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ALGORITHMS FOR THE MULTICLASS NETWORK EQUILIBRIUM PROBLEM

THOMAS PRADEAU AND FRÉDÉRIC MEUNIER

1. The problem

Being able to predict the impact of a new infrastructure on the traffic in a transportation network
is an old but still important objective for transport planners. In 1952, Wardrop [7] noted that after
some while the traffic arranges itself to form an equilibrium. With the terminology of game theory,
the equilibrium is a Nash equilibrium for a nonatomic congestion game. In 1956, Beckmann [1]
translated these principles as a convex mathematical program, opening the door to the tools from
convex optimization. One of the main assumptions used by Beckmann is the fact that all users are
equally impacted by congestion: there is only one class. In order to improve the prediction of traffic
patterns, researchers started in the 70s to study the multiclass situation, each class modeling a distinct
mode of transportation, such as cars, trucks, or motorbikes. Except in very few special cases, no
algorithm is known for this problem.

1.1. Model. We are given a directed graph D = (V,A) modeling the transportation network. The
population of players is modeled as a bounded real interval endowed with the Lebesgue measure, the
population measure. Each player wants to go from its origin vertex to its destination vertex at the
minimum cost, the cost of an arc a depending on the total flow xa on it, defined as the measure of the
players going through this arc. The set of players is partitioned into a finite number K of measurable
subsets – the classes – modeling the players with same characteristics: they share a same collection of
cost functions (cka : R+ → R+)a∈A, a same origin sk, and a same destination tk. The set of vertices
(resp. arcs) reachable from sk is denoted V k (resp. Ak).

A strategy profile is a mapping determining for each player a route from its origin to its destination.
A strategy profile is a (pure) Nash equilibrium if no player would benefit by changing its route.

This game enters in the category of nonatomic congestion games with player-specific cost functions,
see Milchtaich [5]. In particular, under mild conditions, an equilibrium is known to exist. The prob-
lem of finding a Nash equilibrium for such a game is called the Multiclass Network Equilibrium Problem.

1.2. Contribution. We consider the specific case where the cost functions are affine and stricly in-
creasing:

cka(x) = αk
ax+ βk

a , with αk
a > 0, βk

a ≥ 0,

for each class k and arc a.

• We prove the existence of a polynomial algorithm solving the problem when the graph consists
in parallel arcs, for a fixed number of classes. The main idea of the algorithm relies on properties
of hyperplane arrangements. This kind of congestion games, also called parallel-link games,
have been extensively studied (see [3] and references therein).

• We build a pivoting algorithm, adapted from Lemke [4], solving the problem for general graphs.
To the best of our knowledge, it is the first algorithm solving this problem. We prove its
efficiency through computational experiments. Moreover, this algorithm provides the first
constructive proof of the existence of an equilibrium for this problem.

Key words and phrases. Affine cost functions; congestion externalities; constructive proof; Lemke algorithm;

nonatomic games; transportation network.
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2. A polynomial algorithm for parallel-link games

In this section, we suppose that D has only two vertices V = {s, t} and that all arcs are parallel
with origin s and destination t. We identify then arcs and routes. For a flow x = (xka)k∈K,a∈A, we
define for every class k its support as the set of arcs with positive flow: supp(xk) = {a ∈ A, xka > 0}.

Lemma 1. Given a subset of arcs Sk ⊆ A for each class k, it can be decided in polynomial time
whether the Sk’s are the supports of an equilibrium flow, and, if the answer is ‘yes’, an equilibrium
flow can be computed in polynomial time.

Indeed, the equilibrium conditions form then a system of linear inequalities that can be solved
polynomially with the interior point algorithm.

Lemma 2. For a fixed number of classes, we can determine in polynomial time a set S = {(Sk)k∈K :
Sk ⊆ A} of polynomial size such that (supp(x̄k))k∈K ∈ S, where x̄ is an equilibrium flow.

We sketch the proof of Lemma 2.

For an equilibrium flow x̄, we denote by γk(x̄) the cost at equilibrium of the class k players. Then,
we have by definition

cka(x̄a) ≥ γk(x̄) for all a ∈ A,

cka(x̄a) = γk(x̄) for all a ∈ supp(x̄k).(1)

A crucial remark is that when an arc a belongs to the support of two different classes k1 6= k2, we
must have according to Equation (1)

x̄a =
(
ck1
a

)−1
(γk1(x̄)) =

(
ck2
a

)−1
(γk2(x̄)).

It means that the vector of equilibrium costs γ(x̄) ∈ RK belongs to the hyperplane of RK :

Hk1,k2
a = {y ∈ RK , αk1

a

(
yk2 − βk2

a

)
= αk2

a

(
yk1 − βk1

a

)
}.

We define then a set H of hyperplanes of this kind and consider the arrangement of hyperplanes asso-
ciated. The cells provide a set S of candidate supports. Lemma 2 follows from the fact that there is a
polynomial number Θ

(
(K2|A|)K

)
of cells in fixed dimension (see for example [2]).

Applying repeatedly the algorithm given by Lemma 1 on each cell leads to the following theorem.

Theorem 1. For a fixed number of classes, there exists an algorithm solving the Multiclass Network
Equilibrium Problem in polynomial time with respect to the number of arcs.

3. A Lemke-like algorithm for general networks

3.1. Formulation as a linear complementarity problem. In the single-class case, the equilibrium
flow is an optimal solution of a convex optimization problem, see Beckmann et al. [1]. If the flows xk′

for k′ 6= k are fixed, finding the equilibrium flow xk for the class k is again a single-class problem.
With the help of the Karush-Kuhn-Tucker conditions, we get that the equilibrium flow x coincides
with the solutions of a complementarity problem. When the cost functions are affine, it becomes a
linear complementarity problem.

Similarly as for the Lemke algorithm [4], we rewrite the problem as an optimization problem using
a vector e = (eka)k∈K,a∈Ak and an extra variable ω.
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Proposition 1. (xk)k∈K is an equilibrium flow if and only if there exist µk ∈ RAk

+ and πk ∈
RV k

for all k such that (xk,µk,πk)k∈K is a solution of the following augmented optimization prob-
lem (AMNEP(e)) with ω = 0.

min ω(AMNEP(e))

s.t.

(
M 0 0
C −I e

) x
µ
ω

+

(
0
MT

)
π =

(
b
−β

)
(2)

x · µ = 0(3)

x ≥ 0, µ ≥ 0, ω ≥ 0, π ∈ R
∑

k |V
k\{sk}|,(4)

where M encodes the incidence matrices of the graphs (V k, Ak), C encodes the parameters (αk
a)k∈K,a∈Ak

of the cost functions and b = (bkv)k∈K,v∈V k is the demand vector.

3.2. A Lemke-like algorithm. We define a basis for problem (AMNEP(e)) to be a subset B of indices

such that the square matrix

( (
M 0 0
C −I e

)
B

0
MT

)
is nonsingular. Note that we extend the

usual notion of basis used in linear programming, in order to deal directly with the unsigned variables
‘π’.

Given a basis B we define the basic solution associated to B as the unique solution (x̄, µ̄, ω̄, π̄)
satisfying Equation (2) where each variable whose index is not in B is set to zero. Moreover, B is said
to be feasible, resp. complementary, if the associated basic solution also satisfies Equation (4), resp.
Equation (3) (under non-degeneracy assumption).

As for the simplex algorithm or the Lemke algorithm, the following lemma leads to a “pivoting”
algorithm.

Lemma 3. Given a feasible basis B and an index i /∈ B, there is at most one feasible basis B′ 6= B
in the set B ∪ {i}. If there is no such basis, the polytope P(e) containing all feasible solutions of
(AMNEP(e)) has an infinite ray.

At each step, we have a current basis Bcurr, we determine the entering index i, and we compute
the new basis in Bcurr ∪{i}, if it exists, which becomes the new current basis Bcurr; and so on. When
we consider a complementary feasible basis, we can determine easily the entering index:

(1) either the index of ω is not in the basis, and the problem is solved,
(2) or there is exactly one pair (a0, k0) with a0 ∈ Ak0 such that neither the index of xk0

a0
nor the

index of µk0
a0

are in the basis.

In this second case, when one of these two indices has just left the basis in the pivot algorithm, the
other one is the entering index. If there is no infinite ray, called secondary ray, along the path, at the
end the algorithm reaches a complementary feasible basis Bend where there is no such two indices. We
are then in case (1), and have a solution of problem (AMNEP(e)) with ω = 0, i.e. a solution of the
Multiclass Network Equilibrium Problem.

It remains to find, with a good choice of e, an initial feasible complementary basis and to show that
there is no secondary ray.

Lemma 4. There exists a vector e such that

• We can compute a feasible complementary basis Bini in polynomial time.
• There is a primary ray in P(e) originating at the feasible basic solution associated to Bini.
• Under non-degeneracy assumption, there is no secondary ray in P(e).

Combining the pivoting algorithm and Lemma 4 leads to the following result:

Theorem 2. Under the non-degeneracy assumption, there is a Lemke-like algorithm solving the Mul-
ticlass Network Equilibrium Problem with affine costs.
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By perturbation arguments, this result provides a constructive proof of the existence of an equilib-
rium, even if the non-degeneracy assumption is not satisfied. It also shows that the problem of finding
such an equilibrium belongs to the PPAD complexity class (see Papadimitriou [6]).

3.3. Computational experiments. The experiments are made on n × n grid graphs (Manhattan
instances) where each pair of adjacent vertices is linked by an arc in each direction. The algorithm

has been coded in C++ and tested on a PC IntelR© Core
TM

i5-2520M clocked at 2.5 GHz, with 4 GB
RAM. Some computational results are given in the following table where each row contains average
figures obtained on five instances on the same graph and with the same number of classes, but with
various origins, destinations, and costs parameters.

Classes Grid Vertices Arcs Pivots Algorithm (s.) Total time (s.)
2 6 × 6 36 120 54 0.08 1.2

8 × 8 64 224 129 0.9 8.9
4 4 × 4 16 48 41 0.06 0.66

6 × 6 36 120 126 0.9 10.3
8 × 8 64 224 249 5.4 55

10 4 × 4 16 48 107 0.7 8.9
6 × 6 36 120 322 15 155
8 × 8 64 224 638 87 857

50 2 × 2 4 8 56 0.3 5.5
4 × 4 16 48 636 105 1127

The column “Algorithm” provides the time in seconds needed for the whole execution of the pivoting
step, and the column “Pivots” contains the number of pivots performed. The column “Total time”
gives the total time in seconds needed to solve the problem.

It seems that the number of pivots remains always reasonable. The essential computation time is
spent on two matrix inversions, needed for the preparation of the pivoting step and for the final compu-
tation of the solution. The program has not been optimized. Since there are several efficient techniques
known for inverting matrices or even methods for avoiding them, the results can be considered as very
positive.
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