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Explicit phase diagram

for a one-dimensional blister model

G. Chmaycemb,∗, M. Jazar ∗and R. Monneaub

February 16, 2014

Abstract

We consider a thin film bonded to a substrate. The film acquires a residual stress upon
cooling because of the mismatch of thermal expansion coefficient between the film and the
substrate. The film tends to lift off the substrate when this residual stress is compressive and
large enough. In this work, this phenomenon is described by a simplified one-dimensional
variational model. We minimize an energy and study its global minimizers. Our problem
depends on three parameters: the length of the film, its elasticity and a thermal parameter.
Our main result consists in describing a phase diagram depending on those parameters in
order to identify three types of global minimizers: a blister, a fully delaminated blister and
a trivial solution (without any delamination). Moreover, we prove various qualitative results
on the shape of the blisters and identify the smallest blister which may appear.

Keywords: blister, thin film, fracture, delamination, buckling, Föppel-von Kármán, variational

model, classification of global minimizers, phase diagram, nonlinear elasticity, obstacle problem,

non interpenetration condition.

1 Introduction

1.1 Physical motivation

The thin films are often obtained by evaporation on a substrate. When the coefficient of
thermal expansion of the substrate is higher than that of the film, cooling to ambient tem-
perature leads to a compressive residual stress in the film. If compression is sufficient, the
film tends to buckle, separating from the substrate. It is said that the film delaminates (see
Figure 1).
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(G. Chmaycem), monneau@cermics.enpc.fr (R. Monneau)

1



An oversimplified one dimensional model which describes this phenomena is given by the
minimization of the following energy (of Föppel-von Kármán type)

E(ζ1, ζ2) :=

∫

Ω

γ1{ζ2>0} + 4α

(
ζ ′1 +

1

2
(ζ ′2)

2

)2

+
4α

3
ζ ′′22 − 2θζ ′22 with γ = 1, (1.1)

with
Ω = R/LZ = [−L/2, L/2[per,

and where L is the length of the film, α > 0 represents its elasticity coefficient and θ > 0
is the thermal parameter. Here the parameter γ measures the cost of delamination and
is similar to the formulation of fracture with Griffith criterion (see for instance Francfort,
Marigo [6], Griffith [7], Larsen [9]). For γ = 0, this model was formally derived from 3D
elasticity in the asymptotics of thin films in [5] by El Doussouki and the last author, see also
[10]. For simplicity, we normalize this parameter γ to be equal to 1 in the whole paper (this
normalization can always be absorbed in a redefinition of E, α and θ by rescaling). The
quantity ζ2(x) denotes the vertical displacement and is assumed to be nonnegative (the film
is above the substrate) and ζ1(x) is the horizontal one with x ∈ Ω, where the periodicity
is assumed to simplify the analysis (see also Remark 1.4 for other boundary conditions
describing a clamped film). We introduce the following space

Y := H1 (Ω)× {ζ2 ∈ H2 (Ω) , ζ2 ≥ 0}. (1.2)

The solution of our model is given by solving the following problem

min
(ζ1,ζ2)∈Y

E(ζ1, ζ2). (1.3)

Definition 1.1 (Blisters)
We call a "blister" any global minimizer of the energy E defined in (1.1) which is non trivial
i.e. (ζ1, ζ2) 6≡ (0, 0).

This paper elaborates the delamination of compressed thin films. Under appropriate condi-
tions, blisters may appear. We give a complete description of global minimizers in terms of
the parameters of the problem.
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Figure 1: Different types of solutions of problem (1.3)

1.2 Main results

Theorem 1.2 (Existence of global minimizers)
There exists a (global) minimizer ζ = (ζ1, ζ2) ∈ Y of the energy E introduced in (1.1).

In order to study minimizers of E, it is useful to consider the following auxiliary minimizing
problem

min
X∈D

f(X), (1.4)

where

f(X) :=





(θ −X)−1/2 − LX2 if 0 < X < θ;

0 if X = 0;
(1.5)

with rescaled versions of the thermal parameter θ and of the length L

θ :=
θ

α
, and L :=

1

2π

√
3

2
αL, (1.6)

where α > 0 is from now on fixed in the model and D is the interval given by

D :=
[
0, θ̃+

]
, with θ̃+ = max

{
θ̃, 0

}
and θ̃ := θ − α2

L2
. (1.7)

Indeed the following theorem shows that the minimizing problem (1.3) is equivalent to the
study of the auxilary problem (1.4).

Theorem 1.3 (Description of global minimizers of E)
i) (Implication)
For any global minimizer ζ = (ζ1, ζ2) of the energy E, there exists at least a minimizer
K ∈ D of problem (1.4) such that the following holds: there exists T ∈ [0, L] such that (up to
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addition of constants and translation of (ζ1, ζ2)), this minimizer ζ can be written as follows





ζ1(x) =





K

2

(
x+

L

2

)
in [−L/2,−T/2];

KL

8π
sin(2βx) +

K

2

(
1− L

T

)
x in (−T/2, T/2);

K

2

(
x− L

2

)
in [T/2, L/2],

ζ2(x) =





A(cos(βx) + 1) in [−T/2, T/2];

0 elsewhere,

(1.8)

where β, A and T are given by

β :=

√
3(θ − αK)

2α
; A :=

√
KL

πβ
; T :=





2π

β
if K > 0;

0 if K = 0.

(1.9)

More generally, for any K ∈ D and any functions (ζ1, ζ2) given in (1.8)-(1.9), we have

E(ζ1, ζ2) = 2π

√
2

3
f(K), (1.10)

and for K ∈ D 



T = L ⇔ K = θ̃;

and

T < L ⇔ K < θ̃.

(1.11)

ii) (Reciprocal)
If K ∈ D is a minimizer of problem (1.4), then the function ζ = (ζ1, ζ2) given in (1.8)-(1.9)
is a global minimizer of E on Y .

Notice that θ − αK > 0 because K ∈ D. Moreover, when K = 0 then A = T = 0 which
implies that ζ1 = ζ2 = 0. Thus with our definition, T can be interpreted as the length of the
support of ζ2. Theorem 1.3 identifies three types of global minimizers. For K = 0, we get
the trivial solution (Figure 1, (a)). For K ∈ (0, θ̃), then 0 < T < L and we get the blister

solution (Figure 1, (b)). Finally, for K = θ̃, then T = L and we get the fully delaminated
blister (Figure 1, (c)). We still use the name "blister" for the mathematical solution even if
physically the film is completely delaminated. Note that our blister solution (Figure 1, (b))
can be roughly speaking seen as the cross section of blisters with the shape of fingers (see
for instance experiments in Figure 8.1 in [12]).
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Remark 1.4 (Clamped boundary conditions)
Recall that the periodic boundary conditions are included in the set Y defined in (1.2). We
now introduce another set of functions satisfying clamped boundary conditions

Ỹ := H1
0 (−L/2, L/2)× {ζ2 ∈ H2

0 (−L/2, L/2), ζ2 ≥ 0}.

Then
inf
Ỹ

E ≥ inf
Y

E,

because any y ∈ Ỹ can be seen as an element of Y when it is extended by periodicity. More-
over, any global minimizer of E on Y is given (up to addition of constants and translation

of (ζ1, ζ2)) by the solution written in (1.8) which satisfies (ζ1, ζ2) ∈ Ỹ . Therefore,

inf
Ỹ

E = inf
Y

E,

and then in this paper we also solved the minimization problem of E on Ỹ .

To classify the solutions obtained in Theorem 1.3, we have to define the following functions
in order to introduce some domains D0, D1 and D2 of parameters (θ, L). Figure 2 describes
those domains (still for arbitrary fixed value α). We will show that trivial solutions corre-
spond to D0, blister solutions to D1 and fully delaminated blister to D2. For this purpose,
we introduce





θ∗ :=
5

4
α−1/2; (1.12)

L01(θ) :=
55/2

16
θ−5/2 for 0 < θ ≤ θ∗; (1.13)

L02(θ) :=
α5/4

(
√
αθ − 1)1/2

for θ ≥ θ∗ > α−1/2; (1.14)

L12(θ) :=
(
2α3θ + 2α2

√
α(αθ2 − 1)

)1/2

for θ ≥ θ∗ > α−1/2. (1.15)

Definition 1.5 (Domains D0, D1 and D2)
Let us now introduce the following sets of (θ, L) ∈ (0,+∞)2:





D0 :=





(θ, L), L < L01(θ) if 0 < θ ≤ θ∗

L < L02(θ) if θ > θ∗



 ; (1.16)

D1 :=





(θ, L), L > L01(θ) if 0 < θ ≤ θ∗

L > L12(θ) if θ > θ∗



 ; (1.17)

D2 := {(θ, L), θ > θ∗ and L02(θ) < L < L12(θ)} . (1.18)
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We denote by




Γ01 := {(θ, L), 0 < θ < θ∗ and L = L01(θ)} ; (1.19)

Γ02 := {(θ, L), θ > θ∗ and L = L02(θ)} ; (1.20)

Γ12 := {(θ, L), θ > θ∗ and L = L12(θ)} ; (1.21)

P = (θ∗, L01(θ
∗)). (1.22)

Remark 1.6 (A partition of the domains)
We have the following disjoint decomposition

(0,+∞)2 = D0 ∪D1 ∪D2 ∪ Γ21 ∪ Γ01 ∪ Γ02 ∪ {P}.

Moreover, the following properties hold true




L′
12(θ) > 0 and L′

02(θ) < 0, for θ > θ∗;

L′
01(θ) < 0, for 0 < θ < θ∗;

L∗ := L12(θ
∗) = L01(θ

∗) = L02(θ
∗);

(1.23)

where θ∗ is defined in (1.12).

The proof of Remark 1.6 is done by a simple computation.

Figure 2: Schematic phase diagram for parameters (θ, L)
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Theorem 1.7 (Classification of global minimizers of E)
i) For (θ, L) ∈ D0, the unique global minimizer of the energy E introduced in (1.1) is the
trivial solution (ζ1, ζ2) = (0, 0).
ii) For (θ, L) ∈ D1 ∪D2 ∪ Γ12, there is a unique blister ζ = (ζ1, ζ2) ∈ Y (see Definition 1.1)
minimizing the energy E. Moreover, the component ζ2 has a support of length T which is
defined in (1.9) and 




T < L if (θ, L) ∈ D1;

T = L if (θ, L) ∈ D2 ∪ Γ12.
(1.24)

iii) For (θ, L) ∈ Γ01 ∪ Γ02 ∪ {P}, the energy E has exactly two global minimizers: the trivial
solution ζ = (ζ1, ζ2) = (0, 0) and a blister ζ = (ζ1, ζ2) ∈ Y given in (1.8) with





T < L if (θ, L) ∈ Γ01;

T = L if (θ, L) ∈ Γ02 ∪ {P}.
(1.25)

Proposition 1.8 (Blister’s properties in D1 ∪D2 ∪ Γ12)
For (θ, L) ∈ D1 ∪D2 ∪ Γ12, there exists a unique K ∈ D (depending on (θ, L)) minimizing
problem (1.4). Recalling (1.6), we consider T and A given in (1.9).
i) Monotonicity
First, T and A are continuous in (θ, L) on D1∪D2∪Γ12 and satisfy the following properties

∂T

∂θ
,
∂T

∂L
≥ 0 and

∂A

∂θ
,
∂A

∂L
≥ 0.

In particular,
T = L on D2 ∪ Γ12.

ii) "Smallest" blister solutions
We have

inf
(θ,L)∈D1

T = T ∗ := 4π

√
2

3
α1/4, (1.26)

and

inf
(θ,L)∈D1

A = A∗ :=
4√
3
. (1.27)

Remark 1.9 (Prediction for the smallest blisters; not fully delaminated case)
For any (θ, L) ∈ D1, we have a unique blister (ζ1, ζ2) ∈ Y minimizing the energy E. Ac-
cording to Proposition 1.8, the second component ζ2 has a support of length T > T ∗ with
T < L. This shows that T ∗ can be interpreted as the infinimum of the width of blisters whose
length support is strictly less than the length of the film. Similarly, we can also interpret the
amplitude A∗ as the minimal amplitude of the blisters.

Remark 1.10 (Relatively small blisters for large L)
For (θ, L) ∈ D1, it is possible to check, as L tends to infinity, that T and A have a behavior
like L1/3 and L2/3 respectively. In particular, for θ fixed and for large enough films, the size
of the blisters is much smaller than the size of the film.
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Remark 1.11 (Phase diagram for local minimizers)
For local minimizers (with small perturbation of the support with T < L), we expect to have
similar phase diagram for p blisters (only local minimizers) of the same width T with now L
replaced by L/p, L replaced by L/p and T ≤ L/p (see Remark 2.2).

1.3 Brief review of the literature

Buckling delamination blisters have commonly been studied for a long time. In [8], Gioia and
Ortiz give an overview of experiments, propose and study mathematically variational models
of blisters, among other things motivated by the description of telephone-cord morphology.
See also [1] where such a telephone-cord instability is studied.
Experimentally and theoretically in [11], the authors study blisters which have the one
dimensional symmetry. Their results seem coherent with ours, even if the problem and the
modeling are not exactly the same. We also refer the reader to [3] and the references therein
for recent developments on the analysis and modeling of blisters. In this nice work, the
authors consider a Föppel-von Kármán model for the film with a special bonding energy with
the substrate. For this variational model, they study several regimes for the energy. This
is also interesting to mention the work [2] where the authors derive rigorously a variational
similar model of thin films bonded to a substrate when the thickness of the film goes to zero.
Their limit energy contains in particular a bonding term which is similar to our term with
γ in the energy (1.1).

1.4 Organization of the paper

The organization of the paper is as follows. In Section 2, we prove Theorems 1.2 and 1.3
i) on the existence and the description of global minimizers. Section 3 is dedicated to the
detailed classification of global minimizers and their qualitative properties. There we prove
Theorem 1.7, Theorem 1.3 ii) and Proposition 1.8. To this end, we divided this section into
three parts. In the first one, we present some results which will be useful to prove Theorem
1.7. The second subsection is devoted to prove Theorem 1.7. We end up Section 3 by the
proofs of Theorem 1.3 ii) and Proposition 1.8.

2 Proofs of Theorems 1.2 and 1.3 i)

This section is divided into two parts: the first one is devoted to prove Theorem 1.2 and the
second is dedicated to the proof of Theorem 1.3 i).

2.1 Existence of global minimizers

Proof of Theorem 1.2
The proof of Theorem 1.2 is very classical. By considering a minimizing sequence ζk =
(ζk1 , ζ

k
2 ) ∈ Y such that E(ζk) −→

k→∞
I = inf

ζ∈Y
E(ζ), and using Young’s inequality, we get

2θ

∫

Ω

(ζk
′

2 )2 = 4θ

∫

Ω

(
ζk

′

1 +
1

2
(ζk

′

2 )2
)

≤ 2θ
2
L

α
+ 2α

∫

Ω

(
ζk

′

1 +
1

2
(ζk

′

2 )2
)2

. (2.1)
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Thus we can bound the energy E(ζk). We will skip the steps of the proof since the result
can be obtained in a classical way (see also [10] and [4]).

�

2.2 Description of global minimizers of E

We first start this subsection by the following lemma which will be used to prove Theorem
1.3 i).

Lemma 2.1 (Classification of solutions ζ2)
Let ζ2 ∈ {f ∈ H2(Ω), f ≥ 0}. Consider the following ordinary differential equation





ζ
(4)
2 +

3(θ − αK)

2α
ζ ′′2 = 0 on ω0 = (x0, y0);

ζ2 > 0 on ω0;

ζ2 = 0 on ∂ω0;

(2.2)

where x0 < y0.
If θ − αK ≤ 0, then there is no solution of (2.2).
If θ − αK > 0, then up to translate ζ2, we have





x0 = −T

2
and y0 =

T

2
;

ζ2(x) = A0(cos(βx) + 1) on ω0 = (x0, y0);

β =

√
3(θ − αK)

2α
=

2π

T
;

(2.3)

where A0 > 0 is a constant.

Proof of Lemma 2.1
Since ζ2 ∈ H2(R/LZ), then ζ2 ∈ C1(R/LZ). Moreover ζ2 ≥ 0, which implies that

ζ2(x0) = ζ ′2(x0) = 0 = ζ2(y0) = ζ ′2(y0). (2.4)

We can write ζ2 as ζ2(x) = ζS2 (x) + ζA2 (x) on ω0 = (x0, y0), where ζS2 is the symmetric part
of ζ2 and ζA2 is its anti-symmetric part. In particular ζS2 verifies the following conditions

ζS2 > 0 on ω0 and ζS2 = (ζS2 )
′ = 0 on ∂ω0. (2.5)

We skip the details of the proof which is a routine exercise.
�

Proof of Theorem 1.3 i)
Let (ζ1, ζ2) ∈ Y be a minimizer of E.
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Step 1: Differentiating E with respect to ζ1
Differentiating E with respect to ζ1 leads to the following Euler-Lagrange equation:

(
ζ ′1 +

1

2
(ζ ′2)

2

)′

= 0 on Ω,

i.e.

ζ ′1 +
1

2
(ζ ′2)

2 =
K

2
where K =

1

L

∫

Ω

(ζ ′2)
2 ≥ 0. (2.6)

Therefore the total energy becomes

E(ζ1, ζ2) = E(ζ2) :=

∫

Ω

1{ζ2>0} +
α

L

(∫

Ω

(ζ ′2)
2

)2

+
4α

3

∫

Ω

(ζ ′′2 )
2 − 2θ

∫

Ω

(ζ ′2)
2.

If K = 0, then ζ2 ≡ 0 and thus ζ1 ≡ const on Ω, and up to subtract a constant to ζ1, we can
assume that ζ1 ≡ 0.
If K > 0, then ζ2 6≡ 0 and we proceed as follows.
Step 2: Differentiating E with respect to ζ2
Differentiating E with respect to ζ2, yields the following Euler-Lagrange equation

ζ
(4)
2 +

3(θ − αK)

2α
ζ ′′2 = 0 on {ζ2 > 0}.

Up to add a constant to ζ2, we can assume that inf
Ω
ζ2 = 0. Therefore there exists x0 ∈ Ω

such that ζ2(x0) = 0. Up to translation, we choose x0 = −L/2. Then, we deduce that

{ζ2 > 0} = ∪
i∈J

ωi, for ωi = (xi, yi),

where J is a set at most countable and such that ωi ∩ ωj = ∅ for i 6= j. Applying Lemma
2.1 to each ωi, we conclude that θ − αK > 0,

yi − xi = T = 2π

√
2α

3(θ − αK)

and up to translation, the solution ζ2 is given by (2.3) on each ωi with the amplitude A0

replaced by Ai. Now, we deduce that card(J) = p < +∞ with p ≥ 1 satisfying pT ≤ L.
Since the ωi are disjoint, we get

KL =

∫

Ω

(ζ ′2)
2 =

β2T

2

p∑

i=1

A2
i . (2.7)

Hence using (2.3), we get

E(ζ2) = E(K, p) := 2pπ

√
2α

3(θ − αK)
− αK2L (2.8)

with the conditions

1 ≤ p ≤ L

T
and T =

2π

β
. (2.9)

Then we minimize the energy with respect to p and we get the results.
�
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Remark 2.2 (Local minimizers)
For local minimizers of E, we may have p blisters (all separated by any positive distance)
with the same width T and with amplitude Ai satisfying (2.7). For p ≥ 1 given, we can also

optimize K in E(K, p) which should correspond to local minimizers of E (restricted to small
perturbations of the support with T < L) with L replaced by L/p, L replaced by L/p and
T ≤ L/p.

3 Proofs of Theorem 1.7, Theorem 1.3 ii) and Proposition

1.8

Our aim is to prove Theorem 1.7, Theorem 1.3 ii) and Proposition 1.8. For this purpose,
this section is divided into several parts. In the first one, we give some tools which will be
useful to prove Theorem 1.7. The second subsection is dedicated to the proof of Theorem
1.7. Finally, we prove Theorem 1.3 ii) and Proposition 1.8 in the last subsection.

3.1 Preliminaries

First, we are interested in the following auxiliary minimization problem

min
X∈D

f(X) = f(K), (3.1)

where f and D are defined respectively in (1.5) and (1.7). Recall that for (θ, L) ∈ (0,∞)2,
we have that D ⊂

6=
[0, θ). In order to determine the minimum of the function f on [0, θ), we

have to introduce the quantity

Ld = Ld(θ) :=
25

24

√
5

3
θ−5/2, for θ > 0. (3.2)

Proposition 3.1 (Minimizing f on [0, θ) and its consequences)
We consider f defined in (1.5) and Ld introduced in (3.2).
i) If L ≤ Ld, then f is increasing on (0, θ) and

argmin
D

f = {0}.

In this case, we set artificially Xm := 2θ/5.
ii) If L > Ld, then there exist XM and Xm such that 0 < XM < 2θ/5 < Xm < θ and





f ′ ≥ 0 on (0, XM ] ∪ [Xm, θ);

f ′ < 0 on (XM , Xm);

and
argmin

D
f ⊂ {0, Xm}. (3.3)
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iii) Moreover for L > Ld, the function Xm = Xm(θ, L) is smooth and satisfies

∂θXm =
3/4(θ −Xm)

−5/2

3/4(θ −Xm)−5/2 − 2L
> 1, (3.4)

and

∂LXm =
2Xm

3/4(θ −Xm)−5/2 − 2L
> 0. (3.5)

Proof of Proposition 3.1
Step 1: Proof of i) and ii)
For 0 < X < θ, we have

f ′(X) = g(X)− h(X) with g(X) :=
1

2
(θ −X)−3/2 and h(X) := 2LX.

We notice that g is strictly convex on [0, θ), with g(0) > 0 and g′(0) > 0. Therefore there
exists a unique L = Ld > 0 such that the straight line y = h(X) is tangent from below to
the graph y = g(X), at a point Xd > 0. In particular, we have





g(Xd) = h(Xd);

g′(Xd) = h′(Xd).

The unique solution of this system is Xd = 2θ/5 and the value of Ld given in (3.2). Using
the strict convexity of g (and the fact that g(θ−) = +∞), we deduce the variations of f
in cases i) and ii). With the notations of case ii) in Proposition 3.1, Xm is in particular
uniquely characterized by

f ′(Xm) = 0 with Xm ∈
(
2θ

5
, θ

)
, (3.6)

and then we get (3.3).
Step 2: Proof of iii)
In order to compute the derivative with respect to (θ, L), we write the dependance of f on
(θ, L) as: f(X) = f(X, θ, L). Using (3.6) we have

∂2
XXf(Xm, θ, L) =

3

4
(θ −Xm)

−5/2 − 2L =
L(5Xm − 2θ)

θ −Xm

> 0. (3.7)

Using (3.7), we have ∂XXf(Xm, θ, L) 6= 0. Then using the Implicit Function Theorem,
we deduce that Xm = Xm(θ, L) is a smooth function. Now using the definition of Xm =
Xm(θ, L), we get

d

dθ
(∂Xf(Xm, θ, L)) = ∂2

XXf(Xm, θ, L)∂θXm + ∂2
Xθf(Xm, θ, L) = 0. (3.8)

Using (3.8) and (3.7), we get (3.4). In a similar way, we get (3.5).
�
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In what follows, we consider the minimizer of f on the subinterval D of [0, θ) where we recall

that D :=
[
0, θ̃+

]
and θ̃+ is defined in (1.7). For this purpose, we introduce

X := min
{
θ̃+, Xm

}
, (3.9)

where Xm is the quantity introduced in Proposition 3.1. Then we have

argmin
D

f ⊂ {0, X}. (3.10)

For this reason, we have to study in particular the equalities





Xm = θ̃;

f(0) = f(Xm);

f(0) = f(θ̃).

And then we need to consider the following functions





Ld(θ) :=
25

24

√
5

3
θ−5/2 for θ > 0; (3.11)

L01(θ) :=
55/2

16
θ−5/2 for θ > 0; (3.12)

where Ld and L01 have already been introduced in (3.2) and (1.13).

First of all, we have to give some geometrical results concerning the position of such curves
describing our domains. For an illustration of the following lemma, we refer the reader to
Figure 3.

Lemma 3.2 (Positions of some curves)
We recall θ∗ given in (1.12). The following results hold true:
i) L01(θ

∗) = L02(θ
∗) = L12(θ

∗).
ii) For all θ > θ∗, we have L01(θ) < L02(θ) < L12(θ).
iii) For all θ > 0, we have L01(θ) > Ld(θ).

We skip the proof of Lemma 3.2 since it is easy to check the result by simple computations.
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Figure 3: Schematic phase diagram for parameters (θ, L)

Lemma 3.3 (Properties of the function Xm − θ̃)

i) For θ > 0 and L > Ld(θ), we have ∂θ(Xm− θ̃) > 0, where Xm = Xm(θ, L) and θ̃ = θ̃(θ, L)
are respectively introduced in Proposition 3.1 and (1.7).
ii) For θ > 0 and L = L01(θ), we have L > Ld(θ) and





Xm < θ̃ for 0 < θ < θ∗;

Xm = θ̃ for θ = θ∗;

Xm > θ̃ for θ > θ∗.

iii) For θ ≥ θ∗ and L = L12(θ), we have L > Ld(θ) and Xm = θ̃.

Proof of Lemma 3.3
Proof of i) Let θ > 0 and L > Ld(θ). According to Proposition 3.1 ii), f admits a non zero

minimizer Xm ∈ (2θ/5, θ). Using (3.4) and the definition of θ̃ in (1.7), we get

∂θ(Xm − θ̃) =
3/4(θ −Xm)

−5/2

3/4(θ −Xm)−5/2 − 2L
− 1 =

2L

3/4(θ −Xm)−5/2 − 2L
> 0.

Proof of ii) Let θ > 0 and L = L01(θ). Using Lemma 3.2, we deduce that L = L01(θ) >
Ld(θ) for all θ > 0. Then according to Proposition 3.1 ii), f admits a non zero minimizer
Xm ∈ (2θ/5, θ). Using (3.6) we have

1

2
(θ −Xm)

−3/2 = 2L01(θ)Xm with
2

5
θ < Xm < θ.
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Let Ym := Xm/θ, then we have

1

2
(1− Ym)

−3/2 =
55/2

8
Ym with

2

5
< Ym < 1. (3.13)

The uniqueness of Ym shows that Ym is a constant independent of θ. It is easy to check that
Ym = 4/5 is the solution of (3.13). Then

Xm =
4

5
θ for all θ > 0 and L = L01(θ). (3.14)

Using (3.14), we get that for θ > 0 and L = L01(θ)

Xm − θ̃ =
4θ

5
− θ̃(θ, L01(θ)) =

θ

5

(
44α2

54
θ4 − 1

)
,

which vanishes for θ = θ∗ and then we get the result.
Proof of iii) Let θ ≥ θ∗ and L = L12(θ). Using Lemma 3.2, we conclude that L = L12(θ) ≥
L01(θ) > Ld(θ) for all θ ≥ θ∗. Then using Proposition 3.1 ii), f admits a non zero minimizer

Xm ∈ (2θ/5, θ). A direct computation of f ′(θ̃) shows that

f ′(θ̃) =
Q(θ, L)

2α3L
with Q(θ, L) := L4 − 4α3θL2 + 4α5.

It is easy to check that in particular for θ ≥ θ∗ and L = L12(θ), we have Q(θ, L12(θ)) = 0

and then f ′(θ̃) = 0. Using Lemma 3.3 ii), we know that

θ̃ = Xm >
2

5
θ at the point (θ, L) = (θ∗, L∗) = P. (3.15)

Moreover for θ > θ∗ and L = L12(θ), we have

d

dθ

(
θ̃(θ, L12(θ))−

2

5
θ

)
=

3

5
+ 2

α2

L3
12(θ)

L′
12(θ) > 0.

Therefore we deduce that θ̃ > 2θ/5 for θ ≥ θ∗ and L = L12(θ). Then we conclude that

Xm = θ̃ for θ ≥ θ∗ and L = L12(θ).
�

Lemma 3.4 (Properties of f(Xm) and f(θ̃))
Let f(X) = f(X, θ, L) be given in (1.5).
A) Properties of f(Xm)
For θ > 0 with L > Ld(θ) and Xm = Xm(θ, L) introduced in Proposition 3.1, we have

A.i)
d

dL
f (Xm(θ, L), θ, L) < 0,

A.ii)
d

dθ
f (Xm(θ, L), θ, L) < 0.

B) Properties of f(θ̃)

B.i) Let (θ, L) ∈ (0,+∞)2 such that θ̃ = θ̃(θ, L) > 0. Then we have
d

dθ
f
(
θ̃(θ, L), θ, L

)
< 0.

B.ii) For θ > θ∗ and L > L02(θ), we have θ̃ > 0 and
d

dL
f
(
θ̃(θ, L), θ, L

)
< 0.
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Proof of Lemma 3.4
A) Let θ > 0 and L > Ld(θ). Using Proposition 3.1 ii), f admits a non zero minimizer
Xm ∈ (2θ/5, θ).
Proof of A.i) We have

d

dL
f (Xm(θ, L), θ, L) = ∂Lf (Xm, θ, L) + ∂Xf (Xm, θ, L) ∂LXm = −X2

m < 0,

where we have used (1.5) and (3.6) to get the last equality.
Proof of A.ii) We have

d

dθ
f (Xm(θ, L), θ, L) = ∂θf (Xm, θ, L) + ∂Xf (Xm, θ, L) ∂θXm = −1

2
(θ −Xm)

−3/2 < 0,

where again we have used (1.5) and (3.6) to get the last equality.

B) We recall that θ̃ = θ̃(θ, L) is given in (1.7).

Proof of B.i) Let (θ, L) ∈ (0,+∞)2 such that θ̃ = θ̃(θ, L) > 0. We have

d

dθ
f
(
θ̃(θ, L), θ, L

)
=

d

dθ

[
L

(
1

α
− θ̃2

)]
= −2Lθ̃ < 0.

Proof of B.ii) It is easy to check that θ̃(θ, L02(θ)) = α−1/2 > 0 for θ ≥ θ∗. Since ∂Lθ̃ > 0,
we deduce that

θ̃ > α−1/2 > 0 for θ > θ∗ and L > L02(θ). (3.16)

Now because θ̃ > 0, a direct computation shows that for θ > θ∗ and L > L02(θ) we have

d

dL
f
(
θ̃(θ, L), θ, L

)
=

d

dL

[
L

(
1

α
− θ̃2

)]
=

1

α
− θ̃2 − 4α2 θ̃

L2
.

Using (3.16) we get the result.
�

3.2 Classification of global minimizers of E

In this subsection, we prove Theorem 1.7.
Proof of Theorem 1.7
Using Theorem 1.3, a minimizer ζ = (ζ1, ζ2) of the energy E is always defined as in (1.8)
and (1.9). So we have to identify the value of K ∈ D solving Problem (3.1) in each case.
Case A: (θ, L) ∈ D0

Case A.i): θ > 0 and L ≤ Ld(θ)
Using Proposition 3.1 i) we deduce that

argmin
D

f = {0}.

Case A.ii): θ > 0 and Ld(θ) < L < L01(θ)
Using Proposition 3.1 ii) we deduce that f admits a non zero minimizer Xm ∈ (2θ/5, θ).
Using (3.14), a simple computation leads us to the following

f(Xm) = 0 = f(0) for θ > 0 and L = L01(θ). (3.17)
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Using Lemma 3.4 A.i), we deduce that f(Xm) > 0 = f(0) for θ > 0 and Ld(θ) < L < L01(θ).
Then

argmin
D

f = {0}.

Case A.iii): θ > θ∗ and L01(θ) ≤ L < L02(θ)
Using Lemma 3.2, we have L ≥ L01(θ) > Ld(θ). Now using Proposition 3.1 ii), we deduce
that f admits a non zero minimizer Xm ∈ (2θ/5, θ). Using Lemma 3.3 ii), we conclude that

Xm > θ̃ for θ > θ∗ and L = L01(θ). (3.18)

Using Lemma 3.3 i), we deduce that Xm > θ̃ for θ > θ∗ and L01(θ) ≤ L < L02(θ). Therefore

argmin
D

f ∈
{
0, θ̃

}
. Now, we distinguish two cases:

If θ̃ ≤ 0, then D = {0} and argmin
D

f = {0}.

If θ̃ > 0, we proceed as follows: A direct computation shows that

f(θ̃) = 0 = f(0) for θ > θ∗ and L = L02(θ). (3.19)

According to Lemma 3.4 B.i), we deduce that f(θ̃) > 0 = f(0) for θ > θ∗ and L01(θ) ≤ L <
L02(θ). Therefore argmin

D
f = {0}.

This shows that in case A.iii), we have

argmin
D

f = {0}.

Case B: (θ, L) ∈ D1

According to Lemma 3.2, we have L > L01(θ) > Ld(θ) for 0 < θ ≤ θ∗. Using again Lemma
3.2, we also have L > L12(θ) > L01(θ) > Ld(θ) for θ > θ∗. Therefore, we have L > Ld(θ)
for all (θ, L) ∈ D1. Then using Proposition 3.1 ii), we deduce that f admits a non zero
minimizer Xm ∈ (2θ/5, θ). Using Lemma 3.3 ii), we conclude that

Xm < θ̃ for 0 < θ < θ∗ and L = L01(θ). (3.20)

Moreover using Lemma 3.3 iii), we have

Xm = θ̃ for θ ≥ θ∗ and L = L12(θ). (3.21)

Using Lemma 3.3 i), we deduce that Xm < θ̃ for (θ, L) ∈ D1. Therefore argmin
D

f ∈ {0, Xm}.
Using (3.17) and Lemma 3.4 A.ii), we get that f(Xm) < 0 = f(0) for (θ, L) ∈ D1. Therefore

argmin
D

f = {Xm}.

Case C: (θ, L) ∈ D2

According to Lemma 3.2, we have L > L02(θ) > L01(θ) > Ld(θ) for θ > θ∗. Then using
Proposition 3.1 ii), we deduce that f admits a non zero minimizer Xm ∈ (2θ/5, θ).

i) For θ > θ∗ and L∗ < L < L12(θ), using (3.21) and Lemma 3.3 i), we deduce that Xm > θ̃.
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ii) For θ > θ∗ and L02(θ) < L ≤ L∗, using (3.18) and Lemma 3.3 i), we deduce that Xm > θ̃.

Therefore for (θ, L) ∈ D2, we have argmin
D

f ∈
{
0, θ̃

}
.

On the other hand, using Lemma 3.4 B.ii) for θ > θ∗ and L > L02(θ), we have θ̃ > 0. Using

(3.19) and Lemma 3.4 B.ii), we deduce that f(θ̃) < 0 = f(0) for (θ, L) ∈ D2. Therefore

argmin
D

f = {θ̃}.

Case D: (θ, L) ∈ Γ01

It is easy to check that

argmin
D

f = {0, X} with 0 < X = Xm < θ̃.

Case E: (θ, L) ∈ Γ02

It is easy to verify that

argmin
D

f = {0, X} with 0 < X = θ̃ < Xm.

Case F: (θ, L) ∈ Γ12

Similarly, we can show that

argmin
D

f = {X} with X = Xm = θ̃ > 0.

Case G: (θ, L) = P = (θ∗, L∗)
Finally, we can check that

argmin
D

f = {0, X} with 0 < X = Xm = θ̃.

Conclusion: So we have proved that

argmin
D

f =





{0} if (θ, L) ∈ D0;

{Xm} if (θ, L) ∈ D1;

{θ̃} if (θ, L) ∈ D2 ∪ Γ12;

(3.22)

and

argmin
D

f ∈





{0, Xm} if (θ, L) ∈ Γ01;

{0, θ̃} if (θ, L) ∈ Γ02 ∪ {P}.
(3.23)

Now using Theorem 1.3, a minimizer ζ = (ζ1, ζ2) of the energy E is defined as in (1.8) and
(1.9). Moreover, using (1.11) we get T < L if (θ, L) ∈ D1, and T = L if (θ, L) ∈ D2 ∪ Γ12

which shows (1.24). Similarly, we get (1.25) for (θ, L) ∈ Γ01 or (θ, L) ∈ Γ02 ∪ {P}.
�
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3.3 Global minimizers of E and blister’s properties

In this subsection, we prove Theorem 1.3 ii) and Proposition 1.8.

Proof of Theorem 1.3 ii)
a) Case (θ, L) ∈ D0 ∪D1 ∪D2 ∪ Γ12

Using (3.22), there exits a unique minimizer K ∈ D of the function f . Now using Theorems
1.2 and 1.3 i), there exists a global minimizer ζ ∈ Y of the energy E and there exits T ∈ [0, L]
such that (up to addition of constants and translation of (ζ1, ζ2)) this minimizer is given by
(1.8) and (1.9).
b) Case (θ, L) ∈ Γ01 ∪ Γ02 ∪ {P}
Using (3.23), there exit exactly two minimizers of the function f on D. Similarly using
(1.10), Theorems 1.2 and 1.3 i), we see that the energy E has exactly two global minimizers
in Y : the trivial solution (ζ1, ζ2) = (0, 0) and a blister ζ ∈ Y given by (1.8)-(1.9).

�

Proof of Proposition 1.8
Proof of i)
Let (θ, L) ∈ D1 ∪ D2 ∪ Γ12. Using (3.22), we conclude that there exists a unique K =
K(θ, L) ∈ D (see (3.22)) such that

min
X∈D

f(X) = f(K),

with f and D, respectively introduced in (1.5) and (1.7). According to (1.9), the length of
the support of ζ2 and its amplitude A can be written (using (1.6) to express (θ, L) in terms
of (θ, L)) as

T = 2π

√
2α

3(θ − αK)
= 2π

√
2

3
(θ −K)−1/2, (3.24)

and

A =

√
KL

πβ
=

(
2

3

)1/4

(πα)−1/2 (KLT )1/2 . (3.25)

Using (3.22), we have

K = K(θ, L) =





Xm(θ, L) if (θ, L) ∈ D1;

θ̃(θ, L) if (θ, L) ∈ D2 ∪ Γ12.

The function θ̃ is smooth. Moreover, Xm is smooth on D1 according to Proposition 3.1 iii).
Therefore K = K(θ, L) is a smooth function of (θ, L) on each domain D1 and D2.
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Straightforward calculations show that for (θ, L) ∈ D1 ∪D2





∂θT = π

√
2

3
(θ −K)−3/2(∂θK − 1),

∂LT = π

√
2

3
(θ −K)−3/2∂LK,

∂θA =

(
1

24

)1/4 (
L

απKT

)1/2

(T∂θK +K∂θT ),

∂LA =

(
1

24

)1/4 (
1

απKTL

)1/2

(KT + TL∂LK +KL∂LT ).

(3.26)

Case 1: (θ, L) ∈ D1

Using (3.4), (3.5) and (3.26), we conclude that ∂θT, ∂LT, ∂θA, ∂LA ≥ 0.
Case 2: (θ, L) ∈ D2 ∪ Γ12

Using (3.22), we have K = θ̃(L) = θ − α2/L2 and T = L. So we have

∂θK = 1 and ∂LK =
2α2

L3
> 0.

Using (3.26), we conclude that ∂θT, ∂LT, ∂θA, ∂LA ≥ 0.
Proof of ii)
Step 1: Proof of (1.26)
Our goal is to compute the derivative of T with respect to θ along the curve Γ01. Using
(3.26), (3.4) and (3.5), we get with obvious notation for (θ, L) ∈ Γ01 (using the fact that
L = L01(θ) given in (1.13))

d

dθ
T (θ, L01(θ)) = π

√
2

3
(θ −K)−3/2[(∂θK − 1) + (∂LK)L′

01(θ)]

= π

√
2

3
(θ −K)−3/2

[
55/2θ−5/2(2− 5θ−1K)

16 (3/4(θ −K)−5/2 − 2L)

]
.

Using (3.6) and (3.7), we conclude that T = T (θ, L01(θ)) is decreasing in θ along the curve
Γ01. Then we deduce that inf

(θ,L)∈Γ01

T = T (P ) = T (θ∗, L01(θ
∗)). Using (1.25), we have

T (P ) = L
∗
, where L

∗
is the value of L at the point P . Therefore

inf
(θ,L)∈Γ01

T = L
∗
= 2π

√
2

3

L01(θ
∗)

α
= 4π

√
2

3
α1/4 =: T ∗. (3.27)

Using the monotonicity of T in θ and L on D1, we get (1.26).
Step 2: Proof of (1.27)
Let K := K/θ. Similarly using (3.25) and (3.24), we explicit A in term of K for (θ, L) ∈ Γ01

(in particular L = L01(θ)). A straightforward computation gives

A(θ, L01(θ)) =

(
1

12

)1/2

55/4
(
K(1−K)−1/2

)1/2
α−1/2θ−1.
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For (θ, L) ∈ Γ01, with K = Xm we have by (3.14) that K = 4/5. Then A = A(θ, L01(θ)) is
decreasing in θ along the curve Γ01. So

inf
(θ,L)∈Γ01

A = A(θ∗, L01(θ
∗)) = 2

(
5

9

)1/4 (
K(1−K)−1/2

)1/2
= 4/

√
3 =: A∗.

Finally using the monotonicity of A in θ and L on D1, we get (1.27).
�
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