 arcs and 939 nodes and is

depicted on Figure 10.5. We have for each arc its capacity, free flow travel

time for passenger cars, and travel price for passenger cars. The demand is

expressed for 628 OD pairs. The simulated days are July the 14th and the

15th, 2007.

The tested scenario is the introduction of time-varying tolls on the mo-

torways A5, A54, A6, A7, A9, A10, A11 and A71. They are plotted in red in

Figure 10.5. The time-varying tolls have been built by multiplying the for-

mer tolls by a time dependent factor, which is plotted in Figure 10.6. This

factor is greater than one (i.e. the fare is higher than usual) between 5 and

17. Its is lower than 1 between 20 and 34, meaning that the amount of the

fare is lower than usual between 8 p.m. of the simulated day and 10 a.m of

the day after. Although the network is pretty important, we will focus solely

on the VDR and its surroundings.

We also have at our disposal a distribution Xc of the preferred arrival

times for all OD pairs and users categories. It has been inferred for the

simulated day from a large survey conducted by the motorway operators in

year 2008. The value taken for the parameters are also inferred from this

survey.

Most of the motorways of the network under study are equipped with

closed toll systems. As a consequence, we had at our disposal an accurate

time-dependent OD matrix for the simulated day, built from the toll stations

records. This allows for a fine grain calibration of the model, by adjusting

its parameters until simulated traffic flows computed by a (fixed demand)

traffic assignment match well traffic counts data, for a significant percentage

of motorway sections. A calibration was performed by the Economy and

Traffic Department at Cofiroute with very encouraging results.

However the results presented here are using an uncalibrated set of data

for confidentiality reasons. Thus the sole purpose of the results presented

below is illustrative, and the conclusions, figures and charts presented therein

have no particular meaning outside the scope of this thesis.
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2.3 Computation

The computation algorithm used here is essentially the method presented in

Chapter 8. A slight change has been introduced to deal with problems of

large size. At each iteration the arc cumulated flows are approximated by

reducing the number of pieces that describe them. The approximation is

due to Aguiléra (2010). More details may be found in this latter reference.

The convex algorithm has been implemented in the Ladta Toolkit from the

prototype developed in Chapter 8. A computer equipped with a bi-core pro-

cessor and 2Gb of RAM were used. A total of 50 iterations were performed,

yielding a total run time of roughly 1 hour.
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Figure 10.5: Network under study. The motorways where the time-varying

tolling scheme is implemented are plotted in red.
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3 Results

3.1 Comments about convergence and computation times

Figure 10.7 (Top) depicts the inter-iteration criterion over the iterations of

the algorithm. The inter-iteration criterion is defined as such

Ik =
∑

a∈A

||Y
[k]
a − Y

[k−1]
a ||

Y
[k]
a

where Y
[k]
a is the cumulated flow on arc a at iteration k and ||.|| is the

supremum norm.

This kind of criterion has well known flaws. In particular for a method

of successive averages, it converges by construction towards 0. In this case

it was difficult to use anything else. A finer criterion, like the one developed

in Chapter 7, would require the route flows or at least a decomposition of

the arc flows by destination. The memory requirements for this are too

important on a network of this size. Now, even if the inter-iteration criterion

is not suited to state precisely on the quality of the equilibrium, it is an

adequate stop criterion. When Ik becomes close to 0, it is not interesting to

carry on the algorithm as the current solution is not going to evolve much

by performing some extra iterations. Figure 10.7 (Top) shows that we have

performed enough iterations.

Figure 10.7 (Bottom) depicts the computation time. An initial increase

happens after the first iteration and a more gentle decrease is observed for

the rest of the computation. As already mentioned the overall computation

time is very reasonable (approx. 1 hour).

To sum up it is difficult to measure the exact quality of our solution here,

but the elements exposed above allow us to say that our algorithm can be

applied to reasonably large networks without any operational difficulties.
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3.2 Aggregated results

The results are presented for two scenarios. The scenario with time-invariant

tolls is called the current situation, while the scenario with time-varying tolls

is called the projected situation.

Figure 10.8 shows the overall distribution of departure times for both

scenarios. It illustrates the shift of departure time caused by the time-varying

tolls. This occurs at two levels. Within each days, users’ departure times

are distributed more evenly. Between days, more users depart on the second

day in the projected situation than in the current one.

Figure 10.9 (Top) represents the following congestion indicator:

ω(h) =
∑

a∈A

xa(h).τa(h)

Note that
∫

H
ω(h)dh is the travel time aggregated among users, so ω(h) can

be interpreted as a variation of this quantity over time. ω(h) is a useful

indication of the temporal repartition of the aggregated travel time. Figure

10.9 (Top) confirms users’ shift of departure time as the travel time are more

evenly distributed over the two days. The integration of ω(h) for the two sce-

narios also show the aggregated travel time decreases from approximatively

10% in the projected situation.

Figure 10.9 (Bottom) represents the following congestion indicator:

ωq(h) =
∑

a∈A

xa(h).(τa(h)− ta,0(h))

It is the equivalent of ω for the the time spend queuing. Figure 10.9 (Bottom)

shows that in the projected situation some congestion appear on the second

day.
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Figure 10.9: Travel times (top) and queued times (bottom) on the French road

network
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3.3 Disaggregated results

Figure 10.10 shows a map of the arc travel times at 11:00 am on the 14th of

July in the current scenario while Figure 10.11 shows the same map for the

projected scenario. Both maps focus on the VDR. The projected scenario is

clearly less congested. An interesting point is that some congestion appears

on secondary roads, in particular on the N88 road going from Saint Etienne

to Le Puy-en-Velay. This is caused by the users’ shift from tolled roads to

untolled ones. It thus reasonable to state that the congestion decreases is

caused by two mechanisms: the spread of the demand in time, both within

and between days, and a spread of the demand among the routes. In the

projected situation the road capacity is used more efficiently both in time

and space.
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Figure 10.10: Travel times in VDR in the current scenario
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Figure 10.11: Travel times in VDR for the projected situation
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Conclusion

This chapter exposed a possible application for the model developed in this

part of the thesis. The relevance of the assumptions has been demonstrated

and the computational burden associated with a network of this size is per-

fectly acceptable. The qualitative analysis of the results showed the com-

puted equilibrium gives consistent orders of magnitude. Now a proper as-

sessment of the convergence of the algorithm on large scale networks would

require to compute a rigorous criterion. For computational reasons, it was

not done here. This leaves interesting perspectives for future works.

The numerical results show that a moderate toll-varying scheme might

have strong impacts on an highly congested interurban network. By applying

a time-dependant factor varying between 0.7 and 1.2 to the existing tolls,

the aggregate travel times have decreased of approx. 10%. The resulting

congestion decreases is apparently caused by two mechanisms: the spread

of the demand in time, both within and between days, and a spread of the

demand among the routes. It is important to note that this was achieved

using a limited increase relatively to the users’ generalized costs.





General conclusion





General conclusion

This work is purported to provide a game theoretic analysis of dynamic user

equilibrium models. The approach can be broken in three steps. First a

general framework, the dynamic congestion games, has been set up. Then,

two specific dynamic congestion games for which the solution can be derived

analytically are studied. Finally, we state a dynamic user equilibrium mo-

del in the formalism of dynamic congestion games and present numerical

approaches to solve it.

This set of selected issues have been addressed, yielding specific answers

to specific questions. Brought together these results allows to give elements

of answers to the questions raised in the introduction. These conclusions are

outlined here.

Towards a unified framework for dynamic user equilibrium models.

Since the seminal work of Friesz et al. (1993), DUE models of an increasing

complexity have been proposed, and yet the transport science community is

still in search for a unifying framework. Chapter 5 and 6 have highlighted the

importance of continuous user heterogeneity in the representation of trans-

port demand and exposed how to model it on small networks. These models

can be seen as special cases of a wider framework, dynamic congestion games,

that has been presented in Chapter 3. The relationship between dynamic con-

gestion games and dynamic traffic assignment models is explored (Chapter

4) and it is shown that the standard deterministic route choice approach to

dynamic traffic assignment can be formulated as a dynamic congestion game.

Now, as discussed in the conclusion of Chapter 3, dynamic congestion

games may encompass a much wider range of DUE models e.g. models with

departure time choice, with distributions of the value of time and possibly
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simple activity-based models. In a nutshell, they seem to provide an in-

teresting framework for equilibriums with complex demand representations.

Carrying on the investigation of the relationships between dynamic conges-

tion games and existing DUE models in that direction is, to the author’s

viewpoint, an interesting continuation of the research conducted in this the-

sis. A particularly interesting outcome could be existence results for DUE

problems with departure time choice, for instance the one of Friesz et al..

About the continuous time approach. In the previously mentioned

paper of Friesz et al., the authors stated that “time is experienced as a

continuum and should be modelled that way” (p 189). We share this opinion,

and this was one of the fundamental modelling choice of the LADTA model.

This thesis explores at least two consequences of this choice regarding DUE

models with departure time choice.

The first issue is the representation of user choices. In Chapter 5, we

derived a model where preferred arrival times and departure times have a

continuous representation. This leads us to investigate the complex issue of

correctly representing user choices over a continuous set of decision variable

(the departure times) when users are themselves distributed over a continuous

set (the preferred arrival times). This specific approach is extended to a

much more general case in Chapter 3. This rigorous representation of the

user choices proved to be insightful in Chapter 7 and 8, where it leads to

design a reduced formulation of a DUE problem with departure time choice,

that is both well-suited to computation and offers some existence guarantees.

The second issue is the computation of deterministic DUE with continu-

ous times. As noted in our literature review (Chapter 2), most of the current

DUE models assume stochastic departure time choice and it seems that this

behavioural assumption is motivated by computational reasons. Determinis-

tic DUE computation is the main object of Part IV. Computation algorithms

are presented and rigorously assessed on small examples. The operational

performance of one of these algorithms is then tested on a real life network.

The difficulties related to time versus costs DUE. Replacing travel

times by generalized costs in the formulation of a DUE might sound straight-

forward, but in fact leads to conceptual and algorithmic difficulties. In our

literature review (Chapter 1), we exposed that the shortest path problem

exhibits very interesting properties, especially from a computational per-
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spective, while most of them were not true for least cost path problems. For

instance, a least cost path on a network might not be loop free. This has con-

sequences on the way one formulate and solve DUE models. In Chapter 7 and

8, this leads us to consider the user decision strategy as a two-stage process:

first, the arrival time choice and then the route choice. The last numerical

experiment in Chapter 8 also highlights the increased computational difficul-

ties and instabilities observed when considering generalized costs rather than

travel time-based equilibriums.

Open issues. It is commonplace for research works to give some answers,

but more questions ; the present one is no exception to this rule. Some

possible future works are listed below:

- The existence of an equilibrium in Friesz et al. (1993)’s model has not

been addressed yet. One might wonder whether dynamic congestion

games are a suitable concept to achieve this result.

- The extension of dynamic congestion games to encompass complex activity-

based models. It has been mentioned in Chapter 3 that dynamic con-

gestion games could easily model the possibility of short stops on a

travel, or even longer activities as far as they are of constant duration.

It would be of clear interest to be able to represent stops of variable

time, the duration being a user’s decision variable. This would require

some extra research, and more specifically to reformulate the dynamic

network loading problem.

- The extension of the user-coordination algorithm to networks with tolls.

This latter has demonstrated a greater efficiency than the convex com-

bination ones, but it is not clear how it could deal with generalized

cost-based equilibrium rather than travel time-based ones.
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Appendix A
Proof of Proposition 5.6 of Chapter 5

Proposition 5.6. Wm(h0) := mini τ̂i(h0) is a continuous and decreasing

function.

Proof of Proposition 5.6. Consider an interval [hm, hM ] included in an off-

peak period and denote Pi = [pi−1, pi], i = 1, . . . , 2n, the sequence of peak

and off-peak periods after hM . The proof proceeds in three steps. We shall

first define for each i a function h0 7→ ˆ~(h0) on [hm, hM ] that takes its value

in Pi. Second, some properties of these functions will be established. Third,

we shall conclude about mini τ̂i. We shall make use of an auxiliary function

defined as follows:

(h0, h̄) 7→ ∆(h0, h̄) := k.(h̄− h0)−Xp(h̄) +Xp(h0))

Step I: Defining ~̂i(h0). For any h0 in [hm, hM ] let us define ~̂0, . . . , ~̂2n
by setting ~̂0 := h0 and by using the following recursive rule. For any i from

1 to 2n, try to solve the equation ∆(h0, h̄) = 0 in h̄ on Pi: if there is a

solution h̄ then set ~̂i to h̄ , else set ~̂i to either pi or pi−1 according to the

following table of cases.

Case ∆ > 0 on Pi ∆ < 0 on Pi

i odd pi pi−1

i even pi−1 pi

Table 1.1: Table of cases for the prolongation of ~̂i

The derivation of a sequence (~̂i), illustrated in Figure A.1, stands as an

ad-hoc extension of formula (5.14) so as to address degeneracy in the number
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of early and late sub-periods. When several neighboring peak periods give

rise to a common queued period, then there might be less actual early and

late sub-periods than peak periods. The proposed extension deals with this

issue by adding “fake” subperiods of null size.
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Figure A.1: Derivation of would-be critical arrival times

Step II: Properties of ~̂i(h0). Let us show that the functions ~̂i(.) are

continuous and monotonic, decreasing if i is odd, meaning an off-peak period

Pi, or increasing if i is even meaning a peak period Pi. In the case of even i,

consider ∆ on ]hm, hM [×]pi−1, pi[. This is a continuous function with partial

derivatives with respect to h̄ and h0 as follows:

∆h0
(h0, h̄) = xp(h)− k < 0 and ∆h̄(h0, h̄) = k − xp(h̄) > 0.

Six cases can arise, all them depicted in Figure A.2.

- Cases 5 and 6 are degenerated situations where ∆(h, h̄) 6= 0 and where

consequently ~̂i(h0) = pi (case 5) or ~̂i(h) = pi−1 (case 6) for all h0 ∈

[hm, hM ].

- In cases 1 to 4, Equation ∆(h, h̄) = 0 defines implicitly a function

~̂i(h) on an interval ]a, b[ in such a way that (a, lim
a

~̂i) and (b, lim
b
~̂i)

lie on the boundary of ]hm, hM [×]pi−1, pi[. Hence, a that a = hm or

lima ~̂i = pi−1 and b is such that b = hM or limb ~̂i = pi. Furthermore,

for all h̄ we have ∆h̄(h0, h̄) < 0 for h < a and ∆h̄(h0, h̄) > 0 for h > b.

Prolongating each ~̂i on [hm, hM ] by the process defined above is thus

continuous.

In all 6 cases, h̄i is a continuous functions. In cases 5 and 6, it is trivially
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increasing as a constant function. In cases 1 to 4,
d~̂i
dh

= −
∆h0

(h0, h̄)

∆h̄(h0, h̄)
> 0

on [a, b] (implicit function theorem) and h̄i is constant elsewhere.

The case when i is odd is similar.
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Case 1: Case 2:

a = hm and b = hM lima ~̂i = pi−1 and b = hM

Case 3: Case 4

a = hm and limb ~̂i = pi lima ~̂i = pi−1 and limh→b ~̂i = pi

Case 5 Case 6

Figure A.2: Possible cases for implicit equation ∆(h, h̄) = 0 for a peak period Pi

The red line depicts the prolongation of ~̂i using the rules of Table

1.1
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Step III: Proof that Wm is a continuous and decreasing function.

For each h0, derive ĥi(h0) and τ̂i(h0) from ~̂i(h0) on the basis of (5.16) and

(5.17). By straightforward substitution of (5.16) into (5.17) we get that

τ̂i+1(h0) = τ̂i(h0) +
x+i − k

x+i
(~̂i+1(h0)− ~̂i−1(h0)) (1.1)

where x+i is defined as in (5.16). As ~̂i+1− ~̂i is a decreasing [resp. increasing]

with respect to h0 if i is even [resp. odd] hence x+i is positive [resp. negative]

the incremental part in (1.1) is a decreasing function of h0. Then each τ̂i is a

decreasing function of h0, owing to recursion and to the initial condition τ̂0 =

0. Concluding, the minimum Wm := mini τ̂i is a continuous and decreasing

function of h0 as the minimum of a sequence of such functions.
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Proofs of Chapter 6

Lemma 6.15. Assuming a DUE of type a, ν⋆1 and ν⋆2 are characterized by

the following relationships:

g̃(ν⋆1) = ηV (ν⋆1) + ν⋆1t+ ρp

and

ηV (ν⋆2) = (1− ρ).p

Proof of Lemma 6.15.

First Equality As a solution to the DUE problem, τ1, h
1
−, h

1
+ and ν⋆1

are such that:

τ1
(
h1−(ν

⋆
1)
)
= τ1

(
h1+(ν

⋆
1)
)
= 0

Then, from Equation (6.22), it comes:

τ2
(
h2−(ν

⋆
1)
)
= τ2

(
h2+(ν

⋆
1)
)
= t

As g̃ := mini g̃i satisfies Equation (6.15):

g̃(ν⋆1) = −αh
1
−(ν

⋆
1) + ν⋆1 .t = βh1+(ν

⋆
1) + ν⋆1 .t

and

g̃(ν⋆1) = −αh
2
−(ν

⋆
1) + ν⋆1 .t+ p = βh2+(ν

⋆
1) + ν⋆1 .t+ p

Which, combined with (6.16), yields:
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g̃(ν⋆1) = η/k.
[
ρ.
(
h2+(ν

⋆
1)− h

2
−(ν

⋆
1)
)
+ (1− ρ).

(
h1+(ν

⋆
1)− h

1
−(ν

⋆
1)
)]

+ ν⋆1t+ ρp

= ηV (ν⋆1) + ν⋆1t+ (1− ρ)p

Second equality As a solution to the DUE problem, h2−, h
2
+ and ν⋆2 are

such that: h2+(ν
⋆
2) = h2−(ν

⋆
2) = 0. According to Equation (6.15):

g̃(ν⋆2) = αh1−(ν
⋆
2) + ν⋆2 .t+ ν⋆2 .τ(h

1
−(ν

⋆
2)) = −βh

1
+(ν

⋆
2) + ν⋆2 .t+ ν⋆2 .τ(h

1
+(ν

⋆
2))

and

g̃(ν⋆2) = ν⋆2τ(h
1
−(ν

⋆
2)) + p = ν⋆2τ(h

1
+(ν

⋆
2)) + p

The first equation gives:

g̃(ν⋆2) = ηk.
(
h1+(ν

⋆
2)− h

1
−(ν

⋆
2)
)
+ ν⋆2 .t+ ν⋆2 .τ(h

1
+(ν

⋆
2))

and combining it with (6.16):

g̃(ν⋆2) =
η

1− ρ
V (ν⋆2) + ν⋆1 .

(
t+ τ(h1+((ν

⋆
2))
)

According to Equation (6.22), τ(h2+(ν
⋆
2)) = τ(h1+(ν

⋆
2)) + t, so it comes:

ηV (ν⋆2) = (1− ρ)p

Lemma 6.16. The boundary conditions are :

∂g̃

∂ν
(νM) = 0

g̃(νM) =
η

ρ

(

V (νM)− V (ν⋆1)(1− ρ)
)

+ ν⋆1t+ ρp

Proof of Lemma 6.16. As τ2 and h2− are solution to the DUE2R problem,

τ2(h
2
−(νM)) = 0
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According to Equation (6.15),

g̃(νM) = αh2+(νM) + p = −βh2+(νM) + p

Hence,

g̃(νM) = ηk.
(
h2−(νM)− h2+(νM)

)
+ p

Using Lemma 6.15, one can get

ηk
(
h2−(ν

⋆
1)− h

2
+(ν

⋆
1)
)
= V (ν⋆1) + (ρ− 1)p

and Equation (6.16) leads to

h2−(νM)− h2+(νM) = h2−(ν
⋆
1)− h

2
+(ν

⋆
1) +

V (νM)− V (ν⋆1)

ρk

Combining the two last equations gives

h2−(νM)− h2+(νM) =
ρ− 1

ρk
V (ν⋆1) +

1

ρk
V (νM) +

ρ− 1

ηk
p

So finally it comes

g̃(νM) =
η

ρ

(

V (νM)− V (ν⋆1)(1− ρ)
)

+ ρp

Proposition 6.11 (Equivalency of the DUE2R and the two ECP2R). rien

(1) If the two quadruples Θi = (hi−, h
i
+, τi, ν

⋆
i ), for i ∈ {1; 2}, solves the

DUE2R problem, then g̃ := mini g̃i(.; Θi) solves either the ECP2Ra (and

then ν⋆1 6= ν⋆2) or the ECP2Rb (and then ν⋆1 = ν⋆2).

(2) Consider (g̃a, ν
⋆
1 , ν

⋆
2) and (g̃b, ν

⋆) the respective solutions of the ECP2Ra

and the ECP2Rb. Then:

(i) ν⋆1 = ν⋆2 ⇒ ν⋆ = ν⋆1 = ν⋆2 and g̃a = g̃b are solutions to the DUE2R

problem.

(ii) ν⋆1 < ν⋆2 ⇒ (g̃a, ν
⋆
1 , ν

⋆
2) is a solution of the DUE2R problem.

(iii) ν⋆1 > ν⋆2 ⇒ (g̃b, ν
⋆, ν⋆) is a solution of the DUE2R problem.
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Proof of the “sufficiency” part of Proposition 6.11. rien

(ii). Consider g̃ the solution to the ECP2Ra and let (Θi)i∈{1,2} = (hi−, h
i
+, ν

i
⋆)i∈{1,2}

and (τ)i∈{1,2} be defined as in Definition 6.10. Proceeding as in Proposition

6.3, it can easily be proven that the triple (h1−, h
1
+, τ1) is a solution to the DUE

problem with one route of capacity ρk and a VoT distribution of N1(.; Θ1).

Similarly, the triple (h2−, h
2
+, τ2) is a solution to the DUE problem with one

route of capacity (1− ρ)k and a VoT distribution of N2(.; Θ2).

It remains to show that Equations (6.15) and (6.16) hold. Consider

g̃1(ν; θ1, τ1) on [νm, ν
⋆
1 ]:

g̃1(ν; θ1, τ1) = ν.
(

τ1
(
h1−(ν)

)
+ t
)

− α.h1−(ν)

= ν
∂g̃

∂ν
(ν) + g̃(ν⋆1)− ν

⋆
1 .t−

∫ ν⋆
1

ν

ν
∂2g̃

∂ν2
(ν) dν (Replace τ1 and h1− by

their expr. in Def. 6.10)

= g̃(ν⋆1)−

∫ ν

ν⋆
1

∂

∂ν

(

ν
∂g̃

∂ν
(ν)

)

dν +

∫ ν

ν⋆
1

ν
∂2g̃

∂ν2
(ν) dν (As ν⋆1t = ν⋆1∂g̃/∂ν(ν

⋆
1))

= g̃(ν⋆1) +

∫ ν

ν⋆
1

∂g̃

∂ν
(ν) dν

= g̃(ν)

Similarly, it can be shown that g̃2(ν; Θ2, τ2) = g̃(ν) on [ν⋆2 , νm]. Thus, Equa-

tion (6.15) is satisfied for ν ∈ [ν⋆2 , ν
⋆
1 ].

Let us now prove it on [νm, ν
⋆
2 ]. Recall that for any ν ∈ [νm, ν

⋆
2 ]:

h2−(ν) = h2−(ν
⋆
2) (by definition of h2−)

and that for all h:

g̃1(ν; Θ1, τ1) ≤ g1(h; ν, τ1) (as (Θ1, τ1) is a DUE)

Consequently:

g̃1(ν; Θ1, τ1) ≤ g1(h
1
−(ν

⋆
2); ν, τ1) (According to the Ineq. above)

≤ ν.τ1
(
h1−(ν

⋆
2)
)
+ ν.t− αh1−(ν

⋆
2) (By definition of g̃1 )

≤ ν.τ2
(
h2−(ν

⋆
2)
)
− αh2−(ν

⋆
2) (According to the definition of

τ1 and τ2 in Def. 6.10)

≤ ν.τ2
(
h2−(ν

⋆
2)
)
− αh2−(ν

⋆
2) + p (As −αh2−(ν

⋆
2) = −αh

1
−(ν

⋆
2) + p)

≤ g̃2(ν; Θ2, τ2)
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It remains to prove Equation (6.15) on [ν⋆2 , νM ]. The proof uses similar

arguments as on [νm, ν
⋆
1 ]. Recall that for any ν ∈ [ν⋆2 , νM ]:

h1−(ν) = h1−(ν
⋆
1) (by definition of h1−)

and for all h:

g̃2(ν; Θ2, τ2) ≤ g2(h; ν, τ2) (as (Θ2, τ2) is a DUE on route 2)

Moreover note that:

g̃1(ν
⋆
1 ; Θ1, τ1) = g̃2(ν

⋆
1 ; Θ2, τ2) and τ1(ν

⋆
1) + t = τ1(ν

⋆
2)

⇒ −αh2−(ν
⋆
1) = −αh

1
−(ν

⋆
1) + p

Consequently:

g̃2(ν; Θ2, τ2) ≤ g2(h
2
−(ν

⋆
1); ν, τ2) (According to the Ineq. above)

≤ ν.τ2
(
h2−(ν

⋆
1)
)
− αh1−(ν

⋆
1) + p (By definition of g̃2 )

≤ ν.τ1
(
h1−(ν

⋆
2)
)
+ ν.t− αh1−(ν

⋆
2) + p (According to the definition of

τ1 and τ2 in Def. 6.10)

≤ ν.τ1
(
h1−(ν

⋆
2)
)
− αh1−(ν

⋆
2) (As −αh2−(ν

⋆
1) = −αh

1
−(ν

⋆
1) + p)

≤ g̃1(ν; Θ1, τ1)

Finally, we are going to prove Equation (6.16).

For any ν ∈ [νm, ν
⋆
1 ]:

N1(ν; Θ1) = (1− ρ)k.(h1+(ν)− h
1
−(ν))

=
1− ρ

η

(

g̃(ν⋆1)− ν
⋆
1t−

∫ ν

ν⋆
1

ν
∂2g̃

∂ν2
(ν) dν

)

For any ν ∈ [ν⋆2 , νM ]:

N2(ν; Θ2) = ρk.(h2+(ν)− h
2
−(ν))

=
ρ

η

(

g̃(νM)− p−

∫ ν

νM

ν
∂2g̃

∂ν2
(ν) dν

)

By replacing g̃(νM) and g̃(ν⋆1) by their expression, it is straightforward that

for ν ∈ [ν⋆2 , ν
⋆
1 ]:

N1(ν; Θ1) +N2(ν; Θ2) = V (ν)
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Now recall that h1+(ν) = h1+(ν
⋆
1) and h1−(ν) = h1−(ν

⋆
1) for ν > ν⋆1 . Thus

N1(ν; Θ1) = N1(ν
⋆
1 ; Θ1) for such ν. Then, for ν ∈ [ν⋆1 , νM ]:

N1(ν; Θ1) +N2(ν; Θ2)

= N1(ν
⋆
1 ; Θ1) +N2(ν; Θ2)

=
1− ρ

η
(g̃(ν⋆1)− ν

⋆
1t) +

ρ

η

(

g̃(νM)− p−

∫ ν

νM

ν
∂2g̃

∂ν2
(ν) dν

)

=
1− ρ

η

(
ηV (ν⋆1) + ρp

)
+
ρ

η

(
g̃(νM)− p

)
−

∫ ν

νM

v(ν) dν

= V (ν)

(Replace g̃(ν⋆1) and then g̃(νM) by their expr. in Def. 6.8)

Finally for ν ∈ [νm, ν
⋆
2 ]:

N1(ν; Θ1) +N2(ν; Θ2)

= N1(ν; Θ1) +N2(ν
⋆
2 ; Θ2)

= N1(ν; Θ1)−N1(ν
⋆
2 ; Θ1) +N1(ν

⋆
2 ; Θ1) +N2(ν

⋆
2 ; Θ2)

= N1(ν; Θ1)−N1(ν
⋆
2 ; Θ1) + V (ν⋆2)

=
1− ρ

η

∫ ν

ν⋆
2

ν
∂2g̃

∂ν2
(ν) dν + V (ν⋆2)

= V (ν)

rien

(iii). Consider g̃ the solution to the ECP2Rb and let (Θi)i∈{1,2} = (hi−, h
i
+, ν

i
⋆)i∈{1,2}

and (τ)i∈{1,2} be defined as in Definition 6.10. As for the part (ii) of this proof,

it is required to prove that Equations (6.15) and (6.16) hold.

The arguments used in part (ii) of this proof to show that Equation (6.15)

is satisfied are also valid here, once ν⋆1 and ν⋆2 are replaced by ν⋆. Thus it

remains to prove Equation (6.16).

For any ν ∈ [νm, ν
⋆]:

N1(ν; Θ1) = (1− ρ)k.(h1+(ν)− h
1
−(ν))

=
1− ρ

η

(

g̃(ν⋆1)− ν
⋆t−

∫ ν

ν⋆
ν
∂2g̃

∂ν2
(ν) dν

)

For any ν ∈ [ν⋆, νM ]:

N2(ν; Θ2) = ρk.(h2+(ν)− h
2
−(ν))

=
ρ

η

(

g̃(νM)− p−

∫ ν

νM

ν
∂2g̃

∂ν2
(ν) dν

)



325

Consequently on [ν⋆, νM ]:

N1(ν; Θ1) +N2(ν; Θ2)

= N1(ν
⋆; Θ1) +N2(ν; Θ2)

=
1− ρ

η
(g̃(ν⋆1)− ν

⋆t) +
ρ

η

(

g̃(νM)− p−

∫ ν

νM

ν
∂2g̃

∂ν2
(ν) dν

)

= V (ν⋆)− V (ν⋆) + V (νM) +
ρ

η

∫ ν

νM

ν
∂2g̃

∂ν2
(ν) dν

= V (ν)

and on [νm, ν
⋆]:

N1(ν; Θ1) +N2(ν; Θ2)

= N1(ν; Θ1) +N2(ν
⋆; Θ2)

= N1(ν; Θ1)−N1(ν
⋆; Θ1) + V (ν⋆)

= V (ν⋆) +
1− ρ

η

∫ ν

ν⋆
ν
∂2g̃

∂ν2
(ν) dν

= V (ν)

rien

(i). Assume ν⋆1 = ν⋆2 . Then combining the two Equations of Lemma 6.15

shows that ν⋆1 is the solution of the Equation of Lemma 6.17. Thus ν⋆1 =

ν⋆2 = ν⋆. Similarly, it can be proven that g̃a(νM) = g̃b(νM) and consequently

that g̃a = g̃b as solutions of the same differential equations with the same

boundary conditions. Applying (ii) or (iii) leads to the result.
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Proposition 7.5. Assume given a state of the supply (τRC ,pRC) and con-

sider a user category c with convex schedule delay cost function D such that

D(0) = 0. If two elements (r1, h1, h
1
p) and (r2, h2, h

2
p) of S×Hp are such that

(ri, hi) is the solution of the user optimization program for (c, hip), h
1
p ≤ h2p

and h1 + τr1c(h1) ≥ h2 + τr2c(h2) then:

g(h1, τr1c(h1), pr1c(h1)|c, h
i
p) = g(h2, τr2c(h2), pr2c(h2)|c, h

i
p) for i = 1 or 2

Proof of Proposition 7.5. Since (r1, h1, h
1
p) and (r2, h2, h

2
p) are optimal:

ντr1u(h1) + pr1c(h1) +D(h1 − h
1
p) ≥ ντr2c(h2) + pr2c(h2) +D(h2 − h

1
p) (3.1)

and

ντr2c(h2) + pr2c(h2) +D(h2 − h
2
p) ≥ ντr1u(h1) + pr1c(h1) +D(h1 − h

2
p) (3.2)

Combining the two latter equations gives:

D(h2 − h
2
p) +D(h1 − h

1
p) ≥ D(h2 − h

1
p) +D(h1 − h

2
p) (3.3)

Then, since D is convex and

h̄1 − h
1
p < h̄1 − h

2
p < h̄2 − h

2
p

it comes:

D(h̄1 − h
1
p)−D(h̄1 − h

2
p)

h2p − h
1
p

≤
D(h̄1 − h

1
p)−D(h̄2 − h

2
p)

(h̄1 − h1p)− (h̄2 − h2p)
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Similarly as

h̄1 − h
1
p < h̄2 − h

1
p < h̄2 − h

2
p

it comes:

D(h̄1 − h
1
p)−D(h̄2 − h

1
p)

h̄1 − h̄2
≤
D(h̄1 − h

1
p)−D(h̄2 − h

2
p)

(h̄1 − h1p)− (h̄2 − h2p)

Combining the two inequalities yields to:

D(h1 − h
1
p) +D(h2p − h2) ≤ D(h2 − h

1
p) +D(h1 − h

2
p) (3.4)

And thus from (3.4) and (3.3):

D(h1 − h
1
p) +D(h2 − h

2
p) = D(h2 − h

1
p) +D(h1 − h

2
p)

Which yields to:

g (h1, τr1u(h1), pr1c(h1)|c, h
1
p) + g(h2, τr2c(h2), pr2c(h2)|c, h

2
p)

= g(h1, τr1u(h1), pr1c(h1)|c, h
2
p) + g(h2, τr2c(h2), pr2c(h2)|c, h

1
p)

Using (3.1) and (3.2), we have the result.

Theorem 7.6 (On the order of arrival). Consider a DUE problem with atom-

less demand X
p
C. Let DC be a dynamic user equilibrium. Then there exists a

dynamic user equilibrium D′
C such that the arrival distributions (D̄′

c)c∈C are

symmetric and that the symmetric reductions of (D̄′
c)c∈C are non decreasing.

Moreover for each category c the marginal of D′
c and Dc on S are the equal.

Proof of Theorem 7.6. LetDC = (Dc)c∈C be a dynamic user equilibrium and

consider the associated arrival distributions (D̄c)c∈C as well as (X̄rc)r∈R,c∈C ,

the marginals of (D̄c)c∈C on H × {r}. The quantity X̄rc represents the cu-

mulated flow of the users of category c at the exit of route r.
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For any c, let H̄c := X̄−1
rc ◦ X

p
c . Here X̄rc and Xc are seen as absolutely

continuous functions rather than measures;. Note that H̄c is well defined as

Xp
c is atomless. Then define D̄′

c as :

D̄′
c({r} × I × J) := X̄rc(I ∩ H̄c(J)) (3.5)

for all r in R, I ⊂ H and J ⊂ Hp

It yields:

D̄′
c(R× graph H̄c) =

∑

r

X̄rc(Hp) (by construction)

= Xp
c (Hc)

Thus D̄′
c is symmetric. It is also straightforward that the marginals of D′

c

and Dc on S = H×R are the same.

Let us show that (D′
c)c∈C is a dynamic user equilibrium.

Denote (τRC ,pRC) = FS(XRC) the travel times arising from the distri-

butions (Dc)c∈C and (D′
c)c∈C . By definition of an equilibrium, there exists a

subset E of S ×Hp such that:

- Dc(E) = Xp
c (Hc)

- For all (r, h, hp) ∈ E, we have

g(h, τrc(h), prc(h)|c, hp) = min
(h,r)

g(h, τrc(h), prc(h)|c, hp)

Consider the set projS E. By definition D′
c(projS E × Hp) = G(Hc).

Therefore there exists a closed subset F of projS E×Hp which is the smallest

(in the sense of inclusion), such thatD′
c(F ) = Xp

c (Hc) (see Hildenbrand, 1974,

pp 49). Note that projS E = projS F .

Let (r1, h1, h
1
p) an element of F . Then there exists r2, h2 and h

2
p such that:

- (r2, h2, h
1
p) ∈ E as (r1, h1, h

1
p) ∈ F and projS E = projS F ;

- (r2, h2, h
2
p) ∈ F as (r2, h2, h

1
p) in E and projS E = projS F .

Assume without loss of generality that h1p ≥ h2p. Then, as H̄c is an increasing

function, H̄c(h
1
p) = h1 + τr1c(h

1) ≤ H̄c(h
2
p) = h2 + τr2c(h

2). Using proposition

7.5, it comes that:

g(h1, τr1c(h1), pr1c(h1)|c, h
1
p) = g(h2, τr2c(h2), pr2c(h2)|c, h

1
p)

= min
r,h

g(h, τrc(h), prc(h)|c, h
1
p)

It has been shown that F is such that:
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- D′
c(F ) = Xp

c (Hc)

- For all (r, h, hp) ∈ F , we have

g(h, τrc(h), prc(h)|c, hp) = min
(h,r)

g(h, τrc(h), prc(h)|c, hp)

Hence the result.



Appendix D
Loading traffic on a network of bottlenecks: an

event based approach

Dynamic user equilibrium computation aims to find in a network subject

to congestion, time-varying traffic flows on routes that are consistent with

the route travel costs. Thus, computing the travel times from given route

volumes is both essential, as it’s the main step in estimating the travel costs,

and challenging, as the problem has both a temporal and network dimension.

The problem boils down to derive the traffic volumes on each arc from the

route volume vector. It is usually referred to as theDynamic Network Loading

Problem (DNLP).

Although Friesz et al. (1993) pointed out its importance for the analytical

formulation of dynamic assignment models, the literature is quite restricted.

Most of the existing solutions rely on simulations. They can be either mi-

croscopic (e.g. DYNASMART in Mahmassani et al., 1995), with an explicit

representation of users behaviours on arc and nodes, or macroscopic, the de-

mand being divided into packets of users . Analytical forms of the DNLP

are not as frequent. Wu et al. (1998) first formulated the loading problem

as a system of functional equations and derived a solution method based

on a finite dimensional approximation. Xu et al. (1999) and later Rubio-

Ardanaz et al. (2003) proposed a radically different approach that can be

considered as an event based simulation, and showed it improves signifi-

cantly the computation speed. Both methods apply to volume-delay travel

time models. Yet volume-delay travel times have been shown to be gen-

erally unphysical (Daganzo, 1995) and an important number of operational

assignment models rather assume bottleneck travel times (e.g. Kuwahara and
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Akamatsu, 1993; Leurent, 2003a). DNLP for the bottleneck model has never

been treated explicitly, despite the fact it is regarded as an important cat-

egory of models combining analytical simplicity, computational robustness,

and experimental correctness.

In this chapter, we propose a general solution paradigm, inspired by dis-

crete event simulation, and applied it to a network of bottlenecks. The first

section presents the global philosophy of the solution method, while the third

gives a formal statement of the algorithm. Finally the fourth section gives

an example of applications on a network of bottlenecks and numerical exper-

iments.

In Chapter 3, we proposed an original formulation for the DNLP and

shown that under five assumptions on the arc travel time models existence

and uniqueness of the problem was guaranteed. As the proof is constructive,

a computation algorithm can be derived

1 Philosophy of the solution method

1.1 Statement

The notations of this chapter are essentially the one of Chapter 3. However,

instead of seeing the route cumulated flows as measures on an interval I,

we will rather consider increasing continuous function X with the following

meaning : X(h) is the quantity of traffic that have passed through a point

since the beginning of I. In other words, X([min I, h]) is now denoted X(h).

Similarly arc cumulated flows are seen as increasing continuous function Y

on R. A vector of cumulated flows XR = (Xr)r∈R is called a route volume

vector and a vector of cumulated flows Y A = (Ya)a∈A is called an arc volume

vector.

Apart from this slight notational changes, the dynamic traffic loading

problem is stated as in Chapter 3.

Definition D.1 (Dynamic traffic loading problem). For given route cumu-

lated flows at origin XR = (Xr)r∈R, find arc cumulated volumes Y A =

(Ya)a∈A such that there exists a collection of route vector flow (Y R
a )a∈A =

(Y r
a )a∈A,r∈R satisfying the system:

Ya =
∑

r∈R: a∈r

Y r
a (4.1)
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and for all r = a1, . . . , an ∈ R

Y r
a1

= Xr (i)

Y r
ai
◦Hai−1

[Yai−1
] = Y r

ai−1
for i = 2, . . . , n (ii)

Y r
a = 0 if a /∈ r. (iii)

(4.2)

It was shown that the Dynamic traffic loading problem admits a unique

condition under 5 assumptions on the arc travel time models (Assumptions

I-V), namely continuity, no infinite speed, finiteness, strict fifoness, causality.

1.2 Restrictive assumptions

The proof in the previous chapter is constructive and thus gives an algorithm

to load traffic on a road network with arc travel time models satisfying to

the Assumptions (I-V). In a few words the general idea is to proceed recur-

sively. Assume known a collection of cumulated flows (Y r
a )a∈A,r∈R satisfying

equations (1-3) until the instant h, then by Assumption III, IV and V, you

can deduce a new collection cumulated flows (Y r
a )a∈A,r∈R satisfying the same

equations until h + tmin. Assumption III guarantees the termination of the

recursion. In the general case this algorithm is possibly the most efficient

way of solving the problem and in fact in the literature most of the existing

algorithms follow more or less this same pattern. Yet by slightly restricting

the problem, it can be importantly simplified thus leading to a more efficient

solution method.

In this paper only route cumulated volumes at origins which are continu-

ous piecewise linear functions of time are considered. In addition, arc travel

time models are assumed to lead to piecewise linear travel time functions

when applied to continuous piecewise linear route volume vectors.

The primitives manipulated under these assumptions are piecewise linear

(PWL) functions. Note that they can easily be encoded under the form of

an ordered list of elements X = (hi, Xi, xi)i where Xi is the image of hi by

the PWL function X in and xi is its derivative on the right. Each element

of the list is called a piece. Note that under this formalism it is easy to

define the operations of linear combination, composition and inverse. With

an adequate implementation there are essentially equivalent to a list traverse

and thus in O(n) where n is the number of pieces of the function considered.



334
Chapter D

Loading traffic on a network of bottlenecks

1.3 Consequences for the loading problem

With the PWL assumptions, the main quantities of the problem are piecewise

linear functions of the time. Let us focus on the cumulated flows (Y r
a )a∈A,r∈R

and consider the set of instants hi such that there exists a triplet (hi, yi, si)

that belongs to a cumulated flows Y r
a . They will be referred to as the critical

instants. Now assume the cumulated flows (Y r
a )a∈A,r∈R are known until h,

i.e. that the (Y r
a |h)a∈A,r∈R are known. In terms of PWL format it means that

all elements (hi, Xi, xi) of Y
r
a such that hi ≤ h are known. Then if one could

find the first critical instant h′ after h, as well as the concerned cumulated

volume and its new slope, (Y r
a |

′
h) can be deduced and the process can be

iterated until completion.

Informally that is just saying that instead of seeing the cumulated flows

as functions of the times, we see them as a sequence of transitions from one

slope to another occurring at critical instants. The algorithm we proposed is

simply to go from critical instants to critical instants and correctly update

the values of (Y r
a )a∈A,r∈R. Our proposition is to formalize this general idea

under a discrete event system. Each event corresponds to a change of slope

and thus occurs at a critical time.

1.4 Example on a simple case

We are going to consider a simple example using the bottleneck travel time

model with constant capacity. Assume a simple network of bottlenecks with

two origins, O1 and O2, two destinations D1 and D2 and five arcs denoted

ai, i = 1..5. Only two routes are available, r1 = a1, a3, a4 connects O1 to D1

while r2 = a2, a3, a5 connects O2 to D2. The only bottleneck is on a3 with a

capacity of k = 1000uvp/hour. The free flow travel times of arc a1, a2 and

a3 are given respectively by t0,a1 = 1 hour, t0,a2 = 1.5 hour and t0,a3 = 0.

The network and its characteristic values are depicted in Figure D.1.

Consider a route volume vector X = (Xr1 , Xr2) defined on I = [6 :

00, 14 : 00]. X is given by its derivative x. During [6 : 00, 9 : 00), the flow

entering r1 is xr1 = 1500uvp/hour while the flow on route r2 is xr2 = 500

uvp/hour. On (9 : 00, 14 : 00] we have xr1 = xr2 = 250 uvp/hour. The

resolution can be made iteratively.

1. At 6 : 00 all the flows of the network are zero except on arc a1 and a2
where ya1 = xr1 = 1500 uvp/hour and ya2 = xr2 = 500 uvp/hour. This
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Figure D.1: A simple example of traffic loading: the network

stay so until the route flows reaches the end of arc a1 and a2. This

happens at h1 = 6 : 00+ t0,1 = 7 : 00 for arc a1 and at h2 = hA + t0,2 =

7 : 30 for a2.

2. At h1, the incoming flow on a3 changes from ya3 = 0 to ya3 = 1500

uvp/hour. As the outgoing flow from a3 is bounded by the bottleneck

in capacity, there is an exit flow of y−a3 = k = 1000 uvp/hour. A queue

began to grow at the rate of
dQa3

[Ya3
]

dh
= 1500 − 1000 = 500 uvp/hour.

As all users on a3 are following route r1 for the moment, the exit flow

is entirely disgorged on arc a4 and ya4 = 1000 uvp/hour.

3. At h2, the flow entering a3 switches to ya3 = 2000 uvp/hour. The queue

growing rate is now
dQa3

[Ya3
]

dh
= 2000 − 1000 = 1000 uvp/hour and the

travel time on that arc is ta3 [Ya3 ](h2) = (Q(a3)[Ya3 ](h2))/k = 0.25 hour.

Consequently the first user following route r2 to exit arc a3 will arrive

on a5 at h3 = 7 : 45.

4. At h3, the new incoming flows of arc a4 and a5 are ya4 = 750 uvp/hour

and ya5 = 250 uvp/hour respectively. The change in route flow at 9 : 00

provokes changes in the incoming flow of arc a3 at instants h4 = 9 : 00

and h5 = 9 : 30.

5. At h4, ya3 = 1250 uvp/hour and
dQa3

[Ya3
]

dh
= 250. The travel time is

now ta3 [Ya3 ](h4) = 1.5 hours. The next change in the exit flow will be

at h6 = 10 : 30.

6. At h5, ya3 = 500 uvp/hour and
dQa3

[Ya3
]

dh
= −500. The travel time is now

ta3 [Ya3 ](h5) = 1.625 hours. The exit flow will change at h7 = 11 : 07.

The queue is now decreasing and will be empty by h8 = 12 : 45.
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7. At h6, the entrance flows on a4 and a5 are ya4 = 1000/3 and ya5 =

2000/3 respectively.

8. At h7, the entrance flows on a4 and a5 are ya4 = ya5 = 500 uvp/hour.

9. At h8, the queue is completely cleared and the entry flows on arc a4 and

arc a5 corresponds to the exit flow of arc a1 and a2 i.e. ya4 = ya5 = 250

uvp/hour.

Figure D.2: A simple example of traffic loading: the loaded flows

Figure D.2 depicts the solutions of the loading problem by representing

the cumulated volume Ya3 at the entrance of arc a3, the cumulated flow Y r1
a3

at

the entrance of arc a3 following route r1, the cumulated volume Y −
a3

at the exit
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of a3 (Figure D.2, top) and the cumulated flow Ya4 at the entrance of arc a4
(Figure D.2, bottom). This example, albeit simple, is quite instructive. First,

relatively simple inputs in terms of both networks and route flows can lead

to much more complicated arc flows through the interaction at bottlenecks.

Second it is reasonably easy to deduce the impacts of a change in an arc

incoming flow (i.e. an event with our terminology) on the change of flows on

the downstream arcs. Informally the mechanism is the following: from each

event can be deduced to a sequence of other forthcoming events that needs to

be treated chronologically. The main difficulty is to correctly coordinate the

actualization of the arc entering flows i.e. to handle each event in the right

(chronological) order. The algorithm presented in the following essentially

addresses this issue.

2 General loading algorithm statement

2.1 Data structures

First let us define the proper data structure to model the problem under a

discrete event system. Basically, we need to be able to describe a state of

the system, to formalize the concept of events and to treat events.

Instantaneous flow vectors and events. A flow vector is a vector of in-

stantaneous flows yR = (yr)r∈R and has the following physical interpretation:

it represents the superposition of the flow of users following different route in

a given point at a given instant. The sequence of flow vectors Sext = (ya)a∈A
is called the external state of the system, and represents flows, decomposed

according to the followed route, at the entrance of each arc of the network.

The term external refers to the fact that this description only focuses on

arc incoming flows and totally ignores what’s happening inside the links,

which we will later refer to as the internal state of a system. Despite that,

its knowledge over the simulation period (i.e. for every instants) is exactly

what’s required to solve the DNLP. Extending Sext = (ya)a∈A description

over the whole period of simulation is hence of interest and so we introduce

the concept of event as a change of flow vector at a specific instant and on a

specific node.

Formally, an event is defined as:

Definition D.2 (Event). An event is a pair (h, e) where:
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- h is a clock time

- e is a map on A× R such that e(a, r) is either an instantaneous flow

or the empty set ∅.

Arc event functions. Let’s now focus on the arc description. At this

point of our exposition, we remain general and only expose how to represent

travel time model in an event based perspective. First, one needs to be able

to describe the state of an arc. Physically the state of an arc describes at

an instant h the traffic flows over the whole arc. In other terms, it is what

you cannot see by solely looking at the arc incoming and outgoing flows. In

a computational perspective, we would like the knowledge of the state of an

arc to be enough to compute all of the future values of the arc travel time and

outgoing flows over an infinite time horizon, assuming the route flow vector

y at entrance remains constant. According to the causality assumption, in

the general case ? Ya|h is enough to compute the travel time at h. Consider

the route flow vector Y ′
a obtained by considering for each route ? Y r

a |h and

prolonging it using the instantaneous flow following the corresponding route

xr. The knowledge of all the route volumes thus obtained is then sufficient

to compute the travel time for any instants assuming that the incoming flow

remains constant. This discussion leads to choose to represent the state of

an arc simply by a route volume vector Y R. The inner state of the system is

then naturally defined as a collection of route volume vectors Sin = (Ya)(a∈A),

one for each arc of the network.

We denote the operation of prolonging a cumulated volume X by an

instantaneous flow X ⊕h x. Note that in PWL format, denoting X =

(hi, Xi, xi)i=1...n, it is equivalent to take the sequence of pieces (hi, Xi, xi)

such that hi < hand to add the piece (h,X(h), x).

Definition D.3 (Event functions). For each arc travel time model ta, the

following functions are defined:

- The next event function Fa : (Y, h) → (h′, e) , where e is the

event representing the first change in slope in the outgoing route flows

Y r
a,− := Y r

a ◦ Ha[Y ] after h. Denote h′ the instant when this change

occurs. Then for all r : a ∈ r, considera′ the first arc after a in r

and define e(a′, r) := yra,−. If h′ does not exist, then let h′ := +∞ and

e := ∅.
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- The handling function Ua : (Y 1,y, (h, e)) → Y 2 such that Y 2
r :=

Y 1
r ⊕h e(a, r) if e(a, r) 6= ∅ and Y

r
2 := Y r

1 otherwise.

Note that the expression (+∞, ∅) encodes the null event that indicates

that no event is generated by a function Fa.

For specific travel time models, such as bottleneck ones, using a route

vector flow to describe the sate of an arc might not be the most suitable

choice. In this situation the event functions will need to be adapted to

feet this new model. Yet the global framework of the algorithm will remain

the same. This will be discussed later in the application to a network of

bottlenecks.

The precise statement of our event-based loading algorithm is given below.

The inputs are simply the arcs described by their event functions and the

route volumes at origin described by a collection of events. The outputs are

route volume vectors, one for each arc, representing the cumulated volumes

at the entrance. The algorithm can be summarized as such. Consider the

list of event formed by the merge of the events at origins and the events on

arcs and remove the first event. Then use the handling function to update

the state of the arc concerned with the event. Finally compute the new arc

event list using the next event functions of each arc of the network.

Algorithm D.1 loadingTraffic((Ha),(Fa),E
O)

Inputs: - A list of arc A = (a1, . . . , an) together with the corresponding

functions Ha and Fa for each a ∈ A

Inputs: - A list of events EO = (h1, e1), . . . , (hi, ei), . . .

Outputs: - A collection of route flow vector (Y a)a∈A
Initialize ya and Ya to 0 for all a ∈ A ,EA to the empty list and h to a

suitable initial instant.

While EO ∩ EA 6= ∅

Get next event from EO ∩ EA and Set it to (h, e).

For all (a, r) : (e(a, r) 6= ∅), set yra := e(a, r)

Foreach arc a : ∃r : (e(a, r) 6= ∅),

Set Ya := Ua(Ya, (h, e))

If Fa(Ya, (h, e)) 6= (+∞, ∅), add it to EA

End For

End While
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3 Application to a network of bottlenecks

3.1 General presentation

In this section we consider a network of bottlenecks where each arc a is

described by two parameters: its free flow travel time t0,a and its exit capacity

ka. We are going to apply to this network our general algorithm. To do so

divide each arc in two parts: the free flow part and the bottleneck part. It

is this new network we are going to consider and thus two types of arc time

models and event functions have to be defined.

The treatment of the free flow part is straightforward and can be achieved

by directly applying the general method presented above. Concerning the

bottleneck part, a modification to the next event function is presented below

and allows accelerating computation by storing slightly more information in

the bottleneck state.

Bottleneck part. As precised earlier, in this case using solely a route

flow vector X to describe the state of a bottleneck is not the best choice

from a computational perspective. A more suitable choice is to have some

information about the queue evolution. To do so let us add to the state of a

bottleneck the function Q. The quantity Q is a positive function of the time

representing the queue volume with respect to the time.

It is now necessary to adapt the event functions in order to exploit the

additional information given by Q. Given an bottleneck state (Y,Q), how

can one compute the next event? Assume the queue is not empty at an

instant h. From the analytics exposed above, two cases can arise:

1. The outgoing flow change because of a previous change in the incom-

ing flow. Denoting the corresponding incoming route flows yr, the new

outgoing flows are yr− := yr/(
∑

r′∈R y
r′)ka. Finding this instant cor-

responding to the change in the incoming flow boils down to find an

instant h′ such that h′ + Q(h)/ka < hand the derivative of a route

volume Y r changes in h′.

2. The outgoing flows change because the queue vanishes. The new out-

going flows are simply the incoming flows yr− := yr. Finding the instant

h’ occurs is straightforward knowing Q.

The event functions for bottleneck are precisely defined below.
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Definition D.4 (Event functions for bottlenecks). Denote ya = (y(a, r))r∈R
the incoming route flow on arc a and n(a, r) the first arc after a in route r.

The events functions of a bottleneck are then defined as follow.

- The next event function Fa : (Y , Q, h)→ (h′, e) .

Case 1: Q(h) = 0

- If yr = dY r/dh then h′ := +∞ and e := ∅.

- else h′ := h and for all r define e(n(a, r), r) := yr.

Case 2: Q(h) 6= 0

- Let h′ the last change in slope of Y r of such that h′+Q(h)/ka < h.

Then for any r ∈ R, let yr be the right derivative of Y r in h′ and

define e(n(a, r), r) := yr
∑

r′∈R yr
′ ka.

- If there is no such h′, let h′ be the first instant such that Q(h′) = 0.

Then for any r ∈ R, let yr be the right derivative of Y r in h′ and

define e(n(a, r), r) := yr.

- The handling function Ha : (Y1, Q1, (h, e)) → (Y2, Q2) such that

Y r
2 := Y r

1 ⊕h e(a, r) and Q
2 = Q1 ⊕h

∑

r∈R
dY r

2

dh
− ka

We claimed that this latter implementation of the event function is more

efficient than the former one. Why is that? The general implementation

proposed to seek the next event by computing for each call of the function

next event the travel time for the current state of the arc. Consequently

it does not use at all the information gathered through the previous calls

of this function. Yet for a bottleneck model this requires the integration

of a first order differential equation of PWL functions and thus a full list

traverse. On the contrary, the adaptation for the bottleneck model exploits

this information by keeping in memory the queue. The most computational

intensive operation is to perform the operation described by the first item

of case 2 in Definition D.4. Although in the worst case this operation also

requires a list traverse, it tends to be a simple scan forward on the last pieces

of Q.
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3.2 Numerical illustration

In this subsection, a small but instructive example is presented. We consider

the network of four arcs and two OD pairs presented in Figure D.3. Only the

arcs O1−D2 (arc 1) and O2−D1 (arc 2) are subject to bottleneck congestion

and they both have a capacity of k=2000 pcu/h. All the arcs have a free

flow travel time of t0 = 1. Only two routes are considered, the first one being

O1−D2−O2−D1 (route r1) and the second one O2−D1−O1−D2 (route

r2). The simulation period is I = [5 : 00, 20 : 00] and the instantaneous flow

on r1 and r2 are respectively a discretized gaussian shaped curve centered in

10 : 00 and a simple constant flow of 1000 pcu/h. The inputs are plotted in

Figure D.4.

Figure D.3: Numerical illustration of traffic loading: the network

This network configuration is especially interesting and complex from an

event based perspective. Assume that the instantaneous flow on route r1
increases then the travel time on a1 is going to increase and eventually the

proportion of flows exiting a1 and following route r1 will also. This in turn

results in a rise in yr1a3 and finally in a decrease in yr2a4 and in the incoming flow

on a1. The network thus acts as a sort of feedback loop, inducing a decrease

in the flow on a route when the flow on the other route grows.

The travel times resulting from the loading of the traffic are plotted in

Figure 3. The feedback effect exposed a few lines above can be seen on the

travel time on a1. It results in oscillations around the maxima of in travel
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time. Also note the shape of the travel time on a3 where two distinct maxima

appear.
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Figure D.4: A simple example of traffic loading: the inputs

3.3 Benchmark

The running time of the event based algorithm applied on a network of

bottlenecks is clearly proportional to the number of events treated. Yet this

latter quantity is impossible to compute a priori. In this subsection a small

numerical experiment is conducted in order to get some insights about the

sensitivity of the number of events with respect to the volumes at origin.

The setting is the following. A randomly generated network of 80 nodes

and 200 arcs is considered. Then routes of 10 arcs are randomly generated,

each of them assigned with a Gaussian shaped flows discretized in 20 pieces.

This experiment has been conducted several times with a number of routes

varying between 5 and 80.

Why is this numerical experiment relevant? One of the main applications

of the DNLP is its integration in dynamic traffic assignment algorithms. Yet

in most numerical schemes for dynamic traffic assignment, on progressively
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Figure D.5: A simple example of traffic loading: the results

discover new routes to serve an origin destination and assign part of the

traffic on them. Thus the further the algorithm goes, the more routes are

loaded with traffic. Another alternative would have been to try networks of

different size. But in the DNLP, the size of the network, on the contrary to

many other graph-based algorithms has little influence. The dimensioning

quantity is rather the number of routes and the way they overlap themselves.

Figure D.6 shows the evolution of the number of events with the number

of routes. At first the evolution is roughly linear. Around 50 routes the

slopes quickly switch to a much higher value. Around 70 routes it seems that

evolution becomes linear again.

A possible explanation for this behavior is given by the way the events

propagate themselves over the network. When the number of routes assigned

with traffic is low on a network, those routes tends not to intersect. Conse-

quently the number of event is roughly the number of pieces of the volumes

at origin times the average number of arcs on a route. However as the num-

ber of routes increases, more routes intersect and quickly an event occurring

at given place of the network tends to propagate all over the network. This

phenomenon is depicted on Figure D.7.
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Figure D.6: Number of events as a function of the number of routes

Note that the number of events is a good proxy for the running time of our

algorithm, but also of the actual “complexity” of the result of the dynamic

loading. Indeed the number of event treated is essentially the number of

pieces of the resulting cumulated flows on the arcs. In that perspective our

results can be interpreted in two ways. On one hand, it is good news, as

the running time seems to be asymptotically linear with the size of the route

flow vector in input. But on the other hand, the practical number of events

to deal with a reasonably small example is quite high. For real size networks

with an important number of an origin-destination pairs, an efficient exact

algorithm seems to be difficult. This is a strong argument for approximate

loading procedure.

Conclusion

In this chapter, a generic algorithm for the dynamic network loading problem

has been presented and an application to a network of bottleneck has been

presented. It was also an opportunity to gives a theoretical insight of the

traffic flowing on a network in a dynamic context. Among our findings, we
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Figure D.7: Event Propagation in a DNLP. In this simple network, two routes

are going through a0. If an event occurs on route r’, upstream arc

a0, it will cause an event on arc a0 and thus on all downstream arcs

of route r

have seen that the outputs of the loading problem quickly grow in complexity

due to the complex interactions of the route flows on the networks.

Although the examples of application presented here are rather simple,

this event based algorithm is an interesting first step toward a much more

generic framework for dynamic network loading. The concept of events was

here restricted to a change in the incoming flow of an arc. But one could

introduce a wide variety of events modelling various physical phenomena. For

instance queue spillback could be considered by adding an event type “arc a

is full” and updating the upstream arcs in consequence. In the same order

of idea dynamic traffic regulation schemes such as dynamic traffic regulation

techniques could be modelled in an event based perspective. This offers vast

possibilities for future works.



Appendix E
LabDTA: a prototyping environment for dynamic

user equilibrium computation

1 Main features

LabDTA stands for Laboratory for Dynamic Traffic Assignment. It is a

small toolbox that allows to test dynamic traffic assignment algorithms as

well as algorithms to compute dynamic user equilibriums. The modelling

framework proposed by LabDTA is essentially the one of LADTA, a dynamic

traffic assignment model introduced by Leurent (2003b).

LabDTA is rather well-suited for rapid prototyping but is not intended

to work with large scale networks. For that latter purpose, the LVMT has

developed the LTK (Ladta ToolKit), powerful computation implementation

of LADTA main principles and associated solution methods (Aguiléra and

Leurent, 2009).

LabDTA is implemented in TCL, a dynamic language that is commonly

used for rapid prototyping and scripted applications. LabDTA is interfaced

with the LTK. As the LTK is essentially a C API, this interface is rather

useful to quickly set numerical experiments using the LTK.

LabDTA has notably been used to design the DUE algorithms proposed

in this thesis. Several tests of the algorithm were conducted using LabDTA

before actually implementing it in the LTK.

2 Overview of the toolbox

The toolbox is composed of 5 libraries of functions:
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• PWL Function is a set of procedures to deal piecewise linear (PWL)

functions which are the basic variables of LabDTA,. Over 50 proce-

dures are implemented, allowing basic arithemical operations on PWL

functions (linear combination, multiplication, etc.), more complex al-

gorithmic operations (mathematical programming and equation solv-

ing) and file input and output for different formats (including database

files).

• tt models provides functions to compute traffic propagation on the arc

of a road network. Two models are proposed: the volume-delay model

and the bottleneck model.

• Network implements a graph structure intended to represent dynamic

transport networks. It is similar to the model presented in Chapter 1.

• Network Loading implements the traffic loading algorithm presented

in Appendix D.

• DTC Choice implements the departure time choice algorithms that are

presented in Chapter 8.

In addition to those libraries, two visualisation tools are provided with

LabDTA:

• SmallWin allows to launch a small windows from a tcl script or shell

and to display PWL functions dynamically. It is designed to tackle with

an important number of graphs to display. Graphs can be exported to

the eps format.

• Netview allows to display a network and to visualize functions associ-

ated to the nodes and the arcs.

For more details about LabDTA, please contact the author.



2 Overview of the toolbox 349

Figure E.1: SmallWin, a visualization tool for piecewise linear functions

Figure E.2: Netview, a visualization tool for dynamic transport networks
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