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ABSTRACT

In sync with the accelerated integration of communication and control systems, this dissertation

presents theoretical and experimental results on the robust control of networked Lagrangian systems

with discrete-delayed inputs and uncertain information. Within this context, we present novel so-

lutions to the control of nonlinear systems, coordination of multiple agents, bilateral teleoperation,

and collision avoidance over unreliable communication channels. We start with the introduction of

a passivity-based Model Reference Robust Control framework that guarantees delay-independent

asymptotic stability and state convergence of dissipative, nonlinear Lagrangian systems with input

and state measurement delays. Then, the proposed control methodology is extended to networks

of multiple heterogeneous systems. We demonstrate that stability, formation, and cooperative mo-

tion coordination can be attained independently of arbitrarily large constant input delays. We next

treat the control problem of single-master-single-slave bilateral teleoperation. Using concepts of

passivity theory and input-to-state stability, we design a control strategy that passively compen-

sates for position errors that arise during contact tasks and achieves delay-independent stability

and transparency when alternating between unobstructed and obstructed environments. Likewise,

we address the case of single-master-multi-slave teleoperation and propose a distributed control

law that synthesizes the use of a proportional-derivative controller and the avoidance functions to

enforce closed-loop stability, slaves-to-master motion coordination, formation control, static force

reflection, and collision avoidance of a group of slave robots with bounded communication delays.

We further investigate the topic of collision avoidance and formulate cooperative and noncooper-

ative control strategies that guarantee the safe navigation of multiple Lagrangian systems with

limited, unreliable sensing range. Along with the theoretical formulation of the control solutions,

this dissertation presents simulation and experimental results with robotic manipulators and un-

manned coaxial helicopters utilizing the proposed control strategies.
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CHAPTER 1

INTRODUCTION

Recent advances in electronics and integrated communications have allowed the development of a

new generation of control systems technology, namely networked control [1–4]. Nowadays, sensors,

actuators, controllers, and processes (which we will refer to as agents) are no longer restricted to

being physically connected, not even proximal to one another. Instead, in a networked control

system (NCS), agents can asynchronously operate from remote locations and share information

through a wireless communication network. This spatially distributed configuration mitigates im-

plementation and maintenance costs and provides scalability, redundancy, and robustness in the

control process. Such advantages make NCSs appealing for several applications including space

and underwater exploration, search and rescue, coverage control, data mining, power distribution

(e.g., smart grids), traffic control, remote diagnostic, and teleoperation.

Although NCS technology has significantly matured over the recent years [5], there are many

control and communication challenges to overcome [6]. One of these challenges is to guarantee

stability and reliable performance of the overall system independently of inherent network-induced

delays. Time delays can originate and develop as a result of congested communication networks,

complex transmission protocols, large separation distances between agents, and limited hardware

and software update rates. For instance, the sampling process of the variable being regulated, the

computation of the control command, and the time it takes for the control signal to travel from

the controller to the actuator or plant in a NCS may add a significant delay to the control loop.

If the presence of this delay is not carefully considered, the overall system may exhibit a poor

performance and, in the worst scenario, instability [1, 7]. Therefore, it is crucial to design control

frameworks that guarantee the overall stability and safety of the networked system independently

of delays.

Inspired by the need for reliable and robust control frameworks for NCSs, we now present differ-

ent theoretical and experimental results for the control of time delay systems. Herein, we focus on
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the robust control of mobile networked Lagrangian systems, including unmanned vehicles and ma-

nipulators, and present control ideas mainly based on stability, motion coordination, and collision

avoidance under communication delays. In some instances, we will extend our analysis to address

other important issues within NCSs such as stability, safety, and convergence when the control’s

communication network induces data transmission errors and quantization (e.g., Section 3.3.1 and

Chapters 7 and 8).

1.1 Brief History of the Control of Time Delay Systems

The study of time delay systems can be traced back as far as the 18th century with the pioneering

work of prestigious scientists and mathematicians1 working on delayed differential equations and

formalized later with the mathematical analysis of the delay effects on biological [8] and mechanical

systems [9,10] in the early 20th century. Yet, it was not until the 1930s that the effects of delays in

a system were explicitly visited from a control perspective [11]. The work of Callender et al. [12] on

the design of stable controllers considering time-lags (delays) in the mid 1930s and the engineering

review [13] published in 1937 in the periodical The Engineer relating the effect of delays with

the introduction of negative damping, seeded the interest for what would become a long line of

research in the control of time delay systems. Here, we cite a few relevant results that followed,

starting with the work of Minorsky [14], who investigated problems related to ship stabilization;

Tsypkin [15], who provided sufficient conditions for delay-independent stability in the frequency

domain; and Myshkis [16], who properly defined the use of functional (delay) differential equations.

The following decades experienced considerable attention on the control of delay systems (see [11,17]

for historical references), from which we emphasize the work of Smith [18] in eliminating the delay

from the feedback loop and the separate work of Razumikhin [19] and Krasovskii [20] in extending

Lyapunov stability theory to systems with delays. For a more exhaustive survey on this topic, the

reader can refer to [11,17,21,22].

Nowadays, the study of control systems with delays has regained momentum, owed in part to the

recent popularity of NCSs [2, 3, 23] as well as its many derived applications such as teleoperation

[24, 25], mobile sensors [26], and cooperative tasking [27]. In this context, the stabilization and

control of linear NCSs has been treated for constant delays [1] as well as for time-varying delays

1We especially note the work of Daniel Bernouilli, Leonhard Euler, Joseph-Louis Lagrange, Pierre-Simon Laplace,
and Nicolas de Condorcet.
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G1(s)

G2(s)

R(s) Y1(s)

Y2(s)

e−T1s

e−T2s

∑

Figure 1.1: Networked control system with delays.

[28–30]. The control of networked systems with nonlinear dynamics has also been addressed in

[31–33]. Similarly, there has been a great amount of effort to minimize the delay or mitigate its

effects in the control loop [34–36]. For some further reading on NCS research, the reader can

consult [5, 6, 23,37–39].

1.2 Time Delay Effects on Stability

The classical hypothesis in the control of most dynamical systems has been to assume that the

evolution of the states does not depend on information from their past. Although this assumption

is suitable for many engineering processes, there exists a wide range of control systems for which

the effects of delays cannot be ignored. As an example, let us consider the two interconnected linear

systems depicted in Figure 1.1, where Gi(s) and Ti ≥ 0 represent the Laplace transfer functions

and the associated delays for the first (i = 1) and second (i = 2) system, respectively. The total

transfer function from the input R(s) to the output Y1(s) can be computed as

G(s) =
Y1(s)

R(s)
=

G1(s)e
−T1s

1 +G1(s)G2(s)e−(T1+T2)s
. (1.1)

From the above equation and denominator, the dependence of the stable and unstable poles on

the round-trip delay value becomes evident. More importantly, we have that for a positive round

trip delay, i.e., T1 + T2 > 0, the closed-loop system has an infinite number of poles. Therefore,

conventional control linear analysis is not sufficient to fully comprehend the behavior of (1.1).

In order to show the potential effect of delays on stability, let us consider the following example.

Let G1(s) = k 1
s and G2(s) = 1 where k is a control parameter. Then, the characteristic equation

3



of (1.1) is given by

s+ ke−(T1+T2)s = 0. (1.2)

For no delay, we may easily check that the closed-loop system is stable for any k > 0. However,

once there is a positive delay in the control loop, one can always find a positive value of k for

which the system will become unstable. Indeed, the system is unstable for any round-trip delay

satisfying [11] the following inequalities

T1 + T2 >
π

2k
, k > 0. (1.3)

The previous example demonstrates the appearance of instability on delay-free stable systems

due to feedback delays. The reverse case is also possible: Unstable or marginally stable systems

can be stabilized by delayed output feedback [40]. In fact, time delay systems may exhibit infinite

switches of stability according to the control parameters and the size of the delay [41]. This latter

topic, as well as the stabilization of unstable systems via delayed feedback, will not be further

investigated in this thesis.

1.3 Why Lagrangian Systems?

Arguably, most control theories and analytical tools for the study and control of time delay systems

have been developed with linear systems in mind. Yet, the vast majority of systems are nonlinear

in nature, and although we can certainly force nonlinear system to behave linearly by canceling

nonlinearities using active control or by operating the system near its equilibrium point, these

techniques are not sufficiently robust or do not properly capture the system’s complex behavior.

Thereby, throughout this thesis we’ll presume systems are nonlinear and use the Euler-Lagrange

(i.e., Lagrangian) formalism to represent them. We opt for the Euler-Lagrange formalism over

other nonlinear representations for diverse reasons. Some of these reasons are listed below.

• The Lagrangian formulation derives from the minimization of an energy function. Hence,

we can expect the system to satisfy some energy-related properties. One of these properties

is passivity, which will play a central role in assessing the stability of the system and the

development of the control ideas proposed in this dissertation.

4



• The Euler-Lagrange formulation allows us to easily synthesize systems of different nature

(e.g., electrical, electromagnetic, and mechanical systems).

• The Euler-Lagrange equations are invariant with respect to coordinates.

• The Lagrangian structure is conserved under feedback interconnection [42]. This avails us to

divide a complex system into the interconnection of smaller and simpler ones.

• The motion of most practical mechanical and electrical systems, such as robotic manipulators

and omni-directional vehicles, can be modeled using Euler-Lagrange equations.

1.4 Research Topics and Related Work

As previously stated, we study the stabilization and safe control of networked systems with time

delays whose dynamics can be described by nonlinear Euler-Lagrange equations. Specifically, we

address problems of stability, motion coordination, trajectory tracking, bilateral teleoperation, and

collision avoidance of mobile networked systems with discrete delayed2 inputs. The following is a

literature review of the research areas covered in this document.

1.4.1 Control of Nonlinear Systems with Input Delays

We study the control of Euler-Lagrange nonlinear systems with parametric uncertainties and con-

stant input delays. Whereas the case of time delay linear systems has been well studied and

documented in the literature [11, 21, 22], the robust control of time delay nonlinear systems has

received relatively little attention from the control community. Moreover, the few existing control

frameworks for nonlinear systems typically constrict their scope to plants with linear norm-bounded

nonlinearities, known constant delays, or well-known dynamics. Some efficient but yet restrictive,

recent examples include a model reference adaptive control that enforces stability and state tracking

for a known-structured nonlinear system with bounded nonlinearities and known input delays [43];

a backstepping design technique that guarantees stability for a class of well-defined nonlinear sys-

tems with arbitrary-large, known, constant delays [44]; and a delayed output feedback control that

2A system is said to have discrete delays if the evolution of the states depends on a finite and discrete set of
information from its past. In contrast, a system is said to have distributed delays if the evolution of the states
depends on information from its past over a finite set of continuous bounded intervals of time.
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achieves asymptotic stability for a family of systems with linear norm-bounded-in-state and in-

control nonlinearities [45]. Although all these examples solve the stability issue induced by delays

for specific sets of families of nonlinear systems, the control ideas presented therein are not easily

adapted to more general classes of nonlinear systems, such as nonlinear Lagrangian processes.

Recently, the control of a larger class of nonlinear plants with delayed output feedback was

addressed through the use of the scattering transformation, a conventional approach in the tele-

operation field [46]. In references [33, 47, 48], it was shown that the utilization of the scattering

transformation to couple the plant with the controller can stabilize passive and non-passive, static-

output-feedback-stabilizable plants independently of any constant delays and uncertain system

parameters. Later in [49], the stability of interconnected systems satisfying an inequality con-

dition of small L2 gain (or a similar inequality constraint in the case of output strictly passive

systems [50,51]) was established through the use of the scattering transformation and extended to

time-varying delays. Similarly, in [52], the use of the scattering transformation to stabilize passive

systems was explored for losses in the controller-to-plant communication channel. Although the

aforementioned efforts are applicable to a broad class of nonlinear systems, their scope is still lim-

ited to systems with no measurement delays since instantaneous local state values are required to

construct the scattering transformation outputs.

1.4.2 Control of Multiple Agents with Input Delays

Many advanced applications, such as surveillance tasks, military operations [53], mobile sensors [54],

and rescue missions [55], can be executed faster, more efficiently, and less expensively by a team of

simpler machines rather than a single complex one. Due in part to its modularity and flexibility, a

team of simple and cost-effective agents can replace a single robotic system and complete multiple

tasks in shorter time, cover large-scaled areas, and adapt more easily to single point failures.

Moreover, diversifying the group and scaling down the agents promotes multitasking abilities as well

as mobility through diverging paths and/or obstructed spaces where the use of an individual, larger

robot might be restricted. Such advantages of multiple networked systems over single machines

have continuously fueled research on the control of multi-agent systems over the last decades [53].

Among the many control ideas developed for cooperative control of multi-agent systems, the most

popular formalisms include behavioral-based approaches [56], optimization-based techniques [57],

passivity-based formulations [58], and others more nature-inspired, such as the nearest neighbor
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Figure 1.2: Configuration of a teleoperation system.

rule [59,60]. Some of these control formulations have also been applied to coordination and consen-

sus problems considering coupling communication delays among near agents and between agent

and controller. For instance, in [61] a control framework based on the nearest neighbor rule

for cooperative control of multiple vehicles with communication delays is presented. Similarly,

in [62,63] passivity-based properties of the nonlinear agents are exploited to guarantee convergence

between agents independently of communication constant delays. Other examples include [64–71]

and [72–75], where the last group of references are special applications on bilateral teleoperation.

The discussed cooperative control frameworks for systems with interconnection delays are either

exclusive to linear systems or do not consider delays in the local control loop, i.e., where each agent

has instantaneous access to its own state information. This leaves open the research question on

how to control and coordinate the behavior of more complex, nonlinear multi-agent systems with

control input and communication delays.

1.4.3 Bilateral Teleoperation with Communication Delays

In principle, a teleoperation system is a multi-robotic set that enables a human operator to manipu-

late, sense, and physically interact with a distant environment (see Figure 1.2 for a representation).

In such system, the desired manipulation or task is performed remotely by one or multiple slave

robots that track the motion of a locally human-controlled master robot. The master robot and

the slave robots are typically coupled via a communication network. Ideally, this coupling should

be transparent to the operator, meaning that he/she should feel as if being directly active in the

remote location. This is generally attained by transmitting remote slave information (e.g., position,

velocity, and force) to the master robot in what is called a bilateral connection.

Achieving transparency (commonly measured in terms of motion coordination, impedance match-
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Figure 1.3: Raymond Goertz operating a mechanical teleoperator. He later invented the first
electro-mechanical master/slave teleoperator. (Source: Argonne National Laboratory).

ing, and force reflection) and stability of bilateral teleoperation systems has proved to be difficult

and more than often, a conflicting task due to time delays in the control loop [76,77]. Time delays

typically arise from the separation distance between master and slave robots in addition to the

communication medium (e.g., Internet, satellite, and wireless) and may range from a few millisec-

onds to several seconds as it is the case for outer space exploration [78]. Independently of their size

and nature, time delays may degrade the performance of a bilateral teleoperator and even lead to

instability.

Research on time delay bilateral teleoperation can be traced back as far as the 1940s with

the invention of the first modern single-master-single-slave (SMSS) teleoperator for manipulation

of radioactive materials by Raymond C. Goertz at Argonne National Laboratory (see Figure 1.3).

Ever since, the field of teleoperation has found application in a wide range of arenas that range from

manipulation of nanoscale systems [79] to that of heavy duty hydraulic machines [80]. Similarly,

today’s teleoperators have been embraced by different scientific and industrial sectors that include

medicine [81,82], entertainment [83], agriculture [84], and education [85]. In general, we can argue

that SMSS teleoperation systems have enjoyed considerable interest over the last 60 years, and for

comprehensive reviews on the topic, the reader can refer to [25,86,87].

In contrast to the arguably mature state of SMSS teleoperation, single-master-multi-slave (SMMS)

systems remains relatively new in the control community. The ability to remotely coordinate

and bilaterally control multiple mobile agents through a single master robot under constant and

time-varying communication delays has been previously attained in [72–74, 88, 89]. These control

methodologies were later extended to include collision avoidance algorithms in [90, 91]. Similarly,

in [92] formation control and obstacle avoidance for a linear SMMS system is addressed under time-
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varying delayed communication lines. Finally, in [93] a control framework for bilateral teleoperation

of multiple nonholonomic vehicles with collision avoidance is presented.

1.4.4 Collision Avoidance with Sensing Delays and Uncertainties

Mobile networked agents, such as unmanned vehicles, typically rely on navigation and localization

sensors to estimate the location of nearby agents and obstacles or on wireless communication

networks for the broadcast of position coordinates among agents. These sensing mechanisms, in

which we include communication networks, may inaccurately estimate the position of obstacles

and agents as a result of process delays, interferences, noise, and quantization. For instance,

obstacle’s position measurements, sampled by vision-based sensing mechanisms on many mobile

robotic systems, are easily affected by weather conditions and light variations [94]. Underwater

localization equipment, such as sonar radars and inertial measurements units, may also experience

substantial delays, slow sampling rates, and additive measurement errors [95]. In fact, 12 kHz

Long Baseline acoustic navigation, the standard approach for full depth ocean navigation [95],

typically operates at update rates periods of up to 20 s [96] and with a precision of 0.1-10 m [97].

Alternatively, widely used Global Positioning Systems for localization of ground and aerial vehicles

may experience temporary interruptions when traveling through occluded spaces or because of the

interference with radio signals [98]. Therefore, collision avoidance strategies for vehicle navigation

must provide robustness to sensing delays as well as uncertainties.3

Collision avoidance strategies for multi-vehicle systems can be classified as noncooperative or

cooperative. In a noncooperative policy, each agent assumes the worst case scenario in which other

agents do not apply any collision avoidance strategy. Within this perspective, several control ideas

have been proposed. For instance, Leitmann and Skowronski [99] established sufficient conditions

for collision avoidance between two agents in a noncooperative scenario using Lyapunov-based

analysis. Alternatively, Mitchell et al. [100] studied the problem of collision avoidance for two

agents applying level set methods [101] to compute the solutions of Hamilton-Jacobi-Isaacs partial

differential equations. On the other hand, in a cooperative scenario, all agents collaborate to

solve the potential conflict. For instance, in [102], a control strategy for collision avoidance of

multiple agents in a cooperative scenario is presented based on the concept of avoidance functions

3Many sources of uncertainties, such as sporadic interference and ephemeral interruptions, can be modeled as
delays. Similarly, the error induced by sensing delays can be considered as a bounded uncertainty. More details will
be provided in Chapter 7.
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introduced in [99]. This method has been extended to nonholonomic vehicles [103] and Lagrangian

systems with bounded control input disturbances [104] and has been successfully tested on multiple

ground [103] and aerial vehicles [75]. Cooperative collision avoidance strategies have also been

studied using navigation functions on systems with integrator dynamics [105] and on unicycle

models with constant speed [106]. Similarly, collision avoidance laws have been formulated based

on potential field functions for double-integrators [107] and for single-integrators with bounded

control [108] and unicycle models [109].

The aforementioned collision avoidance strategies are strictly for systems with accurate and im-

mediate position information. In fact, collision avoidance control laws (cooperative or noncoopera-

tive) for the case of accurate obstacle position estimation abound in the literature (see [99,110–112]

and references therein for examples). This sharply contrasts with the opposite case of safe nav-

igation under sensing uncertainties which has not been comprehensively studied from a control

perspective. Instead, the orthodox solution in the presence of sensing uncertainties has been to

improve sensory perception [113–115]. Some of the few examples that effectively deal with inaccu-

rate obstacle position estimation from a control perspective include the certainty grid [116] and the

occupancy grid [117], which are equivalent techniques based on probabilistic methods, and a nonco-

operative strategy for unicycle models [118] based on the concept of reachable sets [100]. However,

these strategies do not address collision avoidance with moving obstacles. Recently in [119], a

noncooperative collision avoidance algorithm based on the velocity occupancy space, a variation

of the occupancy grid, was proposed to guarantee the safe navigation of vehicles interacting with

dynamic obstacles. Yet, the performance of the avoidance algorithm in the case of time-varying

speed obstacles, such as other agents, was not explicitly investigated.

1.5 Thesis Outline and Contributions

As the foundation for the theoretical treatment of the control problems addressed in this disserta-

tion, we start with a brief mathematical background on Lagrangian systems in Chapter 2. First, we

formulate the Euler-Lagrange equations of motion for mechanical systems and introduce some rel-

evant properties of Lagrangian systems. Then, we define the concept of passivity and highlight its

connection to Lyapunov’s stability. This connection will be instrumental in analyzing the stability

of the control algorithms proposed herein.

In Chapter 3, we commence the treatment of networked Lagrangian systems with delays. We
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introduce a passivity-based model reference robust control framework that achieves asymptotic sta-

bility and provides satisfactory trajectory tracking for nonlinear Lagrangian systems with dynamic

uncertainties and arbitrarily large input and state measurement constant delays. The proposed

control law builds on the assumption that the Lagrangian system is dissipative in order to establish

delay-independent stability (i.e., the control parameters are independent of the size of the delay).

In addition, the model reference robust control framework explicitly guarantees position conver-

gence under communication and computation errors as opposed to most common passivity-based

control approaches reported in the literature. Simulation and experimental results with a coaxial

helicopter and a robot manipulator with constant input and state feedback delays are presented to

validate the proposed controller. Results relating to this topic have been reported in [120].

We then extend the model reference robust control framework introduced in Chapter 3 to the

general case of multi-agent systems in Chapter 4. We specifically consider the research problem of

controlling the formation and state trajectory of a group of n-dimensional, possibly heterogeneous

nonlinear systems with constant input and state feedback delays. It is shown that the formation

and state trajectory control problem can be cooperatively solved independently of the magnitude

of the individual round-trip delays. Numerical examples with a group of omni-directional vehicles

are presented.

In Chapter 5 we continue with the control of NCSs molded to the topic of bilateral teleoperation.

Using passivity-based control and the wave scattering transformation, we design a novel control

framework that guarantees stability, master-to-slave position convergence, and static force reflec-

tion for SMSS bilateral teleoperators with constant coupling delays. Our main contribution within

this topic lies in the effective passive compensation of position errors that inherently arise during

contact tasks and in the conservation of stability and transparency when alternating between un-

obstructed (free) and obstructed (contact) environments. The proposed control framework exploits

the wave impedance independent passivity property of the scattering transformation to guarantee

both control objectives by gradually switching between a low wave impedance, ideal for free motion,

and a sufficiently large impedance, suitable for contact tasks. Specifically, the passive controller

adapts the wave impedance online according to contact forces at the remote environment, enabling

satisfactory transparency compensation. By utilizing input-to-state stability analysis we are able

to demonstrate that the position error between master and slave decays to zero as we passively

increase the wave impedance or attenuate external forces. The validity of the control framework is
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verified through simulations and experiments on a pair of nonlinear robots. The work presented in

Chapter 5 has been reported in [121].

We then cover the research problem of bilaterally teleoperating multiple slave agents with a single

master robot. The main control objectives for SMMS bilateral teleoperation systems are summa-

rized as follows: (1) stability of the overall closed-loop system, (2) formation control among slave

agents, (3) slaves-to-master trajectory tracking, (4) force reflection of environmental forces to the

human operator, and (5) collision avoidance in the case of mobile agents. In order to achieve these

objectives, we present in Chapter 6 a distributed, bilateral control framework that guarantees sta-

bility and coordinated motion (i.e., formation control and trajectory tracking) between master and

slave agents under arbitrary constant communication delays, as well as a safe interaction between

slave agents and surrounding obstacles. We first design a passivity-based proportional-derivative

(PD) controller that enforces motion tracking, static force reflection, and formation control of

master and slave vehicles under constant, bounded communication delays. Then, we incorporate

the use of avoidance functions [102] to guarantee collision-free transit through obstructed spaces

and cooperative collision evasion between neighboring agents. The effectiveness of the proposed

controller is finally tested through experiments with two coaxial helicopters as slave agents and a

haptic force-feedback device as the master robot. The theoretical and experimental results reported

here have been published in [75].

Following with the notion of collision avoidance, we devote Chapters 7 and 8 to the design of

decentralized collision avoidance strategies for Lagrangian agents with bounded sensing delays and

sensing uncertainties. First, we consider the simpler case of a pair of dynamical systems with double

integrator dynamics4 in Chapter 7. Within this context, we develop cooperative and noncooperative

avoidance policies based on the use of avoidance functions [99, 102]. We show, using Lyapunov-

based analysis, that if a sufficiently large safety neighborhood around each agent is defined and

avoidance control strategies are developed according to this region, collision-free trajectories for

nonlinear systems with bounded inputs and limited, unreliable sensing range can be guaranteed.

Furthermore, the collision avoidance control laws proposed herein can be appended to any other

stable control law (e.g., set-point regulation and trajectory tracking) and are exclusively active

when an obstacle or other agents are close to the controlled vehicles. Along with the theoretical

treatment, we present a set of cooperative and noncooperative simulation examples to illustrate

4We demonstrate that the collision avoidance strategies presented in Chapter 7 can be extended to nonlinear
Lagrangian systems via the use of inverse dynamics control.
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the effectiveness of the proposed controller. Experimental results with two coaxial helicopters are

also presented. Results in this chapter has been reported in [122].

In Chapter 8 we extend the previous collision avoidance formulation to a network of multiple

agents with nonlinear Lagrangian dynamics. We consider a group of N vehicles with bounded

inputs and develop cooperative collision avoidance strategies based on finite Lyapunov functions

that can be easily synthesized with other stable control laws. The avoidance control strategy is

validated via a simulation example with sensing delays.

Finally, in Chapter 9, we conclude with a set of final remarks and future research directions

associated with the control problems discussed in this dissertation.
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CHAPTER 2

LAGRANGIAN SYSTEMS AND PASSIVITY

In this chapter, we define the equations of motion for a Lagrangian system and introduce some

relevant properties exploited throughout the thesis, including the notion of passivity.

2.1 Notation

As standard notation, ℜn stands for the n-dimensional Euclidean space. The p-norm of a vector

x = [x1, · · · , xn]T ∈ ℜn is denoted by ‖x‖p := (|xi|p + · · · + |xn|p)1/p for 1 ≤ p < ∞ and ‖x‖p =

maxi |xi| for p = ∞, where |xi| is the absolute value of a real scalar xi. We define the induce

p-norm of a matrix A ∈ ℜm×n as ‖A‖p := supx 6=0

‖Ax‖p
‖x‖p

. For the 2-norm of a vector or matrix

we use the simpler notation ‖·‖. We also say that a n-dimensional piecewise continuous function

y : [0,∞) → ℜn belongs to Lp if ‖y(t)‖Lp
=
(∫∞

0 ‖y‖p
)1/p

< ∞ for 1 ≤ p < ∞ and to L∞ if

‖y(t)‖L∞

= supt≥0 ‖y(t)‖ < ∞. As a shorthand for a matrix A ∈ ℜm×n we use [akl]m×n, where

akl is the klth entry of A. Additional notation might be introduced as new concepts appear in the

following chapters. For simplicity, we will omit time dependence of signals except when considered

necessary.

2.2 Lagrangian Systems

An n-degree-of-freedom (DOF) Lagrangian system, with generalized coordinates q = q(t) ∈ ℜn

and external forces τ̃ = τ̃ (t) ∈ ℜn, is one that satisfies the following Euler-Lagrange equations of

motion [42]

d

dt

(
∂L(q, q̇)
∂q̇

)

− ∂L(q, q̇)
∂q

= τ̃ (2.1)
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where

L(q, q̇) = K(q, q̇)− P(q)

is known as the Lagrangian function. The kinetic energy function of the system, K(q, q̇), is assumed

to be of the form

K(q, q̇) =
1

2
q̇TM(q)q̇

where M(q) ∈ ℜn×n represents the positive definite inertia matrix, while the potential energy

function, P(q), is assumed to be bounded from below, i.e., ∃c ∈ ℜ such that P(q) ≥ c for all

q ∈ ℜn. In addition, we suppose that the system is fully-actuated and that external forces are

comprised of three types

τ̃ = u+ f − ∂F(q̇)

∂q̇

where u ∈ ℜn, f ∈ ℜn, and F(q̇) ∈ ℜn are the control inputs, the environmental/disturbance

forces, and the Rayleigh dissipation function, respectively. We will further assume that dissipative

forces satisfy the following condition

q̇T ∂F(q̇)

∂q̇
≥ ρ ‖q̇‖2 , for ρ ≥ 0. (2.2)

Then, it is easy to show that the Euler-Lagrange equations of motion in (2.1) reduce to

M(q)q̈+ C(q, q̇)q̇+
∂F(q̇)

∂q̇
+ g(q) =u+ f (2.3)

where the jkth element of the centrifugal and Coriolis matrix, C(q, q̇) ∈ ℜn×n, are univocally

computed as

Cjk(q, q̇) =

n∑

l=1

1

2

[
∂Mjk

∂ql
+
∂Mjl

∂qk
− ∂Mkl

∂ql

]

q̇l (2.4)
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and where

g(q) =
∂P(q)

∂q

defines the n-dimensional vector of gravitational forces.

Throughout this thesis, unless otherwise stated, we will further assume that the Lagrangian

systems (2.3) satisfy the following properties.1

Property 2.2.1 (Skew-Symmetry). Ṁ(q) = C(q, q̇) + CT (q, q̇).

Property 2.2.2 (Uniform Boundedness). ∃ positive constants λ and λ such that λI ≤M(q) ≤ λI,

where I ∈ ℜn×n is the identity matrix.

Property 2.2.3 (Boundedness of C-matrix). The matrix C(q, q̇) is bounded in q and linear in q̇,

and so, ‖C(q, q̇)‖ ≤ kc ‖q̇‖ for some kc ≥ 0.

The skew-symmetric property is a consequence of (2.4) [124]. The second property, although more

restrictive, is satisfied by many different configurations of robotics systems [125]. For instance, it

trivially holds when the system has linear dynamics. Finally, the last property is a direct result of

Property 2.2.2.

2.3 Passivity

The Euler-Lagrange formalism to derive the equations of motion is based on the minimization of

an energy function (e.g., difference between kinetic and potential energy functions). Therefore, it

is consequential to question if Lagrangian systems satisfy energy-based properties. One of such

properties is called passivity.

Definition 2.3.1. [126] A system with input u and output y is said to be passive if

∫ t

0
yTudθ ≥ −κ+ ν

∫ t

0
uTudθ + ρ

∫ t

0
yTydθ (2.5)

for some nonnegative constants κ, ν, and ρ. Moreover, it is said to be lossless if equality persists

and ν = ρ = 0, input strictly passive if ν > 0, and output strictly passive if ρ > 0.

1For additional common properties of Lagrangian systems, the reader can consult [123].
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Theorem 2.3.1. The Euler-Lagrange system (2.3) with f ≡ 0 is passive with respect to input u

and output q̇. Furthermore, if ρ > 0, then (2.3) is output strictly passive.

Proof. Consider the following positive definite function

H =
1

2
q̇TM(q)q̇+ P(q) − c ≥ 0

Then, taking the time derivative of H we obtain

Ḣ = q̇TM(q)q̈ +
1

2
q̇T Ṁ(q)q̇+ q̇T ∂P(q)

∂q

= q̇T

(

u−C(q, q̇)q̇− ∂F(q̇)

∂q̇
− g(q)

)

+
1

2
q̇T Ṁ(q)q̇+ q̇Tg(q)

and recalling the skew-symmetry Property 2.2.2 we have

Ḣ = q̇Tu− q̇T ∂F(q̇)

∂q̇
. (2.6)

Now, integrating both sides of (2.6) yields

∫ t

0
q̇Tudθ =

∫ t

0
q̇T ∂F(q̇)

∂q̇
dθ +H(t)−H(0) ≥ ρ

∫ t

0
q̇T q̇dθ −H(0) (2.7)

where we used (2.2) and the fact that H(θ) ≥ 0 ∀θ ⇒ H(t)−H(0) ≥ −H(0). Then, passivity and

output strictly passivity follow from κ = H(0) and ρ > 0.

Remark 2.3.1. Note that from (2.6) we have that the total energy of the system H is non-increasing

for u ≡ 0. Therefore, the unforced system (2.3) is stable in the sense of Lyapunov.

In addition, we have the following nice result for the interconnection of passive systems.

Theorem 2.3.2. The negative feedback interconnection of two passive systems is passive.

Proof. Consider the two interconnected passive systems in Figure 2.1. Since G1 and G2 are passive,

we have that

∫ t

0
yT
i eidθ ≥ −κi, κi ≥ 0.
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G1

G2

u1(t) y1(t)

y2(t) u2(t)
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e2(t)

∑

∑

Figure 2.1: Negative feedback connection of two passive systems.

Hence,

∫ t

0
yT
1 e1dθ +

∫ t

0
yT
2 e2dθ ≥ κ1 + κ2

∫ t

0
yT
1 (u1 − y2)dθ +

∫ t

0
yT
2 (u2 + y1)dθ ≥ κ1 + κ2

∫ t

0
(yT

1 u1 + yT
2 u2)dθ ≥ κ1 + κ2

∫ t

0
yTudθ ≥ κ

and we conclude that the overall system with input uT = [uT
1 , u

T
2 ] and output yT = [yT

1 , y
T
2 ] is

also passive for κ = κ1 + κ2 ≥ 0.
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CHAPTER 3

CONTROL OF NONLINEAR SYSTEMS WITH INPUT DELAYS

Due to diverse natural factors (e.g., propagation and transport phenomena) and implementation

requirements (e.g., discretization and networking), time delays may appear in control systems.

For instance, control of chemical processes, such as chemical reactors [127] and heat exchangers

[128], typically experience time delays in the control loop as the result of mass transport and heat

transfer phenomena. Similarly, data transmission in analog and digital communication-based NCSs

inherently suffers from positive propagation delays due to the time it takes for the transmitted signal

to travel from one end-point to another. In these scenarios, the presence of time delays in the control

loop can degrade the performance of the control process and even lead to instability. Therefore, it

is of great significance to formulate control algorithms conformed to time delay models.

Following the research line of [33,47–52], we now present the design of a model reference robust

control (MRRC) framework that combines the use of the wave-based scattering transformation [46]

to guarantee asymptotic stability of nonlinear dissipative Lagrangian systems1 with dynamic uncer-

tainties and arbitrary large input and state measurement constant delays. The proposed control law

assumes that the unforced (i.e., zero input control) system is exponentially stable2 or, equivalently,

output strictly passive in order to establish delay-independent stability of the controlled system.

The design of the controller is comprised of two parts: a linear reference model and a scattering

transformation block. The first is designed according to a desired input-to-output property that

the delayed system must mimic, while the latter is used to stabilize the delayed coupling between

the plant and the controller. In addition, the outputs of the scattering transformation are passively

modified to enable explicit full state tracking between controller (i.e., reference model) and plant

independently of dissimilar and unknown initial conditions as well as losses in the transmission

lines, a recurring problem with scattering transformation-based techniques. The overall framework

1The results presented in this chapter can be extended to more general classes of nonlinear systems [120].
2For time delay control frameworks based on exponential stability of the unforced system or similar assumptions,

see [11,43,44].
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Controller System

uc(t) u(t) = uc(t− T2)

q(t), q̇(t)q(t− T1),q̇(t− T1)

rm(t) q(t), q̇(t)

T1

T2

Figure 3.1: Nonlinear plant and controller with input and state measurement delays. The signals
rm(t) and uc(t) represent the input and output of the controller, respectively.

is then validated via a numerical example. To the best of our knowledge, nonlinear systems (includ-

ing Lagrangian systems) with explicit state measurement delays have not been addressed applying

the passivity-based scattering formulation.

3.1 System Dynamics

We consider an n-DOF nonlinear Lagrangian system with equations of motion given by

M(q)q̈ + C(q, q̇)q̇ =u− ∂F(q̇)

∂q̇
(3.1)

where gravitational effects have been either neglected or canceled through constant control (i.e.,

gravitational forces are constant) and where dissipative forces are assumed to satisfy the following

inequality

q̇T ∂F(q̇)

∂q̇
≥ ρ ‖q̇‖2 (3.2)

for some ρ > 0. In addition, the positive inertia matrix M and centrifugal and Coriolis matrix

C are assumed to satisfy Properties 2.2.1 to 2.2.3, while the control input u is assumed to be a

delayed state feedback function depending on q(t − T1 − T2) and q̇(t − T1 − T2), where T1 ≥ 0

and T2 ≥ 0 correspond to the measurement and plant-to-controller communication delay and the

controller-to-plant communication delay, respectively. The system and controller are portrayed in

Figure 3.1.
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3.2 Passivity-Based Model Reference Robust Control Framework

The proposed control framework is comprised of two elements: the reference model and the wave-

based scattering transformation block. The reference model is designed according to some ideal

input-to-output (or equivalently, input-to-state) properties that we would like the time delay non-

linear plant to mimic. The scattering transformation is designed such that the delayed coupling

transmission lines between controller and plant are passified. The passivation of the transmission

lines will then be exploited to guarantee delay-independent stability of the overall system.

3.2.1 Reference Model

We design, for simplicity, an asymptotically stable linear reference model as

q̈m(t) = Amq̇m(t) + um(t) + rm(t)

ym(t) = q̇m(t)
(3.3)

where qm(t), q̇m(t) ∈ ℜn are the state vectors, ym(t) ∈ ℜn is the output vector, um(t) ∈ ℜn is the

control input, and Am ∈ ℜn×n is a symmetric Hurwitz matrix. The reference signal rm(t) ∈ ℜn is

given by

rm(t) = Kd(qd − qm(t)) (3.4)

where Kd ∈ ℜn×n is a positive-definite constant matrix and qd ∈ ℜn is the desired state constant

vector.

3.2.2 Scattering Transformation

If the reference model and the time delay nonlinear system are to be directly coupled through their

delayed outputs qm(t− T2) and q(t− T1) and/or q̇m(t− T2) and q̇(t− T1), it can be shown that

the communication channel may act as a nonpassive coupling element (i.e., may generate energy),

potentially leading the system to instability [46]. In order to passify the communication channel

and avoid instability, we propose the use of the wave-based scattering transformation. The wave

variables wm(t) and v(t), and the new control inputs um(t) = −τm(t) and u(t) = τ (t) are then
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computed as

τm(t) =bėm(t) +Kmem(t) (3.5)

wm(t) =

√

2

b
τm(t)− vm(t) (3.6)

q̇md(t) =
1

b

(

τm(t)−
√
2bvm(t)

)

(3.7)

qmd(t) =

∫ t

0
q̇md(θ)dθ (3.8)

em(t) =qm(t)− qmd(t) (3.9)

for the reference model and

τ (t) =
√
2bw(t) (3.10)

v(t) =w(t)−
√
2bq̇(t) (3.11)

for the nonlinear system; where the wave impedance b is a positive constant, Km is a symmetric

positive definite matrix, and

vm(t) = v(t− T1) (3.12)

w(t) = wm(t− T2). (3.13)

The implementation of the scattering transformation and the reference model is schematized in

Figure 3.2.

The importance of the scattering transformation lies in the passivation of the communication

channel independently of any arbitrary large constant round-trip delays. To demonstrate this

statement, let us verify that the communication channel is, in fact, passified. Manipulating (3.5)-

(3.13) we can easily show that

q̇T
mdτm − q̇T (τ − bq̇) =

1

2

(
wT

mwm −wTw + vTv − vT
mvm

)
. (3.14)

Then, integrating (3.14) we respect to time yields

∫ t

0
(q̇T

mdτm − q̇T (τ − bq̇))dθ =
1

2

∫ t

t−T2

wT
mwmdθ +

1

2

∫ t

t−T1

vTvdθ ≥ 0 (3.15)
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Figure 3.2: Proposed MRRC framework.

which confirms the passivity claim. The lower bound in (3.15) implies that the energy is tem-

porarily stored in the transmission lines and, therefore, the communication channel is passified

independently of the size of T1 and T2.

Remark 3.2.1. The definition of the scattering transformation proposed here differs from its typical

implementation [33, 46–52] in the sense that the current states of the time delay nonlinear plant

are assumed to be unaccessible to the local plant and, therefore, cannot be used when computing

the transformation variables. Consequently, all scattering transformation variables are computed

at the same location in the network (see Figure 3.2), as opposed to their conventional bisected (or

mirror) implementation.

3.3 Stability Analysis and State Convergence

Having established the control framework and the passivation of the communication channel, we

now proceed to claim asymptotic stability of (3.1) and state convergence independently of arbitrary

large input and state measurement delays. The following theorem represents one of the main results

of this chapter.

Theorem 3.3.1. Consider the time delay nonlinear system (3.1) coupled to the reference model

(3.3) via the scattering transformation (3.5-3.13) and let b < ρ. Then, for all initial conditions we

have the following results.

i. All signals qm(t),q(t), em(t), q̇m(t), q̇(t), ėm(t), q̈m(t), and q̈(t) are bounded ∀t ≥ 0 and the

velocities q̇m(t), ėm(t), and q̇(t) converge to zero.

ii. The error signals em(t) and qm(t)− qd converge asymptotically to zero.
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Proof. Consider the following Lyapunov candidate function

V (t) = V (qm(t), em(t), q̇m(t), q̇(t)) =
1

2
q̇TM(q)q̇ +

1

2
(qd − qm)TKd(qd − qm) +

1

2
q̇T
mq̇m

+
1

2
eTmKmem +

∫ t

0
(q̇T

mdτm − q̇T (τ − bq̇))dθ. (3.16)

Its time derivative is given by

V̇ ≤− ρq̇T q̇+ q̇Tτ − q̇T
mKd(qd − qm) + q̇T

m(Amq̇m − τm +Kd(qd − qm))

+ ėTmKmem + q̇T
mdτm − q̇Tτ + bq̇T q̇

=− ρq̇T q̇+ q̇Tτ + q̇T
mAmq̇m − q̇T

mτm + ėTmKmem + q̇T
mdτm − q̇Tτ + bq̇T q̇

=− ρq̇T q̇+ q̇T
mAmq̇m + bq̇T q̇+ ėTmKmem − q̇T

m (bėm +Kmem) + q̇T
md (bėm +Kmem) .

Since b < ρ and Am is Hurwitz, we have that

V̇ ≤ −(ρ− b) ‖q̇‖2 − µ ‖q̇m‖2 − b ‖ėm‖2 ≤ 0 (3.17)

where µ > 0 is the smallest eigenvalue of −Am. Therefore, the overall system is stable in the sense

of Lyapunov. Moreover, we can invoke LaSalle’s Invariance Principle for delay systems [17] and

conclude that q̇m, q̇, ėm, and hence q̇md (from (3.9)), converge to zero.

Now, in order to demonstrate boundedness of all signals, let us consider the inequality in (3.17).

Integrating at both sides of the inequality, we obtain that V (t) ≤ V (0) < ∞, which implies that

qm,qmd, em, q̇m, q̇ ∈ L∞. Similarly, from the scattering transformation equations (3.5) to (3.11)

and the transmission equation (3.13) we can verify that

τ (t) = bq̇m(t− T2) +Kmem(t− T2) (3.18)

is also bounded. Now, substituting (3.18) and (3.12) into (3.7) yields

2bq̇md(t) =bq̇m(t) +Kmem(t) + 2q̇(t− T1)− bq̇m(t− T )−Kmem(t− T ) (3.19)

where T = T1 + T2, and, therefore, q̇md and ėm are bounded. Similarly, rewriting (3.5) gives us
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that

τm(t) =
b

2
(q̇m(t) + q̇m(t− T )) +

Km

2
(em(t) + em(t− T ))− bq̇(t− T1). (3.20)

Boundedness of em(t), q̇m, and q̇ then implies that τm ∈ L∞ and from the definition of the reference

model (3.3) we obtain that q̈m is also bounded. Furthermore, integrating (3.19) with respect to

time yields

∫ t

0
q̇md(θ)dθ =

∫ t

0
q̇(θ)dθ +

1

2

∫ t

t−T
q̇m(θ)dθ +

Km

2b

∫ t

t−T
em(θ)dθ (3.21)

and re-arranging the above equation we obtain that

q(t) =q(0) + qmd(t)− qmd(0) + qm(t)− qm(t− T ) +
Km

2b

∫ t

t−T
em(θ)dθ. (3.22)

Since all terms in (3.22) are bounded (recall that the integral of a bounded function over a finite

interval is also bounded), we can conclude that q ∈ L∞. Similarly, let us solve (3.1) for q̈ as

q̈ =M−1(q)

(

τ − ∂F(q̇)

∂q̇
− C(q, q̇)q̇

)

(3.23)

where M−1 exists and is bounded owing to Property 2.2.2. Likewise, since q̇ ∈ L∞ we have that C

(from Property 2.2.3) and ∂F(q̇)
∂q̇ are bounded. These last results, combined with the boundedness

of τ , yields that q̈ ∈ L∞, which completes the proof for the first part of the theorem.

Now, in order to prove the second statement in the theorem, let us rewrite (3.20) as

τm(t) =
b

2
(q̇m(t) + q̇m(t− T )) +

Km

2

∫ t

t−T
ėm(θ)dθ − bq̇(t− T1). (3.24)

Since all signals at the right-hand side of (3.24) vanish, we have that τm → 0, which implies that

em → 0. Then, computing the time derivative of (3.20) yields that

τ̇m(t) =
b

2
(q̈m(t) + q̈m(t− T )) +

Km

2
(ėm(t) + ėm(t− T ))− bq̈(t− T1) (3.25)

and due to the fact that all signals at the right-hand side of the above equation are bounded, we

obtain that τ̇m(t) is also bounded. Likewise, by taking the time derivative at both sides of (3.3),

we can easily verify that
...
qm is also bounded. Then, since

∫ t
0 q̈m(θ)dθ → −q̇m(0) < ∞ as t → ∞,
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we can apply Barbalat’s Lemma [129] and conclude that q̈m → 0. Finally, using (3.3) and the

convergence results for q̇m, q̈m, and τm, we obtain that rm → 0 ⇒ qm − qd → 0, which completes

the proof.

Remark 3.3.1. Note that the only requirement for stability in the controller design is knowledge

of a lower bound on ρ.

The above theorem is important in the sense that it establishes global asymptotic stability

and boundedness of the states for any time delay nonlinear system described by (3.1) as well as

convergence of the reference model to the desired state, i.e., qm(t) → qd. However, Theorem

3.3.1 does not guarantee full state tracking between reference model and nonlinear plant, that is,

q(t) → qm(t) remains in question. To demonstrate the ability of the proposed MRRC framework

to achieve full state tracking, let us consider (3.21). Under steady-state conditions, we have that

q̇m(t), em(t) converge to zero and qmd(t) → qm(t) → qd as t → ∞ (from Theorem 3.3.1). Therefore,

taking the limit of (3.21) as t→ ∞ yields

qm(t)− qmd(0) → q(t)− q(0). (3.26)

The above equation implies that q(t) → qm(t) → qd if qmd(0) = q(0). Thus, the proposed control

framework guarantees state convergence of the time delay nonlinear system to the desired state if

the initial conditions for the system are known.

In practice, the initial conditions of the time delay system are generally uncertain. Consequently,

the matching of the initial states between controller and plant might be unfeasible. Moreover, dif-

ferentiation techniques to compute the states q̇(t) (e.g., velocities) necessary for the scattering

transformation are typically subjected to numerical errors, whereas the transmission of state infor-

mation via the communication lines may as well suffer from losses – two conditions that may cause

state drifts between the reference model and the plant even when initial conditions are matched.

Motivated by these practical limitations, we propose a compensation technique that modifies the

scattering transformation output vm such that full state convergence can be explicitly enforced

independently of dissimilar initial conditions and transmission losses. The compensation tech-

nique preserves the passivity of the communication channel and, hence, stability of the system is

guaranteed.
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3.3.1 Full State Tracking Compensator

To preserve passivity of the transmission lines, we must first ensure that the new scattering trans-

formation output does not violate the passivity condition in (3.15). This means that the energy in

the transmission lines, given by

Ei(t) =

∫ t

0
(v2i (θ − T1)− v2mi

(θ))dθ, ∀ i ∈ {1, · · · , n} (3.27)

must never become negative, where vi is the ith scalar component of the output vector v and

vmi
is the ith element of vm. According to this requirement, we propose to modify the previous

transmission equation (3.12) for vmi
as

vmi
(t) =







sign{v̄mi
(t)}min{||v̄mi

(t)||, ||vi(t− T1)||} if Ei(t) ≤ σi

vi(t− T1) + φi(t) (qmi
(t)− qi(t− T1)) otherwise

(3.28)

φi(t) =
γi
(
1− e−δiEi(t)

)

αi (||q̇m(t)||+ ||q̇(t− T1)||) + 1
(3.29)

where σi, γi, δi, and αi are positive constants and

v̄mi
(t) =vi(t− T1) +

γi
(
1− e−δiσi

)

αi (||q̇m(t)||+ ||q̇(t− T1)||) + 1
(qmi

(t)− qi(t− T1)). (3.30)

We now prove, by the following theorem, that the utilization of the full state compensator,

governed by (3.28), (3.29), and (3.30), enforces full state convergence of the system state vector

q(t) to the desired trajectory qd.

Theorem 3.3.2. Consider the time delay nonlinear system (3.1) coupled to the reference model

(3.3) via the scattering transformation (3.5-3.11) and (3.13) and full state compensator (3.28).

Suppose that ∃t0 ≥ 0 such that Ei(t) > σi for all i ∈ {1, · · · , n} and t ≥ t0. Let b < ρ. Then, for

all initial conditions, we have the following results.

i. All signals qm(t), em(t), q̇m(t), q̇(t),wm(t), w(t),v(t), τ (t) and q̈ are bounded ∀t ≥ t0 and the

velocities q̇m(t), ėm(t), and q̇(t) converge to zero.

ii. If ∂M(q)/∂qi, ∂
2M(q)/∂qi∂qj are bounded ∀i, j and Km = b2I, where I is the n × n identity

matrix, then the error signals em(t), qm(t)−qd, and qm(t)−q(t) converge asymptotically to

zero.
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Proof. Assume that there exists a constant t0 ≥ 0 such that Ei(t) > σi ∀ i ∈ {1, · · · , n}, t ≥ t0

and consider once again the candidate Lyapunov function given in (3.16). Since Ei(t) > σi, V (t) is

positive definite for (qm(t)− qd, em(t), q̇m(t), q̇(t)) 6= 0. Taking the time derivative of (3.16) yields

(3.17), from which we obtain that qm, em, q̇m, q̇ ∈ L∞. Then, solving (3.10) via the transmission

equation (3.13), it is easy to show that

τ (t) =2τm(t− T2)−
√
2bvm(t− T2) (3.31)

=bq̇m(t− T2) +Kmem(t− T2). (3.32)

Therefore, τ is bounded and so are wm(t), w(t), and v(t). Now, invoking LaSalle’s Invariance

Principle for delay systems as in Theorem 3.3.1, we can conclude that solutions of the overall system

converge to the largest invariance set of points for which V̇ = 0 and, hence, (q̇m(t), ėm(t), q̇(t)) → 0

as t → ∞. Finally, from (3.23) we have that boundedness of q and τ implies boundedness of q̈.

This completes the proof for the first claim.

To prove the second statement, let Km = b2I. Taking the time derivative of (3.32) yields

τ̇ (t) =bq̈m(t− T2) + b2ėm(t− T2). (3.33)

Then, substituting (3.3) into (3.33) gives us that

τ̇ (t) =bAmq̇m(t− T2)− b2ėm(t− T2)− b3em(t− T2) + bKd(qd − qm(t− T2)) + b2ėm(t− T2)

=bAmq̇m(t− T2)− b3em(t− T2) + bKd(qd − qm(t− T2)) (3.34)

from which we conclude that τ̇ is also bounded. Now, let us take the time derivative of (3.23).

The assumptions that ∂M(q)/∂qi and ∂
2M(q)/∂qi∂qj are bounded imply that dM−1(q)/dqi and

dC(q, q̇)/dt are bounded, respectively [130]. Hence,
...
q ∈ L∞. Then, since

∫ t
0 q̈(θ)dθ → −q̇(0) <∞

as t → ∞, we can apply Barbalat’s Lemma and conclude that q̈ → 0. Therefore, τ → 0, which

implies that em(t) → 0 (from (3.33)) and v → 0 (from (3.11) and (3.10)). Similarly from (3.5), we

obtain that τm → 0.
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Now, by manipulating the equations of the scattering transformation, it is easy to obtain that

2bq̇md(t) = b (q̇m(t)− q̇m(t− T )) + 2bq̇(t− T1)

+ b2(em(t)− em(t− T ))−
√
2bΦ(t)(qm(t)− q(t− T1)) (3.35)

where Φ is a diagonal matrix with iith entries given by φi. Then, since
(
1− e−δiEi(t)

)
∈ (1 −

e−δiσi , 1), from (3.29) we have that Φ(t) is both lower and upper bounded by finite positive con-

stants. Therefore, (q̇md, q̇m, q̇, ėm) → 0 ⇒ qm(t)− q(t− T1) → 0 which for finite delay T1 implies

that qm(t)− q(t) → 0 as t→ ∞. This last result and the fact that qm(t)− q(t− T1) is uniformly

continuous further imply that qm(t)− q(t− T1) is bounded. Likewise, from (3.35) we obtain that

q̇md and ėm are also bounded. Then, by taking the time derivative of (3.34) we can show that

τ̈ (t) =bA2
mq̇m(t− T2) + b2(Am + bI)ėm(t− T2)− b3Amem(t− T2)

+ bAmKd(qd − qm(t− T2))−Kdq̇m(t− T2))

is bounded. Finally, using Barbalat’s Lemma and noting that
∫ t
0 τ̇ (θ)dθ → −τ (0) < ∞ we can

conclude that τ̇ (t) → 0, which further implies that q̈m(t) → 0 (from 3.33). Then, from the

definition of the reference model we obtain that rm(t) → 0 ⇒ qd − qm(t) → 0, and the proof is

complete.

Remark 3.3.2. Theorem 3.3.2 requires Ei(t) > σi ∀t ≥ t0 to guarantee state convergence between

reference model and plant. If this requirement is not satisfied, then we cannot claim convergence

of qm(t) − q(t) except that it is bounded. Nevertheless, we can make Ei(t) increase the sufficient

amount to perform complete compensation by avoiding the system from reaching steady-state before

the compensation task is consumed. Therefore, it is appealing to investigate properties on rm(t)

that will guarantee state convergence before all signals in the system reach a steady-state value.

3.4 Numerical Example: A 2-DOF Planar Manipulator

To illustrate the proposed controller let us consider the following nonlinear example.
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Figure 3.3: Planar manipulator.

3.4.1 System Dynamics and Control Objective

Consider the 2-DOF revolute-joint planar manipulator portrayed in Figure 3.3 with measurement

delay T1 = 1.0 s and input delay T2 = 0.5 s. The dynamics of the manipulator, neglecting constant

gravitational effects, is given by (3.1) with

M(q) =




m1 m2

m2 m3



 , C(q, q̇) =




hq̇2 h(q̇1 + q̇2)

−hq̇1 0



 ,
∂F(q̇)

∂q̇
=




ρq̇1 0

0 ρq̇2





where m1 = (52.72 + 5.85 cos(x2)) × 10−2 kg ·m2, m2 = (3.27 + 2.92 cos(x2)) × 10−2 kg ·m2,

m3 = (3.27) × 10−2 kg ·m2, h = (−2.92 sin(x2)) × 10−2 kg ·m2 [131], and ρ = 0.50 kg ·m2. The

reference model and the reference control law are designed according to (3.3) and (3.4) with

Am =




−10 0

0 −10



 , Kd =




4 0

0 4



 .

The control task is to drive the nonlinear manipulator from an unknown initial position q(0 s) =

[q1(0 s), q2(0 s)]T = [−1
2 ,−π

4 ]
T rad to the desired configuration qd = [qd1, qd2] = [π, π]T rad.
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Figure 3.4: Response of proximal and distal links with the proposed MRRC framework without
utilizing the full state compensator for T1 = 1.0 s and T2 = 0.5 s. The fine dotted line at π rad
denotes the desired state value.

3.4.2 Simulation Results

The first simulated experiment consisted of applying the proposed MRRC framework with no state

compensator. The design parameters for the scattering transformation were chosen as b = 0.30

and Km = b2I = 0.09I while initial state values for the controller were set to zero, i.e., qm(0 s) =

qmd(0 s) = 0 rad. The response of the system is depicted in Figure 3.4. As noted in the plots, the

state of the reference model converged to the desired configuration and the position error between

the reference model and the time delay system stabilized at a constant value. Yet, the error did

not converge to zero as both reference model and nonlinear system were not initialized at the same

configuration, i.e., qm(t)− q(t) → qm(0 s)− q(0 s) = [12 ,
π
4 ]

T rad.

We next simulated the response of the overall system employing the full state compensator.

The parameters for the scattering transformation and the initial states for the controller were

designed as in the previous example. The parameters for the state compensator were chosen as

γ = [2, 10]T , δ = [2, 10]T ,σ = [ 1
100 ,

1
10000 ]

T , and α = [6, 25]T . The position response for the

proximal (i = 1) and distal (i = 2) links are illustrated in Figure 3.5. As it is shown in both plots,

the time delay nonlinear plant was able to track the motion of the reference system and converged

to the desired configuration even when the initial conditions between controller and nonlinear plant

were different and the delays were relatively large.

Finally, Figure 3.6 illustrates how the available energy to perform the compensation technique

evolved over time. Note that after some interval of time, the system built enough energy to modify
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Figure 3.5: Response of proximal and distal links with the proposed MRRC framework using the
full state compensator for T1 = 1.0 s and T2 = 0.5 s.
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Figure 3.6: Available energy for compensation.

the scattering output such that position convergence, as stated by Theorem 3.3.2, was achieved.

3.5 Experimental Example: A Coaxial Helicopter

3.5.1 Testbed

Besides simulations, we tested the proposed controller on an unmanned vehicle. The vehicle,

illustrated in Figure 3.7(a), is an E-Flite µ-CX coaxial helicopter with 28 g of net weight, 19 cm of
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(a) E-Flite µ-CX helicopter. Copyright c© 2010
Boeing. All rights reserved.

y

x

z

θ
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ψ

(b) Cartesian coordinate system and rotational
angles.

Figure 3.7: Coaxial helicopter.

rotor diameter, and 20 cm of length. The simplified equations of motion for the µ-CX are given by

mq̈ =− f̃(q̇) + u (3.36)

where gravitational forces have been compensated by a constant control (i.e., constant trim control

values), m is the net weight of the helicopter, and u is the control input. The dissipation vector

function f̃ accounts for drag forces and damping effects on the rotors and servos, and is known to

satisfy the following inequality [132]

q̇T f̃(q̇), ≥ ρ ‖q̇‖2 for some ρ > 0. (3.37)

In addition, the µ-CX helicopter is considered to have four controllable variables

q = [x, y, z, ψ]T (3.38)

where (x, y, z) correspond to the position of the center of mass of the helicopter in Cartesian

coordinates and ψ is the rotational angle around the z axis, namely yaw. A pictorial representa-

tion describing the relation and orientation of the rotational angles with respect to the Cartesian

coordinates is given in Figure 3.7(b), where the roll (θ) and pitch (φ) angles are also illustrated.

Position and orientation recognition of the helicopter is owed to a Motion Capture (MoCap) sys-

tem comprised of multiple high speed infrared cameras strategically located around the navigation

room while state velocities were digitally computed. For more details on the experimental testbed,
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the reader must refer to [133,134] as well as Section 6.4.

3.5.2 Controller Design

We consider the coaxial helicopter mathematically described by (3.36) and coupled to the proposed

controller with delays T1 = 0.50 s and T2 = 0.03 s. The controller was designed according to Section

3.2 with the reference model given by

Am =











−15 0 0 0

0 −15 0 0

0 0 −15 0

0 0 0 −15











, Kd =











−15 0 0 0

0 −15 0 0

0 0 −15 0

0 0 0 −15











and with the parameters of the scattering transformation being empirically chosen as

b = 0.5, Km =











0.25 0 0 0

0 0.25 0 0

0 0 0.25 0

0 0 0 0.25











. (3.39)

Similarly, the state compensator was empirically designed with parameters γi = 2.0, δi = 1.0,

σi = 0.05, and αi = 0.001 ∀i. Finally, the selected control task was to drive the helicopter from an

unknown initial position and orientation to a desired configuration given by

qd(t) =







[1.0 m, 0.9 m, 0.9 m, 0 rad]T if t < 40 s

[0.0 m, 0.0 m, 0.4 m, π rad]T if t ≥ 40 s
(3.40)

3.5.3 Experimental Results

The response of the coaxial helicopter with the proposed controller is depicted in Figure 3.8,

where the controller and the nonlinear system have been initialized at different configurations (i.e.,

q(0 s) − qmd(0 s) = [0.2 m, 0.2 m, 0.2 m, 0 rad]T ). As illustrated in the plots, the helicopter

does not converge to the exact desired position but stays oscillating relatively close to the desired

trajectory. This oscillatory response might be attributed to different factors such as environmental
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Figure 3.8: Position and orientation response of the coaxial helicopter with proposed controller
for T1 = 0.50 s and T2 = 0.03 s. The fine dotted line denotes the desired trajectory.

disturbances (e.g., low weight of helicopter makes its motion vulnerable to any air flows), wave

reflections [46], inaccurate trim values, and ignored dynamics. Despite the oscillatory response, it

can be noticed that the error remains bounded and the vehicle tracks the desired trajectory. To

clearly illustrate the last statement, Figure 3.9 graphs the norm of the position and orientation

errors, where the error signals are shown to remain inside a small, bounded neighborhood around

zero near steady-state conditions.
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Figure 3.9: Norm of the position and orientation errors.

3.6 Comments

The proposed controller implicitly assumes that the delayed wave variable wm(t − T ) is known

or that, at least, it can be decoded from the output of the system. Specifically, we assumed that

wm(t− T ) is available when computing (3.11) and (3.12), i.e.,

vm(t) =v(t− T1) = wm(t− T )−
√
2bq̇(t− T1). (3.41)

In case that wm(t − T ) is unknown or unavailable, knowledge of the round-trip delay value is

required to reconstruct wm(t− T ).

It is worth mentioning that knowledge of the delay or wm(t − T ) is not required to design the

values of the parameters for the reference model, scattering transformation, and state compensator;

that is, Am, Kd, and b are all independent of T1 and T2.
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CHAPTER 4

FORMATION CONTROL OF MULTIPLE SYSTEMS WITH

INPUT AND STATE MEASUREMENT DELAYS

The scope of the passivity-based MRRC framework for nonlinear Lagrangian systems with input

and state measurement delays, introduced in Chapter 3, is now extended to enclose multi-vehicle

systems, such as the one illustrated in Figure 4.1. The results presented herein focus on motion co-

ordination, cooperative formation control, and stability of multiple heterogeneous nonlinear agents

coupled to a centralized controller via a communication network with constant delays.
C

o
m

m
u
n
ic

at
io

n
 

N
et

w
o
rk

 (
D

el
ay

s)

C
o
m

m
u
n
ic

at
io

n
 

N
et

w
o
rk

 (
D

el
ay

s)

Figure 4.1: Multi-vehicle system with control communication delays.

4.1 Multi-Agent System

In this chapter, we aim to control a group ofN n-DOF nonlinear Lagrangian system1 with equations

of motion given by

Mi(qi)q̈i + Ci(qi, q̇i)q̇i =ui −
∂Fi(q̇i)

∂q̇i
, for i = {1, · · · , N} (4.1)

1Gravitational forces have been either neglected or canceled through constant control.
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where dissipative forces are assumed to satisfy the following inequality

q̇T
i

∂Fi(q̇i)

∂q̇i
≥ ρi ‖q̇i‖2 , for ρi > 0. (4.2)

The positive inertia matrices Mi and centrifugal and Coriolis matrices Ci are assumed to satisfy

Properties 2.2.1 to 2.2.2 whereas the control input ui is a delayed state feedback function depending

on qi(t−T1i −T2i) and q̇i(t−T1i −T2i), where T1i ≥ 0 and T2i ≥ 0 correspond to the measurement

and plant-to-controller communication delay and the controller-to-plant communication delay, re-

spectively.

4.2 Control Framework

As part of the control objectives, we identify two main goals. First, the overall system must be

stable, meaning that all trajectories must remain bounded; and second, the agents must converge to

the desired state (e.g., position and orientation) within the formation whereas the formation’s center

of mass must converge to the desired trajectory. Mathematically, we would like qi(t) → qd + γi ∀i
and 1

N

∑N
i=1 qi(t) → qd as t→ ∞, where qd is the desired trajectory of the formation’s centroid and

γi is the desired relative distance and orientation of the ith agent from the center of the formation

satisfying, without loss of generality, the following conditions

γi 6= γj, ∀i 6= j and
N∑

i=1

γi = 0, ∀t ≥ 0. (4.3)

According to these objectives, we propose the use of a passivity-based control framework, com-

prising a reference model coupled to the time delay nonlinear systems via the implementation of

N scattering transformation blocks. A pictorial representation is given in Figure 4.2.

For simplicity, the reference model is a linear system with dynamics given by

q̈m(t) = Amq̇m(t) + um(t) + rm(t)

ym(t) = q̇m(t)
(4.4)

where qm(t), q̇m(t) ∈ ℜn are the state vectors, ym(t) ∈ ℜn is the output vector, um(t) ∈ ℜn is the

control input, and Am ∈ ℜn×n is a symmetric Hurwitz matrix. The reference signal rm(t) ∈ ℜn is
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Figure 4.2: Proposed multi-MRRC framework. ST stands for scattering transformation.

governed by

rm(t) = Kd(qd − qm(t)) (4.5)

where Kd ∈ ℜn×n is a positive-definite constant matrix.

The scattering transformation blocks are employed to stabilize the coupling between the reference

model and the nonlinear agents. The scattering transformation equations are given as

τmi
(t) =biėmi

(t) +Kmi
emi

(t) (4.6)

wmi
(t) =

√
2

bi
τmi

(t)− vmi
(t) (4.7)

q̇mdi(t) =
1

bi

(

τmi
(t)−

√

2bivmi
(t)
)

(4.8)

qmdi(t) =

∫ t

0
q̇mdi(θ)dθ (4.9)

emi
(t) =qm(t)− qmdi(t) (4.10)

τ i(t) =
√

2biwi(t) (4.11)

vi(t) =wi(t)−
√

2biq̇i(t) (4.12)

where bi, namely the wave impedances, are positive constants,2 Kmi
are symmetric positive definite

2The same results hold if bi are positive definite matrices.
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matrices, and

vmi
(t) = vi(t− T1i) (4.13)

wi(t) = wmi
(t− T2i) (4.14)

are known as the transmission equations. The control inputs to the reference model and the

nonlinear plants are then given as um(t) = −τm(t) and ui(t) = τ i(t), respectively, where

τm(t) =

N∑

i=1

τmi
(t). (4.15)

Remark 4.2.1. The above controller represents a cooperative control algorithm since, although the

agents do not directly share state information among each other, the state of the ith agent affects

the behavior of the reference model which, in turn, directly affects the state and command of all

other agents.

4.3 Stability and Formation Control

We now proceed to claim the attainment of the control objectives by the proposed controller. The

following theorem will be used to establish stability of the overall system whereas the later corollary

will guarantee state convergence and formation control.

Theorem 4.3.1. Consider the group of time delay nonlinear systems (4.1) coupled to the reference

model (4.4) via the scattering transformation blocks (4.6-4.14) and let bi < ρi for i = {1, · · · , N}.
Then, ∀i and for all initial conditions we have the following results.

i. All signals qm(t),qi(t), emi
(t), q̇m(t), q̇i(t), ėmi

(t), q̈m(t), and q̈i(t) are bounded ∀t ≥ 0 and the

velocities q̇m(t), ėmi
(t), and q̇i(t) converge to zero.

ii. The error signals emi
(t) and qm(t)− qd converge asymptotically to zero.

Proof. The proof follows similar to that of Theorem 3.3.1. Consider the group of agents described

by (4.1) and coupled via the scattering transformation equations (4.6) to (4.14). Let the following

Lyapunov candidate function be given by
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V (t) =V (qm(t), q̇m(t), em1(t), · · · , emN
(t), q̇i(t), · · · , q̇N (t))

=
1

2

N∑

i=1

q̇T
i Mi(qi)q̇i +

1

2
(qd − qm)TKd(qd − qm) +

1

2
q̇T
mq̇m

+
1

2

N∑

i=1

eTmi
Kmi

emi
+

N∑

i=1

∫ t

0
(q̇T

mdiτmi
− q̇T

i (τ i − biq̇i))dθ. (4.16)

Then, taking the time derivative of (4.16) yields

V̇ ≤
N∑

i=1

(
−ρiq̇T

i q̇i + q̇T
i τ i

)
− q̇T

mKd(qd − qm) + q̇T
m(Amq̇m − τm +Kd(qd − qm))

+

N∑

i=1

ėTmi
Kmi

emi
+

N∑

i=1

(
q̇T
mdiτmi

− q̇T
i τ i + biq̇

T
i q̇i

)

=−
N∑

i=1

(ρi − bi)q̇
T
i q̇i + q̇T

mAmq̇m − q̇T
m

N∑

i=1

τmi
+

N∑

i=1

ėTmi
Kmi

emi
+

N∑

i=1

q̇T
mdiτmi

=−
N∑

i=1

(ρi − bi)q̇
T
i q̇i + q̇T

mAmq̇m +
N∑

i=1

ėTmi
Kmi

emi
−

N∑

i=1

q̇T
m (biėmi

+Kmi
emi

)

+

N∑

i=1

q̇T
mdi (biėmi

+Kmi
emi

)

≤−
N∑

i=1

(ρi − bi)q̇
T
i q̇i − µq̇T

mq̇m −
N∑

i=1

biė
T
mi

ėmi

where µ > 0 is the smallest eigenvalues of −Am. Since bi < ρi ∀ i we have that

V̇ ≤ −µ ‖q̇m‖2 −
N∑

i=1

(ρi − bi) ‖q̇i‖2 −
N∑

i=1

bi ‖ėmi
‖2 ≤ 0 (4.17)

and, therefore, the overall multi-agent system is stable in the sense of Lyapunov. Moreover, we can

invoke LaSalle’s Invariance Principle for delay systems and conclude that q̇m, q̇i, ėmi
, and hence

q̇mdi , converge to zero for all i.

Now, in order to demonstrate boundedness of all signals, let us consider once again the (4.17)

inequality. Integrating at both sides of (4.17) we obtain that V (t) ≤ V (0) <∞, which implies that

qm,qmdi , emi
, q̇m, q̇i are all bounded. Similarly, from the scattering transformation equations (4.6)
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to (4.12) and the transmission equation (4.14) we can easily verify that

τ i(t) = biq̇m(t− T2i) +Kmi
emi

(t− T2i) (4.18)

is also bounded ∀ i. Then, substituting (4.18) and (4.13) into (4.8) yields

2biq̇mdi(t) =biq̇m(t) +Kmi
emi

(t) + 2q̇i(t− T1i)− biq̇m(t− Ti)−Kmi
emi

(t− Ti) (4.19)

where Ti = T1i + T2i , and, therefore, q̇mdi and ėmi
are bounded. Similarly, rewriting (4.6) gives us

that

τmi
(t) =

bi
2
(q̇m(t) + q̇m(t− Ti)) +

Kmi

2
(emi

(t) + emi
(t− Ti))− biq̇i(t− T1i) (4.20)

Boundedness of emi
(t), q̇m, and q̇i then implies that τmi

∈ L∞ and from the definition of the

reference model (4.4) and (4.15) we obtain that q̈m is also bounded. Furthermore, integrating

(4.19) with respect to time yields

∫ t

0
q̇mdi(θ)dθ =

∫ t

0
q̇i(θ)dθ +

1

2

∫ t

t−Ti

q̇m(θ)dθ +
Kmi

2bi

∫ t

t−Ti

emi
(θ)dθ (4.21)

and re-arranging the above equation we obtain that

q(t)i =qi(0) + qmdi(t)− qmdi(0) + qmi
(t)− qmi

(t− Ti) +
Kmi

2bi

∫ t

t−Ti

emi
(θ)dθ. (4.22)

Since all terms in (4.22) are bounded, we can conclude that qi ∈ L∞.

Finally, let us solve (4.1) for q̈i as

q̈i =M−1
i (q)

(

τ i −
∂Fi(q̇i)

∂q̇i
− Ci(qi, q̇i)q̇i

)

. (4.23)

where M−1
i exist and are bounded ∀i due to Property 2.2.2. Similarly, from boundedness of q̇i we

have that Ci (from Property 2.2.3) and ∂Fi(q̇i)
∂q̇i

are bounded, which in addition to boundedness of

τ i, lead us to the conclusion that q̈i ∈ L∞.
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Now, let us prove the second statement in the theorem. Consider equation (4.20) rearranged as

τmi
(t) =

bi
2
(q̇m(t) + q̇m(t− T )) +

Kmi

2

∫ t

t−Ti

ėmi
(θ)dθ − biq̇i(t− T1i). (4.24)

Due to the fact that all signals at the right-hand side of (4.24) go to zero, we have that τmi
→ 0,

which similarly implies that emi
→ 0. Then, computing the time derivative of (4.20) yields that

τ̇mi
(t) =

bi
2
(q̈m(t) + q̈m(t− Ti)) +

Kmi

2
(ėmi

(t) + ėmi
(t− Ti))− biq̈(t− T1i). (4.25)

Noticing that all signals at the right-hand side of (4.25) are bounded, we obtain that τ̇mi
(t) are also

bounded. Likewise, by taking the time derivative at both sides of (4.4), we can easily verify that
...
qm is also bounded. Then, since

∫ t
0 q̈m(θ)dθ → −q̇m(0) < ∞ as t → ∞, we can apply Barbalat’s

Lemma and conclude that q̈m → 0. Finally, using (4.4) and the convergence results for q̇m, q̈m,

and τm, we obtain that rm → 0 ⇒ qm − qd → 0, which completes the proof.

Corollary 4.3.1. If qmdi(0) = qi(0) − γi ∀i, then qi(t) → qd + γi and 1
N

∑N
i=1 qi(t) → qd as

t→ ∞.

Proof. Consider equation (4.21). From Theorem 4.3.1 we have that q̇m(t) and emi
(t) vanish as

t→ ∞. Hence, (4.21) reduces to

qmdi(t)− qmdi(0) → qi(t)− qi(0). (4.26)

Now, from Theorem 4.3.1 we also have that qmdi(t) → qm(t) → qd, which yields that qi(t) →
qd − qmdi(0) + qi(0). Therefore, if qmdi(0) = qi(0) − γi ∀i, we obtain that

qi(t) → qd + γi. (4.27)

Similarly, from (4.27) we have that

N∑

i=1

qi(t) →
N∑

i=1

qd +
N∑

i=1

γi =
N∑

i=1

qd. (4.28)

which reduces to 1
N

∑N
i=1 qi(t) → qd.
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4.4 Illustrative Example

To illustrate the utility of the proposed MRRC framework for multi-vehicle systems, let us consider

the following example.

4.4.1 System Dynamics and Control Design

We consider a group of four omnidirectional vehicles with nonlinear Lagrangian dynamics given

by [135]











mpi +
3Ir
2r2i

0 0

0 mpi +
3Ir
2r2i

0

0 0 Ip +
3IrL

2
i

r2i


















ẍi

ÿi

φ̈i







+










0 −3Ir
2r2i

φ̇i 0

3Ir
2r2i

φ̇i 0 0

0 0 0

















ẋi

ẏi

φ̇i







=

−








mpigµ1 0 0

0 mpigµ1 0

0 0 mpigµ2















ẋi

ẏi

φ̇i







+








− sin(θ + φi) − sin(θ − φi) cosφi

cos(θ + φi) − cos(θ − φi) sinφi

Li Li Li







ûi (4.29)

where effects of friction have been considered [136]. An illustration of the ith vehicle is given in

Figure 4.3. The state vectors qi = [xi, yi, φi]
T are comprised of the Cartesian coordinates of the

center of mass (xi, yi) and the heading angle (φi) of the vehicles ∀i, whereas the control inputs are
computed as

ûi(t) =B(φi(t− Ti))
−1ui(t)

=








− sin(θ + φi(t− Ti)) − sin(θ − φi(t− Ti)) cosφi(t− Ti)

cos(θ + φi(t− Ti)) − cos(θ − φi(t− Ti)) sinφi(t− Ti)

Li Li Li








−1

ui(t). (4.30)

It is assumed that φi(t) is a slow time-varying state, such that ûi(t) = B(φi(t))B(φi(t−Ti))−1ui(t) ≈
ui(t).

The system parameters are Ir = 0.52 kg ·m2, Ip = 0.17 kg · m2, g = 9.81 kg ·m/s2, µ1 = 0.25,

µ2 = 0.1, and θ = 0 rad for all vehicles; mpi = 9.58 kg, ri = 0.079 m, and Li = 0.205 m for the

first and second vehicles; and mpi = 11.58 kg, ri = 0.089 m, and Li = 0.305 m for the third and

fourth vehicles.
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Figure 4.3: Omnidirectional vehicle.

The reference model was design according to (4.4) and (4.5) with

Am =








−10 0 0

0 −10 0

0 0 −10







, Kd =








20 0 0

0 20 0

0 0 2







.

while the scattering transformation parameters were similarly chosen as

bi =








5 0 0

0 5 0

0 0 1







, bj =








4 0 0

0 4 0

0 0 4
5







, Kmi

=








250 0 0

0 250 0

0 0 1







, Kmj

=








150 0 0

0 150 0

0 0 1








for i ∈ {1, 2} and j ∈ {3, 4}. The coupling delays were assigned different for each vehicle and were

given as T11 = 0.6 s, T21 = 0.4 s, T12 = 0.8 s, T22 = 0.4 s, T13 = 0.5 s, T23 = 0.5 s, T14 = 0.5 s, and

T24 = 0.7 s.

4.4.2 Simulation Results

The first simulated experiment consisted of commanding the state agents to converge to a static

formation centered at qd = [5.0 m, 5.0 m, 0.0 rad]T . The desired formation was a trapezoid with ver-

tices γ1 = [−0.5 m, 1.5 m, 0.0 rad]T , γ2 = [0.5 m, 0.65 m, 0.0 rad]T , γ3 = [0.5 m,−0.65 m, 0.0 rad]T ,

and γ4 = [−0.5 m,−1.5 m, 0.0 rad]T . The response of the overall system in the xy Cartesian plane
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Figure 4.4: Cartesian position (x, y) of the four vehicles. The heading of each vehicle is denoted
by the triangle pointing direction. Each position mark is distanced by intervals of 0.5 s.
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Figure 4.5: Norm of the position error.

is illustrated in Figure 4.4, where the four triangles indicate the position and orientation of the

vehicles. As can be noticed from the plot, the four vehicles started from a configuration (i.e., po-

sition and orientation) different from the desired formation. Yet, the vehicles are able to converge

to desired formation delineated by the trapezoid in gray color.

Figures 4.5 and 4.6 show the norm of the position error (‖(xd + γi1 , yd + γi2)− (xi, yi)‖) and the

heading error (‖φd + γi3 − φi‖), respectively, for the four vehicles. Both figures confirm convergence

of the error signals to zero.

In the second simulated experiment, the same trapezoid formation was enforced, but the center of

the formation was time-varying and given by qd(t) = [ t
20 m/s, 5.0 m, 0.0 rad]T . Figure 4.7 illustrates

the trajectory of the four vehicles, which were initialized at the same position and orientation as

the previous simulated experiment. Note that the four vehicles converged to the desired trapezoid
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Figure 4.6: Norm of the heading angle error.
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Figure 4.7: Cartesian position (x, y) of the four vehicles for a time-varying formation. The
heading of each vehicle is denoted by the triangle pointing direction. Each position mark is
distanced by intervals of 0.5 s.

formation and were able to follow in unison the desired trajectory even though it was time-varying.

Figures 4.8 and 4.9 confirm the fact the agents satisfactory followed the desired trajectory. The

nonzero constant error in Figure 4.9 for all vehicles is due to the fact the desired trajectory does

not converge to a static configuration but diverges at a constant rate.
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Figure 4.8: Norm of the position error for a time-varying formation.
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Figure 4.9: Norm of the heading angle error for a time-varying formation.
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CHAPTER 5

BILATERAL TELEOPERATION: STABILITY AND

TRANSPARENCY

In continuation of the previous chapters, where stability and coordination of nonlinear systems with

interconnection delays was addressed, we now center our attention on the special problem of time

delay bilateral teleoperation. In principle, a teleoperation system is a dual (or multi) robotic set that

enables a human operator to manipulate, sense, and physically interact with a distant environment.

In such systems, the desired manipulation or task is performed remotely by a slave robot which

tracks the motion of a locally human-controlled master robot. The master and slave robot are

coupled through a communication channel that, ideally, should be transparent to the operator,

meaning that he or she should feel as if being directly active in the remote location [76]. This is

generally achieved by transmitting remote slave information (e.g., position, velocity, and force) to

the master robot in what is called a bilateral connection. Unfortunately, bilateral configurations

can potentially yield a teleoperation system unstable due to delays [137] and data losses [138]

experienced in the communication network.

5.1 Time-Delay Bilateral Teleoperation

A bilateral teleoperator is a NCS with a human-in-the-loop. Therefore, network-induced delays

associated with NCSs are also of concern in a bilateral teleoperator (see Figure 5.1). However,

in a teleoperation system, time delays in the master’s and slave’s local control loop are typically

less significant than interconnection delays between the local and remote site (i.e., Tji << Ti, for

i ∈ {m, s}, j ∈ {1, 2}). Therefore, it is standard to ignore local delays (i.e., assume T1 = T2 = 0)

and consider only the presence of interconnection delays between master and slave. From now on,

we will follow this convention when addressing bilateral teleoperators.
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Figure 5.1: Scheme of a bilateral teleoperation system with local delays T1i and T2i , and
interconnection delays Tm and Ts.

5.2 Stability and Transparency

The destabilizing effects of time delays and delayed force feedback in teleoperation systems were

first reported by Ferrell [137,139] in 1965 and 1966. Thereafter, most research efforts were directed

toward the design of control schemes that aimed for a stable and reliable performance of time

delayed teleoperators. One breakthrough in this topic came in 1988 when passivity-based control

and scattering theory, derived from network theory, were combined to guarantee the stability of force

feedback teleoperators independently of any sized constant delay [140]. Ever since, the scattering

and passivity formulation (reformulated later with the notion of wave variables [46]) has arguably

become one of the fundamental control approaches for stabilizing bilateral teleoperators. Other

parallel research approaches for stability not based on passivity include H∞-optimization [141],

sliding mode control [142], and compliant control [143] (refer to [25] for a review on bilateral

control frameworks).

Aside from stability issues, time delays are also known to affect transparency. According to [76],

transparency is achieved when the transmitted impedance to the operator equals the environmental

impedance. An alternative interpretation is given in [144], where a system is said to be transparent

if the position of the slave equals the master’s position and the human force is equal to the net

environmental force. Based on either formulation, considerable research efforts have been aimed

to conciliate transparency-based objectives while still enforcing time delay independent stability

(see [76,77,144–148] for examples and further discussion).

5.2.1 Stable Transparency Compensation

Despite the fact that most force-feedback frameworks for bilateral teleoperation are designed to

achieve both stability and transparency, their results generally depend on the dynamics of the

environment which more than often is unknown or, at least, variable. Precisely, one of the still

prevalent issues in bilateral frameworks is the failure to adjust transparency when transitioning
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from an unobstructed (free movement) to an obstructed (rigid contact) environment, and vice versa.

For instance, in wave-based approaches, transparency highly depends on the wave impedance: a

control parameter specified by the designer [149]. For free motion, the ideal wave impedance should

be infinitesimal such that the increase of inertia induced by the delay is barely perceived by the

operator; whereas for rigid environments, the desired wave impedance should be infinitely large such

that a stiff environment is felt by the operator [150]. Compromising the value of the wave impedance

to best satisfy both scenarios would lead to a system that feels rather sluggish in free motion

with substantial position errors (also referenced as position drifts [151]) when interacting with

rigid environments. A similar behavior is also experienced when tuning traditional proportional-

derivative (PD) architectures where, in general, control gains are limited by stability constrains

and, consequently, position errors arise while in contact motion [147,151,152].

Stable time-varying compensation of position errors during contact tasks has been previously

addressed in [153] via a wave-based scheme that introduces the notion of a variable rest length.

The role of the variable rest length is to modify the desired target position according to the position

drift and applied forces such that the error between the master and slave position converges to zero.

A similar approach based on the variable rest length is presented in [154], where an energy tank

replaces the dissipative element in the wave scattering transformation for impedance matching

such that the energy is stored rather than dissipated. The stored energy is then used to adequately

change the variable rest length without relying on the operator’s energy as in [153]. In both of

the above methods, the communication delay must be known in order to perform the position

compensation.

In this chapter, we present a novel control strategy for position compensation during contact

tasks where the wave impedance independent passivity property in the scattering transformation

is exploited. The proposed control framework builds on the wave-based approach reported in [155]

and introduces a time-varying wave impedance for transparency compensation when transitioning

between unobstructed and obstructed environments. A similar strategy has been previously pre-

sented in [156], where the wave impedance alternates between two discrete values according to the

current task, given that the mechanical and control systems dissipate enough energy to perform

the transition and preserve passivity. In contrast, the control framework proposed herein gradually

changes the wave impedance, allowing for passive (i.e., stable) and smooth switches between ar-

bitrary small impedances (suitable for free environments) and sufficiently large impedances (ideal
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for rigid contact).

5.3 Modeling the Teleoperator

We address the task of remotely controlling an n-DOF slave robot coupled bilaterally to an n-DOF

master robot through a time delayed communication channel. The master and slave teleoperator

have nonlinear Euler-Lagrangian dynamics given by

Mm(qm)q̈m + Cm(qm, q̇m)q̇m + gm(qm) =fm + τ̄m

Ms(qs)q̈s + Cs(qs, q̇s)q̇s + gs(qs) =fs + τ̄ s (5.1)

where qi ∈ ℜn are the generalized coordinates,Mi ∈ ℜn×n are the positive definite inertia matrices,

Ci ∈ ℜn×n are the centrifugal and Coriolis matrices, gi are the gravitational forces, fi ∈ ℜn are

the human and environmental forces, and τ̄ i ∈ ℜn are the control inputs for the master (i = m)

and slave robots (i = s). We assume that both systems satisfy Properties 2.2.1 to 2.2.3 and ignore

previous restrictions regarding dissipative forces.

5.4 Towards Transparency Compensation

5.4.1 Control Objectives

The control goal is to design the inputs τ̄ i such that stability and transparency of the close-loop

system in (5.1) are achieved. Explicitly, we would like τ̄ i to enforce position coordination for finite

delays, i.e.,

qm(t)− qs(t) → 0 (5.2)

and static force reflection, i.e.,

fm(t) → −fs(t) (5.3)

as q̇i → 0, independently of the structure of the remote environment. Furthermore, we would like

the operator to perceive low and high impedances when interacting with free and rigid environ-
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ments, respectively.

Remark 5.4.1. In the following analysis we make the assumption that delays on the transmission

lines from master to slave, Tm, and from slave to master, Ts, are constant but not necessarily equal.

Furthermore, we assume that the slave robot is equipped with force/torque sensors1 and that it is

able to communicate contact information to the master robot.

5.4.2 Control Framework

In order to passivize and hence stabilize the teleoperator, we propose the design of the control

inputs as

τ̄ i =−Mi(qi)Λq̇i − Ci(qi, q̇i)Λqi + gi(qi) + τ i (5.4)

where Λ ∈ ℜn×n is, without loss of generality, a diagonal positive definite constant matrix and

τ i = τ i(t) ∈ ℜn are the coordination control inputs to be designed. Then, the dynamic equations

of the system in (5.1) reduce to

Mm(qm)ṙm + Cm(qm, q̇m)rm = fm + τm

Ms(qs)ṙs + Cs(qs, q̇s)rs = fs + τ s

(5.5)

where

ri(t) = q̇i(t) + Λqi(t). (5.6)

The control law in (5.4) is a passivity-based control method [130], which means that the master

and slave teleoperators, with reduced dynamics (5.5), are passive with respect to the input fi + τ i

and output ri. Mathematically,

∫ t

0
(fi + τ i)

T ridθ = rTi (θ)Mi(qi(θ))ri(θ)
∣
∣
θ=t

θ=0
≥ −rTi (0)Mi(qi(0))ri(0).

Remark 5.4.2. Note that the control law in (5.4) assumes complete knowledge of the dynamics

of the master and slave robot. In [130, 155], a passivity-based adaptive law is suggested for the

case where the parameters are unknown. Such an approach can be easily extended to our proposed

1This assumption can be replaced with any other contact/proximity sensor.
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control framework without altering the passivity and position convergence results presented in this

dissertation.

Now, we are left to design the control inputs τ i such that the communication channel is passivized

independently of the delay and that position and force tracking of the teleoperators are guaranteed.

With this in mind, we propose the use of the scattering transformation and wave variables2 ui and

vi. For the master side, the outputs of the scattering transformation are computed as

um(t) =(2bm(t))−
1
2 (bm(t)rmd(t)− τm(t)) (5.7)

rmd(t) =(2b−1
m (t))

1
2vm(t)− b−1

m (t)τm(t) (5.8)

where bm(t) ∈ ℜn×n, the wave impedance, is a time-varying, positive definite matrix that will

be designed under transparency concerns; and vm(t) = vs(t − Ts) is the upcoming, delayed wave

variable from the slave’s scattering transformation. Then, the coordination control input can be

given as

τm(t) =bm(t)(rmd(t)− rm(t)). (5.9)

Likewise, for the slave side, the outputs of the scattering transformation are computed as

vs(t) =(2bs(t))
− 1

2 (bs(t)rsd(t)− τ s(t)) (5.10)

rsd(t) =(2b−1
s (t))

1
2us(t)− b−1

s (t)τ s(t) (5.11)

where bs(t) = bm(t− Tm) and us(t) = um(t− Tm). Similar to the master case,

τ s(t) =bs(t)(rsd(t)− rs(t)). (5.12)

We now show that passivity of the communication channel is achieved independently of delays

and variance of the wave impedance. Manipulating (5.7) to (5.11), we obtain that

τ T
mrmd + τ T

s rsd =− 2b−1
m bm

um − vm

2

um + vm

2
− 2b−1

s bs
vs − us

2

vs + us

2

=− 1

2

(
u2
m − v2

m + v2
s − u2

s

)

2In contrast to the two previous chapters, where a modified wave scattering transformation was employed, here
we opt to use the traditional notation for the wave scattering variables, i.e., the pairs u and v.
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and integrating with respect to time,

−
∫ t

0
(τ T

mrmd + τ T
s rsd)dθ =

1

2

∫ t

t−Tm

u2
mdθ +

1

2

∫ t

t−Ts

v2
sdθ ≥ 0 (5.13)

where the negative sign in front of the integral is owed to the power inflow. The lower bound in

(5.13) implies that the energy is temporarily stored in the transmission lines and, therefore, the

communication channel is passive independently of delays. In addition, the reader can easily verify

that using the scattering transformation and the coordination control inputs (5.9) and (5.12), (5.8)

and (5.11) reduce to

rmd(t) =
1

2
(Γ(t)rs(t− Ts)− rm(t)) (5.14)

rsd(t) =
1

2
(rm(t− Tm)− rs(t)) (5.15)

where Γ(t) = bm(t − Tm − Ts)
1
2 bm(t)−

1
2 . As we will show in Section 5.4.4, the above proposed

control law guarantees position convergence and force reflection of the teleoperators in the sense of

(5.2) and (5.3).

Remark 5.4.3. The control law in (5.4), (5.9), and (5.12), in conjunction with the wave scattering

formalism, resembles the control framework proposed in [155]. The difference lies on the use of a

wave impedance that is time-varying rather than constant. This property, as will be shown in

Section 5.4.4, will allow the proposed control framework to compensate for position errors during

contact tasks.

Up to now, we have designed the control inputs τ̄ i based on passivity and position coordination.

We are yet to tune the control law such that transparency is achieved for both free and restricted

environments. This task is left for the next subsection.

5.4.3 Tuning the Wave Impedance

Transparency in wave-based control frameworks, as previously discussed in Section 5.2.1, highly

depends on the wave impedance, bi. Ideally, we would like the wave impedance to alternate from

a small value, bfree, when the slave is free to move, to a large value, bcont, as soon as the slave

robot makes contact with a rigid surface. For sake of simplicity, we will assume that bi(t) > 0 are

diagonal matrices.

55



We propose the update law for the diagonal jjth entry of the wave impedance matrix to be given

as

ḃjjm(t) =







min{βj
(t), Λ̂jjbm(t)}, if

∥
∥
∥f

j
s (t− Ts)

∥
∥
∥ > 0

−βj(t), otherwise

bjjs (t) =bjjm(t− Tm) (5.16)

where f js is the jth component of fs, Λ̂ < Λ is a n×n diagonal positive definite matrix with entries

Λ̂jj, and β
j
and βj are nonnegative scalar functions that drive bjjm to bjjcont and b

jj
free, respectively.

5.4.4 Stability and Transparency Analysis

As aforementioned, the two foremost goals in bilateral teleoperation are stability and transparency.

In this section we demonstrate that the proposed control framework achieves both objectives. We

first evaluate the standard case where the human operator and remote environment are modeled as

passive systems. Then, we prove our original claims as we relax this assumption on the operator.

Theorem 5.4.1. Consider the teleoperation system in (5.1) with control law (5.4), (5.9), and

(5.12). Suppose that the human operator and remote environment are passive with respect to (5.6),

i.e., ∃ κi ∈ ℜ such that

−
∫ t

0
fTi ridθ ≥ −κ2i , for i ∈ {m, s}. (5.17)

Then, for all arbitrary initial conditions, the closed-loop teleoperation system is stable, all signals

are bounded, and the system achieves position coordination and static force reflection in the sense

of (5.2) and (5.3).3

Proof. Define the slave’s coordination error as

es(t) = qs(t)− qm(t− Tm) (5.18)

3This is a modified version of Theorem 4.1 in [155]. Here we show that fm → −fe as (q̈i, q̇i) → 0 and prove
stability and position convergence for non-constant wave impedances.
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and consider the following Lyapunov candidate function

V =
1

2
(rTmMmrm + rTsMsrs) +

1

4
eTs Λbses + κ2m + κ2s

−
∫ t

0
(fTmrm + fTs rs)dθ −

∫ t

0
(τ T

mrmd + τ T
s rsd)dθ. (5.19)

Taking the derivative of V with respect to time and applying the skew symmetric Property 2.2.1,

we have

V̇ = τT
mrm + τT

s rs +
1

2
ėTs Λbses +

1

4
eTs Λḃses − τ T

mrmd − τT
s rsd

≤ 1

2
ėTs Λbses +

1

4
eTs Λḃses − (rsd − rs)

T bs(rsd − rs)− (rmd − rm)T bm(rmd − rm).

Now, using (5.15) and the fact that ḃs(t) ≤ Λ̂bs(t) ∀t ≥ 0 and rs(t)− rm(t− Tm) = ės + Λes we

obtain

V̇ ≤− (rmd − rm)T bm(rmd − rm)− 1

4
ėTs bsės −

1

4
eTs ΛΛ̃bses (5.20)

where Λ̃ = Λ − Λ̂ > 0. Since V̇ is negative semi-definite, we conclude that the teleoperation

system is closed-loop stable in the sense of Lyapunov. Furthermore, we can also show that (5.19)

is bounded and so ri are also bounded. Using the Comparison Lemma [129], we can conclude that

q̇i,qi ∈ L∞, and, therefore, the coordination error qm−qs and its velocity are also bounded. Thus

we are left to prove (5.2) and (5.3).

Invoking LaSalle’s Invariance Principle [129], we have that V̇ = 0 ⇒ (ės, es) → 0. Therefore,

τ s → 0 and the slave’s dynamics reduces to Msṙs+Csrs = fs. Consider now the following positive

definite function

Vs = rTsMsrs −
∫ t

0
fTs rsdθ. (5.21)

Then, we can show by taking its time-derivative that V̇s(t) = 0. Thus, Vs(t) = Vs(0) ∀t ≥ 0 which

implies that

Vs =rTsMsrs −
∫ t

0
(ṙTs Msrs + rTs Csrs)dθ

=

∫ t

0
(2rTs Csrs + ṙTsMsrs)dθ −

∫ t

0
rTs Csrsdθ =

∫ t

0
fTs rsdθ = Vs(0).
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By boundedness of the inertia matrix [130], we can show that rTsMsrs = 2Vs(0) ⇒ (q̇s,qs) →
(0, q̄s), where q̄s is a constant vector. Then, using the fact that es → 0 we have

qs(t)− qm(t− Tm) = qs(t− Tm)− qm(t− Tm) +

∫ t

(t−Tm)
q̇sdθ → 0

which for finite Tm, gives qs(t)− qm(t) → 0 and position convergence is established.

Now, consider the system under steady-state conditions, i.e., (q̈i, q̇i) = 0 and bs = bm. Then,

(5.5) simplifies to

2fm = −bmΛ (qs − qm) , 2fs = −bsΛ (qm − qs)

and it is easy to see that fm(t) = −fs(t), which completes the proof.

We just showed that, when the human operator and remote environment are modeled as passive

systems, position and force tracking are enforced. We now relax this passivity assumption on the

human operator and suppose that the environment is output strictly passive. This emulates the

scenario in which the slave interacts with a rigid environment. We will show that the position error

is bounded and that indeed, qm − qs → 0 as ‖bi‖ → ∞ even for contact tasks.

Theorem 5.4.2. Consider the teleoperation system in (5.1) with control law (5.4), (5.9), and

(5.12). Suppose that (1) the remote environment is output strictly passive, i.e., ∃ κs, ρs ∈ ℜ, ρs 6= 0

such that

−
∫ t

0
fTs rsdθ ≥ −κ2s + ρ2s

∫ t

0
rTs rsdθ (5.22)

and (2) the human force is bounded, i.e., ‖fm‖ < η for some η ∈ (0,∞). Then, for all arbitrary

initial conditions, the closed-loop teleoperation system is stable, static force reflection is achieved,

and the slave’s coordination error is uniformly ultimately bounded with ultimate bound inversely

proportional to the wave impedance.

The proof for static force reflection follows similar to Theorem 5.4.1; therefore, it will be omitted.

We now proceed to demonstrate closed-loop stability and boundedness of the coordination error.
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Proof. Consider the following Lyapunov candidate function

Ṽ =
1

2
(rTmMmrm + rTsMsrs)+

1

4
eTs Λbses −

∫ t

0
fTs rsdθ

+ κ2s − ρ2s

∫ t−Ts

0
rTs rsdθ −

∫ t

0
(τ T

mrmd + τ T
s rsd)dθ.

Taking its derivative with respect to time and using (5.14), (5.15), and the fact that ḃs(t) ≤
Λ̂bs(t) ∀t ≥ 0 and rs(t)− rm(t− Tm) = ės + Λes, we obtain

˙̃V ≤ −1

4
ėTs bsės −

1

4
eTs ΛΛ̃bs(t)es − ρ2s ‖rs(t− Ts)‖2

− 1

4
(rm − Γrs(t− Ts))

T bm(rm − Γrs(t− Ts)) + fTmrm.

Now, let us define er(t) = rm(t)−Γ(t)rs(t−Ts). Notice that fTmrm = fTmer+ fTmΓrs(t−T ), where
we can upper bound fTmΓrs(t− T ) by 1

4ρ2 ‖Γfm‖2 + ρ2 ‖rs(t− Ts)‖2. Then,

˙̃V ≤ fTmer −
1

4
eTr bmer +

1

4ρ2
‖Γfm‖2 − 1

4
ėTs bsės −

1

4
eTs ΛΛ̃bses.

If we now denote σ(A) as the minimum eigenvalue of the matrix A, let ǫ ∈ (0, 1) be a constant,

and recall that ‖fm‖ ≤ η, then we can show that

˙̃V ≤ η ‖er‖ −
ǫ

4
σ(bm) ‖er‖2 −

1

4
(1− ǫ)σ(bm) ‖er‖2 −

1

4
σ(bs) ‖ės‖2

− 1

4
(1− ǫ2)σ(bs)σ(ΛΛ̃) ‖es‖2 −

ǫ2

4
σ(bs)σ(ΛΛ̃) ‖es‖2 +

η2

4ρ2
‖Γ‖2

and consequently,

˙̃V ≤− 1

4
(1− ǫ)σ(bm) ‖er‖2 −

1

4
σ(bs) ‖ės‖2 −

1

4
(1 − ǫ2)σ(bs)σ(ΛΛ̃) ‖es‖2 < 0

for ‖es‖ > η
ǫ δ(bm), where

δ(bm) =

(

4

σ(bm)2
+

‖Γ‖2

ρ2sσ(bm(t− Tm))σ(ΛΛ̃)

) 1
2

.

Since ˙̃V < 0 for sufficiently large ‖es‖, we conclude that the system is closed-loop stable and the
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coordination error is uniformly ultimately bounded with ultimate bound given by η
ǫ δ(bm).

In general, the above theorem states that the slave’s coordination error converges to a ball of

radius η
ǫ δ(bm). Therefore, ||es|| → 0 as either σ(bm(t)) → ∞ or η → 0. We can even formulate a

more precise bound under steady state conditions. For instance, suppose that q̇i → 0, qi(t−Ti) →
qi(t), and Γ(t) → 1. Then, the master dynamics (5.5) simplifies to 2fm = −bmΛ(qs − qm), which

implies that

‖qm − qs‖ = 2
∥
∥(bmΛ)−1fm

∥
∥ ≤ 2η ‖bmΛ‖−1 .

Thus, it is easy to note that by increasing bm, the error effectively goes to zero.

5.5 Simulation and Experimental Results

5.5.1 Example: Simulations

As a mean of validation, we simulated the response of two 1-DOF teleoperators with the proposed

controller. Both master and slave robots have identical linear dynamics with Mi = 1 kg, Ci =

0 kg/s, and gi = 0 N and are coupled through an asymmetric time-delayed communication channel

with Tm = 0.6 s and Ts = 0.4 s. The environment is modeled as a stiff wall located at qs = 4 m

with a reaction force given by

fs =







−10q̇s − 500(qs − 4) N, if qs ≥ 4 m

0 N, otherwise

while the human operator is modeled as a constant force source for the first 30 s and then as a

PD-type controller, i.e.,

fm =







12 N, if 0 ≤ t ≤ 30 s

−20q̇m − 25qm N, if t > 30 s.
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Figure 5.2: Position of master and slave robot with constant bm(t) = bfree.
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Figure 5.3: Position of master and slave robot with time-varying bm(t).

The control parameters and update law for the wave impedance are Λ = 5 s−1 and

β(t) =







2, if bm(t) < bcont

0, if bm(t) = bcont
, β(t) =







2
(

5− 4
bm(t)−bfree

bcont

)

, if bm(t) > bfree

0, if bm(t) = bfree

where bfree = 1 N · s/m and bcont = 50 N · s/m.

We first simulated the system with a constant wave impedance tuned for free motion, i.e., bm(t) =

bfree ∀t ≥ 0. The response is illustrated in Figure 5.2. Notice that the position error remains

bounded and that position tracking is achieved once the slave retrieves from the wall. However,

when the slave robot is in contact with the environment, a constant position error (i.e., position

drift) of 4.800 m arises, which may mislead the remote perception of the operator.

The same conditions were then simulated employing the proposed control framework and the

results are plotted in Figure 5.3. Notice that the position error during the contact task is drastically

reduced to nearly 0.33% (0.016 m), which represents a subtantial improvement on position tracking
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Figure 5.4: Evolution of the Wave Impedance bm(t).

from the previous case. Once the slave ceases contact with the wall, both master and slave positions

converge to zero.

Note also that the settling time is slightly larger for the proposed controller. This is mainly

caused by the transition from bcont to bfree (illustrated in Figure 5.4) as governed by β(t). In

general, a faster transition will allow for a shorter settling time as Γ(t) → 1 in a small time.

However, to do so may produce higher transient oscillations due to ephemeral large values of Γ(t)

in the control law. In practice, as will be shown through experiments, these transitions seem to

have no drastic effect in the coordination error or settling time when compared to the constant

wave impedance’s case.

5.5.2 Example: Experiments

Besides simulations, we conducted experiments on a pair of 2-DOF identical planar-revolute-joint

robots coupled through a simulated communication network with constant delays Tm = 0.4 s and

Ts = 0.3 s. Both master and slave robots, which are illustrated in Figure 5.5, are equipped with a

pair of optical encoders that measure the link’s angular position and velocity (via digital estima-

tion), and a force-torque sensor, located at the end-effector, that measures forces sensed/exerted

by the operator/environment. The controllers and the communication network are implemented

using Wincon 3.3 (a Windows application capable of running Simulink models in real time) with a

sampling time of 0.004 s. The nonlinear dynamics of the teleoperators (5.1), with the gravitational
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Master

SlaveWall

Figure 5.5: Experimental testbed.

torques neglected due to the system’s planar configuration, is given by

Mi(qi) =




αi βi

βi γ



 , Ci(qi, q̇i) =




δiq̇

2
i δi(q̇

1
i + q̇2i )

−δiq̇1i 0



 (5.23)

where q̇1i ∈ ℜ and q̇2i ∈ ℜ denote the angular velocities for the first and second links, respectively,

and where αi = (0.834 + 0.150 cos(q2i )) kg ·m2, βi = (0.111 + 0.075 cos(q2i )) kg ·m2, γ =

0.111 kg ·m2, and δi = −0.075 sin(q2i ) kg ·m2. For more details on the experimental setup, consult

[157].

The desired trajectory (or task) performed by the operator was the following: first, to displace

the master teleoperator from the initial position q0 = [0,−π]T rad to qc = [−0.4π, 0]T rad; then, to

hold the master’s position around qc for nearly 20 s; and finally, to return to the initial configuration

q0. At the slave’s environment, we placed a rigid aluminum wall at qw = [−0.70,−1.52]T rad in

order to obstruct and lock the motion of the slave robot.

We first conducted the experiment with a constant wave impedance tuned for free motion,

(b11free, b
22
free) = (0.8, 0.6) N · s ·m. The response of the system, with control parameters Λ11 = 10 s−1

and Λ22 = 8 s−1, is reported in Figure 5.6. Despite the fact that the position error nearly converges

to zero during free motion, a large position error arises for both links when the slave robot is in

contact with the wall.

We then performed the same experiment for a time-varying wave impedance with (b11free, b
22
free) =
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Figure 5.6: Position of master and slave robot with constant bm(t) = bfree.
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Figure 5.7: Position of master and slave robot with time-varying bm(t).

(0.8, 0.6) N · s ·m, (b11cont, b
22
cont) = (12, 9) N · s ·m, and update law given by

β
j
(t) = ‖fe(t− Ts)‖

bjjcont − bjjm(t)

10
, Λ̂jj =

Λjj

1.01

βj(t) =1.65
(

bjjm(t)− bjjfree(t)
)

where fe(t) ∈ ℜ2 is the environmental reaction force sensed at the tip of the slave’s end-effector and

is related to the fs(t) through the Jacobian matrix Js(t) as fs(t) = JT
s (t)fe(t) [130]. The system

response is shown in Figure 5.7. The position error between master and slave is considerably

attenuated during contact with the wall and approaches zero when the slave is free to move.

Figure 5.8 contrasts the L2 norm of the coordination error (i.e., ||qm(t)−qs(t)||) for the cases of
a constant and a time-varying wave impedance. Notice that the steady-state error during contact

is decreased from 0.79 rad to 0.12 rad when employing the time-varying wave impedance approach.

When the slave retrieves from the wall, the behavior becomes similar in both cases with the position
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Figure 5.8: L2 norm of the position error.

error approaching zero. The fact that the coordination error does not converge exactly to zero in

either case, while in free motion, can be attributed to considerable bearing friction suffered by the

teleoperators as reported in [147,158].

Similarly, Figure 5.9 compares the force applied at the master’s and slave’s end-effectors, i.e.,

||fh|| and ||fe||, for both controllers. Observe that in the case of a time-varying wave impedance,

the human operator applied a larger effort trying to retain the master position at qc. Despite the

operator’s larger effort, the coordination error was substantially attenuated. Notice also that, as

the system achieves a steady-state, ||fh(t)|| approaches4 ||fe(t)||.
Finally, Figure 5.9 also evidences a temporary difference on the force reflection by the time-

varying wave impedance approach that lasted for several seconds while the slave was in contact

with the wall. This contrast between the high-magnitude force perceived by the operator, which

can also be interpreted as an indicator of the characteristic high-valued stiffness/impedance of the

environment being remotely contacted, and the moderate sensed environmental force on the slave

robot can be better explained by mathematically examining the net forces acting on the system.

First, in the case of the slave robot, we have that its position is locked around qw. Therefore,

q̇s = 0. Using then (5.5) and (5.23), we can easily show that JT
s fe = fs = −τ s. On the other hand,

in the case of the master teleoperator, q̇m 6= 0 and, consequently,

JT
mfh = fm =Mm(qm)ṙm + Ci(qm, q̇m)rm − τm. (5.24)

4It is worth mentioning that, in general, ||fh|| should not necessarily converge to ||fe||, since the proposed control
framework only guarantees force reflection with respect to fm and fs (joint space), or equivalently, ||JT

mfh(t)|| →
||JT

s fe(t)||. However, due to the fact that both master and slave have identical dynamics and that the coordination
error becomes sufficiently small, the Jacobian matrix of both robots become nearly equal, i.e., Jm ≈ Js. Therefore,
||fh(t)|| ≈ ||fe(t)||.
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Figure 5.9: Force tracking and wave impedance. To the left, the human and environmental forces
are plotted for the case of a constant wave impedance. To the right, the case of a time-varying
wave impedance is illustrated. The green lines correspond to the human operator’s force, whereas
the blue lines plot the magnitude of the environmental force.

Thus, even though the wave impedance stabilizes at a constant value bcont fast enough (as reported

in Figure 5.9) and the control τm ≈ τ s; the force perceived by the operator fm is still affected by

the first two terms in (5.24); which in turn, exclusively depend on the velocities and accelerations of

the master teleoperator. This means that the strong forces sensed at the operator’s site are mostly

owed to the slow attenuation of the position error. In fact, it is not until the system achieves an

equilibrium (i.e., (q̈i, q̇i) → (0,0)) that the first two terms in (5.24) vanish and force reflection

(i.e., static) is ultimately achieved.
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CHAPTER 6

BILATERAL TELEOPERATION OF MULTIPLE AGENTS

We formally introduced in the preceding chapter the concept of bilateral teleoperation and discussed

the effects of delays on stability and transparency. We then presented a control solution aimed to-

ward stability, accurate position convergence, and static force reflection of an SMSS teleoperator.

In this chapter, we now present a bilateral control framework for an SMMS teleoperator. The

control framework guarantees coordinated motion between master and multiple slave agents with

nonlinear dynamics under constant communication delays, as well as a safe interaction between

slave agents and surrounding environments. We extend the passivity-based PD control in [147],

originally proposed for SMSS bilateral teleoperation, to enforce motion coordination of multiple

slave vehicles and complement it with avoidance functions [102] to guarantee collision-free trajecto-

ries. Experimental results with two coaxial helicopters and a haptic force-feedback device validate

the proposed control scheme.

6.1 Problem Statement and Objectives

This chapter is devoted to the task of remotely controlling a formation of N n-DOF slave agents

coupled bilaterally through N constant time delayed communication channels to a single n-DOF

master robot. The master and slave agents have nonlinear Lagrangian dynamics given by

Mm(qm)q̈m + Cm(qm, q̇m)q̇m = fm + τm

M1(q1)q̈1 +C1(q1, q̇1)q̇1 = f1 + τ 1 + u1

...
...

MN (qN )q̈N + CN (qN , q̇N )q̇N = fN + τN + uN (6.1)
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where qj ∈ ℜn are the generalized coordinates,Mj ∈ ℜn×n are the positive-definite inertia matrices,

Cj ∈ ℜn×n are the centrifugal and Coriolis matrices, fj ∈ ℜn are the human and environmental

forces, τ j ∈ ℜn are the coordination-based control inputs, and uj ∈ ℜn are the collision-free control

inputs for master (i.e., j = m) and slave agents (i.e., j ∈ {1, · · · , N}). The above nonlinear dynamic

representation satisfies Properties 2.2.1 to 2.2.3 from Section 2.2 and assumes that gravitational

forces are compensated by active control.

For the multi-agent teleoperation system (6.1), we identify three main control objectives. First,

the system must be safe and stable, meaning that no damage should be inflicted to the operator,

vehicles, and environment. Second, a coordinated motion between master and slave agents should

be achieved: the slave vehicles must maintain a desired relative distance and orientation γi ∈ ℜn

from the formation’s geometric center ( 1
N

∑N
i=1 qi) at all times while moving as a group along the

trajectory commanded by the master robot. Without loss of generality, we consider formations

with continuous constant (piecewise constant in the case of dynamic formations) functions γi(t)

satisfying (4.3) given in page 38. Finally, a transparent interaction between operator and envi-

ronment should be enforced, meaning that the net contribution of environmental forces should be

reflected to the operator under steady-state conditions, i.e., fm = − 1
N

∑N
i=1 fi.

In the following analysis, we assume that each slave agent can locate itself and nearby obstacles

inside a detection region. In addition, we suppose that each slave vehicle can communicate its

position and velocity to the master robot, and vice versa, through constant delayed communication

channels.

6.2 Coordination Control

In general, we would like the system in (6.1) to be closed-loop stable while enforcing formation

control, master-to-slaves position convergence, and static force reflection. By formation control we

explicitly mean that the slave vehicles should maintain a relative position and orientation γi with

respect to the formation’s geometric center at all times, i.e., qi → 1
N

∑N
j=1 qj + γi ∀i. Similarly,

by master-to-slaves position tracking, we mean that the geometric center of the formation should

converge to the position commanded by the master robot, i.e., 1
N

∑N
i=1 qi → qm. According to this

formulation, we propose the use of the following PD-based control law for the master and slave
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agents given as

τm(t) =
1

N

N∑

i=1

τmi
(t)

τmi
(t) =−Kp(qm(t)− qi(t− Tim))−Kv(q̇m(t)− q̇i(t− Tim))−Kdiq̇m(t) (6.2)

τ i(t) =−Kp(qi(t)− qm(t− Tmi)− γi(t− Tmi))−Kv(q̇i(t)− q̇m(t− Tmi))−Kdiq̇i(t) (6.3)

where Tmi, Tim are the positive constant time delays on the communication channel from the master

to the ith slave agent and vice versa, respectively, Kp,Kv ∈ ℜn×n are positive definite matrices to

be designed, and Kdi ≥ (Tmi+Tim)
2 Kp ∈ ℜn×n are dissipative gain matrices.

We claim that the control law in (6.2) and (6.3) achieves stability, motion coordination, and force

reflection for the system in (6.1). In order to prove our claim, we will first introduce the following

result from [147].

Theorem 6.2.1. Stability of SMSS Teleoperators (N = 1): Consider the teleoperation system in

(6.1) with control law (6.2) and (6.3) for N = 1, u1 ≡ 0, and γ1 ≡ 0.

i. Robust Passivity: The closed-loop teleoperation system in (6.1) satisfies the energetic passivity

condition [159],

∫ t

0
[fTm(θ)q̇m(θ) + fT1 (θ)q̇1(θ)]dθ ≥ −d2 (6.4)

and the controller passivity condition [159],

∫ t

0
[τ T

m(θ)q̇m(θ) + τ T
1 (θ)q̇1(θ)]dθ ≤ c2 (6.5)

for some d, c ∈ ℜ and t ≥ 0 regardless of parametric uncertainties.

ii. Coupled Stability: If there exist finite constants dm, d1 ∈ ℜ such that ∀t ≥ 0

−
∫ t

0
fTi (θ)q̇i(θ)dθ ≥ −d2i , for i ∈ {m, 1} (6.6)

then, q̇m, q̇1 ∈ L∞ (i.e., if the energy generated by the human operator and the remote

environment are bounded, then the velocities of the configurations are also bounded).

iii. Position Coordination: Define the coordination error as qE = qm−q1. Suppose that (M jk
i (qi),
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∂M jk
i (qi)/∂q

l
i, ∂

2M jk
i (qi)/∂q

l
i∂q

m
i ) ∈ L∞, where M jk and qli are the jkth and lth components

of the inertia matrices and configurations, respectively. Then, if (fm(t), f1(t)) = 0 ∀t ≥ 0, the

nonnegative quadratic functions

Ep =
1

2
qT
EKpqE ∈ L∞

Ev =
1

2
q̇T
mMm(qm)q̇m +

1

2
q̇T
1M1(q1)q̇1 → 0

and hence, (q̇m, q̈m, q̇1, q̈1,qE , q̇E) → 0.

iv. Static Force Reflection: Suppose (q̇m, q̈m, q̇1, q̈1) → 0. Then, fm → −f1 → −Kp(qm − q1).

Proof. Consult [147].

Remark 6.2.1. The passivity conditions in (6.4) and (6.5) simply imply that the extractable energy

from the human operator and environment and the generated energy by the controllers are bounded.

Remark 6.2.2. The negative sign in (6.6) is owed to the power inflows to the human and remote

environment, i.e., the product of the reaction force −fj times the interaction velocity q̇j .

In general, Theorem 6.2.1 states that for the case of SMSS teleoperation, the control law in (6.2)

and (6.3) stabilizes the system under constant time delays, drives the coordination error (qE) to

zero, and achieves static force reflection. In order to proceed to prove closed-loop stability and

position coordination for a multi-agent system, i.e., N ≥ 2, let us first redefine the representation

of (6.1) as

Mm(qm)q̈m + Cm(qm, q̇m)q̇m = fm + τm

Mi(q̄i)¨̄qi + Ci(q̄i, ˙̄qi) ˙̄qi = fi + τ̄ i + ui, for i ∈ {1, · · · , N} (6.7)

where q̄i(t) = qi(t)− γi(t− Tmi) and

τ̄ i(t) =−Kp(q̄i(t)− qm(t− Tmi))−Kv( ˙̄qi(t)− q̇m(t− Tmi))−Kdi ˙̄qi(t). (6.8)

Theorem 6.2.2. Stability of SMMS Teleoperators (N ≥ 2): Consider the teleoperation system in

(6.7) with control law (6.2) and (6.8) for N ≥ 2, (u1, · · · ,uN ) ≡ 0, and static formation.
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i. Robust Passivity: The closed-loop teleoperation system in (6.7) is passive, i.e., satisfies the

energetic passivity condition

N∑

i=1

∫ t

0
[fTm(θ)q̇m(θ) + fTi (θ) ˙̄qi(θ)]dθ ≥ −d̄2 (6.9)

and the controller passivity condition

N∑

i=1

∫ t

0
[τ T

mi
(θ)q̇m(θ) + τ̄ T

i (θ) ˙̄qi(θ)]dθ ≤ c̄2 (6.10)

for some d̄, c̄ ∈ ℜ, regardless of parametric uncertainties.

ii. Coupled Stability: If there exist finite constants di ∈ ℜ for i ∈ {m, 1, · · · , N} such that ∀t ≥ 0

−
∫ t

0
fTi (θ)q̇i(θ)dθ ≥ −d2i (6.11)

then, q̇m, ˙̄q1, ˙̄q2, · · · , ˙̄qN ∈ L∞.

iii. Position Coordination: Define the coordination errors as q̄Ei
= qm − q̄i for i ∈ {1, · · · , N}.

Suppose that (M jk
i (qi), ∂M

jk
i (qi)/∂q

l
i, ∂

2M jk
i (qi)/∂q

l
i∂q

m
i ) ∈ L∞, where M jk

i and qli are the

jkth and lth components of the inertia matrices and configurations, respectively. Then, if

(fm(t), f1(t), · · · , fN (t)) ≡ 0 ∀t ≥ 0, the nonnegative quadratic functions

Ēp =
1

2

N∑

i=1

q̄T
Ei
Kpq̄Ei

∈ L∞ (6.12)

Ēv =
1

2

N∑

i=1

[q̇T
mMm(qm)q̇m + ˙̄qT

i Mi(q̄i) ˙̄qi] → 0 (6.13)

and, hence, (q̇m, q̈m, ˙̄qi, ¨̄qi, q̄Ei
, ˙̄qEi

) → 0, which implies that

qi → qm + γi and qm → 1

N

N∑

i=1

qi. (6.14)

iv. Static Force Reflection: Suppose (q̇j , q̈j) → 0 for j ∈ {m, 1, · · · , N}. Then,

fm → − 1

N

N∑

i=1

fi. (6.15)

71



Proof. Part (i) Robust Passivity : Consider the passivity condition in (6.9). Applying directly

Theorem 6.2.1 we have

N∑

i=1

∫ t

0
[fTm(θ)q̇m(θ) + fTi (θ) ˙̄qi(θ)]dθ ≥

N∑

i=1

(−d̄2i ) = −d̄2.

Similarly with (6.10), we can easily verify that

N∑

i=1

∫ t

0
[τT

mi
(θ)q̇m(θ) + τ̄ T

i (θ) ˙̄qi(θ)]dθ ≤
N∑

i=1

c̄2i = c̄2,

for some d̄i, c̄i ∈ ℜ. Therefore, using Proposition 1 in [159], we conclude that the closed-loop system

in (6.7) is passive.

Part (ii) Coupled Stability : Consider the positive function in (6.13). Taking its derivative with

respect to time and applying the skew-symmetric property for Lagrangian systems, we obtain

˙̄Ev(t) = N fTmq̇m +

N∑

i=1

fTi ˙̄qi +Nτ T
mq̇m +

N∑

i=1

τ̄ T
i
˙̄qi. (6.16)

Then, integrating (6.16) and using the passivity conditions in (6.10) and (6.11) give us

Ēv(t) ≤ Ēv(0) +Nd2m + c̄2 +

N∑

i=1

d2i = B. (6.17)

Now, since Ēv(t) is bounded by B, from (6.13) we conclude that q̇m(t), ˙̄q1(t), · · · , ˙̄qN (t) must be

bounded as well.

Part (iii) Position Coordination: Suppose (fm(t), fi(t)) = 0 ∀t ≥ 0 and i ∈ {1, · · · , N}. Assume

that (M jk
i (qi), ∂M

jk
i (qi)/∂q

l
i, ∂

2M jk
i (qi)/∂q

l
i∂q

m
i ) ∈ L∞. Then, (6.12) and (6.13) are direct con-

sequences of Theorem 6.2.1. Since all terms in (6.12) are bounded by Theorem 6.2.1, Ēp must also

be bounded, which implies that q̄Ei
are also bounded. Similarly, all terms in (6.13) converge to

zero; therefore, (Ēv , q̇m, ˙̄q1, · · · , ˙̄qN ) → 0.

Now we are left to prove that (q̈m, ¨̄qi) → 0 for i ∈ {1, · · · , N}. From (6.7) we have

q̈m =M−1
m (qm)Cm(qm, q̇m)q̇m +M−1

m (qm)τm

¨̄qi =M−1
i (q̄i)Ci(q̄i, ˙̄qi) ˙̄qi +M−1

i (q̄i)τ̄ i. (6.18)
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Since q̄Ei
, q̇m, ˙̄qi ∈ L∞, τm, τ̄ i are bounded. By the assumption that ∂M jk

∗ (q∗)/∂ql∗ are bounded,

C∗(q∗, q̇∗) are also bounded [130], and since M∗ are positive-definite bounded matrices, M−1
∗

exist and are also bounded. Therefore, from (6.18), we conclude that q̈m, ¨̄qi ∈ L∞. Now, tak-

ing the time derivative of (6.18), we obtain that all terms at the right hand side are bounded:

q̄E∗
, q̇∗, q̈∗, dM−1/dt (by boundedness on ∂M jk

∗ /∂ql∗), and dC∗/dt (by boundedness on ∂2M
jk
∗ /∂ql∗∂q

m
∗

[130]). Hence, d3q∗/dt3 are also bounded, which implies that q̈∗ are uniformly continuous. Apply-

ing then Barbalat’s Lemma [129], we have that (q̈m, ¨̄qi) → 0 as (q̇m, ˙̄qi) → 0.

Consider once again the system in (6.7). Suppose fm = fi = 0. Then, since (q̈∗, q̇∗) → 0 holds,

τ̄ i(t) = −Kp(q̄i(t)− qm(t− Tmi)) → 0

which for finite Tmi gives

q̄i(t)− qm(t) +

∫ 0

−Tmi

q̇m(t+ θ)dθ → q̄i(t)− qm(t) → 0.

Similarly for finite Tim,

τm(t) = −Kp(qm(t)− 1

N

N∑

i=1

qi(t− Tim)) → 0

implies that qm(t) → 1
N

∑N
i=1 qi(t).

Part (iv) Static Force Reflection: Assume that (q̇m, q̈m, q̇i, q̈i) → 0 for i ∈ {1, · · · , N}. Then,

from (6.7) we have that fm + τm → 0 and fi + τ̄ i → 0, which imply

fi → Kp(qi − γi − qm), fm → Kp(qm −
N∑

i=1

qi

N
) (6.19)

for q∗(t− T∗) → q∗(t). Now, using (4.3) and re-writing (6.19) we finally obtain

fm(t) → 1

N

N∑

i=1

Kp[qm(t)− qi(t) + γi] = − 1

N

N∑

i=1

fi(t)

which completes the proof.

Up to now, we have established closed-loop stability, motion tracking, formation control, and

force reflection for the teleoperation system in (6.7) without addressing the possibility of collisions
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Figure 6.1: Detection (radius R) and avoidance (radius r) regions.

between slave vehicles and surrounding obstacles. This task will be discussed next.

6.3 Collision Avoidance Control

The overall goal in the teleoperation of multiple mobile robots is to achieve motion tracking and

formation control of the slave vehicles while enforcing a minimum, safe distance between any two

vehicles or obstacles at all times such that collisions are guaranteed never to occur. In general, we

would like to define a safety region around each vehicle for which no other vehicle or obstacle is

allowed to enter. According to this formulation, we proceed to introduce the following definitions.

We consider the motion of the ith slave vehicle from the group formation in (6.1) and define Ni

as the set of obstacles (including other agents) in its vicinity. We assume that the ith slave agent

can locate nearby obstacles and other agents inside a detection region (see Figure 6.1) given as

Dij =
{
q : q ∈ ℜ2n, r < ‖qi − qj‖ ≤ R

}
(6.20)

where q = [qT
i ,q

T
j ]

T , qj ∈ ℜn are the coordinates of the jth obstacle in Ni, and R ∈ ℜ is the

detection radius. We also define an avoidance region for the ith slave as

Ωij =
{
q : q ∈ ℜ2n, ‖qi − qj‖ ≤ r

}
(6.21)

where r ∈ ℜ is the smallest safe distance from any other agent or obstacle and 0 < r < R.

Then the overall detection and avoidance regions for the system are D =
⋃

i∈N,j∈Ni
Dij and Ω =

⋃

i∈N,j∈Ni
Ωij , respectively, and the control goal is to design the collision-free control inputs ui such
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that the slave vehicles do not enter Ω at any time.

In order to achieve our control objective, we propose the use of avoidance functions [102]

Vij(qi,qj) =

(

min

{

0,
‖qi − qj‖2 −R2

‖qi − qj‖2 − r2

})2

(6.22)

and the collision avoidance control input

ui = −
∑

j∈Ni

∂Vij(qi,qj)

∂qi
(6.23)

where

∂Vij
∂qi

=







0, if ‖qi − qj‖ ≥ R

4(R2 − r2)(‖qi − qj‖2 −R2)(qi − qj)
T

(‖qi − qj‖2 − r2)3
, if r < ‖qi − qj‖ < R

not defined, if ‖qi − qj‖ = r

. (6.24)

Theorem 6.3.1. Consider the system in (6.7) with control law (6.2), (6.8), and (6.23) and let

Q(t) = [qT
1 (t), · · · ,qT

N (t), · · · ,qT
N+N̄

(t)]T , where N̄ is the number of obstacles and qN+1, · · · , qN+N̄

are their coordinates. Suppose that Q(0) /∈ Ω. Then, the closed-loop teleoperation system is stable

and Q(t) /∈ Ω ∀t ≥ 0.

Proof. Suppose that Q(0) /∈ Ω and consider the following Lyapunov-like function

W (t) = Ēv(t) +
1

2

N∑

i=1

∑

j∈Ni

Vij(qi(t),qj(t)).

Taking its derivative with respect to time and noting that (6.22) are symmetric with respect to

their arguments, i.e.,

∂Vij
∂qi

=
∂Vji
∂qi

= −∂Vij
∂qj

= −∂Vji
∂qj

,
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we obtain

Ẇ = N fTmq̇m +

N∑

i=1

fTi ˙̄qi +NτT
mq̇m +

N∑

i=1

τ T
i
˙̄qi

−
N∑

i=1

∑

j∈Ni

∂Vij
∂qi

q̇i +
1

2

N∑

i=1

∑

j∈Ni

(
∂Vij
∂qi

q̇i +
∂Vij
∂qj

q̇j

)

︸ ︷︷ ︸

=0 by symmetry

. (6.25)

Then, integrating (6.25) yields

W (t) ≤W (0) +Nd2m + c̄2 +
N∑

i=1

d2i = BW .

Now, assume Q(t) → Ω. This means that for some i, j, Vij(t) → ∞ ⇒ W (t) → ∞. However,

W (t) is bounded by BW , which means that we reach a contradiction. Since the solutions of (6.7)

are continuous, Q(t) must never enter Ω. Furthermore, from the definition and boundedness onW ,

q̇m, q̇i are also bounded, and from continuity of solutions and the fact that Q(t)��→ Ω, ui(t) must

be bounded. Therefore, we can consider the control inputs ui(t) as external bounded forces and

stability of the system and boundedness on the coordination errors follow from Theorem 6.2.2.

Remark 6.3.1. Note that the collision avoidance control is active (i.e., ui(t) 6= 0) only when

qi(t) ∈ Dij for some j ∈ Ni. Thus outside of the detection region, all general conclusions from

Theorem 6.2.2 apply. This leads us to prefer formations that satisfy ||γi − γj || > R such that the

collision avoidance control inputs do not represent a persistent conflict with the coordination goal.

6.4 Experimental Setup

The control framework introduced in Sections 6.2 and 6.3 was tested in a SMMS environment (see

Figure 6.2). The testbed consists of a haptic device (PHANTOM) with three actuated DOF to

operate as the master robot, a pair of coaxial helicopters as slave mobile agents, a virtual interface,

a Motion Capture (MoCap) system to gather position information from the slave vehicles, and

a distributed network of computers for communication and local control. The helicopters were

constrained to fly in a 5m long, 4m wide, and 1.7m tall room to which the operator had direct

audio-visual access.
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Helicopters

Obstacle Obstacle

Operator

MoCap System

Figure 6.2: Experimental workspace. Copyright c© 2010 Boeing. All rights reserved.

Figure 6.3: Master and slave agents. The left and right photos illustrate the PHANTOM haptic
device and the coaxial helicopters, respectively. Copyright c© 2010 Boeing. All rights reserved.

6.4.1 Haptic Device (Master Robot)

The haptic device, used as the master robot and illustrated in Figure 6.3, is the commercially

available PHANTOM by SensAble Technologies, Inc. with 6-DOF of positional and rotational

input and 6-DOF of force and torque output. Position and velocity commands to/from the slave

agents are relative to the base of the PHANTOM’s end-effector and are properly scaled to match

with the mobility range of the haptic device. Rotational movements around the base of the end-

effector are ignored, leaving the Cartesian coordinates, x, y, and z, as the only controllable DOF.

For the experiments, we used an update rate at the haptic interface of 1000Hz.
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6.4.2 Coaxial Helicopters (Slave Robots)

The slave agents, shown in Figure 6.3, are two modified E-Flite Blade CX2 coaxial helicopters

with multiple spherical retro-reflective markers for identification/localization purpose and cover

removed to lower weight. Each vehicle weights 220 g and measures 340 mm of rotor diameter.1

We assume that the CX2 helicopters have three controllable DOF corresponding to Cartesian x,

y, and z motion,2 while control of the yaw ψ angle is ignored. A pictorial representation of the

relation between the rotational angles and the Cartesian coordinates is given in Figure 6.4(a).

The control parameters Kp,Kdi, and Kv in (6.8) and the nominal control inputs for equilibrium

of the helicopters, also known as trim values, were empirically found. The collision avoidance

function for both helicopters was a sphere, such as in (6.22), with avoidance and detection radii of

400 mm and 900 mm, respectively.

6.4.3 Virtual Coupling

The slave controllers run on two separate off-board computers limited to a sampling rate of ap-

proximately 40 Hz due to wireless transmission’s hardware constraints. That means that position

and velocity data are communicated to the haptic device every 25 ms. Yet, a much higher update

rate (e.g., 1000 Hz) on the haptic system is desirable in order to provide the operator with stable

and realistic force feedback [160,161].

A solution to overcome the constraint on the sampling rate and allow the haptic control to

perform at a faster pace is to mediate the coupling between the haptic device and the helicopters

via a virtual helicopter, as illustrated in Figure 6.4(b). The virtual helicopter is modeled as a

frictionless 3-DOF second-order linear system with negligible mass in order to reduce the increase

in inertia perceived by the operator. It is coupled to the master robot through a simple PD

control [162] and to the slave agents through the control law in (6.8) where the virtual helicopter

1Note that the CX2 vehicle has larger dimensions and weight than the µ-CX model employed in Section 3.5.1.
2Cartesian motion of the CX2 helicopter is achieved by controlling pitch (φ), roll (θ), vertical thrust (ν), and yaw

(ψ). However, we can assume that small changes in φ, θ, and ν proportionally translate into x, y, and z motion,
respectively, whenever ψ is regulated at zero.
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(a) CX2 local coordinate system.

Virtual Agent
q1

q2Haptic Device

(b) Virtual coupling.

Figure 6.4: (a) Orientation of the rotational angles (θ, φ, ψ) with respect to the Cartesian
coordinates (x, y, z). (b) Virtual coupling between master and slave agents.

is interpreted as the master robot. The dynamic model for the virtual agent is then given by

mvq̈v = Kp

N∑

i=1

qi(t− Tim)

N
−Kpqv +Kv

N∑

i=1

q̇i(t− Tim)

N

−Kvq̇v −
N∑

i=1

Kdi
q̇v

N
+ K̄p(qm − qv) + K̄v(q̇m − q̇v)

where mv ∈ ℜ and qv(t) ∈ ℜ3 are the mass and the Cartesian coordinates of the virtual agent,

respectively. The matrices K̄p, K̄v ∈ ℜ3×3 are symmetric positive-definite and computed such that

the digital connection between the haptic and the virtual environment is passive [163]. Therefore,

since the coupling between virtual agent and slave vehicles is passive (by Theorems 6.2.2 and 6.3.1)

and the fact that the serial connection of passive two-ports systems is also passive (recall Theorem

2.3.2), we can conclude that the passivity of the overall system is preserved. Furthermore, the

reader can easily verify that, for quasi-steady-state conditions (q̈∗, q̇∗ ≈ 0) and negligible mass

(mv ≈ 0), position coordination, as defined in (6.14), is achieved. Similarly, since the collision

avoidance control inputs are independent of the master’s dynamics, a safe interaction between

agents and surrounding environment is also guaranteed.

The left side of Figure 6.3 offers a snapshot of the virtual interface, where a 3-dimensional (3-D)

representation of the virtual helicopter (in green) can be observed.

6.4.4 MoCap System

Position tracking of the helicopters is performed off-board, meaning that the helicopters lack self-

contained position and velocity sensors. Instead, the testbed employs a MoCap system [133] that
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consists of multiple high speed cameras located in the remote environment and capable of tracking

position and orientation of the slave agents in real-time by collecting two-dimensional visual data

and constructing a three-dimensional representation through a photogrammetry-based technique.

The cameras are able to sense and track unique configuration patterns of retro-reflective markers

placed on the tracked vehicle or obstacle with a sub-millimeter accuracy at a sampling rate of 120Hz.

The position and orientation of all vehicles and obstacles are then transmitted to each helicopter’s

control computer within less than 10ms such that every vehicle knows its own location and the

location of nearby obstacles. Velocities of the agents are then computed locally by differentiation.

Figure 6.5 illustrates a 3-D representation of the workspace, including agents and obstacles, by

the MoCap system’s software.

Figure 6.5: A 3-D image generated by the MoCap System using Vicon iQ2.5 graphical display.
The small purple cubes represent the position and orientation of the two helicopters while the two
gray rectangular prisms represent the position of the obstacles. Copyright c© 2010 Boeing. All
rights reserved.

6.4.5 Communication

Communication between agents and haptic device is achieved through TCP socket connections.

Each agent transmits its Cartesian coordinates and velocities (qi, q̇i) to the virtual environment

and receives from the virtual environment the coordinates and velocities of the virtual helicopter

(qv, q̇v) and the corresponding offset for the desired formation (γi). Control inputs are computed

locally.

The total average round trip delays for agents one and two were found to be 93 ms and 124 ms,
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respectively, with a standard deviation of 1 ms, which means that fluctuations on the delays were

negligible.

For more information on the experimental testbed, the reader is encouraged to consult [133,134].

6.5 Experimental Results

Three different experiments were performed. The first of these experiments was the teleoperation

of both helicopters in a free (i.e., unobstructed) environment. The desired formation was a diagonal

line with γ1 = −γ2 = [500 mm,−500 mm, 0 mm]T . Figures 6.6 and 6.7 illustrate, respectively, the

resulting motion in the xy plane3 and the Euclidean norm of the position error for the formation,

where ecf (t), eγi(t) ∈ ℜ3 are given by

ecf(t) =qv(t)−
1

2
(q1(t) + q2(t))

eγ1(t) =γ1 −
1

2
(q2(t)− q1(t)) = −eγ2(t).

The two helicopters (red and blue markers), starting at opposite positions with respect to the

desired formation, converged to the diagonal formation and followed thereafter the motion of the

virtual helicopter (black line) without entering into each other’s avoidance region. The commanded

path by the virtual helicopter was a round trip from the right-back (i.e., negative (x, y) or third

quadrant) to the left-front (i.e., positive (x, y) or first quadrant) corners of the workspace. As

plotted in Figure 6.7, the agents converged to the desired formation in a short time (i.e., t < 5 s)

and maintained the formation fairly well throughout the complete trajectory (|eγi(t)| < 200 mm

∀t > 5 s). Additionally, the vehicles were reported to track the master command with relative

small error (|ecf (t)| < 150 mm ∀t > 0 s).

The second experiment consisted of teleoperating both agents through an obstructed environ-

ment. Two tall rectangular obstacles, modeled as three-dimensional cylindrical objects for collision

avoidance’s purpose, were placed near the center of the workspace. The helicopters were com-

manded to fly to the front of the room and then to return near the original position in the same

fixed formation as in the first experiment. As can be seen in Figure 6.8, the helicopters were able

to navigate safely around the obstacles tracking the virtual vehicle motion in the required diagonal

3Positive displacement along the Cartesian axes x, y, and z corresponds to motion of the helicopters to the front,
left, and up directions, respectively. See Figure 6.4(a) for reference.
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Figure 6.6: Sequential motion of slave agents with fixed formation in an unobstructed
environment. The red and blue markers correspond to the first and second helicopter,
respectively. The dashed-line, larger circles represent the detection regions while the solid-line
circles represent the avoidance regions. Initial positions (q∗(ti)) are indicated by the darker, solid
dots. The position of the virtual agent is traced by the fine, black line.

Figure 6.7: Position error for an unobstructed environment and a fixed formation.

formation. Figure 6.9 illustrates the coordination and formation errors where it can be observed

that the formation error is in general higher (i.e., |eγi(t)| < 350 mm for all t > 5 s) than in the

previous experiment, in particular at t ∈ (5 s, 36 s) where the agents come to the proximity of the

static obstacles and the left virtual wall (y = −2000 mm). Nevertheless, the coordination error for

the center of the formation remained small (|ecf (t)| ≈ 100 mm ∀t > 0 s).

In the last experiment, the helicopters were commanded to fly from the back side of the workspace

to the front side in a nearly parallel formation to the y axis with γ11 = −γ21 = [250 mm,−550 mm,

0 mm]T . In addition, the operator had the ability to switch to a horizontal line formation (γ12 =

−γ22 = [550 mm, 0 mm, 0 mm]T ) whenever he/she considered it preferable. Two rectangular

obstacles were placed at (x, y) = (457 mm,−738 mm) and (x, y) = (350 mm, 856 mm) such that
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Figure 6.8: Sequential motion of slave agents with fixed formation in an obstructed environment.

the most feasible path for the agents was to travel between both obstacles. As depicted in Figure

6.10, the slave agents initially converged to the desired formation but encountered resistance to

follow the virtual master’s trajectory due to the presence of static obstacles. Once the operator

switched to an horizontal line formation (t = 26 s), the helicopters were able to complete the path

without collisions.

Figure 6.11 illustrates the coordination and formation errors for the last experiment. The peak
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Figure 6.9: Position error for an obstructed environment and a fixed formation.

values at t ∈ (10 s, 20 s), t = 26.0 s, and t = 37.9 s correspond to the events at which the slave

agents are unable to follow the master trajectory due to the detection of the static obstacles and

to the change of formation from γi1 to γi2 and vice versa, respectively.

Position errors in the above experiments can be attributed to uncertainties on the trim values,

nonlinearities in the helicopters’ dynamics, and the frequent interaction between the helicopters,

the virtual walls, and the static obstacles, among other disturbances. Despite this, the above

experiments demonstrate the adeptness of the proposed control framework to enforce position

convergence, formation control, and collision avoidance for a multi-agent system under constant

time delays and obstructed environments.
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Figure 6.10: Sequential motion of slave agents with dynamic formation in an obstructed
environment.
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Figure 6.11: Position error for an obstructed environment and dynamic formation.
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CHAPTER 7

COLLISION AVOIDANCE CONTROL: TWO-AGENT

SYSTEMS

In the previous chapter, we developed a collision avoidance control law for a network of bilaterally

teleoperated vehicles with unbounded control inputs and limited sensing range based on the use

of avoidance functions. We assumed that position information from other agents and obstacles

was accurate and immediate. Yet, in practice, the localization of other vehicles and obstacles

might be subjected to measurement errors as well as communication and processing delays due to

the presence of noise in the obstacle detection mechanism or unreliabilities in the broadcasting of

coordinates among agents. For example, underwater localization equipment, such as sonar radars

and inertial measurements units, may experience delays of up to 20s due to slow signal propagation

and slow sampling rates [96] or additive measurement errors due to the use of dead reckoning

as the position estimation algorithm [95]. Similarly, widely used Global Positioning Systems for

localization of ground and aerial vehicles may experience temporary interruptions when traveling

through occluded spaces or because of the interference with radio signals [98]. Therefore, control

algorithms for autonomous and semi-autonomous vehicles must provide robustness to measurement

uncertainties in order to guarantee the safety of the overall system.

Inspired by the need of robust strategies to guarantee the safe navigation of unmanned vehicles,

we now devote this and the following chapter to the design of collision avoidance strategies for

vehicles with sensing uncertainties including delays. Within this chapter, we formulate decentral-

ized, cooperative and noncooperative collision avoidance strategies for a team of two vehicles with

sensing uncertainties and limited sensing range. The control formulation relates to the concept of

avoidance control presented in [99, 102, 104], yet the control inputs proposed herein are bounded.

Advantages of the proposed avoidance strategies include the use of relative position information

rather than absolute position and the robustness to time-varying delays, quantization, and other

measurement errors. The strategies are also reactive (or real-time), meaning that collision avoid-

ance control inputs are computed on-line as obstacles are detected, rather than computed according
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to a predetermined (i.e., planned) collision-free trajectory. Furthermore, the avoidance control can

be appended to any already designed, stable control law and is exclusively active when the vehicle

is close to another agent. This implies that the agent’s main objective, such as flocking, trajectory

tracking, or set-point regulation, is unaffected when both agents (including obstacles) are safely

apart. Two numerical examples and a real experiment with two coaxial helicopters illustrate the

appropriateness of the proposed controller.

7.1 Problem Formulation

7.1.1 Dynamics of the Two-Agent System

In this chapter, we aim to control a pair of n-DOF agents with double-integrator dynamics given

by

q̈i(t) = ui(t), qi ∈ ℜn, ui ∈ Ui ⊂ ℜn (7.1)

where qi represents the position and Ui denotes the set of admissible control inputs ui for the first

(i = 1) and second (i = 2) agent. We assume the magnitudes of the control inputs are radially

upper bounded by µi. The case where limits on the control inputs vary according to the Cartesian

coordinates can be similarly covered by means of a coordinate transformation.

We also assume that each agent can locate the other agent within some margin of error. Specif-

ically, we suppose that the ith agent is able to sense the jth agent as being located at q̂j(t) =

qj(t) + di(t), where di ∈ ℜn is a time-varying vector representing the uncertainty on the localiza-

tion process (e.g., delays, noise, and quantization) and which is considered to be upper bounded

by some positive constant ∆i, i.e., ‖di(t)‖ ≤ ∆i, ∀t ≥ 0.

Remark 7.1.1. Although the analysis in this chapter is centered on systems with double integrator

dynamics, we can easily demonstrate that a nonlinear Lagrangian system satisfying Properties

2.2.1 to 2.2.3 can be reduced to the form of (7.1) via the use of inverse dynamics control [130]. To

illustrate this statement, let us consider the equations of motion for a Lagrangian system

Mi(qi)q̈i +Ci(qi, q̇i)q̇i + gi(qi) =τ i, ‖τ i‖ ≤ Ui (7.2)

where Ui is a limit on the magnitude of the control input τ i. Since Mi is positive-definite, we have
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that M−1
i exists and we can rewrite (7.2) as

q̈i =M−1
i (qi) (τ i − Ci(qi, q̇i)q̇i − gi(qi)) . (7.3)

By choosing τ i =Mi(qi)ui + Ci(qi, q̇i)q̇i + gi(qi), we obtain that (7.3) reduces to (7.1), where ui

is the new control input. Moreover, if we assume (or force) the velocities of the ith agent to be

bounded1 by some ηi > 0, i.e., ‖q̇i‖ ≤ ηi and, in addition, we suppose gravitational forces are also

bounded, i.e., ∃Gi ≥ 0 such that ‖gi(qi)‖ ≤ Gi, then we have that the magnitude of ui is limited by

Ui ≥ ‖Mi(qi)ui + Ci(qi, q̇i)q̇i + gi(qi)‖

Ui ≥ ‖Mi(qi)‖ ‖ui‖+ ‖Ci(qi, q̇i)‖ ‖q̇i‖+ ‖gi(qi)‖

‖ui‖ ≤ Ui − ‖Ci(qi, q̇i)‖ ‖q̇i‖ − ‖gi(qi)‖
‖Mi(qi)‖

‖ui‖ ≤ Ui − kciη
2
i −Gi

λi
= µi

where kci and λi are positive constants, deduced from Properties 2.2.1 to 2.2.3, and where µi is

also positive if kciη
2
i +Gi ≤ Ui.

7.1.2 Control Objective

Our main objective is to develop control strategies that enforce the completion of the agents’ main

tasks, such as flocking and trajectory tracking, while guaranteeing a safe separation between both

agents at all times independently of bounded sensing delays and uncertainties. In general, we

would like to define a safety region around each agent for which the other vehicle (or obstacle)

is not allowed to enter. According to this formulation, and inspired by the concept of avoidance

sets [99], we introduce the following definitions.

We define an Antitarget Region (see Figure 7.1), T , as the collision zone for both agents, i.e.,

T =
{
q : q ∈ ℜ2n, ‖qi − qj‖ ≤ r∗

}

where q = [qT
i ,q

T
j ]

T and r∗ denotes the minimum safe separation distance between both vehicles.

Similarly, we define an Avoidance Region, Ω ⊇ T , as a zone for which the two agents are not

1Boundedness of the velocity terms can be claimed by injecting sufficient damping into the system as part of the
control law (see Lemma 7.2.1, p. 92).
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qi
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Figure 7.1: Antitarget (T ), Avoidance (Ω), Conflict (Wi), and Detection (Di) Regions for the ith
agent.

allowed to enter at any given time. Mathematically,

Ω =
{
q : q ∈ ℜ2n, ‖qi − qj‖ ≤ r

}

where r ≥ r∗ is the desired minimum separation between both agents. Note that if we design a

control policy such that q1 and q2 avoid Ω, then we have that they must also avoid T .

Now, consider the dynamic limitations of the ith agent. Since its control inputs and acceleration

components are bounded, a control policy aimed to avoid Ω needs to be implemented with enough

anticipation, such that the ith vehicle has sufficient time to decelerate and prevent a collision.

Consequently, we define a Conflict Region, Wi, as

Wi =
{
q : q ∈ ℜ2n, r < ‖qi − qj‖ ≤ r̄i

}

where r̄i > r is a lower bound on the distance that the ith agent can come from the other agent

and still be able to decelerate and avoid Ω. Thus any collision avoidance strategy for the ith agent

must take effect as soon as q1 and q2 enter Wi.

Finally, in order for the problem to be well-defined, it is assumed thatWi lies within the Detection

Region, Di, of the ith agent, defined as

Di =
{
q : q ∈ ℜ2n, ‖qi − qj‖ ≤ Ri

}
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where Ri > r̄i is the detection radius. That is, the ith agent can detect any obstacle or agent inside

the Detection Region. In addition, note that whereas T and Ω are equal for both agents, Wi and

Di can differ.

According to the above definitions, we can state the control objective as follows. Given ∆1, ∆2

and T , design control inputs u1(t) and u2(t) such that [q1(t)
T ,q2(t)

T ]T /∈ Ω for all t ≥ 0, where

Ω ⊇ T .

7.2 Collision Avoidance Control

In order to achieve our control objective, we propose the use of the following control input:

ui =

(

1− ‖ua
i ‖
µ̄i

)

uo
i + ua

i − kiq̇i (7.4)

where uo
i ∈ ℜn represents the known objective control law satisfying the constraint ‖uo

i (t)‖ ≤ µ̄i

for all t ≥ 0 and where ki is a positive constant given by

ki =
µ̄i
ηi
, for µ̄i =

µi
2
, ηi > 0.

The objective control law uo
i is designed such that the ith agent can accomplish its primary task,

whereas the term kiq̇i is injected into the system to regulate the maximum velocity of the agent,

as it will be shown at the end of this section. The control term ua
i ∈ ℜn is the avoidance control

input designed to guarantee collision-free trajectories. It is computed according to

ua
i = −

∂V a
ij(qi, q̂j)

∂qi

T

(7.5)

where V a
ij , called the avoidance function [102], is given by

V a
ij(qi,qj) =







Γi

(

min

{

0,
‖qi − qj‖2 −R2

i

‖qi − qj‖2 − r2

})2

, if ‖qi − qj‖ ≥ hi

−µ̄i ‖qi − qj‖+ ci, otherwise
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for hi = r̄i +∆i and

Γi =
µ̄i
(
h2i − r2

)3

4hi(R2
i − h2i )(R

2
i − r2)

, ci = Γi
(h2i −R2

i )
2

(h2i − r2)2
+ µ̄ihi.

The reader can easily verify that V a
ij is nonnegative, almost everywhere continuously differentiable,

and that ua
i reduces to

ua
i =







0, if ‖qi − q̂j‖ ≥ Ri

Ka
i (R

2
i − ‖qi − q̂j‖2)

(‖qi − q̂j‖2 − r2)3
(qi − q̂j), if hi ≤ ‖qi − q̂j‖ < Ri

µ̄i
qi − q̂j

‖qi − q̂j‖
, if 0 < ‖qi − q̂j‖ < hi

not defined, if ‖qi − q̂j‖ = 0

(7.6)

where Ka
i = 4Γi(R

2
i − r2). Note that in contrast to the unboundedness of the avoidance functions

and control inputs in [102] and Section 6.3, V a
ij and ua

i (proposed in this section) are bounded by

ci and µ̄i, respectively. Similarly, the overall control input ui can be shown to be bounded by µi.

We now prove that the control law in (7.4) guarantees boundedness of the velocities if ki > 0.

Lemma 7.2.1. Consider the system in (7.1) with control law (7.4) and (7.6). Let ki = µ̄i

ηi
for

some µ̄i, ηi > 0. Then, for all initial conditions satisfying ‖q̇i(0)‖ ≤ ηi, we have that ‖q̇i(t)‖ ≤ ηi

∀t ≥ 0.

Proof. Consider the following Lyapunov-candidate function

Vη =
1

2
‖q̇i‖2 .

Taking its time derivative we obtain that

V̇η =q̇T
i q̈i ≤ ‖q̇i‖ µ̄i − ki ‖q̇i‖2 = ‖q̇i‖ (µ̄i − ki ‖q̇i‖) < 0, ∀ ‖q̇i(t)‖ > ηi.

Since V̇η is negative for all ‖q̇i‖ > ηi, we can conclude that the velocity solutions of (7.1) are

bounded by ηi.

92



7.3 Collision Avoidance under Bounded Uncertainties

In this section we present the main results of this chapter. Generally speaking, we show that the

control law in (7.4) and (7.6) guarantees collision-free trajectories for the system in (7.1) given that

the design parameters r and r̄i satisfy a set of inequality constraints. We start addressing the case

of noncooperative control, where only one agent effects the avoidance strategy. Then, we present

the details for the cooperative case. However, before proceeding to establish strategies for both

cases, let us first introduced the following lemma. The lemma will aid us to show that if the ith

vehicle has control input given by (7.4) and (7.6), then it will try to evade the other agent.

Lemma 7.3.1. Consider the dynamical system in (7.1). Assume the ith agent has control input

given by (7.4) and (7.6) for ki = µ̄i

ηi
and ηi > 0. Define βij(t) = (qi(t) − qj(t))

T q̇i(t), θi ∈
(

0, sin−1

(√
r2ǫ−∆2

i

rǫ

))

, and δi =
θirǫ
ηi+ηj

, where rǫ ∈ (r, r̄i] and r > ∆i. Let t0 ≤ tf − δi and suppose

that ‖q̇i(t0)‖ ≤ ηi, ‖q̇j(t)‖ ≤ ηj for some ηj ≥ 0, ‖di(t)‖ ≤ ∆i ∀ t ≥ t0, and ‖qi(t)− qj(t)‖ ∈ [rǫ, r̄i]

∀ t ∈ [t0, tf ]. Then, βij(tf ) is bounded from below as

βij(tf ) ≥‖qi(tf )− qj(tf )‖
[

−e−kiδiηi +
µ̄i

rǫ(k2i + ω2
ij)

(

ki

√

r2ǫ −∆2
i + ωij∆i

−e−kiδi

(

ki

√

r2ǫ −∆2
i cos θi − ki∆i sin θi + ωij

√

r2ǫ −∆2
i sin θi + ωij∆i cos θi

))]

(7.7)

where ωij = −ηi+ηj
rǫ

.

Proof. For ease of notation, let tδ = tf − δi, qij(t) = qi(t) − qj(t), and q̂ij(t) = qi(t) − q̂j(t).

From the assumption that [qi(t)
T ,qj(t)

T ]T ∈ Wi ∀t ∈ [t0, tf ] we have that solutions of (7.1) can

be computed as

q̇i(tf ) = e−kiδi q̇i(tδ) +

∫ tf

tδ

e−ki(tf−τ)ua
i (τ)dτ

Therefore,

βij(tf ) =qij(tf )
T

(

e−kiδi q̇i(tδ) +

∫ tf

tδ

e−ki(tf−τ)µ̄i
q̂ij(τ)

‖q̂ij(τ)‖
dτ

)

≥‖qij(tf )‖
(

−ηie−kiδi + µ̄i

∫ tf

tδ

e−ki(tf−τ) qij(tf )
T q̂ij(τ)

‖qij(tf )‖ ‖q̂ij(τ)‖
dτ

)

= ‖qij(tf )‖
(

−ηie−kiδi + µ̄i

∫ tf

tδ

e−ki(tf−τ) cosφij(τ)dτ

)

(7.8)
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r∗

r

rǫ

r̄i
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hi

qiqi

q̂ij(tf )

qij(tf )

qij(τ)

q̂ij(τ)
∆i

∆i

φij(τ)

ϕij(τ)

ϕij(tf )

ϑij(τ)

Figure 7.2: Hypothetical motion of qj(τ) with respect to qi(τ) for tδ ≤ τ ≤ tf . The larger black
dots represent the vectors (i.e., distances) qij(τ) and qij(tf ), whereas the gray dots denote q̂ij(τ)
and q̂ij(tf ).

where φij(τ) defines the angle between qij(tf ) and q̂ij(τ) for τ ∈ [tδ, tf ] and where we used the fact

that ‖q̇i(t)‖ ≤ ηi ∀t. Now, our main objective in the process of developing the proof is to compute

a lower bound on
∫ tf
tδ
e−ki(tf−τ) cosφij(τ)dτ . In order to do so, we would like to first find an upper

bound on φij(τ) at every instance of time τ . That is, we would like to define a function φij(τ)

such that φij(τ) ≤ φij(τ) for all τ ∈ [tδ, tf ]. Therefore, let us consider the illustration in Figure

7.2. Observe that φij(τ) is always upper bounded by the summation of the angle between qij(tf )

and qij(τ) and the angle between qij(τ) and q̂ij(τ), denoted as ϑij(τ) and ϕij(τ), respectively, i.e.,

‖φij(τ)‖ ≤ ‖ϑij(τ)‖ + ‖ϕij(τ)‖. Hence, a suitable function would be

φij(τ) = sup
t∈[tδ ,τ ]

‖ϑij(t)‖
︸ ︷︷ ︸

ϑij(τ)

+ sup
t∈[tδ,τ ]

‖ϕij(t)‖
︸ ︷︷ ︸

ϕij(τ)

where ϑij(τ) and ϕij(τ) are yet to be determined.

Now, consider ϑij(τ). Since ‖qij(τ)‖ ≥ rǫ ∀ τ ∈ [tδ, tf ] and the velocities of the agents are

bounded, we have that ϑij(τ) attains its maximum when the agents approach each other at maxi-
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−rǫ rǫqi

q̂ij(tf )

qij(tf )

qij(tδ)

q̂ij(tδ)

∆i

∆i ϕij

ϕij

φij(tδ)

ϑij(tδ) = θi

Q̄(tf )

Q̄(tδ)

θirǫ

e1

e2

Ωǫ

Figure 7.3: Extreme case in Lemma 7.3.1. The agents approach each other at maximum speed
along the boundary of Ωǫ for τ ∈ [tδ, tf ].

mum speed along the boundary of Ωǫ, where Ωǫ =
{
q : q ∈ ℜ2n, ‖qij‖ < rǫ

}
(see Figure 7.3 for an

illustration). Then, using the arc-length formula to compute the maximum length traveled by the

agents and invoking its relation with the central angle ϑij we obtain

ϑij(τ) ≤
∫ tf
τ ‖q̇ij(s)‖ ds

rǫ
≤
∫ tf
τ (ηi + ηj)ds

rǫ
=

(ηi + ηj)(tf − τ)

rǫ
= ϑij(τ)

for τ ∈ [tδ, tf ]. Note that ϑij(tδ) =
(ηi+ηj)δi

rǫ
= θi while ϑij(tf ) = 0. Now, we are left to find ϕij(τ).

Since ‖qij(τ)‖ ≥ rǫ ∀ τ ∈ [tδ, tf ] and ‖di‖ ≤ ∆i < r, we have that ϕij(τ) is maximized when

qij(τ) is close to the boundary of Ωǫ. Thus, let us consider the diagram in Figure 7.3, which details

this case. First, observe that the maximum angle ϕij(τ) is constant whenever qij(τ) lies on the

boundary of Ωǫ. Consequently, it is sufficient to find ϕij(τ) when τ = tδ. To this end, let us choose

the vectors e1 and e2 as an orthonormal basis for the plane containing qij(tδ) and q̂ij(tδ) and let

e2 be oriented along the same direction and origin as qij(tδ), as shown in Figure 7.3. Then, qij(tδ)

can be rewritten as qij(tδ) = rǫe2. Similarly, q̂ij(tδ) can be written as q̂ij(tδ) = c1e1 + c2e2, where

c1 and c2 are constants. Now, from the constraint ‖q̂ij(tδ)− qij(tδ)‖ ≤ ∆i (i.e., q̂ij(tδ) ∈ Q̄(tδ),

where Q̄(t) = {q̄ : q̄ ∈ ℜ2n, ‖qij(t)− q̂ij(t)‖ ≤ ∆i for q̄T = [qT
ij , q̂

T
ij ]

T ), we have that c1 and c2
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must satisfy the following equation:

c21 + (c2 − rǫ)
2 ≤ ∆i.

Likewise, we have that ϕij is maximized when the ratio |c1/c2| attains its maximum. It is easy to

verify that such conditions are satisfied when

c1 =± ∆i

rǫ

√

r2ǫ −∆2
i , c2 =

r2ǫ −∆2
i

rǫ
.

Therefore, ϕij(τ) = ϕij can be computed as

ϕij=cos−1

(
qij(tδ)

T q̂ij(tδ)

‖qij(tδ)‖ ‖q̂ij(tδ)‖

)

= cos−1





√

r2ǫ −∆2
i

rǫ



.

Now, let us return to (7.8). Since ϑij(τ) ≤ θi < sin−1

(√
r2ǫ−∆2

i

rǫ

)

and ϕij(τ) = cos−1

(√
r2ǫ−∆2

i

rǫ

)

,

we have that φij(τ) = ϑij(τ) + ϕij(τ) <
π
2 . Therefore, cosφij(τ) ≥ cosφij(τ) > 0 for all τ and

∫ tf

tδ

e−ki(tf−τ) cosφij(τ)dτ ≥
∫ tf

tδ

e−ki(tf−τ) cosφij(τ)dτ

=
1

k2i + ω2
ij

(
ki cosφij(tf ) + ωij sinφij(tf )

)

− ekiδi

k2i + ω2
ij

(
ki cosφij(tf ) + ωij sinφij(tδ)

)
(7.9)

where we used the fact that φ̇ij(t) = ωij = −ηi+ηj
rǫ

is constant. Also note that φij(tf ) = ϕij and

hence

cosφij(tf ) = cosϕij =

√

r2ǫ −∆2
i

rǫ

sinφij(tf ) = sinϕij =
‖qij(tδ)× q̂ij(tδ)‖
‖qij(tδ)‖ ‖q̂ij(tδ)‖

=
∆i

rǫ
.

In order to evaluate cosφij(tδ) and sinφij(tδ), let us rewrite qij(tf ) using e1 and e2 as orthonormal

basis, i.e.,

qij(tf ) =rǫ sin θie1 + rǫ cos θie2.
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Then, we have

cosφij(tδ) = cos(θi + ϕij) =
qij(tf )q̂ij(tδ)

‖qij(tf )‖ ‖q̂ij(tδ)‖
=

√

r2ǫ −∆2
i cos θi −∆i sin θi

rǫ

sinφij(tδ) = sin(θi + ϕij) =
‖qij(tf )× q̂ij(tδ)‖
‖qij(tf )‖ ‖q̂ij(tδ)‖

=

√

r2ǫ −∆2
i sin θi +∆i cos θi

rǫ

and returning to (7.9), we obtain

∫ tf

tδ

e−ki(tf−τ) cosφij(τ)dτ ≥ 1

rǫ(k2i + ω2
ij)

(

ki

√

r2ǫ −∆2
i + ωij∆i − e−kiδiki

√

r2ǫ −∆2
i cos θi

+e−kiδiki∆i sin θi − e−kiδiωij

√

r2ǫ −∆2
i sin θi − e−kiδiωij∆i cos θi

)

.

Therefore, substituting the above equation into (7.8) yields (7.7), which completes the proof.

A more conservative yet simpler lower bound on βij(t) than the one given by (7.7) can be

computed. Revisiting (7.9), we can alternatively obtain that

∫ tf

tδ

e−ki(tf−τ) cosφij(τ)dτ ≥e−kiδi

∫ tf

tδ

cosφij(τ)dτ

=− rǫe
−kiδi

ηi + ηj

(
sinφij(tf )− sinφij(tδ)

)

=e−kiδi

√

r2ǫ −∆2
i sin θi +∆i(cos θi − 1)

ηi + ηj
.

Then, substituting the above inequality into (7.8) would yield

βij(tf ) ≥‖qi(tf )− qj(tf )‖ e−kiδi



µ̄i

√

r2ǫ −∆2
i sin θi +∆i(cos θi − 1)

ηi + ηj
− ηi



 . (7.10)

The above lower bound on βij is certainly more conservative that the one previously stated in

Lemma 7.3.1. However, (7.10) is easier to evaluate than (7.7), which simplifies the design process

of the collision avoidance control inputs, as will be shown later in this section.

Remark 7.3.1. Mathematically, we can interpret
βij(t)

‖qij(t)‖ as the scalar projection of the velocity

vector q̇i onto the collision threat vector qij. Accordingly, we can say that the above lemma provides

an indication of the direction of the ith agent’s velocity vector with respect to the collision threat.
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For instance, if for some time tf , βij(tf ) > 0, then we can conclude that at time tf the ith agent

is moving away from the jth agent.

Having established Lemma 7.3.1, we now proceed to state the main results of this paper. We

first start with the noncooperative case, that is, the scenario in which only one agent implements

the avoidance control.

Theorem 7.3.1 (Noncooperative Collision Avoidance with Uncertainties). Consider the two dy-

namical systems in (7.1). Assume that the velocities of the second agent are bounded by η2 ≥ 0 and

let the control input for the first agent be given by (7.4) and (7.6) with k1 =
µ̄1

η1
> 0. Suppose there

exist constants η1 > η2, r ≥ r∗, ǫ > 0, and θ1 ∈
(

0, sin−1

(√
r2ǫ−∆2

1

rǫ

))

such that

r̄1 = (θ1 + 1)(r + ǫ) < R1 −∆1 (7.11)

and

−e−k1δ1

(

k1

√

r2ǫ −∆2
1 cos θ1 − k1∆1 sin θ1 + ω12

√

r2ǫ −∆2
1 sin θ1 + ω12∆1 cos θ1

)

+ k1

√

r2ǫ −∆2
1 + ω12∆1 −

rǫ
µ̄1

(k21 + ω2
12)
(

η2 + e−k1δ1η1

)

≥ 0. (7.12)

Then, if q(0) /∈ W1 ∪Ω for q(t) = [q1(t)
T ,q2(t)

T ]T , ‖q̇1(0)‖ ≤ η1, and ‖d1(t)‖ ≤ ∆1, we have that

q(t) /∈ Ω ∀t ≥ 0.

Proof. Consider the system in (7.1) with control input given by (7.4) and (7.6) for i = 1. Assume

that the second agent’s velocity is bounded by some η2 ≥ 0 and that (7.11) and (7.12) hold. Let

k1 = µ̄1

η1
where η1 > η2 and assume that ‖q̇1(0)‖ ≤ η1. Applying Lemma 7.2.1 we have that

‖q̇1(t)‖ ≤ η1 ∀t ≥ 0. Now, let us consider the following Lyapunov candidate function

V (t) =
1

4(‖q12(t)‖2 − r2)2
. (7.13)

Taking its time derivative yields

V̇ (t) =
q12(t)

T q̇2(t)−β12(t)
(‖q12(t)‖2 − r2)3

≤ ‖q12(t)‖ η2 − β12(t)

(‖q12(t)‖2 − r2)3
. (7.14)

Now, let q(0) /∈ W1 ∪ Ω and suppose that for some time t > 0, ‖q12(t)‖ → rǫ = r + ǫ from above.

Since ‖q12(0)‖ > r̄1 and the velocities of the agents are bounded, it will take the agents some time
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∆t to reduce their distance from r̄1 to rǫ. Therefore, we have that q(τ) ∈ W1 ∀τ ∈ [t − ∆t, t],

where it is easy to demonstrate that ∆t ≥ δ1 = r̄1−rǫ
η1+η2

= θ1rǫ
η1+η2

. Then, applying Lemma 7.3.1 and

using (7.11) and (7.12), it is easy to show that β12(t) ≥ ‖q12(t)‖ η2. Returning to (7.14), we finally

obtain that V̇ (t) ≤ 0 for ‖q12‖ ≤ rǫ. The fact that q12(t) is continuous and V̇ (t) is non-positive

for ‖q12(t)‖ ≤ rǫ implies that V (t) < ∞ (i.e., V (t) is finite for any t ≥ 0). Hence, the solutions of

q12(t) are uniformly ultimately bounded by rǫ, which further implies that q(t) /∈ Ω for all t ≥ 0.

Finding a suitable set of parameters r, ǫ, η1, and θ1 (or equivalently, r̄1) satisfying (7.11) and

(7.12) can result in a long iterative process. The following claim introduces a more conservative

yet simple set of inequalities constraints that will suffice to guarantee collision avoidance in a

noncooperative scenario.

Corollary 7.3.1. Assume ∃ η1 > η2, ǫ > 0, and θ1 ∈
(

0, sin−1

(√
r2ǫ−∆2

1

rǫ

))

such that (7.11) and

r ≥ max







r∗,

√
√
√
√
√

(

α1

(

1 + η2
η1
e

θ1(R1−∆1)
α1

)

+∆1(1− cos θ1)

)2

sin2 θ1
+∆2

1 − ǫ







(7.15)

are satisfied, where α1 = η1(η1+η2)
µ̄1

. Suppose that q(0) /∈ W1 ∪ Ω, ‖q̇1(0)‖ ≤ η1, and ‖d1(t)‖ ≤ ∆1.

Then, q(t) /∈ Ω ∀t ≥ 0.

Proof. The proof follows similar to that of Theorem 7.3.1. It is sufficient to show that β12(t) ≥
‖q12(t)‖ η2 for ‖q12(t)‖ → rǫ when using the new inequality constraint in (7.15). Therefore, let us

consider (7.10). Using (7.11) and (7.15) yields

β12(t) ≥‖q12(t)‖ η2e−k1δ1e
θ1(R1−∆1)

α1 = ‖q12(t)‖ η2e
θ1(R1−∆1−rǫ)

α1 > ‖q12(t)‖ η2.

Citing similar arguments as in Theorem 7.3.1, we then conclude that q(t) /∈ Ω ∀t ≥ 0.

Up to now, we have addressed the case of noncooperative avoidance. The following theorem

establishes a set of sufficient conditions under which cooperative collision avoidance can be claimed.

Theorem 7.3.2 (Cooperative Collision Avoidance with Uncertainties). Consider the two dynami-

cal systems in (7.1) with control inputs (7.4) and (7.6). Let ki =
µ̄i

ηi
and suppose q(0) /∈ W1∪W2∪Ω,

‖q̇i(0)‖ ≤ ηi, and ‖di(t)‖ ≤ ∆i for i ∈ {1, 2}. Furthermore, assume that for i ∈ {1, 2} there exist
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ηi > 0, r ≥ r∗, θi ∈
(

0, sin−1

(√
r2ǫ−∆2

i

rǫ

))

and an arbitrarily small constant ǫ > 0 such that

r̄i = (θi + 1)(r + ǫ) < Ri −∆i (7.16)

and



ki +
ωij∆i

√

r2ǫ −∆2
i



 ekiδi −
rǫ(k

2
i + ω2

ij)

ki

√

r2ǫ −∆2
i

≥



ki +
ωij∆i

√

r2ǫ −∆2
i



 cos θi +



ωij −
ki∆i

√

r2ǫ −∆2
i



 sin θi

(7.17)

for all i, j, i 6= j. Then, q(t) /∈ Ω ∀t ≥ 0.

Proof. Consider (7.1) with control inputs (7.4) and (7.6). Since ki =
µ̄i

ηi
and ‖q̇i(0)‖ ≤ ηi, we can

apply Lemma 7.2.1 and conclude that ‖q̇i(t)‖ ≤ ηi for all i, t ≥ 0. Now, consider the Lyapunov

candidate function in (7.13). The time derivative of (7.13) along the trajectories of (7.1) is given

by

V̇ (t) =− β12(t) + β21(t)

(‖q12(t)‖2 − r2)3
. (7.18)

Our approach to prove collision avoidance will be to show that βij(t) is positive semi-definite for

i, j ∈ {1, 2}, i 6= j, which will be used to demonstrate that ‖qij(t)‖ is bounded from below. For

simplicity, let us consider first the case of the ith agent. Assume that q(0) /∈ W1 ∪ W2 ∪ Ω and

suppose that for some time t ≥ δi > 0, ‖q12(t)‖ → r + ǫ = rǫ from above. Following similar

arguments as in Theorem 7.3.1, we have that it will take a time ∆t ≥ δi =
r̄i−rǫ
ηi+ηj

= θirǫ
ηi+ηj

for the

agents to approach each other from a distance r̄i to a distance rǫ. Therefore, [qi(τ)
T ,qj(τ)

T ]T ∈ Wi

for τ ∈ [t− δi, t]. Consequently, we can apply Lemma 7.3.1 and, after some manipulation and use

of (7.16) and (7.17), we can easily show that βij(t) ≥ 0. Since the above result holds ∀i, j, i 6= j,

we have that

V̇ (t) ≤ 0, for ‖q12(t)‖ ≤ rǫ.

The fact that q12(t) is continuous and V̇ (t) is non-positive for ‖q12(t)‖ ≤ rǫ implies that V (t) <∞.

Hence, we can conclude that q12(t) is uniformly ultimately bounded by rǫ, which also means that

q(t) /∈ Ω for all t ≥ 0.
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Similar to the noncooperative case, obtaining a set of parameters conforming to (7.17) may

require the use of extensive iteration. Therefore, it is in the designer’s best interest to find simpler

sufficient conditions that will guarantee collision avoidance. The following corollary provides such

conditions for the cooperative case.

Corollary 7.3.2. Assume ∃ ǫ > 0 and θi ∈
(

0, sin−1

(√
r2ǫ−∆2

i

rǫ

))

such that (7.16) holds and

r ≥ max






r∗,

√
(
αi +∆i(1− cos θi)

sin θi

)2

+∆2
i − ǫ






, ∀i ∈ {1, 2} (7.19)

where αi =
ηi
µ̄i
(ηi + ηj). Suppose that q(0) /∈ W1 ∪W2 ∪ Ω, ‖di(t)‖ ≤ ∆i, and ‖q̇i(0)‖ ≤ ηi. Then,

q(t) /∈ Ω ∀t ≥ 0.

Proof. The proof follows similar to that of Corollary 7.3.1 and Theorem 7.3.2. It suffices to show

that βij(t) ≥ 0 when ‖qij(t)‖ → rǫ under the given assumptions. To this end, let us revisit (7.10).

By substituting (7.19) into (7.10), we obtain that βij(t) ≥ 0. Since this results holds ∀i, j we can

follow the proof of Theorem 7.3.2 and conclude that q(t) /∈ Ω ∀t ≥ 0.

Note that the previous statements provide sufficient conditions for collision avoidance in non-

cooperative and cooperative scenarios considering bounded sensing uncertainties. The statements

require the existence of constants θi and r such that a series of inequalities are satisfied. Yet, we

have not provided guidelines on how to optimally choose θi and r. In general, we would like to

choose θi and r such that the extent of the Conflict Region is minimized. That is, we want to

minimize the distance at which the agents start applying maximum avoidance control. Decreasing

the size of r̄i will reduce the attenuation on the objective control inside the Detection Region.

7.4 Simulation Examples

In this section we present two illustrative examples. The first example addresses a noncooperative

avoidance control scenario between two agents. The second example evaluates the extension of the

proposed control strategy to a cooperative group comprising four agents.
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7.4.1 Example 1: Noncooperative Avoidance Control

Consider a pair of 2-DOF agents with double-integrator dynamics (7.1) and control inputs bounded

by µ1 = µ2 = 60 m/s2. Let the overall control input for both agents be given as in (7.4) with

k1 = 7.5 s−1 and k2 = 15.0 s−1. Then, the velocities of the first and second agent can be shown

to be bounded by η1 = 4 m/s and η2 = 2 m/s, respectively. Now, consider the case where the

first agent implements the proposed avoidance control law (7.6), whereas the second agent does

not implement an avoidance strategy, i.e., ua
2(t) = 0 ∀t ≥ 0. Assume the minimum separation

distance and the detection radius for the first vehicle to be r∗ = 1 m and R1 = 6 m, respectively.

Furthermore, consider the event in which the sensing uncertainty for the first agent is due to a

constant sensing delay and is characterized by

d1(t) =−
∫ t

t−T1

q̇2(τ)dτ

where T1 = 0.40 s denotes the detection delay. It is easy to verify that ‖d1‖ ≤ ∆1 = 0.8 m. Then,

the parameters for the avoidance control input ua
1 can be computed according to Theorem 7.3.1,

which yields that the smallest conflict radius r̄1 is obtained when θ1 = 0.81 rad and r+ ǫ = 1.94 m.

Choosing ǫ = 0.01 m we obtain that r = 1.93 m and r̄1 = 3.51 m.

Finally, we take the objective control input for both agents to be computed as

uo
i =







ũo
i , if ‖ũo

i ‖ ≤ µ̄i = 30 m/s−2

ũo
i

‖ũo
i ‖
, otherwise

, ũo
i = Kp(q

d
i − qi) (7.20)

where qd
1 = [8 m, 7 m]T and qd

2 = [−8 m,−8 m]T are the agents’ desired final configurations

and Kp = 6 s−1 is the control gain. The initial conditions for the system are set to q1(0 s) =

[−7 m,−8 m]T , q2(0 s) = [8 m, 8 m]T , and q̇i(0 s) = [0 m/s, 0 m/s]T . Therefore, the main control

objective is to safely drive both systems to a point near each other’s initial location.

The response of the two-agent system is illustrated in Figure 7.4. The agents start traveling

toward each other near their respective maximum speed, according to their objective control laws.

Once the second agent enters the first vehicle’s conflict region, the first vehicle starts retreating in

opposite direction to avoid a possible collision as illustrated in the right-hand side plot. Meanwhile,

the second agent continues undisturbed toward its final destination. Once the second agent is out

of the first agent’s Detection Region, the first vehicle retakes its path toward its final configuration.
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Figure 7.4: Noncooperative collision avoidance example. The left and right plots illustrate the
motion of both agents in the intervals t ∈ [0.0 s, 3.2 s] and t ∈ [3.2 s, 20.0 s], respectively. The
agents’ positions at the initial time of each simulation step in both plots are denoted by the
dark-colored circles. The Avoidance and Conflict Region for the first agent at the end of the
simulation times are indicated by the solid and dotted lines (i.e., circles), respectively.
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Figure 7.5: Distance between agents for the noncooperative collision avoidance example.

Figure 7.5 plots the distance between both agents at all times. As depicted in the plot, the first

vehicle successfully evaded a collision with the other agent.

7.4.2 Example 2: Cooperative Avoidance Control for a Group of Four Agents

In this example, we evaluate a cooperative avoidance control scenario with four agents. The agents

have 2-DOF with dynamics governed by (7.1); control inputs given as in (7.4) with µ1 = µ2 =

60 m/s2, µ3 = µ4 = 80 m/s2, k1 = k2 = 7.5 s−1, and k3 = k4 = 10.0 s−1; and velocities that can be

shown to be equally bounded by ηi = 4 m/s. The avoidance control law ua
i is considered to be an
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extension of (7.6) and is computed as

ua
i =







∑4
j,j 6=iu

a
ij , if

∥
∥
∥
∑4

j,j 6=iu
a
ij

∥
∥
∥ ≤ µ̄i

µ̄i

∑4
j,j 6=i u

a
ij

∥
∥
∥
∑4

j,j 6=i u
a
ij

∥
∥
∥

, otherwise

where

ua
ij =







0, if ‖qi − q̂j‖ ≥ Ri

Ka
i (R

2
i − ‖qi − q̂j‖2)

(‖qi − q̂j‖2 − r2)3
(qi − q̂j), if r < ‖qi − q̂j‖ < Ri

µ̄i
qi − q̂j

‖qi − q̂j‖
, if 0 < ‖qi − q̂j‖ ≤ r

not defined, if ‖qi − q̂j‖ = 0

.

The reader can easily verify that the above control law simplifies to (7.6) when there is only one

agent inside the detection zone. It is assumed that the minimum separation distance and the

detection radii for all agents is r∗ = 1 m and Ri = 5 m, respectively. We further assume that

each agent can sample the position of other agents and obstacles with a frequency of fs = 10 Hz

and subjected to an additional constant process delay of Ts = 0.20 s as well as a random noise ζi

with uniform distribution on the subset Zi = {ζi : ζi ∈ ℜ2, ‖ζi‖ < 0.3 m}. Therefore, the sensing

uncertainties for the agents can be bounded by

‖di(t)‖ ≤ ∆i = Tsmax
j 6=i

{ηj}
︸ ︷︷ ︸

Constant Delay
0.8 m

+ f−1
z max

j 6=i
{ηj}

︸ ︷︷ ︸

Zero−Order−Hold
0.4 m

+sup
t≥0

‖ζi(t)‖
︸ ︷︷ ︸

Noise
0.3 m

= 1.5 m.

The control parameters are computed according to Theorem 7.3.2 as r + ǫ = 2.07 m, θ1 = θ2 =

0.57 rad, and θ3 = θ4 = 0.50 rad. By choosing ǫ = 0.01 m we then have that r = 2.06 m,

r̄1 = r̄2 = 3.25 rad, and r̄3 = r̄4 = 2.85 rad. Finally, the objective control input for all agents is

taken as in (7.20) with Kp = 8 s−2, qd
1 = [0 m, 0 m]T , qd

2 = [10 m, 10 m]T , qd
3 = [−8 m, 10 m]T ,

and qd
4 = [−10 m,−10 m]T . The four agents are initialized from rest with q1(0 s) = [0 m, 0 m]T ,

q2(0 s) = [−10 m,−10 m]T , q3(0 s) = [10 m,−8 m]T and q4(0 s) = [10 m, 10 m]T .

Figure 7.6 shows the response of the multi-agent system. As can be seen from the left-top graph;

the second, third, and fourth agents start moving toward the center of the graph according to their
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Figure 7.6: Cooperative collision avoidance example. The left-top, right-top, left-bottom, and
right-bottom plots illustrate the motion of the four agents in the intervals t ∈ [0.0 s, 2.4 s],
t ∈ [2.4 s, 8.0 s], t ∈ [8.0 s, 13.4 s], and t ∈ [13.4 s, 25.0 s], respectively.

corresponding objective control inputs, while the first agent remains stationary at the center in

agreement with its control goal. As soon as the agents enter each other’s detection and, eventually,

conflict regions, all vehicles slow down their motion and start moving in counter-clockwise direction

to avoid a collision (see right-top and left-bottom plots). Once the conflict has been resolved, each

agent retakes its course toward its final destination, as illustrated in the right-bottom plot of Figure

7.6. The distance among all agents is illustrated in Figure 7.7. None of the agents entered the

avoidance region, which implies that no collision took place despite sensing uncertainties of up to

1.5 m.
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Figure 7.7: Distances among agents for the cooperative collision avoidance example.

7.5 A Cooperative Collision Avoidance Experimental Example

In addition to the previous two examples, we now present experimental results obtained by applying

the proposed collision avoidance control law to a pair of unmanned vehicles. The vehicles, illustrated

in Figure 7.8, are two E-Flite µ-CX coaxial helicopters with a 0.190 m of rotor diameter and 0.200

m of length. The 3-DOF linearized and simplified models for the two aircraft when in hover are

assumed to be identical and given by

q̈i(t) =
ūi(t)

m
= ui(t) (7.21)

where m = 0.028 kg and qi(t) = [xi(t), yi(t), zi(t)] (rotational motion around the z axis, i.e., yaw,

has been ignored). The helicopters’ control inputs are assumed to be limited by µi = 6 m/s2.

The minimum safety distance between both vehicles is r∗ = 0.200 m and the detection radii for

the agents are Ri = 1.210 m. Uncertainties are considered to originate due to a communication

sensing delay almost equal for the two vehicles and which fluctuates between 0.48 s and 0.50 s. The

maximum attained velocity reported for both aircraft at maximum constant control µ̄i = 3 m/s2

with ki = 7.0 s−1 was ηi = 0.6 m/s. Therefore, sensing uncertainties ∆i can be estimated to

be upper bounded by 0.300 m. The collision avoidance control parameters, chosen according to

Theorem 7.3.2 for ǫ = 10−3 m and θi = 0.73 rad, are r = 0.440 m and r̄i = 0.760 m. The objective
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Figure 7.8: Two E-Flite µ-CX coaxial helicopters. Copyright c© 2010 Boeing. All rights reserved.

control input is a Proportional-type controller as in (7.20) with gain

Kp =








3.8 0 0

0 3.8 0

0 0 1.5







× 10−3 s−2

and desired configurations qd
1 = [0.9 m, 0.0 m, 0.6 m] and qd

2 = [−0.9 m, 0.0 m, 0.6 m].

The response of the two helicopters in Cartesian coordinates2 x, y, and z is illustrated in Figure

7.9. The aircraft initialize from opposite positions and start traveling toward each other according

to the objective control (see left-top plot). As they enter each other’s Conflict Regions, the two

vehicles decelerate while trying to solve the potential conflict. As noted in the right-top plot of

Figure 7.9, after their initial retreat, the agents approached each other once again coming relatively

close to their Avoidance Regions. Eventually, the vehicles are able to safely resolve the conflict

and continue toward their final destinations (see left- and right-bottom plots). Figure 7.10, which

depicts the 2-norm of the distance between both agents, confirms that the two vehicles successfully

evaded entering each other’s Avoidance Region. Note that the shortest distance between both

aircraft took place at t = 6.04 s.

2The z axis represents vertical motion. See Figure 7.8 for reference.
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Figure 7.9: Cooperative collision avoidance experimental example. The left-top, right-top,
left-bottom, and right-bottom plots illustrate the motion in 3-D for the two aircraft in the
intervals t ∈ [0.00 s, 3.66 s], t ∈ [3.66 s, 6.04 s], t ∈ [6.04 s, 9.87 s], and t ∈ [9.87 s, 12.98 s],
respectively. The position of the first helicopter, time-spaced by approximately 0.18 s, is
represented by the orange circular markers, whereas the position information of the second agent
is traced with red markers. Positions at the initial time of each plotted interval are indicated by
the darker-colored markers. The agents’ Avoidance and Conflict Regions at the end of each
plotted interval are depicted by the inner and outer translucent spheres, respectively.

Di

Wi

Ω

t (s)

‖q
1
2
(t
)‖

(m
)

0 2 4 6 8 10 12
0

0.5

1

1.5

2

2.5

3
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CHAPTER 8

COLLISION AVOIDANCE CONTROL: MULTI-AGENT

SYSTEMS

Continuing with the topic of collision avoidance under sensing uncertainties and detection delays,

we now formally extend the avoidance control ideas presented in the previous chapter to a group of

N Lagrangian systems. We design decentralized, real-time, cooperative avoidance control laws and

provide sufficient conditions to guarantee collision-free trajectories under the presence of bounded

sensing uncertainties and limited control inputs.

8.1 Multi-Lagrangian System with Bounded Control Inputs and Sensing

Uncertainties

In this chapter, we address the task of controlling a group of N n-DOF vehicles with nonlinear

Lagrangian dynamics given by

Mi(qi(t))q̈i(t) + Ci(qi(t), q̇i(t))q̇i(t) =ui(t) (8.1)

where qi ∈ ℜn are the generalized coordinates,Mi ∈ ℜn×n are the positive definite inertia matrices,

Ci ∈ ℜn×n are the centrifugal and Coriolis matrices, and ui ∈ Ui ⊂ ℜn are the control inputs for

i = {1, · · · , N}. We assume that gravitational forces are negligible or compensated via active

control and that the magnitudes of the control inputs are radially bounded, i.e., ∃µi > 0 such that

‖ui(t)‖ ≤ µi ∀i ∈ {1, · · · , N}, t ≥ 0. Moreover, we assume that each agent can locate other near

agents with a known bounded error. That is, we suppose that the ith agent is able to sense the jth

agent as being located at q̂i
j(t) = qj(t) + dij(t) whenever the jth agent is sufficiently close to the

ith agent. The time-varying vector dij ∈ ℜn represents the uncertainty on the localization process

(e.g., delays, noise, and quantization) and is considered to be upper bounded by some positive

constant ∆i, i.e., ‖dij(t)‖ ≤ ∆i, ∀t ≥ 0 and j 6= i.

Finally, we make the assumption that the dynamics of the agents satisfy Properties 2.2.1 to 2.2.3.
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8.2 Control Objective and Definitions

Our control goal is to design decentralized collision avoidance strategies that guarantee the safe

navigation of a group of vehicles with sensing uncertainties. Specifically, we would like to guarantee

a minimum safe distance between any two vehicles at all times independently of measurement

errors, delays, and noise incurred in the detection process. Additionally, we would like to design

the avoidance control strategy to be active only when another vehicle or obstacle is within a short

distance. With this notion of relative distances in mind, we recall the following definitions from

Chapters 6 and 7.

First, we define the group Ni as the set of agents in the vicinity of the ith vehicle. We assume

that any jth agent in Ni can be located by the ith vehicle if the former lies within the bounded

Detection Region, Dij , of the latter given as

Dij =
{
q : q ∈ ℜ2n, ‖qi − qj‖ ≤ Ri

}

where Ri > 0 is the ith vehicle’s detection radius and q(t) = [qT
i (t),q

T
j (t)]

T . In addition, we define

an Antitarget Region, Tij, as the collision zone for the ith agent, i.e.,

Tij =
{
q : q ∈ ℜ2n, ‖qi − qj‖ ≤ r∗ij

}

where r∗ij ∈ (0, Ri) is the minimum safe distance between the ith vehicle and any jth agent in Ni.

Similarly, we define an Avoidance Region, Ωij ⊇ Tij, as a restricted zone for which any agent in Ni

is forbidden. That is,

Ωij =
{
q : q ∈ ℜ2n, ‖qi − qj‖ ≤ rij

}

where rij ∈ [r∗ij , Ri) is the desired minimum distance between the ith and jth agents. Therefore,

any collision avoidance strategy designed to avoid Ωij , will also avoid Tij.
Finally, since the control input and acceleration for the ith vehicle are bounded, any collision

avoidance control law must be effected with enough anticipation, such that the ith vehicle has

sufficient time to decelerate and prevent a collision. Hence, we define a Conflict Region, Wij , as

Wij =
{
q : q ∈ ℜ2n, rij < ‖qi − qj‖ ≤ r̄ij

}
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where r̄ij ∈ (rij , Ri) is a lower bound on the distance that the ith agent can come from the jth

vehicle and still be able to decelerate and avoid Ωij . Therefore, any collision avoidance strategy

for the ith agent must take effect as soon as qi and qj enter Wij.

Having defined the Antitarget, Avoidance, Conflict, and Detection regions, we can state the

control objective as follows. Given {∆1, · · · ,∆N}, T =
⋃

i∈N,j∈Ni
Tij , and D =

⋃

i∈N,j∈Ni
Dij,

design control inputs {ui(t), · · · ,uN (t)} such that [qT
1 (t), · · · ,qT

N (t)]T /∈ Ω =
⋃

i∈N,j∈Ni
Ωij for all

t ≥ 0, where Ω ⊇ T .

For simplicity, we define R = mini{Ri}, r∗ = maxi{r∗ij}, and ∆ = maxi{∆i}, and let r̄ij = r̄

∀i ∈ {1, · · · , N}, j ∈ Ni.

8.3 Control Framework

In order to achieve our control objective, we consider the following control input

ui =uo
i + ua

i , ‖ui‖ ≤ µi (8.2)

where uo
i and ua

i are the objective and collision avoidance control laws, respectively. The objective

input is taken to be a stable control law designed to achieve a particular task such as trajectory

tracking or set-point regulation. The collision avoidance input is a control policy aimed to guarantee

collision-free transit among agents independently of bounded sensing uncertainties. Ideally, ua
i must

be designed such that it does not interfere with the objective control uo
i when no potential collision

is present.

According to this formulation, we propose the objective control law to be computed as

uo
i = −µ̄i

∂V o
i (qi)

∂qi
(8.3)

where V o
i is an objective function satisfying the following two properties.

Property 8.3.1. 0 ≤ V o
i (qi) ≤ αi, for some αi > 0.

Property 8.3.2. ‖∂V o
i (qi)/∂qi‖ ≤ βi, for some βi > 0.
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On the other hand, we propose the collision avoidance control to be given as

ua
i = −µ̄i

∑

j∈Ni

∂V a
ij(qi, q̂

i
j)

∂qi
−
∑

j∈Ni

γiθij(q̇i,qi, q̂
i
j)

q̇i

‖q̇i‖
(8.4)

where

µ̄i =
µi

N − 1 + ε+ βi
, (8.5)

γi = εµ̄i, (8.6)

θij(q̇i,qi, q̂
i
j) =







1
N−1 , if ‖q̇i‖ > 0 and

∥
∥
∥qi − q̂i

j

∥
∥
∥ ≤ R

0, otherwise

(8.7)

for some ε ∈ [0, 1) (ideally ε < β, where β = mini{βi}). The avoidance function V a
ij , illustrated in

Figure 8.1, is defined as

V a
ij(qi,qj) =







R∆ + h

2
− ‖qi − qj‖ , if ‖qi − qj‖ ≤ h

(‖qi − qj‖ −R∆)
2

2(R∆ − h)
, if h < ‖qi − qj‖ ≤ R∆

0, otherwise

(8.8)

where R∆ = R − ∆ and h = r̄ + ∆ < R∆. The reader can easily verify that V a
ij is positive

semi-definite, almost everywhere continuously differentiable, and that its partial derivative is given

by

∂V a
ij(qi,qj)

∂qi
=







0, if ‖qi − qj‖ > R∆
(

1− R∆

‖qi − qj‖

)
qi − qj

R∆ − h
, if h < ‖qi − qj‖ ≤ R∆

− qi − qj

‖qi − qj‖
, if 0 < ‖qi − qj‖ ≤ h

not defined, if ‖qi − qj‖ = 0

. (8.9)

Note that in contrast to the avoidance function and control inputs in [102], both V a
ij and ua

i

(proposed herein and depicted in Figure 8.1) are bounded. Moreover, as the next lemma will show,

the gradient of the avoidance function (8.9) is locally Lipschitz.
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‖qi − qj‖

V
a ij
(q

i,
q
j
)

‖qi − qj‖

∥ ∥
∂
V

a ij
(q

i,
q
j
)/
∂
q
i∥ ∥

r∗ r r̄ h R∆ Rr∗ r r̄ h R∆ R
0

1

0

R∆+h
2

Figure 8.1: Bounded avoidance function and bounded avoidance control.

Lemma 8.3.1. The gradient ∂V a
ij(qi,qj)/∂qi is Lipschitz continuous for all qj ∈ X = {qj : qj ∈

ℜn, ‖qi − qj‖ ≥ r −∆} with Lipschitz constant given by

L = max

{
3 + 2

√
n− 1

4(r −∆)
,min

{
1

h
+

R∆
√
n

h(R∆ − h)
,

1

R∆ − h
+

(3 + 2
√
n− 1)R∆

4h(R∆ − h)

}}

. (8.10)

Proof. Let akl denote the klth entry of
∂2V a

ij(qi,qj)

∂qi∂qj
. Then, we have that (8.9) is locally Lipschitz

continuous on ℜn × X if

∥
∥
∥
∥
∥

∂2V a
ij(qi,qj)

∂qi∂qj

∥
∥
∥
∥
∥
=
∥
∥[akl]n×n

∥
∥ ≤ L

for some nonnegative constant L, except possibly on a set of Lebesgue measure zero. In addition,

since ∂2V a
ij(qi,qj)/∂qi∂qj is symmetric, we have that

∥
∥
∥
∥
∥

∂2V a
ij(qi,qj)

∂qi∂qj

∥
∥
∥
∥
∥
∞

=max
k

n∑

l=1

|akl| = max
l

n∑

k=1

|akl| =
∥
∥
∥
∥
∥

∂2V a
ij(qi,qj)

∂qi∂qj

∥
∥
∥
∥
∥
1

and, therefore,

∥
∥
∥
∥
∥

∂2V a
ij(qi,qj)

∂qi∂qj

∥
∥
∥
∥
∥
≤

√
√
√
√

∥
∥
∥
∥
∥

∂2V a
ij(qi,qj)

∂qi∂qj

∥
∥
∥
∥
∥
1

∥
∥
∥
∥
∥

∂2V a
ij(qi,qj)

∂qi∂qj

∥
∥
∥
∥
∥
∞

=

∥
∥
∥
∥
∥

∂2V a
ij(qi,qj)

∂qi∂qj

∥
∥
∥
∥
∥
1

.

Hence, the Lipschitz constant L is invariant under the use of ‖·‖1, ‖·‖, or ‖·‖∞.
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Now, let us divide the problem in three domains: X1 = {qj : qj ∈ ℜn, r −∆ ≤ ‖qi − qj‖ < h},
X2 = {qj : qj ∈ ℜn, h < ‖qi − qj‖ < R∆}, and X3 = {qj : qj ∈ ℜn, ‖qi − qj‖ > R∆}.

For qi = [qi1 , · · · , qin ]T ∈ ℜn and qj = [qj1 , · · · , qjn ]T ∈ X1 we have that

∥
∥
∥
∥
∥

∂2V a
ij(qi,qj)

∂qi∂qj

∥
∥
∥
∥
∥
1

=max
l

n∑

k=1

|akl|

where

akl =







‖qi − qj‖2 − (qik − qjk)
2

‖qi − qj‖3
, if k = l

−(qik − qjk)(qil − qjl)

‖qi − qj‖3
, if k 6= l

.

Therefore,

∥
∥
∥
∥
∥

∂2V a
ij(qi,qj)

∂qi∂qj

∥
∥
∥
∥
∥
1

≤

∣
∣
∣‖qi − qj‖2 − |qil − qjl|2

∣
∣
∣+ |qil − qjl|

∑n
k=1,k 6=l |qik − qjk |

‖qi − qj‖3

=
‖qi − qj‖2 − |qil − qjl|2 +

√
n− 1 |qil − qjl | ‖qi − qj‖

‖qi − qj‖3

It is easy to prove that the numerator is maximized when |qil − qjl | =
‖qi−qj‖

2 . Hence,

∥
∥
∥
∥
∥

∂2V a
ij(qi,qj)

∂qi∂qj

∥
∥
∥
∥
∥
1

≤‖qi − qj‖2 +
√
n−1
2 ‖qi − qj‖2 − 1

4 ‖qi − qj‖2

‖qi − qj‖3
=

3 + 2
√
n− 1

4 ‖qi − qj‖

and

∥
∥
∥
∥
∥

∂2V a
ij(qi,qj)

∂qi∂qj

∥
∥
∥
∥
∥
=

∥
∥
∥
∥
∥

∂2V a
ij(qi,qj)

∂qi∂qj

∥
∥
∥
∥
∥
1

≤ L1 =
3 + 2

√
n− 1

4(r −∆)
, for qi ∈ ℜn,qj ∈ X1.

Similarly, for the domain ℜn × X2 we have that

akl =







−‖qi − qj‖3 +R∆ ‖qi − qj‖2 −R∆(qik − qjk)
2

(R∆ − h) ‖qi − qj‖3
, if k = l

−R∆(qik − qjk)(qil − qjl)

(R∆ − h) ‖qi − qj‖3
, if k 6= l

.

114



Therefore,

∥
∥
∥
∥
∥

∂2V a
ij(qi,qj)

∂qi∂qj

∥
∥
∥
∥
∥
1

≤‖qi − qj‖2 (R∆ − ‖qi − qj‖) +R∆ |qil − qjl |
∑n

k=1 |qik − qjk |
(R∆ − h) ‖qi − qj‖3

≤‖qi − qj‖2 (R∆ − ‖qi − qj‖) +R∆ ‖qi − qj‖ ‖qi − qj‖1
(R∆ − h) ‖qi − qj‖3

≤R∆ − ‖qi − qj‖+R∆
√
n

(R∆ − h) ‖qi − qj‖

=
1

R∆ − h

(
R∆(1 +

√
n)

‖qi − qj‖
− 1

)

So for qi ∈ ℜn and qj ∈ X2, we have

∥
∥
∥
∥
∥

∂2V a
ij(qi,qj)

∂qi∂qj

∥
∥
∥
∥
∥
≤ 1

R∆ − h

(
R∆(1 +

√
n)

h
− 1

)

=
1

h
+

R∆
√
n

h(R∆ − h)
. (8.11)

Alternatively, we can compute a different upper bound for (8.11). We left to the reader to verify

that

∥
∥
∥
∥
∥

∂2V a
ij(qi,qj)

∂qi∂qj

∥
∥
∥
∥
∥
≤ 1

R∆ − h
+

R∆

R∆ − h

3 + 2
√
n− 1

4 ‖qi − qj‖
≤ 1

R∆ − h
+

(3 + 2
√
n− 1)R∆

4h(R∆ − h)
(8.12)

which becomes a less conservative upper bound on the Lipschitz property if h > (1+4
√
n−2

√
n−1)R∆

8 .

Therefore, by combining (8.11) and (8.12), we obtain that

∥
∥
∥
∥
∥

∂2V a
ij(qi,qj)

∂qi∂qj

∥
∥
∥
∥
∥
≤ L2 = min

{
1

h
+

R∆
√
n

h(R∆ − h)
,

1

R∆ − h
+

(3 + 2
√
n− 1)R∆

4h(R∆ − h)

}

.

Finally, since
∂V a

ij(qi,qj)

∂qi
≡ 0 for qi ∈ ℜn and qj ∈ X3, we have that L3 = 0. Therefore,

∥
∥
∥
∥
∥

∂2V a
ij(qi,qj)

∂qi∂qj

∥
∥
∥
∥
∥
≤ max{L1, L2, L3} = L

for all qi ∈ ℜn, qj ∈ X , except on the set qj ∈ {h,R∆} of measure zero. Thereby, we conclude

that (8.9) is locally Lipschitz continuous in qj for qj ∈ X with Lipschitz constant determined by

(8.10).
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8.4 Collision Avoidance Analysis

We now claim that the proposed collision avoidance control law, along with the control objective

input, guarantees collision-free trajectories for a group of N vehicles with bounded control inputs,

limited sensing range, and detection uncertainties.

Theorem 8.4.1 (Collision Avoidance for Multiple Agents with Sensing Uncertainties). Consider

the multi-Lagrangian system in (8.1) with control inputs given by (8.2) to (8.9). Suppose that

‖q̇i(0)‖ ≤ ηi, ‖qi(0)− qj(0)‖ ≥ R, and ‖dij‖ ≤ ∆ ∀i, j, i 6= j. Let ε ∈ [0, 1), L̄ ∈
(

0, ε
(N−1)∆

]

,

and choose r, h, and αi such that

i. r∗ ≤ (3+2
√
n−1)

4L̄
+∆ ≤ r < R∆,

ii. h ≤ h ≤ h̄, where

h = min

{

L̄R∆+1−
√

1+L̄2R2
∆−2L̄R∆(1+2

√
n)

2L̄
,
L̄R∆−1−

√

1+L̄2R2
∆−L̄R∆(5+2

√−1+n)
2L̄

}

> r

h̄ = max

{

L̄R∆+1+
√

1+L̄2R2
∆−2L̄R∆(1+2

√
n)

2L̄
,
L̄R∆−1+

√

1+L̄2R2
∆−L̄R∆(5+2

√−1+n)
2L̄

}

< R∆

iii. and
∑N

i=1 αi <
R∆+h

2 − r −∑N
i=1

λ̄iη2i
2µ̄i

, where λi is the larger eigenvalue of Mi.

Then, [qT
i , · · · ,qT

N ]T /∈ Ω ∀t ≥ 0.

Proof. Consider the following Lyapunov function

V =

N∑

i=1

V o
i (qi) +

1

2

N∑

i=1

∑

j∈Ni

V a
ij(qi,qj) +

1

2

N∑

i=1

1

µ̄i
q̇T
i Mi(qi)q̇i (8.13)

Taking its time-derivative and using Property 2.2.1 we obtain

V̇ =

N∑

i=1

∂V oT
i (qi)

∂qi
q̇i +

1

2

N∑

i=1

∑

j∈Ni

(

∂V a
ij
T (qi,qj)

∂qi
q̇i +

∂V a
ij
T (qi,qj)

∂qj
q̇j

)

+
N∑

i=1

1

µ̄i

(

q̇T
i Mi(qi)q̈i +

1

2
q̇T
i Ṁ(qi)q̇i

)

116



V̇ =

N∑

i=1

∂V oT
i (qi)

∂qi
q̇i +

N∑

i=1

∑

j∈Ni

∂V a
ij
T (qi,qj)

∂qi
q̇i

︸ ︷︷ ︸

Due to symmetry

+
N∑

i=1

1

µ̄i



−µ̄i
∑

j∈Ni

∂V a
ij
T (qi, q̂

i
j)

∂qi
− γi

∑

j∈Ni

θij(q̇i,qi, q̂
i
j)

q̇T
i

‖q̇i‖
− µ̄i

∂V oT
i (qi)

∂qi



 q̇i

=

N∑

i=1

∑

j∈Ni

(

∂V a
ij
T (qi,qj)

∂qi
−
∂V a

ij
T (qi, q̂

i
j)

∂qi

)

q̇i −
N∑

i=1

∑

j∈Ni

γi
µ̄i
θij(q̇i,qi, q̂

i
j)

q̇T
i

‖q̇i‖
q̇i.

Now, applying Lemma 8.3.1 yields

V̇ ≤
N∑

i=1

∑

j∈Ni

L∆ ‖q̇i‖ −
N∑

i=1

∑

j∈Ni

γi
µ̄i(N − 1)

‖q̇i‖ =

N∑

i=1

∑

j∈Ni

(

L∆− ε

(N − 1)

)

‖q̇i‖

where L is the Lipschitz constant for ∂V a
ij
T (qi,qj)/∂qj . It is easy to show that if we choose r and

h according to conditions i and ii, then L ≤ L̄ ≤ ε
(N−1)∆ and V̇ ≤ 0. The semi-negative definite

property on V̇ (t) implies that V (t) ≤ V (0) ≤∑N
i=1

(
λ̄iη

2
i

2µ̄i
+ αi

)

, ∀t ≥ 0, where we have made use

of Property 2.2.2.

Now assume that (iii) holds and suppose that for at least some pair i, j, ‖qi(t)− qj(t)‖ → r. As

a consequence, V (t) ≥ V a
ij(t) → R∆+h

2 − r >
∑N

i=1

(
λ̄iη

2
i

2µ̄i
+ αi

)

. Since we reached a contradiction,

we conclude that [qT
i (t),q

T
j (t)]

T /∈ Ωij for all i, j, i 6= j and t ≥ 0.

Theorem 8.4.1 provides sufficient conditions for the safe navigation of a group of N Lagrangian

vehicles. It, however, says nothing about the fulfillment of the objective control. The only conclu-

sion we can deduce regarding the objective control is that whenever the agents are outside of the

detection regions, i.e., [qT
i , · · · ,qT

N ]T /∈ D, the collision avoidance control inputs do not affect the

objective control laws.

In the following we posit sufficient conditions for collision avoidance of nonlinear vehicles with

zero uncertainties but limited sensing range and bounded control inputs. The results along this

line are of relevance given that vehicles with bounded control inputs and accelerations cannot react

(e.g., evade or escape) instantaneously to a collision threat.

Corollary 8.4.1 (Collision Avoidance for Multiple Agents without Sensing Uncertainties). Con-

sider the multi-Lagrangian system in (8.1) with control inputs given by (8.2) to (8.9) for ε = 0.

Suppose that ‖dij(t)‖ = ∆ = 0 and that ‖q̇i(0)‖ ≤ ηi, ‖qi(0) − qj(0)‖ ≥ R ∀i, j, i 6= j and assume
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∃ r ≥ r∗, h < R, and αi > 0 such that

N∑

i=1

αi <
R+ h

2
− r −

N∑

i=1

λ̄iη
2
i

2µ̄i
(8.14)

Then, [qT
i , · · · ,qT

N ]T /∈ Ω ∀t ≥ 0.

Proof. Consider the Lyapunov candidate function given in (8.13). Its time-derivative is computed

as

V̇ =
N∑

i=1

∂V oT
i (qi)

∂qi
q̇i +

N∑

i=1

∑

j∈Ni

∂V a
ij
T (qi,qj)

∂qi
q̇i +

N∑

i=1



−
∑

j∈Ni

∂V a
ij
T (qi,qj)

∂qi
− ∂V oT

i (qi)

∂qi



 q̇i ≤ 0.

Therefore, V (t) ≤ V (0) ≤ ∑N
i=1

(
λ̄iη2i
2µ̄i

+ αi

)

. Now suppose (8.14) is satisfied and that for at

least some pair i, j, i 6= j and some t ≥ 0, [qi(t),qj(t)] → Ωij(t). This would imply that V (t) ≥
V a
ij(t) → R+h

2 − r >
∑N

i=1

(
λ̄iη

2
i

2µ̄i
+ αi

)

, which is a contradiction. Consequently, we can conclude

that [qT
i (t), · · · ,qT

N (t)]T /∈ Ω(t) ∀t ≥ 0.

8.5 Example: Collision Avoidance with Detection Delays

To validate the proposed collision avoidance strategy, we simulate the behavior of four 2-DOF

vehicles with dynamics governed by

mq̈i = ui − ρiq̇i (8.15)

where m = 1.5 kg, ρ1 = ρ4 = 0.25 kg/s, ρ2 = ρ3 = 0.10 kg/s and ‖ui‖ ≤ 100 kg ·m/s2 ∀i. The

minimum safety distance and detection radius for all vehicles are assumed to be r∗ = 1.5 m and

R = 20 m, respectively. In addition, we assume an a priori bound of ∆ = 0.15 m on the sensing

uncertainty for each agent owed to a 0.05 s delay incurred during the localization process of nearby

agents.
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8.5.1 Control Law

The control objective is to safely drive the vehicles from an initial configuration to a desired final

position. In order to do so, we propose the use of the following objective function

V o
i (qi) =αi

(

1− sech

(∥
∥qi − qd

i

∥
∥

σi

))δi

(8.16)

where α1 = α2 = 3.0, α3 = α4 = 2.5, σi = 5, and δi = 7 for i ∈ {1, 2, 3, 4}. The desired final

configurations are chosen as qd
1 = [−8 m,−18 m]T , qd

2 = [8 m, 18 m]T , qd
3 = [−25 m, 0 m]T , and

qd
4 = [25 m, 5 m]T . The objective control input (8.3) is then given by

uo
i =− µ̄iαiδi

σi

(

1− sech

(∥
∥qi − qd

i

∥
∥

σi

))δi−1

sech

(∥
∥qi − qd

i

∥
∥

σi

)

tanh

(∥
∥qi − qd

i

∥
∥

σi

)

qi − qd
i∥

∥qi − qd
i

∥
∥

(8.17)

if ‖qi − qo
i ‖ 6= 0 and u0

i = 0 otherwise. The collision avoidance control input for the four agents

is computed according to Theorem 8.4.1. The parameters are summarized in Table 8.1 where we

have chosen ε = 0.16 and assumed that initial velocities for all agents are bounded by ηi = 2 m/s.

Table 8.1: Collision Avoidance Control Parameters

Agent (i) Parameter

N = 4 λi (kg) µ̄i (N) γi (N) r (m) h (m) L βi

1 1.5 29.46 4.71 3.67 10.19 0.356 0.234
2 1.5 29.46 4.71 3.67 10.19 0.356 0.234
3 1.5 29.80 4.78 3.67 10.19 0.356 0.196

4 1.5 29.80 4.78 3.67 10.19 0.356 0.196

8.5.2 Simulation Results

The responses of the four agents to the objective and collision avoidance control inputs are rep-

resented in Figure 8.2. The agents start from positions q1(0 s) = [18 m, 22 m]T , q2(0 s) =

[−21 m,−14 m]T , q3(0 s) = [16 m,−20 m]T , and q4(0 s) = [2 m, 25 m]T with initial velocities

given by q̇i(0 s) = 2
qd
i

‖qd
i ‖ m/s. Notice that shortly after their initial state, the first and fourth

agents entered each other’s Detection Region, whereas the second and third vehicles accelerated
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Figure 8.2: Multi-agent collision avoidance example with sensing uncertainties. The left-top,
right-top, and left-bottom plots illustrate the motion of the four agents at the intervals
t ∈ [0 s, 12 s], t ∈ [12 s, 72 s], and t ∈ [72 s, 150 s], respectively, where each mark is time-spaced by
1.5 s. The initial positions of the four agents at each plotted simulation interval are indicated by
the dark-colored dots. The Avoidance, Conflict, and Detection Regions for all all agents at the
end of the simulation intervals are delimited by the bold, thin, and dashed lines, respectively. The
right-bottom figure illustrates the complete trajectory.

freely toward their final destination (see left-top plot and contrast the distance traveled by all

agents). As the second agent comes to the proximity of the first and fourth agents, it ends entering

their Detection Regions. Consequently, the first and fourth vehicles move away from the second

agent to prevent a collision, as can be seen in the right-top figure. Once the four agents are safely

apart, they are finally able to continue toward their final configurations.

Figure 8.3 illustrates the distances between the four agents at all times. Note that the first,

second, and fourth agents entered each other’s Detection Regions at different intervals of time,

whereas the third vehicle did not interact with any other agent. In addition, note that the second
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Figure 8.3: Distances among agents with sensing uncertainties.
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Figure 8.4: Norm of the difference between the position of the vehicles and their desired
configuration.

and fourth agents remained within each other’s Detection Regions after the systems reached an

apparent steady-state. Yet, no collision took place. The errors between the positions of the vehicles

and the desired destinations are also shown in Figure 8.4. The fourth agent successfully reached

its final destination as expected since its path was not disturbed by any collision threat. The

final constant error exhibited by the second and fourth vehicles is a result of their steady nonzero

collision avoidance input which represents a conflict with their objective control. On the other

hand, the quasi-steady error of the first agent is owed to the slow convergence rate of the objective

control input near the desired destination, and it should continue progressing toward zero.
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8.6 Example: Collision Avoidance without Sensing Uncertainties

Similar to the previous example, we now simulate the response of the four-agents described in (8.15)

assuming zero uncertainties, i.e., perfect sensing. We take the objective functions and control inputs

to be given as in (8.16) and (8.17) with α1 = α2 = 2.8, α3 = α4 = 2.3, σi = 10, and δi = 2 ∀i.
The desired final configurations are chosen as qd

1 = [−6.00 m,−13.50 m]T , qd
2 = [6.00 m, 13.50 m]T ,

qd
3 = [−18.75 m, 0.00 m]T , and qd

4 = [18.75 m, 3.75 m]T . The Detection Region for all agents is

assumed to be bounded by R = 15 m.1 Finally, the cooperative collision avoidance control inputs

are computed according to Corollary 8.4.1 and (8.4), where we have chosen ε = 0, r = 2 m, and

h = 10 m.

8.6.1 Simulation Results

The response of the four vehicles is presented in Figure 8.5. The agents are taken to start

from positions q1(0 s) = [13.50 m, 16.50 m]T , q2(0 s) = [−15.75 m,−10.50 m]T , q3(0 s) =

[12.00 m,−15.00 m]T , and q4(0 s) = [1.50 m, 18.75 m]T with the same initial velocities as in the

example in Section 8.5. Notice that, at first (see left-top plot), the agents are relatively free to

move toward their desired configurations with little interaction. Then, at time t ≈ 17s, the first

and second agent are shown to come into close proximity to the third vehicle. However, the vehicles

are able to solve the conflict and converge to their final destinations. Figure 8.6 confirms that the

agents avoided any potential collision. As can be seen in the plot, the four agents entered each

other’s Detection Region at different intervals of time. In particular, the second and fourth agents

repeatedly entered into each other’s Detection Region. This behavior can be attributed to the close

proximity of their final destination.

Figure 8.7 depicts the error between the position of the four agents with respect to their desired

final location. Observe that the errors eventually converge to zero. Their slow convergence rates

can be attributed to the small magnitude of the objective control inputs near their desired locations.

1Note that the desired configurations and detection radius have the same values as in the previous example but
scaled by a factor of 3

4
. Having zero uncertainty allows for the treatment of cases with smaller Detection Regions.
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Figure 8.5: Multi-agent collision avoidance example with perfect sensing. The left-top, right-top,
and left-bottom plots illustrate the motion of the four agents at the intervals t ∈ [0 s, 9 s],
t ∈ [9 s, 17 s], and t ∈ [17 s, 80 s], respectively, where each mark is time-spaced by 0.5 s. The
initial positions of the four agents at each plotted simulation interval are indicated by the
dark-colored dots. The Avoidance, Conflict, and Detection Regions for all all agents at the end of
the simulation intervals are delimited by the bold, thin, and dashed lines, respectively. The
right-bottom figure illustrates the complete trajectory.
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CHAPTER 9

CONCLUSIONS AND RECOMMENDATIONS

This chapter summarizes the work of this thesis. Our major contributions to NCS technology are

highlighted, and a list of future related, research directions are suggested.

9.1 Conclusions

Throughout this dissertation, we have presented and validated original control solutions for single

as well as multiple networked Lagrangian systems with time delay inputs. By using passivity

concepts and Lyapunov-based analysis, we have studied different control challenges within NCSs

such as stability of time delay nonlinear systems, bilateral teleoperation, multi-agent coordination,

and collision avoidance. We have also studied the effects of delays and data transmission errors on

the performance of nonlinear NCSs. The following is a summary of the contributions.

9.1.1 Nonlinear Systems with Control Input Delays

We started in Chapter 3 with the introduction of a passivity-based MRRC framework that guaran-

tees asymptotic stability and state tracking convergence of nonlinear dissipative Lagrangian systems

with input and state feedback delays. The proposed controller utilizes the scattering transforma-

tion to passify the energetic coupling between plant and controller independently of the delay, and

introduces a state tracking compensator that enforces full state convergence for unknown initial

conditions, computational errors, and transmission losses. Simulation tests with robotic manipu-

lators as well as experiments with a coaxial helicopter employing the MRRC framework yielded

satisfactory results.

In Chapter 4 we extended the passivity-based MRRC formulation to the general case of multiple

agents. Within this context, we showed that the stability, formation, and motion coordination

of a network of heterogeneous agents can be attained independently of arbitrarily large constant
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communication delays. Simulation results on formation control and trajectory tracking with time-

delay omni-directional vehicles were presented.

9.1.2 Bilateral Teleoperation

In Chapter 5 we considered an SMSS bilateral teleoperation system with communication delays.

We introduced a novel control framework that builds on passivity-based control and wave scattering

transformation to stabilize and coordinate the motion of an SMSS teleoperator with arbitrarily large

constant coupling delays. By exploiting the independent-passivity property of the wave impedance

on wave-based teleoperation architectures, we introduced a time-varying wave impedance control

framework that passively changes the wave impedance from any small value, suitable for free mo-

tion tasks, to a sufficiently large value, ideally for a transparent interaction with stiff environments.

Furthermore, the control strategy is proved to achieve closed-loop stability of the teleoperation

system and to enforce smooth position tracking and static force reflection independently of delays,

even for a non-passive human operator. Indeed, we showed using the paradigm of input-to-state

stability that the coordination error between master and slave is ultimately bounded and that this

bound decreases with an increase of the impedance value. We presented simulation and experi-

mental results on nonlinear manipulators that illustrated and evidenced the claimed position error

compensation.

Our attention to SMSS bilateral teleoperation is shifted to multi-slave teleoperation systems

in Chapter 6. Specifically, we presented a distributed bilateral control architecture that enforces

closed-loop stability, slaves-to-master motion coordination, formation control, static force reflection,

and collision avoidance for a group of slave robots coupled to a single human-controlled master robot

with communication constant delays. The controller synthesizes the use of a PD-based controller,

which guarantees closed-loop stability, motion coordination, and static force reflection, with the

use of avoidance functions that impose collision-free trajectories for the slave agents. The control

framework was then validated via experiments with two coaxial helicopters coupled to a haptic

device and teleoperated in an obstructed environment. The operator was given the ability to alter

the geometry of the vehicles’ formation according to the topology of the remote environment. The

reported results were satisfactory under network round-trip delays of up to 124 ms.
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9.1.3 Collision Avoidance with Sensing Uncertainties

In Chapter 7 we provided sufficient conditions and developed real-time cooperative and noncooper-

ative collision avoidance strategies for a pair of agents with sensing uncertainties (e.g., localization

errors due to communication time-varying delays, quantization, and noise). We explicitly con-

sidered the case where position information from nearby agents and obstacles is unreliable (i.e.,

inaccurate) and developed bounded control inputs based on avoidance functions that guarantee

collision-free trajectories for both vehicles. The designed avoidance control strategies can be ap-

pended to any other stable control law (i.e., main control objective) and are active only when

the vehicle is close to another agent or obstacle. Simulation results are presented to validate the

proposed control formulation and evaluate its extension to the general case of multiple agents. An

experiment with two coaxial helicopters with half a second of sensing delay is also presented with

satisfactory reported results.

The collision avoidance control for two agents is later reformulated for the case of N vehicles in

Chapter 8. By using bounded Lyapunov functions, we showed that, if sufficiently large avoidance

and detection regions are defined, we can design decentralized, cooperative collision avoidance

control laws that guarantee collision-free trajectories for a group of nonlinear Lagrangian systems.

Moreover, outside of the detection regions, these avoidance control strategies do not interfere

with any other objective control. We also extended the analysis to Lagrangian systems with zero

uncertainty but bounded control inputs. Simulation results with four agents demonstrated the

effectiveness of the proposed avoidance control strategy.

9.2 Recommended Future Research Directions

There are many research directions that stem from the results presented in this dissertation. The

following are some suggestions.

• In Chapter 3, we assumed the delayed information of the control input could be decoded from

the system’s output or, that at least, the round-trip delay was known in order to reconstruct

the delayed control input and develop the passivity-based MRRC framework. An immediate

extension to the control framework would be to derive sufficient conditions for stability for

unknown, possible time-varying delay inputs, as well as to evaluate its sensitivity to data

transmission losses and time-varying delays.
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• The full-state compensator proposed in Section 3.3.1, guarantees state convergence between

the time delay nonlinear plant and the reference model, given that the system does not reach

steady-state before the compensation task is consumed. In the future, we suggest investigating

properties on the reference signal that will guarantee state convergence. An alternative would

be to impose the reference signal to be persistently exciting [164].

• Modifications to the transparency compensation control technique for bilateral teleoperators

introduced in Chapter 5, such that time-varying delayed and lossy communication channels

are considered, would be an appealing extension.

• How to achieve collaboration from multiple operators working from different locations? An

interesting task within bilateral teleoperation is to evaluate the integration and cooperation

of multiple master robots as well as multiple operators.

• Theoretical considerations on how to control dynamic and switching formations would be an

appealing extension to the PD-based control proposed in Chapter 6.

• How to develop robust control strategies for systems with delayed inputs? Along a similar

research line, how can we integrate the MRRC framework with the collision avoidance policies

presented in Chapters 7 and 8? These are research questions we suggest can be investigated.

• Providing a bound on the maximum number of vehicles for which the cooperative collision

avoidance control strategies can be applied would be an additional consideration. This bound

will clearly depend on the sensing range, the uncertainties, and the limits on the control

inputs.

• Finally, it would be appealing to extend the control methodologies proposed in this disserta-

tion to nonholonomic systems such as car-like vehicles and airplanes.
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[112] D. M. Stipanović, “A survey and some new results in avoidance control,” in Proc. Int. Work-
shop Dyn. Control, Tossa de Mar, Spain, 2009, pp. 166–173.

[113] H. R. Everett, “Survey of collision avoidance and ranging sensors for mobile robots,” Robot.
Autonomous Syst., vol. 5, no. 1, pp. 5–67, May 1989.

[114] M. Adams, W. S. Wijesoma, and A. Shacklock, “Autonomous navigation: Achievements in
complex environments,” IEEE Instrum. Meas. Mag., vol. 10, no. 3, pp. 15–21, June 2007.

[115] S. Li and G. Tao, “Feedback based adaptive compensation of control system sensor uncer-
tainties,” Automatica, vol. 45, no. 2, pp. 393–404, Feb. 2009.

[116] H. P. Moravec, “Sensor fusion in certainty grids for mobile robots,” AI Mag., vol. 9, no. 2,
pp. 61–74, 1988.

[117] A. Elfes, “Using occupancy grids for mobile robot perception and navigation,” IEEE Com-
puter, vol. 22, no. 6, pp. 46–57, 1989.

[118] E. Frew and R. Sengupta, “Obstacle avoidance with sensor uncertainty for small unmanned
aircraft,” in Proc. IEEE Conf. Decision Control, Paradise Island, Bahamas, Dec. 2004, pp.
614–619.

[119] R. Bis, H. Peng, and G. Ulsoy, “Vehicle occupancy space: Robot navigation and moving
obstacle avoidance with sensor uncertainty,” in Proc. ASME Dyn. Syst. Control Conf., Hol-
lywood, CA, Oct. 2009.
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“Passivity-based model reference robust control for a class of nonlinear systems with in-
put and state measurement delays,” in Proc. IEEE Am. Control Conf., Baltimore, MD, June
2010, pp. 6585–6592.
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