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Chatou, France
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Abstract

This work aims at improving the 2-D incompressible SPH model (ISPH) by

adapting it to the unified semi-analytical wall boundary conditions proposed by

Ferrand et al. [10]. The ISPH algorithm considered is as proposed by Lind et

al. [25], based on the projection method with a divergence-free velocity field and

using a stabilising procedure based on particle shifting. However, we consider

an extension of this model to Reynolds-Averaged Navier-Stokes equations based

on the k − ǫ turbulent closure model, as done in [10]. The discrete SPH oper-

ators are modified by the new description of the wall boundary conditions. In

particular, a boundary term appears in the Laplacian operator, which makes it

possible to accurately impose a von Neumann pressure wall boundary condition

that corresponds to impermeability. The shifting and free-surface detection al-

gorithms have also been adapted to the new boundary conditions. Moreover, a

new way to compute the wall renormalisation factor in the frame of the unified

semi-analytical boundary conditions is proposed in order to decrease the com-

putational time. We present several verifications to the present approach, in-

cluding a lid-driven cavity, a water column collapsing on a wedge and a periodic

schematic fish-pass. Our results are compared to Finite Volumes methods, us-

ing Volume of Fluids in the case of free-surface flows. We briefly investigate the

convergence of the method and prove its ability to model complex free-surface

and turbulent flows. The results are generally improved when compared to a

weakly compressible SPH model with the same boundary conditions, especially
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in terms of pressure prediction.

Keywords: SPH, projection method, incompressible, boundary conditions

1. Introduction

Modelling incompressible flows with the Smoothed Particle Hydrodynam-

ics (SPH) method has classically been done through weakly compressible SPH

(WCSPH) models, as is thoroughly described in [33]. In this case, the pressure is

calculated through an artificial equation of state, which causes the pressure pre-

diction to be noisy and, in many cases, inaccurate. To remedy this issue, truly

incompressible approaches were developed in the framework of SPH. In partic-

ular, Cummins and Rudman [5] adapted the projection method of Chorin [3, 4]

to SPH by solving a discrete Poisson equation for pressure, leading to an incom-

pressible SPH method (ISPH). Comparisons between ISPH and WCSPH were

done by Lee et al. [22], which showed that ISPH makes it possible to reduce

the computational time while providing a better description of the pressure field

than WCSPH. Several versions of the SPH projection method were proposed,

the main three of them being: i) the one proposed by Cummins and Rudman,

which consists in maintaining zero divergence velocity, ii) the one proposed

by Shao and Lo [41], which consists in keeping density invariance and iii) the

one proposed by Hu and Adams [17], based on combining the two previously

mentioned methods and thus solving two Poisson equations. In 2009, Xu et

al. [49] made a comparative study between those methods and showed that

each of them presented drawbacks. According to the latter authors, imposing

the density invariance leads to noisy pressure fields, while imposing the zero

velocity divergence gives very smooth pressure fields but leads to instabilities

due to particle clustering. On the other hand, the method proposed by Hu and

Adams [17], though being stable and providing smooth pressure fields, suffers

from very high computational times. Thus, Xu et al. [49] proposed a stabilis-

ing method for the ISPH model based on keeping divergence-free velocity field,

which makes it possible to accurately estimate the pressure while keeping com-

putational time smaller than WCSPH. This method consists in slightly shifting

the position of the particles at each iteration so as to avoid highly anisotropic

particle spacing. The hydrodynamic variables are then corrected by adding the
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advection term corresponding to the position shift. This method was improved

by Lind et al. [25], who proposed an expression for the position shift based on

Fick’s law of diffusion. They also extended the shifting method to free-surface

flows. The algorithm proposed by Lind et al. [25] seems stable and able to accu-

rately model a great variety of complex flows. Yet, the problem of the pressure

wall boundary conditions remains.

A classical way of imposing wall boundary conditions in SPH is the imposi-

tion of repulsive forces such as the Lennard-Jones potential [33] or Monaghan

and Kajtar’s method [34]. These methods are easy to implement even for com-

plex geometries and are computationally cheap, but lead to spurious behaviour,

as pointed out by Ferrand et al. [10]. In particular, the fluid does not remain

still near the walls in a hydrostatic case. Besides, they make it difficult - if not

impossible - to accurately prescribe a Neumann pressure wall boundary con-

dition, which is a serious issue for ISPH. Most available ISPH models in the

literature are thus based on ghost particles [41, 18, 23] or mirror particles [14],

for example in [22, 49, 25]. These two techniques are widely used to impose wall

boundary conditions in SPH. However, they present serious drawbacks. First,

ghost particles are not easy to place in case of complex geometries, especially in

three dimensions. Moreover, for nearly all the existing ISPH models combined

to ghost or mirror particle methods, a homogeneous Neumann wall boundary

condition is imposed on the pressure [22, 49, 25]. This is done by manipulating

the relevant entries in the linear system so that the value of the pressure is

mirrored across the solid boundary. This is not an exact prescription of Neu-

mann pressure wall boundary condition, and is a serious issue since the proper

imposition of pressure boundary condition is crucial when solving the pressure

Poisson equation. Yildiz et al. [50] proposed a new method for placing the ghost

particles which seemed to improve the accuracy of the imposition of wall bound-

ary condition, but still not exact, and their condition remained homogeneous.

However, in many cases the pressure gradient at a solid wall is non-zero, so

that a homogeneous boundary condition is not appropriate. In [16], Hosseini

et al. tested a rotational projection scheme in SPH which makes it possible

to impose a non-homogeneous Neumann pressure boundary condition by im-

posing a homogeneous boundary condition on the dynamic pressure. However,
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this technique does not make it possible to impose arbitrary non-homogeneous

boundary condition.

Recently, other methods were proposed to model solid boundaries that ac-

count for the kernel truncation close to the wall, through the use of a wall renor-

malisation factor in the SPH discrete interpolation. Kulasegaram et al. [20] and

De Leffe et al. [24] proposed approximate methods to calculate the renormali-

sation factor while Feldman and Bonet [9] proposed an analytical method for

simple wall shapes. In these works, the application of the renormalisation factor

in the discrete SPH interpolation formula led to the application of a boundary

force in the Navier-Stokes equations. In [10], Ferrand et al. proposed a different

way of computing the renormalisation factor together with a new formulation of

the differential operators. This formulation is similar to the one Kulasegaram

et al. proposed for the pressure gradient, but the boundary terms are properly

represented for all the differential operators. In this framework, the imposition

of boundary conditions can be done in a natural way through the boundary

term of the new Laplacian operator. This was applied in [10] to the k− ǫ turbu-

lence model where Neumann boundary conditions could be prescribed exactly

on k and ǫ for the first time in SPH, the condition on ǫ being non-homogeneous.

With this method the estimation of the fields is very accurate, even close to the

walls. Associating the wall boundary conditions proposed by Ferrand et al. [10]

to an ISPH model would make it possible to impose exactly arbitrary Neu-

mann (or Dirichlet) boundary conditions on the pressure, and thus to properly

model flows involving complex boundary geometries while taking advantage of

the ISPH method. From now on these boundary conditions will be referred to as

USAW boundary conditions (unified semi-analytical wall boundary conditions).

Recently, Macià et al. [27] applied the USAW boundary conditions to ISPH,

but they focused on the prescription of Dirichlet boundary conditions on the

pressure field, which is not appropriate in dynamic cases. Moreover, they did

not present any applications of their ISPH model to 2-D or 3-D. In the present

work an ISPH model is developed, in which exact arbitrary Neumann boundary

conditions can be prescribed when solving the pressure Poisson equation in 2-D.

We will first describe the SPH interpolation in the frame of USAW wall
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boundary conditions. Then, the new ISPH model will be explained. We will

see how the algorithm proposed by Lind et al. [25] can be adapted to the new

boundary description, and see how to impose a non-homogeneous Neumann

pressure boundary condition. We include laminar and turbulent (Reynolds-

averaged) flows in the same framework, our purpose being to unify all wall

boundary treatment from [10], including the Poisson equation and the k − ǫ

model. In this way our method can deal with basic industrial turbulent flows

with a reasonable quality of predictions, though the RANS (Reynolds-Averaged

Navier-Stokes) approach is rather crude compared to LES (Large Eddy Simula-

tion) models. Note that the k − ǫ model was applied for the first time to SPH

by Violeau [44] and by Shao [40], but in these works the boundary conditions

were not imposed properly on the turbulent fields.

We will also explain how the method proposed by Bonet and Feldman to

compute analytically the wall renormalisation factor can be applied to our de-

scription of the solid boundaries, in order to reduce computational time. Finally,

the results obtained on several 2-D validation cases will be described. We will

investigate the convergence of the method as well as its ability to model complex

free-surface and turbulent flows. Comparisons will be done with other numerical

methods.

2. SPH interpolation in the frame of unified semi-analytical wall
boundary conditions

SPH is now a well-known method, and we assume the reader is rather familiar

with its basics. Thus, we will not describe the classical SPH interpolation and

operators. For an extensive description and analysis of the SPH method see [33,

45]. In this section, however, we will summarise the USAW boundary conditions

used herein. In this work, fluid particles which do not belong to a boundary

are called “free” particles. Solid boundaries in the method proposed by Ferrand

et al. [10] are modelled by vertex particles v ∈ V and segments s ∈ S (see

Figure 1). The vertex particles are truncated fluid particles placed at the wall,

with velocity imposed as equal to the wall velocity. They were introduced to

compute more accurately the fields and their derivatives close to the walls.

They are specially important when dealing with turbulence, where the fields
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Figure 1: Sketch of the different sets of entities involved in the representation
of the USAW boundary conditions.

values at the wall are required for the imposition of the boundary conditions.

The segments link the vertex particles together, thus composing a mesh of the

solid boundary. They are only used to compute boundary integrals, similarly

to what was done by Feldman and Bonet [9]. Their length is set as the initial

interparticle spacing, δr. The set of all fluid particles, including free and vertex

particles, is denoted by P and particles belonging to P = F ∪V are denoted by

a or b. This discretization is illustrated on Figure 1.

Throughout this work, we will use the 5th order Wendland kernel [48], de-

fined by:

wh (q) =
αW,2

h2

(

1− q

2

)4

(1 + 2q) for q 6 qmax = 2 (1)

where αW,2 is its normalising constant, equal to 7/4π in 2-D, h is the smoothing

length and q =
|r − r′|
h

with r and r′ two position vectors. We impose h = 2δr

for all the simulations.

With the present boundary conditions, the SPH discrete interpolation of a

field A at particle a with position ra reads:

[A]γa =
1

γa

∑

b∈P

VbAbwab (2)

where Vb is the volume of particle b and wab = wh(ra − rb). γa is the wall

renormalisation factor mentioned in the introduction, defined as in [20] and [10]:

γa =

∫

Ω∩Ωa

w(ra − r′)dnr′ (3)

where Ω is the fluid domain, Ωa is the compact support of the kernel at particle

a and n is the space dimension. Note that γa is equal to 1 inside the fluid, due

to the normalisation property of the kernel. On the other hand, γa is inferior
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to 1 when the kernel support intersects the wall. In the method proposed by

Ferrand et al. [10], γa is computed as:

dγa
dt

= uR
a ·∇γa (4)

where uR
a represents the particle’s velocity with respect to the wall. However,

we will present in section 3.4 another method to compute γa, as accurate as the

latter but which decreases computational time.

In this framework, the discrete SPH differential operators are different from

the classical ones [10]. The antisymmetric form of the discrete gradient reads:

(∇A)a ≈ Gγ,+
a {Ab} =

1

γa

∑

b∈P

Vb (Aa +Ab)∇wab−
1

γa

∑

s∈S

(Aa +As)∇γas (5)

where m and ρ are the mass and density of particles. The latter being kept

constant in ISPH, we will omit the particle subscript in its notation. ∇γas is

the contribution of segment s to the gradient of γa, defined as:

∇γas =

∫

∂Ωs∪Ωa

w(ra − r′)nsd
n−1r′ (6)

∂Ωs is the boundary area spanned by segment s and ns is the inward normal

to the wall on s (see Figure 1). The following property holds [10]:

∇γa =
∑

s∈S

∇γas (7)

It is also possible to define a discrete symmetric gradient:

(∇A)a ≈ Gγ,−
a {Ab} = − 1

γa

∑

b∈P

VbAab∇wab +
1

γa

∑

s∈S

Aas∇γas (8)

where Aab = Aa − Ab and Aas = Aa − As. In case the discrete gradient of a

vector field is calculated, the formulae (5) and (8) remain unchanged except that

Aab∇wab and Aas∇γas are replaced by Aab⊗∇wab and Aab⊗∇γas respectively.

In the SPH literature, it is recommended to use the symmetric gradient for

accurate estimation of the required quantities (e.g. velocity gradients) while

the antisymmetric form is more relevant when estimating the pressure gradient

in the momentum equation, for reasons of momentum conservation (see e.g.

[38]).
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The symmetric form of the divergence operator reads:

(∇ · A)a ≈ Dγ
a{Ab} = − 1

γa

∑

b∈P

VbAab ·∇wab +
1

γa

∑

s∈S

Aas ·∇γas (9)

Finally, the discrete Laplacian operator proposed by Ferrand et al. reads:

[∇ · (B∇A)]a ≈ Lγ
a{Bb, Ab} =

1

γa

∑

b∈P

Vb(Ba +Bb)
Aab

r2ab
rab ·∇wab

− 1

γa

∑

s∈S

[Bs (∇A)s +Ba (∇A)a] ·∇γas

(10)

where B is a diffusion coefficient for the field A, rab = ra − rb and rab = |rab|.
In case A is a vector, the Laplacian will be denoted by Lγ

a{Bb,Ab}. In case

B = 1, it will be denoted by Lγ
a{Ab}.

3. Formulation of the new ISPH model

3.1. Discrete Navier-Stokes equations for an incompressible flow

The Navier-Stokes equations in a continuous framework for an incompress-

ible flow read:

∇ · u = 0

du

dt
= −1

ρ
∇p̃+

1

ρ
∇ · (µE∇u) + g

(11)

where the density, velocity, pressure, time, dynamic viscosity and gravity are

noted respectively ρ, u, p, t, µ and g. We recall that µ = ρν, ν being the

kinematic molecular viscosity. We defined µE = µ+µT where µT is the turbulent

dynamic viscosity, equal to zero for a laminar flow. We also defined:

p̃ = p+
2

3
ρk (12)

which is used for turbulent flows in the context of Reynolds-averaged fields, k

being the turbulent kinetic energy. The discrete SPH Navier-Stokes equations

are then based on the discrete operators proposed in the previous section:

Dγ
a{ub} = 0

dua

dt
= −1

ρ
Gγ,+

a {p̃b}+
1

ρ
Lγ
a{µE,b,ub}+ g

(13)

νT,a =
µT,a

ρ
is the turbulent kinematic viscosity of particle a. It is a function

of its turbulent kinetic energy ka and dissipation rate ǫa, according to:

νT,a = Cµ
k2a
ǫa

(14)
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where Cµ is a constant defined in Table 1.

The ISPH model deals with the resolution of (13) through a procedure de-

scribed in the next section. In the laminar case, k, ǫ and νT are equal to 0 and

it is only necessary to impose a Neumann boundary condition on the velocity

in the viscous term of (13), which is done by writing [10]:

Lγ
a{µ,ub} =

2µ

γa

∑

b∈P

Vb
uab

r2ab
rab ·∇wab −

2µ

γa

∑

s∈S

uR
as · tas
δras

tas|∇γas| (15)

where uR
as is the particle’s velocity with respect to the segment s, and:

tas =
u
R
as −

(

u
R
as · ns

)

|uR
as − (uR

as · ns) |
(16)

We also defined:

δras = max(ras · ns, δr) (17)

where ras = ra − rs.

The use of the k − ǫ model is the same as in WCSPH with the present

boundary conditions (see [10]). More information about the k− ǫ model can be

found in [21, 37]. The quantities ka and ǫa are calculated through a semi-implicit

time-scheme involving the SPH form of the standard k − ǫ model (see [10]):

kn+1
a − kna
δt

= Pn
a − ǫna

kn+1
a

kna
+

1

ρ
Lγ
a

{

µ+
µn
T,b

σk
, knb

}

(18)

ǫn+1
a − ǫna
δt

=
ǫna
kna

(

Cǫ1P
n
a − Cǫ2ǫ

n+1
a

)

+
1

ρ
Lγ
a

{

µ+
µn
T,b

σǫ
, ǫnb

}

(19)

where σk, Cǫ1 , Cǫ2 and σǫ are constants described in Table 1, the superscripts n

and n+ 1 refer to the time iteration numbers and δt is the time step. Pa is the

production of turbulent kinetic energy of particle a and is calculated according

to a semi-linear model [15]:

Pa = min
(

√

CµkaSa, νT,aS
2
a

)

(20)

where Sa =
√
2Sa : Sa, with:

Sa =
1

2

[

Gγ,−
a {ub}+

(

Gγ,−
a {ub}

)T
]

(21)
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Table 1: Values of the k − ǫ model constants [21]

κ Cµ Cǫ1 Cǫ2 σk σǫ
0.41 0.09 1.44 1.92 1.0 1.3

The imposition of boundary conditions on u, k and ǫ is a crucial issue in the

k − ǫ model. Our choices in terms of boundary conditions were based on the

Code_Saturne Theory Guide [7] (see Part IV-B), which describes the implemen-

tation of the k− ǫ model in a well-established Finite Volumes (FV) code. Thus,

the following equations (22) to (29) can be considered as an SPH equivalent of

the latter FV approach. Note that the Neumann wall boundary conditions are

applied through the Laplacian operator like in mesh-based methods, whereas

the Dirichlet boundary conditions are imposed at the vertex particles which

are involved in the volumic terms. Thus, in the aforementioned equations the

particles a belong to F , whereas the particles b belong to P = F ∪ V .

A non-homogeneous Neumann wall boundary condition on the velocity is

applied in the viscous term of (13) by writing:

1

ρ
Lγ
a{µE,b,ub} =

2µ

γaρ

∑

b∈P

Vb
uab

r2ab
rab · ∇wab −

2

γa

∑

s∈S

u2
∗,astas|∇γas| (22)

where u∗,as is the friction velocity at the wall seen by particle a, computed

through an iterative process solving the following implicit equation:

u
R
as · tas
u∗,as

=
1

κ
ln

(

δrasu∗,as
ν

)

+ 5.2 (23)

where κ is the Von Karman constant (see Table 1).

On the other hand, the velocity at the vertex particles is left to evolve as a

function of the viscous term:

un+1
v = un

v + δt
1

ρ
Lγ
v{µE,b,ub} (24)

but its normal component is imposed to be equal to zero by projecting un+1
v

along the tangent to the wall.

A homogeneous Neumann wall boundary condition on the turbulent kinetic

energy is applied in (18) by writing:

Lγ
a{µ+

µT,b

σk
, kb} =

1

γa

∑

b∈P

Vb

(

2µ+
µT,a + µT,b

σk

)

kab
r2ab

rab ·∇wab (25)
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A compatible Dirichlet boundary condition on k is imposed at all vertex particles

v:

kv =
1

αv

∑

b∈F

Vbkbwvb (26)

As for the dissipation ǫ, it was necessary to improve the treatment of the diffu-

sion boundary term in (19) compared to what was proposed in [10]. Indeed, the

formulation they proposed did not give correct results close to the walls. Thus,

the Neumann wall boundary condition on the dissipation rate is applied in (19)

by writing:

Lγ
a{µ+

µT,b

σǫ
, ǫb} =

1

γa

∑

b∈P

Vb

(

2µ+
µT,a + µT,b

σǫ

)

ǫab
r2ab

rab ·∇wab

+
4Cµ

σǫγa

∑

s∈S

k2a
δras

|∇γas|
(27)

A compatible Dirichlet boundary condition is imposed on ǫ at all vertex particles

v:

ǫv =
ǫs1 + ǫs2

2
(28)

where:

ǫs =
1

αs

∑

b∈F

Vb

(

ǫb +
4C

3/4
µ k

3/2
b

κδrbs

)

wsb (29)

A justification for this formulation of the boundary conditions on ǫ is given in

the Appendix A. Note that the wall boundary conditions imposed on ǫ have a

great impact on the flow representation.

3.2. New ISPH algorithm

The present model follows the structure of the one proposed by Lind et

al. [25], which is based on the projection method proposed by Cummins and

Rudman [5], where the velocity field is maintained divergence-free, and a sta-

bilising method consisting in a particle shift is included. First, the particles are

moved to an intermediate position r∗ according to:

r∗a = rna +
δt

2
un
a (30)

An estimation of the velocity field is then done based on the momentum equation

without the pressure gradient term, so that:
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u∗

a − un
a

δt
=

1

ρ
Lγ
a{µE,b,u

n
b }+ g (31)

un
a is the velocity at time n at particle a and u∗

a is the estimated velocity field.

The second part of the momentum equation reads:

ũn+1
a − u∗

a

δt
= −1

ρ
Gγ,+

a {p̃n+1

b } (32)

where ũn+1
a is the velocity calculated through the projection method at time

n+1. Applying the divergence operator to the continuous form of this equation

while imposing that ∇ · ũn+1
a = 0 gives a pressure Poisson equation that has to

be solved to calculate the pressure field at the next time-step. Considering that

the density is constant in our work, this equation reads:

∇2p̃n+1
a =

ρ

δt
∇ · u∗

a (33)

Here we do not write it in a discretized form here since its discretization will

be dealt with in section 3.3. After the pressure is calculated, the velocity field

is corrected by applying equation (32), and the new position of the particles is

calculated according to:

r̃n+1
a = r∗a +

δt

2
ũn+1
a (34)

To ensure the stability of the simulations, after the particles were moved ac-

cording to equation (34), they are slightly shifted according to a diffusion law:

rn+1
a = r̃n+1

a + δra (35)

where:

δra = −Cshifth
2
∇Ca (36)

Cshift is a diffusion coefficient, the value of which having been calibrated from

various test cases and taken equal to 0.7 for the Wendland kernel. ∇Ca is the

gradient of the particle concentration. The following discrete gradient was used

instead of the classical one described by Lind et al.:

∇Ca ≈ Gγ
a{1} =

1

γa

∑

b∈P

Vb∇wab −
1

γa

∑

s∈S

∇γas (37)

In this expression, the boundary term running over the segments s prevents

the particles from leaving the domain when the diffusion is applied near a wall.

12



In their work, Lind et al. [25] observed that it was necessary to introduce an

additional term in the concentration gradient in order to avoid particle clumping.

This was not the case in the present work due to the fact that we use a Wendland

kernel, which is known to avoid particle clumping due to the positiveness of

its Fourier transform [6]. Moreover, applying the particle shift close to the

free-surface would lead to an unphysical behaviour of the particles due to the

kernel truncation, which is not accounted for near the free-surface, even with our

boundary conditions. To avoid this issue, the shift is not applied to the particles

whose distance to the free-surface is lower than hqmax/2 (see eqn. (1) for the

definition of qmax). This criterion was established by numerical experiments on

the dam-break over a wedge case (section 4.3). It was expressed as a function of

hqmax in order to have the same number of particle layers not shifted near the

free surface, regardless of the kernel choice. This method is equivalent to the

one proposed by Lind et al. [25] applying a modified particle shift near the free-

surface. After the particles’ positions are shifted, their velocities are modified

according to a first-order Taylor expansion:

un+1
a = ũn+1

a + Gγ,−
a {ũn+1

b } · δra (38)

In case of turbulent flow, a similar process is applied to the turbulent kinetic

energy and dissipation rate. This marks the end of a time-step and a new one

begins with (30).

To perform simulations including free-surfaces with ISPH, it is necessary to

impose zero pressure at the free-surface (Dirichlet boundary condition). Thus,

the particles belonging to the free-surface have to be tracked, which is done

trough a criterion based on the value of the divergence of their position, Dγ
a{rb}.

Indeed, ∇ · r should be equal to n in n dimensions, which is not exactly verified

near the free-surface due to the kernel truncation. A particle is identified as

belonging to the free-surface if Dγ
a{rb} ≤ 1.5 in 2-D [23]. With this tracking,

however, some particles happen to cross the wall when they belong to thin jets

impacting it with high velocity (typically 3-4 particles in the case of the jet

impacting a wall in the triangular wedge case, see Section 4.3). This is because

their pressure is set to zero while they reach the wall so that they end by crossing

it. To solve this issue, for each free particle with divergence of the position lower

than 1.5, a test is performed to check whether it will cross the wall at the next

13



time-step, which is done through the following criterion:

rav + δt

(

ua ·
rav
r2av

)

<
hqmax

8
(39)

If the latter relation holds, the free particle a and the vertex particle v are not

identified as free-surface particles. This technique was tested on the triangu-

lar wedge case (Section 4.3). Other techniques exist to track the free-surface

(see [28] for example), but the present one proved sufficient to ensure the im-

permeability of the walls while solving properly the pressure Poisson equation.

In summary, the structure of the algorithm is almost unchanged compared to

the one proposed by Lind et al. [25], but the differential operators used are differ-

ent. Our model performs better near the walls without the use of ghost particles

and includes turbulence treatment. We saw that the free-surface detection and

the shifting algorithms were slightly modified, but the most important change

concerns the Laplacian operator. We will now see how this change makes it

possible to impose an accurate non-homogeneous Neumann pressure boundary

condition.

3.3. Laplacian operator and imposition of wall pressure boundary conditions

In the pressure Poisson equation, the Laplacian operator (10) is involved

with B = 1 and A = p̃. In (10), the summation term involving the segments s

is the boundary term. The treatment of the latter is crucial, since pressure wall

boundary condition are applied through it. It involves the pressure gradient at

the segments and at the fluid particles close to the wall. Here we assume that

(∇p̃)a · ns ≈ (∇p̃)s · ns, which is justified by the fact that the pressure field

does not vary much near the walls. Using the fact that ∇γas is oriented along

ns by the definition (6), we obtain:

Lγ
a{p̃b} =

2

γa

∑

b∈P

Vb
p̃ab
r2ab

rab ·∇wab −
2

γa

∑

s∈S

(∇p̃)s ·∇γas (40)

The notation Lγ
a from now on will refer to this expression instead of the one of

equation (10) when it is applied to the pressure. This formulation of the Lapla-

cian led to instabilities on hydrostatic cases since it is not first order consistent.

To solve this issue, we use the equality:

∇2p̃ = ∇2(p̃+ ρgz) (41)
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where z is the vertical coordinate and g the gravity magnitude. We now solve

a modified Poisson equation:

Lγ
a{p̃b + ρgzb} =

ρ

δt
Dγ

a{u∗

b} (42)

which is an SPH form of (33). Dγ
a is given by (9).

It is now necessary to define the pressure gradient term at the segments,

(∇p̃)s ·ns, through which we impose a von Neumann boundary condition. Let us

consider a particle v belonging to the wall. It is not a Lagrangian particle since it

does not move according to the Navier-Stokes equations. Instead, its Lagrangian

velocity is imposed as equal to uwall
v . This corresponds to both impermeability

and no-slip conditions. Note that in case of turbulence, the Dirichlet imposed

on the velocity at vertex particles in the viscous term is not used in the pressure

Poisson equation. Projecting the second part of the momentum equation (32)

onto the normal nv to the wall in v and substituting un+1
v by its imposed value,

one obtains:

∇p̃n+1
v · nv =

ρ

δt
(u∗

v − uwall
v ) · nv (43)

The same applies to the segments since their velocity is calculated as the average

of the velocities of the vertex particles at each of its vertices [10]. Finally, the

discrete pressure Poisson equation (42) can be written as:

2

γa

∑

b∈P

Vb
p̃ab + ρgzab

r2ab
rab ·∇wab =

2ρ

γa

∑

s∈S

(

u∗

s − uwall
s

δt
+ g

)

·∇γas +
ρ

δt
Dγ

a{u∗

b}

(44)

One can now check on a simple case that this pressure wall-boundary condition

is physical. Let us consider the case of a fluid at rest with a free-surface in a

rectangular tank. Following the steps of the projection method, we have:

u∗

s = δtg (45)

because the velocity at the initial time n is equal to zero. Then the condition

imposed on the pressure gradient at the wall is:

∇(p̃n+1
s ) · ns = ρg · ns (46)

which is the expected non-homogeneous boundary condition. Thus we see that

the condition (43) provides the exact pressure condition in order to balance
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gravity forces on a horizontal bed. This condition is non-homogeneous in many

cases since the right-hand side depends on viscous and external forces through

u∗. In Hosseini and Feng’s paper [16], the same boundary condition was im-

posed on the pressure at inflow or outflow boundaries.

Equation (44) corresponds to a linear system:

A · p̃ = B (47)

where p̃ is the vector of all particle pressures, B is the vector of right-hand side

values at all particles and A is a non-symmetric sparse matrix corresponding

to the discrete Laplacian operator. To solve this system, linear solvers like

GMRES [39] or Bi-CGSTAB [47] are used. In the case of confined flows, if no

Dirichlet condition is imposed the system has an infinity of solutions, and the

matrix A is not invertible. We make it invertible by adding a small perturbation

through a slight reinforcement of the diagonal terms.

3.4. Reducing computational time: analytical computation of γa with the 5th
order Wendland kernel

To ensure stability, several conditions concerning the time-step value have

to be imposed [35, 46], namely the Courant-Friedrichs-Lewy (CFL) condition

and others relative to viscous forces and acceleration, which reads:

δt = min (δtCFL, δtvisq, δtforce, δtγ) (48)

where:










































δtCFL = CCFL

h

uref

δtvisq = Cvisqmin
a∈P

(

h2

νE,a

)

δtforce = Cforcemin
a∈P

(
√

h

‖u̇a‖

)

(49)

CCFL = 0.2, Cvisq = 0.125 and Cforce = 0.25 are constants which were found

by numerical experiments (see Morris et al. [35] for the last two values). u̇a

is the total acceleration of particle a and uref is a reference velocity, which

corresponds to the numerical speed of sound for a WCSPH model and to the

maximum velocity in the fluid for an ISPH model. The speed of sound in
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WCSPH is usually fixed as 10 times the maximum flow velocity [33]. In most

simulations the CFL prevails, which leads to a time-step 10 times smaller with

WCSPH than with ISPH. But when the calculation of γa is done through (4),

an additional condition on δt has to be imposed, which reads [10]:

δtγ = Ct,γ
1

max
a∈P,s∈S

{
∣

∣∇γas ·
(

uR
a

)∣

∣

} (50)

We recall that uR
a was defined in eqn. (4). It was found by numerical experiments

that Ct,γ = 0.004 [10]. This condition appeared to prevail in many cases, so

that the time-step size should be the same for ISPH and WCSPH. This would

be a major drawback for ISPH with these boundary conditions since the matrix

inversion makes the method much slower than WCSPH for a given value of the

time-step. This is why we propose a method to compute γa analytically without

solving (4), which avoids the condition (50). It follows the idea proposed by

Feldman and Bonet [9], which consists in writing γa as a boundary integral by

applying Gauss’s theorem to (3):

γa = −
∫

∂Ω

W (|ra − r
′|) · n (r′) dn−1Γ (r′) (51)

where W is defined as:

w (q) = ∇ ·W (q) (52)

Since w is a radial function, so is W:

W (q) = −ϕ (q) r̃ (53)

where q =
r̃

h
and r̃ = ra − r′. Then we have :

γa =

∫

∂Ω

ϕ (q) r̃ · n (r̃) dn−1Γ (r̃) (54)

Here we only consider the case of a two-dimensional space. The calculations

were done for the 5th order Wendland kernel (1), which yields:

ϕ (q) =
1

2πh2q2

(

1− q

2

)5
(

1 +
5q

2
+ 2q2

)

for q 6 2 (55)

As pointed out in [9], the function h2ϕ (q) presents a singularity in q = 0, so

that the Gauss theorem invoked to obtain (51) is only valid if the integration
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Figure 2: Notations for the calculation of γ̃as.

is done on ∂Ω ∪ ∂Ωǫ, with Ωǫ a small sphere of radius ǫh centred on q = 0. By

decreasing ǫ to zero, it is possible to show that:

γa = 1−
∑

s

γ̃as (56)

with:

γ̃as = −ns ·
∫

s

ϕ

(

r̃

h

)

r̃dn−1Γ (r̃) (57)

Recall ns is the inward unit normal on segment s. Let ts be the unitary vector

tangential to s (see Figure 2). We have r̃ = r0−ra+yts so (57) can be simplified

to give:

γ̃as = ns · ra0
∫

s

ϕ

(

r̃

h

)

dn−1Γ (r̃) (58)

where ra0 = ra−r0 and r0 is the orthogonal projection of ra on the segment

s. Let y be the coordinate along ts, ra0 = |ra0| the distance from the integration

point to the segment and qa0 = ra0/h. We define:

ζi = min

(

1

2

√

q̃2a0 +
y2i
h2
, 1

)

(59)

for i = 1, 2, with q̃a0 = min (qa0, 2). y spans the interval [y1 = rav1
· ts; y2 =

rav2
· ts]. It is then found that:

γ̃as = sign (ns · ra0)
1

4π
[sign (y2)ψ (qa0, ζ2)− sign (y1)ψ (qa0, ζ1)] (60)

with:

ψ (q, ζ) = q
√

ζ2 − q2

4















− 4

3
ζ5 + 7ζ4 −

(

5

12
q2 + 14

)

ζ3

+ 7

3

(

q2 + 5
)

ζ2 − 1

4

(

5

8
q2 + 21

)

q2ζ

+ 7

6
q4 + 35

6
q2 − 7















−
(

5

8
q2 + 21

)

q5

16
arg cosh 2ζ

q + 2arctan
√

4ζ2

q2 − 1

(61)
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Let us now consider the particular case where a is located exactly on the

straight line driven by the segment s. The limit of γ̃as when qa0 tends to zero

(the yi remaining different from zero) is:

lim
qa0−→0

γ̃as =
1

4
[sign (y2)− sign (y1)] (62)

If the integration point is located inside the segment, y1 and y2 have opposite

signs and y2 is positive according to our notations, so we find γ̃as = 1/2, as

expected. On the contrary, if the point is located outside the segment, y1 and

y2 have the same sign, and we obtain γ̃as = 0. Thus, for a point located on a

straight wall, (60) gives the expected result: γa = 1/2.

The case where the integration point is located at the intersection of two

segments corresponds to a singularity. Let us consider a point a belonging to

the segment s1 and getting closer of one of its extremities rv, in the direction

of segment s2, which makes an internal angle θv with s1 at the point rv (see

Figure 2). Let us assume that the lengths of the two segments are large enough

so that only the segments s1 and s2 have a contribution. What we saw before

shows that γ̃as1 = 1/2 for any value of the distance rav > 0. Making rav tend

to zero we obtain:

γ̃vs2 =
1

2
− θv

2π
(63)

Finally:

γv = 1− (γ̃vs1 + γ̃vs2) (64)

=
θv
2π

which is the expected result. If the shape of the wall changes quickly close to the

vertex particle v, other positive or negative contributions can appear in (56),

but there is no singularity problem. In Table 2 the techniques used to compute

γ̃as in all the situations are summarised.

It was checked that the computed results perfectly match the theoretical

values of γa in cases of 1) a straight infinite wall and 2) an arbitrary angle.

4. Validation of the model on laminar free-surface and confined flows

The ISPH algorithm itself, without USAW boundary conditions, is relatively

well established [25], so that we don’t present any validation on cases without
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Table 2: Summary of the various cases for the calculation of γ̃as in 2-D.

Particle position γ̃as

Near a wall eqn (60)

On a segment
1

2

On a vertex v
1

2

(

1− θv
2π

)

walls in this paper. We start the validation with laminar flows where reference

results are widely available in the literature. In Section 5, validation on two

confined turbulent flows will be presented, one of them being a 2-D turbulent

Poiseuille channel flow, which is the standard case for validation of the k − ǫ

model. In all simulations the reference density of the fluid is ρ = 1000 kg.m−3.

According to what was said earlier, in the following the present model will be

referred to as ISPH-USAW.

4.1. Lid-driven cavity

The lid-driven cavity test-case is classical in fluid dynamics and is much

used to validate numerical models. It consists of a square closed cavity of size L

whose lid slides laterally at a constant velocity, driving the fluid under the effect

of the viscosity. For Reynolds numbers lower than about 7500 [36], it reaches

a steady-state after some time. Then, it is possible to compare the results

between different computational fluid dynamics (CFD) codes. In particular,

the SPH results were compared to the ones obtained by Ghia et al. [13] by a

multigrid simulation method, and to the ones obtained with Code_Saturne, a

widely validated code based on FV [2]. The FV simulations were always done

with 512 cells. Three Reynolds numbers were considered here: 100, 400 and

1000. The Reynolds number is based on the size of the cavity and the velocity

of the lid:

Re =
UL

ν
(65)

The latter is progressively accelerated from 0 to U . We define the dimensionless

variables x+ = x/L, z+ = z/L, u+x = ux/U , u+z = uz/U , p+ = 2p/ρU2. A

representation of the results obtained with the present ISPH-USAW model and

FV after convergence for a Reynolds number of 1000 is presented Figure 3,
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Figure 3: Lid-driven cavity case for Re = 1000: comparison of the results
obtained after convergence with ISPH-USAW, on the left, and with FV, on the
right.

which qualitatively shows that the two CFD codes give very similar results.

Simulations on this test-case showed that the impermeability of the walls is

granted by the ISPH-USAW model.

For the Reynolds number 100, we compared ISPH-USAW results to Yildiz

et al.’s results [50] based on an ISPH model with the multiple boundary tangent

method (ISPH-MBT). A discretization of 120× 120 particles was used in both

methods. The velocity profiles in x+ = 1/2 and z+ = 1/2 are shown in Figure 4,

where the same quality of results was obtained with both ISPH models compared

to Ghia et al. and to FV results. We could not compare pressure results since

there were none available in [50].

For the Reynolds number 400, we compared ISPH-USAW results to WC-

SPH using USAW boundary conditions (WCSPH-USAW). A discretization of

200 × 200 particles was used in both methods. For WCSPH-USAW the nu-

merical speed of sound was taken equal to 10U , and a background pressure

was imposed, without which cavities appear in the flow which is in agreement

with [23]. Besides, a Ferrari density correction [11] was applied, which was
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adapted to WCSPH-USAW by Mayrhofer et al. [30]. The velocity profiles are

shown on the left side of Figure 5, where the same quality of results was ob-

tained with ISPH-USAW and WCSPH-USAW compared to Ghia et al. and to

FV. The pressure profiles in z+ = 1/2 and on the diagonal of the cavity, defined

as that between the bottom-left and the top-right corners, are shown on the

right side of Figure 5. It appears that WCSPH-USAW results are much infe-

rior to ISPH-USAW results in terms of pressure prediction, even with a Ferrari

density correction.

For the Reynolds number 1000, we compared our ISPH-USAW results to

WCSPH-USAW and to the results obtained by Xu et al. [49] using ISPH with

a classical ghost particles technique (ISPH-GP). A discretization of 240 × 240

particles was used in all methods. The velocity profiles are shown on the left

side of Figure 6, where the same quality of results was obtained with both ISPH

models compared to Ghia et al. and to FV. The velocity results obtained with

WCSPH-USAW are slightly inferior to the two ISPH models. Both ISPH models

are much better than WCSPH in terms of pressure prediction, as can be seen in

Figure 7. Finally, the computational time with ISPH-USAW was smaller than

with WCSPH-USAW as shown in Table 3, and FV performed faster.

For the three Reynolds numbers ISPH-USAW results are in good agreement

with the ones obtained with FV and by Ghia et al. in terms of velocity and

pressure, which shows that the boundary conditions are imposed satisfactorily

for laminar flows. It is expected that ISPH-MBT and ISPH-GP perform well

on this test-case where the geometry is simple. Though, no convergence study

was presented in the two latter works, so that the order of convergence of those

models is not known.

To quantify the error made with our ISPH model compared to the FV

method, convergence studies were performed at a Reynolds number of 1000

where the results obtained with FV on a cavity discretized by 512 × 512 cells

were taken as a reference. The L2 error was calculated based on the values of

the horizontal velocity field obtained by the ISPH method and by FV at all
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Figure 4: Lid-driven cavity for Re = 100. Comparison of the velocity profiles
in x+ = 1/2 and z+ = 1/2 between ISPH-USAW, ISPH-MBT [50], FV and the
results of Ghia et al. [13].

particles positions, through:

L2 =

√

√

√

√

1

V

∑

b∈P

Vb

(

usol
b,x − uref

b,x

umax

)2

(66)

where V =
∑

b∈P

Vb is the total volume of the computational domain, usol is the

velocity obtained by the ISPH model, uref is the velocity obtained with FV and

umax = U is the maximum theoretical velocity of the flow. The results of the

convergence study are shown on the right side of Figure 6, where it appears that

the order of convergence of ISPH-USAW is close to 2, whereas WCSPH-USAW

presents a convergence order less than one and an error about 10 times higher

than with ISPH-USAW.

4.2. Infinite array of cylinders in a channel

The second confined laminar flow considered in this work consists of a very

viscous flow around an infinite array of cylinders confined in a channel. This

case was chosen in order to check that ISPH-USAW can accurately predict hy-

drodynamic forces on walls. The problem considered in this work is the same

as in [26] and [8]. A cylinder of radius Rc = 0.02m is placed at the half-

height of a channel, at z = zc = 0.04m. The latter is bounded by walls on

its upper and lower sides and periodic boundary conditions are applied along

23



-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
-0.4 -0.2 0 0.2 0.4 0.6 0.8 1

v
+

z
+

x
+

u
+

Ghia , v
+

Ghia , u
+

ISPH-USAW

WCSPH-USAW

FV

et al.

et al.

-0.25

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0  0.2  0.4  0.6  0.8  1

p
+

x
+

ISPH-USAW

WCSPH-USAW

FV

 0

 0.5

 1

 1.5

 2

 0  0.2  0.4  0.6  0.8  1

p
+

x
+

ISPH-USAW

WCSPH-USAW

FV

Figure 5: Lid-driven cavity for Re = 400. Velocity profiles (top), pressure
profiles in z+ = 1/2 (bottom-left) and pressure profiles on the diagonal (bottom-
right). Comparison between FV, WCSPH-USAW and ISPH-USAW. Velocity
results are also compared to Ghia et al.’s results [13].

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0  0.2  0.4  0.6  0.8  1
 0

 0.2

 0.4

 0.6

 0.8

 1
-0.4 -0.2  0  0.2  0.4  0.6  0.8  1

v
+

z
+

x
+

u
+

Ghia et al., v
+

Ghia et al., u
+

ISPH-USAW

WCSPH-USAW

ISPH-GP

FV
0.01 %

0.1 %

1 %

1e-02 1e-01

L
2
 e

rr
o
r

h/L

1st order

2nd order

ISPH-USAW

WCSPH-USAW

Figure 6: Lid-driven cavity for Re = 1000. On the left: comparison of the ve-
locity profiles in x+ = 1/2 and z+ = 1/2 between ISPH-USAW, ISPH-GP [49],
WCSPH-USAW, FV and the results of Ghia et al. [13]. On the right: conver-
gence studies with ISPH-USAW and WCSPH-USAW.

24



-0.25

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0  0.2  0.4  0.6  0.8  1

p
+

x
+

ISPH-USAW
WCSPH-USAW

FV

 0

 0.5

 1

 1.5

 2

 0  0.2  0.4  0.6  0.8  1

p
+

x
+

ISPH-USAW
WCSPH-USAW

ISPH-GP
FV

Figure 7: Lid-driven cavity for Re = 1000. On the left: pressure profiles in
z+ = 1/2. On the right: pressure profiles on the diagonal. Comparison between
ISPH-USAW, ISPH-GP [49], WCSPH-USAW and FV.

the x-direction. Thus, an infinite array of cylinders is being modelled. The

inter-cylinder distance is set through the length of the simulation box, Lc.

Various inter-cylinder dimensionless distances were considered, ranging from

L = Lc/Rc = 2.5 up to L = 35. The dimensionless half-height of the channel is

chosen as H = Hc/Rc = 2.0. The fluid considered presents a dynamic viscosity

µ = 0.1kg m−1s−1. The value of the average flow velocity in the unobstructed

channel is imposed as 〈v〉 = 1.2× 10−4m s−1, which produces a Reynolds num-

ber Re = Rc〈v〉ρ/µ = 2.4 × 10−2 . A body force F is dynamically applied to

the fluid in order to obtain the desired value of 〈v〉 and the simulations are run

until a steady-state is reached. The formula used to compute the longitudinal

body force is the one proposed in [30]:

Fn = Fn−1 +
〈v〉 − 2ṽn−1 + ṽn−2

δt
(67)

where ṽn is the average longitudinal flow velocity in the unobstructed channel

at time n, computed as:

ṽn =
1

Nn
c

∑

a∈F∪Ωc

unx (68)

where Ωc is a slice of the channel located at x = Lc of width equal to the initial

interparticular spacing δr, and Nc is the number of fluid particles located in

this slice at time n.

The total drag force per unit length acting on the cylinder, FD, was com-

puted for several values of L. This force is oriented along the x-direction and
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was computed as:

FD =
∑

s∈Γ

(

−psns + µ
[

∇us +∇u
T
s

])

· exSs (69)

where Γ is the boundary of the cylinder, Ss is the length of the segment s and

the gradient of velocity at the segments was computed as:

∇us =
1

2

∑

i=1,2

G
γ,−
vi {ub} (70)

where the vi are the vertices linked together by segment s. For the following

comparisons, the dimensionless drag coefficient will be used which is defined

as CD = FD/µ〈v〉 [8]. Figure 8 shows the values of CD obtained with ISPH-

USAW compared with the results of Liu et al. [26] for several lengths of the

channel. These results were obtained with a Finite Elements Method (FEM).

The agreement is good for the three values of L considered.

Let us now consider only the case where L = 6. A comparison of velocity

profiles was done with results obtained by Ellero et al. [8] with the Immersed

Boundary Method (IBM) [32, 31] and with WCSPH using mirror particles to

model boundaries (WCSPH-MP). For the SPH simulations, a discretization of

120 particles along the height of the channel was used. We observe that the

ISPH-USAW velocity profiles match quite well the ones obtained with IBM (see

Figure 9). Ellero et al. obtained slightly better velocity profiles with WCSPH-

MP, which can be explained by the fact that they used a ratio h/δr = 4.5,
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whereas we took it equal to 2. With L = 6, Liu et al. obtained CD = 106.77

using periodic boundary conditions along the x-direction. This value was taken

as a reference and the relative error compared to the SPH results was calcu-

lated for several discretizations, using a fixed ratio h/δr = 2. The results of

this convergence study are presented on the right-hand side of Figure 10, where

WCSPH-USAW and ISPH-USAW are compared. With ISPH-USAW, an order

of convergence of 1.39 ± 0.03 was obtained, while with WCSPH-USAW it was

only of 0.94 ± 0.04. Note that Ellero et al. obtained an order of convergence

of about 0.94 with WCSPH-MP. Though, in their simulations CD converged

towards a higher value than the one obtained by Liu et al., as can be seen on

the left side of Figure 10. They attributed this to the fact that the discretiza-

tion error becomes predominant for lower resolutions but it does not seem to

be a relevant explanation since we did not observe this phenomenon in our sim-

ulations. Nevertheless, our results show that the pressure prediction is more

accurate with ISPH-USAW than with WCSPH-USAW.

Note that for this test-case the numerical stability is conditioned by the viscous

force, so that the time-step is the same with WCSPH and ISPH. Thus, computa-

tional times are higher with the latter. They are presented in Table 3. To reduce

computational times at low Reynolds numbers with ISPH a solution would be

to treat the viscous term implicitly, as was presented in [43] for example.

4.3. Dam-break over a wedge

This case was simulated in order to check that our new ISPH-USAW model

can accurately represent violent free-surface flows. It consists of a schematic

2-D dam-break in a 2 meters long and 1 meter high pool, presenting a trian-

gular wedge in the bottom. The geometry is the same as in [10]. The initial

interparticular spacing for the simulations with ISPH and WCSPH was taken

equal to 10−2m and the kinematic viscosity to 10−2m2s−1. In the case of the

WCSPH method, a Ferrari density correction was used [11] and the numerical

speed of sound was taken equal to 20ms−1. The results obtained with ISPH

and WCSPH were compared to the ones obtained with OpenFOAM, a code

based on the Volume of Fluids (VoF) method [12]. Although in OpenFOAM

the simulations were done for a two-phase (air + water) model, which limits the

extent of the comparison with the single-phase SPH models, this comparison
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Figure 11: Dam-break over a wedge. Comparison of the free-surface shapes and
pressure fields obtained with VoF (on the left) and ISPH-USAW (on the right)
at different times.

is useful to check the accuracy of our method. The results obtained with VoF

were considered as a reference against which the ones obtained with SPH were

compared. The comparison is presented Figure 11 in a qualitative way. The

dimensionless time was defined as t+ = t
√

g/H where g is the magnitude of

the gravity field and H is the initial fluid depth (H = 1m). The two methods

give similar results. Differences appear between the models that can be due to

the two-phase nature of VoF, while the SPH models are single-phase. More-

over, in the visualisation of VoF results, the free surface is considered as the

locations where the volume fraction is 0.5, which can explain some of the differ-

ences appearing in Figure 11 at early times. Important differences of behaviour

appear from the moment when the jet impacts the wall, which has the effect

29



 0

 500

 1000

 1500

 2000

 0  1  2  3  4  5  6

P
re

ss
u
re

 f
o
rc

e 
(N

 p
er

 m
)

t
+

VoF
WCSPH-USAW

ISPH-USAW

Figure 12: Dam-break over a wedge. Comparison of the evolution of the pressure
force applied on the left-side of the wedge between VoF (6322 cells), ISPH-
USAW (5881 particles) and WCSPH-USAW (5881 particles).

to capture air inside the fluid in the two-phase VoF simulation, which does not

happen with SPH. On Figure 11, one can observe that a consequent number of

particles remains stuck to the walls during the SPH simulation. For example,

this can be seen quite well at time t+ = 3.13. This is due to the high viscosity

of the fluid considered here. Furthermore, particle clumping is observed at the

free-surface, which is well visible on the jet. This is due to the switch off for

the diffusion shift close to the free-surface as mentioned in Section 3.2. In order

to quantitatively compare the different methods, the evolution of the pressure

force applied on the left side of the wedge during the simulation is plotted, as

in [10]. This normal force F was computed by integrating the pressure on the

left side of the wedge, Γ, according to:

F =
∑

s∈S∪Γ

psSs (71)

where Ss is the surface of the segment s. In this case all the surfaces of the

segments are equal to δr. The results obtained with ISPH-USAW, WCSPH-

USAW and VoF are compared in Figure 12. The peaks that appear on the

VoF curve correspond to the collapse of trapped air bubbles, which hampers

the convergence of the linear solver. The three methods give similar results.

However, the evolution of the value of the force is smoother with ISPH-USAW
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than with WCSPH-USAW. Besides, the prediction of the maximum value of

the force is closer to the one obtained by VoF with ISPH-USAW than with

WCSPH-USAW. When the pressure peek occurs, the effect of air is likely to be

small, so that ISPH probably predicts that peek better than WCSPH.

On the other hand, simulations on this test-case showed that the imperme-

ability of the walls is granted by the ISPH-USAW model even in the presence

of strong impact of the water on a solid wall. For the latter, the computational

time was smaller than for WCSPH-USAW, as shown in Table 3. VoF presented

higher computational time than the two SPH models, which also happened on

the next test-case (Section 4.4).

4.4. Water wheel

A water wheel case is now proposed in order to show that the new ISPH-

USAW model is able to represent flows where complex free-surface shapes and

complex wall boundaries are involved. The geometry of the problem is presented

Figure 13. The wheel radius R was set to 1m. The wheel turns counterclockwise

at π/2 rad.s−1, driving the fluid. The viscosity was set to 10−2m2s−1. Thus,

the Reynolds number is about 300 and it is possible to assume that the flow is

laminar. The latter is periodical along x, presents a free-surface and a horizontal

Figure 13: Water wheel test-case: scheme of the geometry.

bottom along z = 0. The dimensionless time was defined as t+ = t
√

g/H

where H is the water height at the initial (here H = 0.9m). As for the dam-

break case, the results obtained with ISPH-USAW are compared to the VoF
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Figure 14: Water wheel test-case. Comparison of the free-surface shapes and
velocity fields between VoF on the left and ISPH-USAW on the right at t+ = 66.

two-phase model. A comparison with WCSPH-USAW is also presented. The

free-surface shapes and velocity fields obtained at t+ = 66 with the ISPH-

USAW and the VoF method are depicted in Figure 14. The simulation counted

8 × 104 cells with VoF and 3 × 104 particles with ISPH-USAW. The Figure

shows strong wetting of the wheel-arms in the VoF simulation whereas for the

ISPH-USAW simulation the arms out of the water are dry except for very few

individual water particles. This discrepancy is due to the post-treatment with

OpenFOAM: as in Section 4.3 the free-surface is considered as the locations

where the volume fraction is 0.5, which gives the impression that there is water

on the paddles. This is a drawback of the VoF method where the free-surface

is fuzzy. A quantitative comparison was done by comparing the time evolution

of the pressure force applied on the bucket P (in red in Figure 13) obtained

with the three methods. The results are presented Figure 15, where we present

smoothed results for the sake of readability, since they were very noisy with

the three methods. With ISPH-USAW and VoF this is explained by the fact

that it is hard for the pressure solver to converge. With VoF this is due to the

rotating mesh, while with ISPH-USAW it is due to the few particles wetting the

wheel arms when they are above the free-surface. Although some differences

appear due to the fact that we are comparing a single-phase model with a

two-phase one, ISPH-USAW and VoF results are in reasonable agreement. On
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the other hand, with WCSPH-USAW the pressure peaks present much greater

amplitudes. The amplitude of the pressure force peaks is slightly higher with

ISPH-USAW than with VoF because of the presence of air trapped between

the wheel and the fluid. The air pockets provide an additional pressure on the

wheel, but they also reduce the water level beneath it, which in the end reduces

the force due to water on the paddle. In spite of this, the results obtained with

ISPH-USAW are quite satisfactory and show that the new model is robust and

accurate, even with complex walls. Besides, the computational time was lower

with ISPH-USAW than with WCSPH-USAW and VoF performed slower than

the two SPH models, as shown in Table 3 (all codes running on one CPU).

The very high computational time exhibited by VoF on this case is due to the

difficulty the pressure solver had to converge due to the rotating mesh, which

led to high numbers of solver iterations.

5. Confined turbulent flows

Two validation cases were performed to assess the performance of the k − ǫ

model in the SPH incompressible formalism. Let us recall that since we use a

model based on the RANS formalism, only the mean quantities of the flows are

modelled, which proves sufficient in many industrial studies. A more accurate

model would need, e.g. LES, but this is not the purpose of the present work.
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Table 3: Computational times of the various models on several test-cases. The
calculations were performed on 1 CPU.

Model Number of cells/particles Time

Lid-driven cavity (Re = 1000, 60s of physical time)

FV 512× 512 38 h
ISPH-USAW 200× 200 31 h

WCSPH-USAW 200× 200 32 h

Infinite array of cylinders (80s of physical time)

ISPH-USAW 12.659e3 10h00
WCSPH-USAW 12.659e3 1h30

Dam-break over a wedge (2s of physical time)

VoF 6.322e3 > 1h
ISPH-USAW 5.881e3 20 min

WCSPH-USAW 5.881e3 30 min

Water wheel (30s of physical time)

VoF ≈ 8e4 5 days
ISPH-USAW ≈ 3e4 15 h

WCSPH-USAW ≈ 3e4 18.5 h

Fish-pass (20s of physical time)

FV ≈ 2.5e4 26 h
ISPH-USAW ≈ 6e4 76 h

WCSPH-USAW ≈ 6e4 55 h
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5.1. Turbulent channel flow

In order to test the performance of the k − ǫ model associated to ISPH, a

turbulent Poiseuille channel flow was modelled. The half-height of the channel,

e, is equal to 1m and periodical conditions are applied along the horizontal. An

external force of constant magnitude, f = 1.0 m.s−2, is applied. The friction

velocity, u∗, can be calculated by writing a balance of the forces and is equal to
√
fe = 1 m.s−1. At the initial time, the particles are aligned along horizontal

lines and they remain so during the simulation, even after 100s of physical

time (about 60000 iterations), with either ISPH-USAW or WCSPH-USAW. The

following dimensionless variables were defined:

y+ =
yu∗
ν
, u+ =

u

u∗
, ν+T =

νT
eu∗

, k+ =
k

u2
∗

, ǫ+ =
ǫe

u3
∗

, p+ =
p

ρu2
∗

(72)

where y is the distance to the lower wall. The friction Reynolds number is

defined as:

Re∗ =
u∗e

ν
(73)

It is equal to the dimensionless vertical coordinate at the centre of the chan-

nel, e+, and was taken equal to 640, so that the molecular viscosity of the fluid

was taken equal to 1.5625× 10−3m2.s−1. The results presented below were ob-

tained with an initial interparticular spacing of 5× 10−2m.

The results obtained with ISPH-USAW are presented in Figure 16 and 17,

where the profiles of dimensionless velocity, turbulent kinetic energy and dissi-

pation rate are plotted along the lower half of the channel. A comparison is pre-

sented with Direct Numerical Simulation (DNS) results obtained by Kawamura

et al. [19, 1] and with FV. No comparison with WCSPH-USAW is presented

since in this case it perfectly matches ISPH-USAW. The results obtained with

ISPH-USAW match very well the FV ones and are very close to the DNS, al-

though the velocity near the viscous sub-layer is slightly overestimated. To our

knowledge, this is the first time a RANS k− ǫ model is validated with the SPH

method, reaching the same accuracy as FV. It is noteworthy that the viscous

sublayer is not meant to be reproduced by the turbulence model we used, which
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Figure 17: Turbulent Poiseuille channel flow at Re∗ = 640. Comparison of the
profiles of dimensionless turbulent kinetic energy (on the left) and dissipation
rate (on the right) obtained by ISPH-USAW, DNS and FV.

explains why the turbulent kinetic energy profile obtained with DNS is different

from the ones obtained with FV and ISPH-USAW close to the wall.

5.2. Fish-pass

Let us now consider another turbulent case, more complex and closer to re-

ality: a water flow through a periodical fish-pass system, which is the one con-

sidered in [45, 10]. It consists of a succession of pools communicating through

vertical slots. When the number of pools is high enough, the flow can be con-

sidered as periodical and it is sufficient to study one of them. Experimental

results [42] showed that the mean flow is approximately parallel to the bottom

of the pool, the latter being inclined of an angle I ≈ 0.1 rad compared to the

horizontal. Thus, the flow was modelled in two dimensions (top-viewed) and
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the variations along the vertical were neglected. The effect of gravity was not

taken into account and the free-surface behaviour was not represented. Thus,

this flow does not represent the real one, since turbulence is a three dimen-

sional phenomenon and the free-surface cannot remain perfectly horizontal. For

a complete description of the geometry of the fish-pass, see [45]. In our simula-

tions the flow was driven by a constant body force along the x axis of magnitude

1.885 m.s−2. The Reynolds number is between 105 and 106 since the molecular

viscosity of the fluid considered is ν = 10−6m2.s−1, the characteristic length is

the size of the slot, 0.3m and the characteristic velocity in the fluid is close to

1m.s−1. The results obtained with the new ISPH-USAW model were compared

to the ones obtains with FV and with WCSPH-USAW. In all cases the RANS

equations were solved using a k − ǫ model, as presented in section 3.1. The

SPH simulations were done with 58823 particles while the simulations with FV

were done with 24632 cells. A qualitative comparison of the results obtained

with ISPH-USAW and FV after 20s of physical time is presented in Figure 18.

A quantitative comparison of the three methods was done by comparing

0
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m
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Figure 18: Fish-pass after 20s. Comparison of the results obtained with ISPH-
USAW (top) and FV (bottom).
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Figure 20: Fish-pass after 20s. Pressure profiles on P1 (left), P2 (middle) and
P3 (right) obtained with FV, ISPH-USAW and WCSPH-USAW.

velocity, pressure, turbulent kinetic energy and dissipation rate profiles at sec-

tions P1, P2 and P3 plotted in Figure 18. The four Figures 19, 20, 21 and 22

show that ISPH-USAW improves the prediction of all quantities in comparison

to WCSPH-USAW, especially for pressure and near-wall velocity. Note that

the results obtained with WCSPH-USAW are sensitive to the imposed value of

background pressure: high values of the latter lead to inaccurate results. Its

value was set equal to 5.10e4Pa for this test-case, so as to avoid the formation of

voids in the flow. It was checked that velocity and pressure fields are accurately

predicted at the wall when compared to FV results by plotting them along the
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Figure 21: Fish-pass after 20s. Turbulent kinetic energy profiles on P1 (left), P2

(middle) and P3 (right) obtained with FV, ISPH-USAW and WCSPH-USAW.
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Figure 22: Fish-pass after 20s. Dissipation rate profiles on P1 (left), P2 (middle)
and P3 (right) obtained with FV, ISPH-USAW and WCSPH-USAW.
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obtained with FV, ISPH-USAW and WCSPH-USAW.

bottom-left part of the wall (profile P4 in Figure 18). The results are shown in

Figure 23, where we see that ISPH-USAW improves a lot the distribution of wall

pressures. Note that the differences observed between the two SPH models and

FV can be due to slight differences in the imposition of boundary conditions

in the k − ǫ model. On this test-case, WCSPH performed faster than ISPH

and FV performed faster than the SPH models (see Table 3). In summary,

the new ISPH-USAW model makes it possible to accurately represent turbulent

flows presenting complex wall boundaries, while such flows are very hard to

model using ghost or mirror particles, due to the accuracy required regarding

the imposition of a non-homogeneous Neumann boundary condition on p and ǫ.

6. Conclusions

In this work a new ISPH method was proposed, in which solid boundaries

are modelled through the unified semi-analytical wall (USAW) boundary con-

ditions. The major improvement compared to a classical ISPH model is the

exact imposition of a non-homogeneous Neumann boundary condition on the
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pressure field to solve the pressure Poisson equation, which makes it possible

to prescribe the impermeability condition on solid walls. Various test-cases

were presented to show that ISPH-USAW is able to accurately model complex

laminar and Reynolds-averaged turbulent flows, even with complex geometries.

Convergence studies were done on a lid-driven cavity. The solution obtained

with FV was taken as a reference and it was observed that the convergence

order was close to 2 for the new ISPH-USAW model, which shows that the wall

boundary conditions are imposed satisfactorily. In general, the results obtained

with the proposed ISPH-USAW model were better than with WCSPH-USAW,

especially regarding the pressure prediction, and were obtained in most cases

with a similar computational time. To achieve this reduction of computational

time in ISPH-USAW, the wall renormalisation factor γa was computed analyti-

cally, extending the method proposed by Feldman and Bonet [9]. The accuracy

of the k − ǫ turbulence model combined to ISPH-USAW was checked on a tur-

bulent channel flow where an excellent agreement between our results and DNS

and FV results was observed. Besides, our results were in fairly good agreement

with the ones obtained with FV in the case of the fish-pass. It should be no-

ticed that with the USAW boundary conditions it is possible to apply the ISPH

method to complex geometries, not easy to handle with the traditional SPH

wall treatments like ghost particles. All the results presented in this paper con-

cerned 2-D flows, but the extension of this work to 3-D, based on [29], does not

present any further theoretical issues. However, it requires parallel computing

for efficiency reasons.
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Appendix A. Boundary conditions imposed on ǫ in the k − ǫ model

The Laplacian operator involved in the diffusion of ǫ reads:

Lγ
a{µ+

µT,b

σǫ
, ǫb} =

1

γa

∑

b∈P

Vb

(

2µ+
µT,a + µT,b

σǫ

)

ǫab
r2ab

rab ·∇wab

− 1

γa

∑

s∈S

[(

µ+
µT,s

σǫ

)(

∂ǫ

∂n

)

s

+

(

µ+
µT,a

σǫ

)(

∂ǫ

∂n

)

a

]

|∇γas|

(A.1)

The Neumann boundary condition is applied on ǫ by imposing the terms

(

∂ǫ

∂n

)

s

and

(

∂ǫ

∂n

)

a

. Since ǫ quickly varies close to the wall the same treatment as

for the pressure or velocity fields, which consists in equalling these two terms,

cannot be applied. Instead, we write:

(

µ+
µT,s

σǫ

)(

∂ǫ

∂n

)

s

+

(

µ+
µT,a

σǫ

)(

∂ǫ

∂n

)

a

≈ 2
µT,a′

σǫ

(

∂ǫ

∂n

)

a′

(A.2)

where ra′ = 1

2
(ra+rs). We assume that the theory of turbulent boundary layer

is valid and use the theoretical relations ǫ =
u3k
κz

and µT = κzuk, where z is a

small distance to the wall and uk = C
1/4
µ

√
k, and thus obtain:

µT,a′

σǫ

(

∂ǫ

∂n

)

a′

= − 2u4k
σǫδras

(A.3)

Considering that k slowly varies close to the wall, (A.1) can be written:

Lγ
a{µ+

µT,b

σǫ
, ǫb} =

1

γa

∑

b∈P

Vb

(

2µ+
µT,a + µT,b

σǫ

)

ǫab
r2ab

rab ·∇wab

+
4Cµ

γaσǫ

∑

s∈S

k2a
δras

|∇γas|
(A.4)

On the other hand, the Dirichlet boundary condition is imposed at the vertex

particles based on a FV formulation where the Dirichlet boundary condition on

ǫ was 2nd order accurate in space on an orthogonal mesh.

Let us first consider a 1D situation with the same notations as before. We

use the following Taylor series expansions:















ǫa′ = ǫa −
δras
2

(

∂ǫ

∂n

)

a

+
δr2as
8

(

∂2ǫ

∂n2

)

a

+O(δr3as)

ǫa′ = ǫs +
δras
2

(

∂ǫ

∂n

)

s

+
δr2as
8

(

∂2ǫ

∂n2

)

s

+O(δr3as)
(A.5)
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Subtracting these two equations yields:

ǫs = ǫa −
δras
2

[(

∂ǫ

∂n

)

a

+

(

∂ǫ

∂n

)

s

]

(A.6)

In order to impose a Dirichlet boundary condition compatible with the Neumann

condition imposed above, we use equations (A.2) and (A.3), which yields:

ǫs = ǫa − δras

(

∂ǫ

∂n

)

a′

= ǫa +
4C

3/4
µ k

3/2
a

κδras
(A.7)

The extension to 2D is done by interpolating ǫs based on the value of the

surrounding ǫa through:

ǫs =
1

αs

∑

b∈F

Vb

(

ǫb +
4C

3/4
µ k

3/2
b

κδrbs

)

wbs (A.8)

Finally, the Dirichlet boundary condition is imposed through the vertex particles

by writing:

ǫv =
ǫs1 + ǫs2

2
(A.9)
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