
A fast method for computing convolutions with

structural Green’s functions: application to tyre

dynamic contact problems

Rabie Meftah, Denis Duhamel, Julien Cesbron, Yin Hai-Ping

To cite this version:

Rabie Meftah, Denis Duhamel, Julien Cesbron, Yin Hai-Ping. A fast method for computing
convolutions with structural Green’s functions: application to tyre dynamic contact problems.
Revue Européenne de Mécanique Numérique/European Journal of Computational Mechanics,
Hermmès / Paris : Lavoisier 2013, 22 (5-6), pp.284-303. <10.1080/17797179.2013.849483>.
<hal-00949276>

HAL Id: hal-00949276

https://hal.archives-ouvertes.fr/hal-00949276

Submitted on 20 Feb 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
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Abstract

Tire/road contact is the main source of car noise at speeds greaterthan 50km/h. In this context, we have developed a new
approach for modeling tire vibrations and the contact with rigid road surfaces during rolling. For tires, a periodic model
is used to compute Green’s functions. The response of tires can thus be modeled over a large frequency range. Then a
fast convolution and a new contact model are developed and examples of computations of contact forces are given for real
road textures. Spectra of forces for different tire velocities are also computed.
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1. Introduction

The prediction of tire road noise needs both a tire vibrationmodel and a method for computing the contact forces
between a tire and a road.

For the tire vibrations, the simplest approach is the circular ring model as in [1]. However, for complex geometrical
or material properties of the tire, a finite element model is much more appropriate. To avoid the heavy three-dimensional
computations of [2], several efficient models have been proposed such as the wave finite element approach in [3] or the
recursive method presented in [4, 5].

Here the dynamic response of the tire is calculated by convolution of the contact forces with the Green’s functions
of the tire. The convolution technique for contact problemsis used by many authors : M. McIntyre al. [6] have applied
the approach to the string/bow contact to study large-amplitude oscillations of musical instruments. C. Wang and J. Kim.
[7, 8] have used the same approach for a thin beam impacting against a stop, A. Nordborq [9] for the wheel/rail contact
problem and many other authors have used this technique in the tyre/road contact [10, 11, 12].

For orthotropic plates such Green’s functions were analytically found in [13], but here they are found from the recursive
model [4]. However the computation of the convolution can betime consuming. In this work we have used a different
method. First it consists in the modal expansion of the pre-calculated Green’s functions. The modal parameters are
then used to construct a new convolution which allows quicker calculations than the traditional convolution. Then modal
convolution is adapted to dynamic contact problems by usinga kinematic contact condition.

The outline of the paper is thus the following. In section 2, the contact model, including the fast convolution and
the kinematic contact condition is described. Then in section 3, a simple one-dimensionnel model is used as example to
illustrate the advantages of this contact model. Then a 3D finite element model of the tire is presented and its Green’s
functions are computed. Finally, section 4 gives numericalresults of displacements and contact forces for two road
textures.

2. Contact model

A linear discretized dynamic problem can be generally expressed by a second order differential equation in the time
domain:

Mü(t) + Cu̇(t) + Ku (t) = q(t) (1)

whereM , C, K , u and q are the mass matrix, the damping matrix, the stiffness matrix, displacement and force,
respectively. In the frequency domain, the problem can be written:

û(ω) = ĝ(ω) q̂(ω) (2)

whereĝ is the Green function :

ĝ(ω) =
[

−ω2M + jωC + K
]−1

(3)

The traditional method when the time Green’s functiong(t) is known, is to calculate the dynamic response of the
system by convolving the force with the Green’s function:

u(t) =
∫ t

0
g(t − τ)q(τ)dτ (4)

For a unilateral contact between a dynamic system (tire) anda rigid body (road), both forceq(t) and displacementu(t)
are unknown. In addition to the convolution equation (4), the following contact conditions must be verified:

u(t) = ur (t) ; q(t) > 0 (5)

u(t) > ur (t) ; q(t) = 0 (6)

whereur is the vertical road position (only vertical displacementsare considered here).
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2.1. Fast convolution

The computation of the response of the tire by a standard convolution requires a large number of coefficients. Here we
try to reduce the computing time by simplifying the Green’s function which can be approximated by a linear combination
of Nm modes (not necessarily the true modes) as:

ĝi j (ω) =
k=Nm∑

k=1

Ak
i j

−ω2 + 2
√
−1 ξki jω

k
i jω + ω

k
i j

2
(7)

Knowing ĝi j (ω) by a finite element model or by measurements, we must identify the residuesAk
i j , the dampingsξki j

and the resonance frequenciesωk
i j .There are several methods to solve this problem. In this study the LSCE (Least Squares

Complex Exponential) is used. The principle of this algorithm is detailed in Appendix A.
By taking the analytical inverse Fourier transform, the Green’s function in the time domain can be found by:

gi j (t) =
k=N∑

k=1

Ak
i j

ωdk
i j

e−ξ
k
i jω

k
i j H(t) (8)

with:

ωdk
i j = ω

k
i j

√

1− ξki j
2

andH(t) is the Heaviside step function:

H(t) = 0 for t < 0 (9)

H(t) = 1 for t ≥ 0

The displacementu(t) is obtained from the contact forceq(t) by the convolution:

u(t) =
∫ t

0
g(τ)q(t − τ)dτ =

∫ t

0
g(t − τ)q(τ)dτ (10)

Inserting expression (8) forgi j (t) in Eq. (10) yields to the displacement at pointi :

ui(t) =
j=Np∑

j=1

∫ t

0

k=N∑

k=1

Ak
i j

ωdk
i j

e−ξ
k
i jω

k
i j (t−τ)

[

sin
(

ωdk
i j (t − τ)

)]

q j(τ)dτ (11)

whereNp is the size of displacementsu.

Separating thet andτ variables and rearranging, the displacement can be writtenas:

ui(t) =
j=Np∑

j=1

k=N∑

k=1

Ak
i j

ωdk
i j

e−ξ
k
i jω

k
i j t

[

sin
(

ωdk
i j t

)

αk
i j (t) − cos

(

ωdk
i j t

)

βk
i j (t)

]

(12)

whereαk
i j (t) andβk

i j (t) are computed by:

αk
i j (t) =

∫ t

0
eξ

k
i jω

k
i j τcos(ωdk

i j τ)q j (τ)dτ (13)

βk
i j (t) =

∫ t

0
eξ

k
i jω

k
i j τsin(ωdk

i j τ)q j (τ)dτ (14)

The parametersαk
i j (t + ∆t) andβk

i j (t + ∆t) can be computed by the discrete versions of Eq. (14) as:

αk
i j ((n+ 1)∆t) = αk

i j (n∆t) + eξ
k
i jω

k
i j n∆tcos(ωkd

i j n∆t)q j (n∆t)∆t

βk
i j ((n+ 1)∆t) = βk

i j (n∆t) + eξ
k
i jω

k
i j n∆tsin(ωkd

i j n∆t)q j (n∆t)∆t

(15)
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2.2. Kinematic contact conditions

When there is no contact, the contact force equals zero and the displacement can be computed by the fast convolution.
When there is contact, conditions must be written to find the contact force. We propose here to write two conditions, one
for the displacement and the other for the velocity.

Eq. (10) can be separated into a term depending on the past history of forcesuh(t) and another term depending only
on the present time step:

u(t) =
∫ t−∆t

0
g(t − τ)q(τ)dτ

︸                      ︷︷                      ︸

uh(t)

+

∫ ∆t

0
g(τ)q(t − τ)dτ (16)

The displacement in pointi is :

ui(t) =
j=Np∑

j=1





∫ t−∆t

0
gi j (t − τ)q j(τ)dτ

︸                         ︷︷                         ︸

uh
i j (t)

+

∫ ∆t

0
gi j (τ)q j(t − τ)dτ





(17)

In the same way taking the derivative of Eq. (17) leads to an equation in term of the velocityv(t) :

vi(t) =
j=Np∑

j=1





∫ t−∆t

0
g′i j (t − τ)q j(τ)dτ

︸                         ︷︷                         ︸

vh
i j (t)

+

∫ ∆t

0
g′i j (τ)q j(t − τ)dτ





(18)

Denoting :

Y(t) =





u1(t)
v1(t)
...

uNp(t)
vNp(t)





; Yh
j =





uh
1 j(t)

vh
1 j(t)
...

uh
Np j(t)

vh
Np j(t)





(19)

leads to:

Y(t) =
j=Np∑

j=1

Yh
j (t) + Ψ(q(t)) (20)

whereΨ is an integral operator giving the influence of the contact force at the present time on the displacement and
the velocity. So the contact conditions are:

Y = Yr = [ur
1(t)

dur
1(t)

dt
... ur

Np
(t)

dur
Np

(t)

dt
]T (21)

whereur
i (t) and

dur
i (t)
dt are the position of the road and its velocity at pointi as seen in the tire reference system. Using the

modal decomposition for the displacement, Eq. (12) yields to the following expression :

vi(t) = −
j=Np∑

j=1

k=N∑

k=1

Ak
i jξ

k
i jω

k
i j

ωdk
i j

e−ξ
k
i jω

k
i j t

[

sin
(

ωdk
i j t

)

αk
i j (t) − cos

(

ωdk
i j t

)

βk
i j (t)

]

+

j=Np∑

j=1

k=N∑

k=1

Ak
i j e
−ξki jω

k
i j t

[

cos
(

ωdk
i j t

)

αk
i j (t) + sin

(

ωdk
i j t

)

βk
i j (t)

]

(22)
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uh(t) andvh(t) are obtained from Eq. (12) and (22) by computingα andβ with q = 0 at the present time. The real
value of this forceq(t) at present time is such that:

∆Y = Yr − Yh

=

j=Np∑

j=1





∫ t

t−∆t

k=N∑

k=1

Ak
1 j

ωdk
1 j

e−ξ
k
1 jω

k
1 j (t−τ)

[

sin
(

ωdk
1 j (t − τ)

)]

q j(τ)dτ

∫ t

t−∆t

k=N∑

k=1

Ak
1 j

ωdk
1 j

e−ξ
k
1 jω

k
1 j (t−τ)

[

−ξk1 jω
k
1 j sin

(

ωdk
1 j (t − τ)

)

+ ωdk
1 j cos

(

ωdk
1 j (t − τ)

)]

q j(τ)dτ

...
∫ t

t−∆t

k=N∑

k=1

Ak
Np j

ωdk
Np j

e
−ξkNp jω

k
Np j (t−τ)

[

sin
(

ωdk
Np j (t − τ)

)]

q j(τ)dτ

∫ t

t−∆t

k=N∑

k=1

Ak
Np j

ωdk
Np j

e
−ξkNp jω

k
Np j (t−τ)

[

−ξkNp jω
k
Np j sin

(

ωdk
Np j (t − τ)

)

+ ωdk
Np jcos

(

ωdk
Np j (t − τ)

)]

q j(τ)dτ





The integrals can be computed by Gauss quadratures with two points. The values of the forces at these two Gauss
points are obtained by:

q =





q1
1

q2
1
...

q1
Np

q2
Np





=





k=N∑

k=1





Ψk
11 · · · Ψk

1Np

...
...

...
...

...
...

Ψk
Np1 · · · Ψk

NpNp









−1 



du1

dv1
...

duNp

dvNp





(23)

with Ψ a 2x2 matrix defined by:

Ψk11
i j =

Ak
i j

ωkd
i j

eξ
k
i jω

k
i j (t−t1)sin(ωkd

i j (t − t1))
∆t
2

(24)

Ψk12
i j =

Ak
i j

ωkd
i j

eξ
k
i jω

k
i j (t−t2)sin(ωkd

i j (t − t2))
∆t
2

(25)

Ψk21
i j =

Ak
i j

ωdk
i j

e−ξ
k
i jω

k
i j (t−t1)

[

−ξki jω
k
i j sin

(

ωdk
i j (t − t1)

)

+ ωdk
i j cos

(

ωdk
i j (t − t1)

)] ∆t
2

(26)

Ψk22
i j =

Ak
i j

ωdk
i j

e−ξ
k
i jω

k
i j (t−t2)

[

−ξki jω
k
i j sin

(

ωdk
i j (t − t2)

)

+ ωdk
i j cos

(

ωdk
i j (t − t2)

)] ∆t
2

(27)

with

t1 = t +

(

1−
1
√

3

)

∆t
2

t2 = t +

(

1+
1
√

3

)

∆t
2

(28)

From the knowledge of the contact forces at timest1 andt2, the parametersαk
i j (t +∆t) andβk

i j (t +∆t) can be computed by

Eq. (15). The number of contact points can change with time. The contact occurs whenuh(t) ≤ ur (t) for each point in the
contact zone. Eq. (21) for the points where the contact happens allows to determine the contact forces at these points.
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3. A simple one-dimensional model

3.1. Description of the model

To illustrate the approach presented above, let us considera simple dynamic contact problem. The purpose of this
example is to test the fast convolution method, to compare itwith the traditional convolution and to test the kinematic
contact conditions. The simplest dynamic system considered in vibration problems is the Single Degree of Freedom
(SDoF) oscillator. In this example, the system moves through a profileur (x) with a constant speedV0 = 0.1 m.s−1. It is
supposed that the displacement occurs without slipping as shown in figure (A.1).

[Figure 1 about here.]

Consider a sinusoidal profile for the road :

ur = A0 sin(kx) = A0 sin(
2π
λr

V0t) (29)

whereλr = 10 mmis the wavelength of the profile andA0 = 5 mmits amplitude.
The system verifies the equations:

Mü+Cu̇+ Ku = −Mg+ Fc (30)

u(t) ≥ ur (t) (31)

Fc ≥ 0 (32)

with the initial conditions:

u0 = u(0) = ur (0) (33)

v0 =
du(t)

dt

∣
∣
∣
∣
∣
t=0
= 0 (34)

The displacementu(t) at timet depends on the contact forces historyFc(t) imposed by the texture of the surface. Two
situations arise: there is a contact between the system and the surface and the displacement of the system equals the height
of the surfaceur (t) and the velocities are also equal, or there is no contact andin this case the contact force is null and the
displacement of the system is strictly higher than that of the surface.

If there is no contact, the displacement and contact forces are given by :

u(t) = e−ξω0(t−tc)
[

uc cos(ωd(t − tc)) +
vc + ξω0uc

ωd
sin(ωd(t − tc))

]

(35)

Fc(t) = 0 (36)

whereuc andvc are respectively the displacement and velocity at the last contact instanttc.
The result will also be compared with the case where a contactstiffness is included. In this case, if there is contact, the

contact force is computed by (37) :

Fc(t) = kc∆x = kc

[

ur (t) − uh(t)
]

(37)

wherekc is the contact stiffness.

3.2. Comparison with standard convolutions

The traditional method when the time Green’s functiong(t) is known, is to calculate the dynamic response of the
system by convolving the contact forces with the Green’s function:

u(t) =
∫ t

0
g(t − τ)q(τ)dτ (38)

Equation (38) can be discretized as follows:
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uk =

k∑

m=0

gk−mqm (39)

Whereuk is the displacement at timek∆t.
Let’s noteNt the number of time steps used to calculate the displacement,andNg the number of time steps for the

influencing Green’s function. The effect of the Green’s function is neglected when the amplitudesof oscillation at time
greater thanNg∆t are hundred times smaller than the maximum of the Green’s functiong(t) (in this example the maximum
amplitude is 2.5 10−4 mN−1).

Equation (39) is reduced to :

uk =

min(k,Ng)
∑

m=0

gk−mqm (40)

The parameters used in the model for the simulations are given in Table A.1.

[Table 1 about here.]

Using standard convolution is costly in terms of computing time, especially with a small time step. Indeed, from equations
(40) and (12) we can see that in the case of a classical convolution, the number of calculation operations is proportionalto
the number of time stepsNt and to the size of the Green’s functionsNg, while in the modal decomposition it is proportional
to Nt and to the approximation orderNm. Table A.2 shows a comparison of computing times between both methods.

[Table 2 about here.]

3.3. Comparison with penalty methods

Figures (A.2), (A.3) and (A.4) show the displacementsu(t) and the contact forcesFc(t) calculated by the penalty
method and the present method for different values of the contact stiffnesskc. In the figures, we observe that the result
obtained with the penalty method depends on the choice of thecontact stiffness. If we use a low value ofkc, we obtain
an unphysical solution (interpenetration phenomena) and if we use a high value, numerical instabilities appear. Finally, if
we use a suitable value the results converge to those of the present method. In other words, the drawback of the penalty
method is its instability due to the arbitrary choice of the contact stiffness, while the present method that only uses a
kinematic condition is always stable.

[Figure 2 about here.]

[Figure 3 about here.]

[Figure 4 about here.]
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4. Tire model

4.1. Tire section

The first step is to have a model for the vibrations of the tire.Here a periodic model has been developed. It consists
in modeling a short cell of the tire as in Figure A.5 and using calculations on this cell for computing Green’s functions
as described below. Stiffness and mass matrices of a cell are obtained from commercialfinite element software. In a first
step they are obtained in a cartesian coordinate system and then they are transformed in a cylindrical coordinate system
in which the whole structure is periodic.

The tire is also inflated with an internal pressureP. So its vibrations are considered as a small perturbation ofthe
prestressed static state shown in Figure A.5. This prestress generates an additional stiffness matrix denotedKP. So, the
full dynamic stiffness matrix is given by:

D0(ω) =
[

K0 + K P + jωC0 − ω2M0
]

(41)

[Figure 5 about here.]

The tire studied here is of type Michelin 165/65/R13 77T. Its geometric properties are given in Table A.3. Themechanical
properties of the different parts of the tire are given in Table A.4.

[Table 3 about here.]

[Table 4 about here.]

4.2. Reference cell

Consider a periodic structure consisting ofN cells. Let’s denotet the geometric transformation that connects the real
cell and the reference cell (see Figure A.6). Denotingxi

0 the coordinates of nodei of the real cell andxi the coordinates
of nodei of the reference cell yields :





x1

...

xi

...

xL





=





t1 0 0 0 0
...
. . .

...

0 0 t i 0 0
...

. . .
...

0 0 0 0 tL





︸                         ︷︷                         ︸

T





x1
0
...

xi
0
...

xL
0





(42)

wheret i is the local transformation matrix of the nodei andL is the number of nodes.

[Figure 6 about here.]

Therefore, the mass matrixM and the stiffness matrixK are calculated in the reference frame from the mass matrices
(M0) and stiffness (K0) of the real cell by:

M = TM 0T−1 (43)

K = T
(

K0 + K p

)

T−1 (44)

The dynamic stiffness matrix is calculated from the matrices and the damping matrix C

D = D(ω) = K + jωC − ω2M (45)
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4.3. Equivalent matrix

The aim of the periodic model is to build the global dynamic stiffness matrix of the structure from the dynamic stiffness
matrix of a single period. It is obtained by recursively eliminating the internal degrees of freedom between adjacent cells.
Consider the dynamic stiffness matricesD1 andD2 of two neighbouring cells:

D1 =





D1
LL D1

LR

D1
RL D1

RR




; D2 =





D2
LL D2

LR

D2
RL D2

RR




(46)

The equivalent matrix of the two cells structure is obtainedby eliminating the internal degrees of freedom by:

Deq =





D1
LL − D1

LRD∗D1
RL −D1

LRD∗D2
LR

−D2
RLD

∗D1
RL D2

RR− D2
RLD

∗D2
LR




(47)

with:
D∗ =

[

D1
RR+ D2

LL

]−1

This operation is repeatedn times withn such as :

N =
n∑

i=1

2pi ; p1 > p2 > ... > pn (48)

with pi the position of theith figure 1 in the binary representation of the numberN of cells in the tire.

4.4. Green’s functions

Consider the domainΩ of the tire. It can be separated into two subdomainsΩl andΩc. The number of cells in the
domainΩc where the contact occurs, is denoted byNc. The other free partΩl of the tire hasNl cells, see Figures A.7 and
A.8.

[Figure 7 about here.]

The dynamic stiffness matrix of domainΩl, denotedDeq, is computed by the method presented in section 4.3. Then the
full dynamic stiffness matrix of the tire is computed by a standard finite element assembling betweenDeq and the matrices
of theNc cells ofΩc, see Figure A.8 and Eq. (49). The matrix of Green’s functionsis obtained by solving a linear system
with Eq. (49) and different load cases associated to different points in the contact zone. The number of load cases is
limited to the number of dofs in a section of the tire.

[Figure 8 about here.]





D11+ Deq
11 D12 0 . . . Deq

12

D21 D22 + D11
. . .

. . .
. . .

0
. . .

. . .
. . .

. . .

...
. . .

. . . D11 + D22 D12

Deq
21

. . .
. . . D21 D22 + Deq

22





︸                                                                       ︷︷                                                                       ︸

DT

(49)

Full tire is modeled using parameters summarized in Tables A.3 and A.4 with an internal pressure of 2bars. Then
Green’s functions are calculated using the finite element software Abaqus. Figure A.9 shows an example of comparison
of Green’s function obtained by the periodic model and thoseobtained by Abaqus. The results show a good consistency
between the two methods of calculation which confirms the correctness of the implementation of the dynamic stiffness
matrix in the periodic method.
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[Figure 9 about here.]

Each Green’s function is approximated by a modal expansion.Modal parameters are identified by the LSCE algorithm
presented in Appendix A. For each coefficient of the Green’s matrix an optimal number of coefficientNm is chosen to get
the best approximation. To check the accuracy of estimated modal data, the Green’s function is regenerated. This method
aims to find the best estimates of modal data that minimizes the error defined in Eq. (50)

E =

∫ ωmax

0 |G(ω) −
k=Nm∑

k=1

Ak

−ω2 + 2 jξkωωk + ω
2
k

|dω

∫ ωmax

0 |G(ω)|dω
(50)

The error is low, generally below 5%. In Figure A.10, a Green’s function and its approximation are presented for the
coefficient with the maximal error (6.5%). One can see that the approximation is very good. In this example we consider
ten sections, each section contains thousand 1034 nodes, and each Green function is approximated by around fifty modes
(Nm ∼ 50).

[Figure 10 about here.]
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5. Road contact

5.1. Road textures

We assume that the roads are perfectly rigid and that the contact area remains constant with time. We consider two
road textures which are measured in [14]. The measured area is L = 2m long andb = 0.35m width with a sampling of
dx = dy = 384µm. Figure A.11 presents the samples of two different roads of sizes 0.1 m by 0.1 m, see [14] for other
examples.

[Figure 11 about here.]

We want to compute the displacements and forces in the contact zones. The Green’s functions of the tire are computed as
in section 4.3 in the frequency range [0 4000Hz]. The contact zone is changing as the tire is moving during the rolling
process. The contact points are moving in the fixed coordinate system as:

x = x0 + V0t

y = y0

z = ur (x, y) (51)

where (x0, y0, z0) are the coordinates in the system moving at constant velocity V0 with the tire. The maximal contact
area is constant with time while the real contact area and thenumber of contact points can change.

5.2. Numerical results

All simulations are made for a contact lengthLc = 6 cmand a widthlc = 8 cm. The number of points isNx = 10 along
X andNy = 12 alongY. The tire is rolling over a lengthL = 2m. The tread is discretized with stepsdX ≈ dY ≈ 5 mm
with an interpolation of the tire height between two tread points. Figures A.12 and A.13 present the displacements and
stress for the two road surfaces of Figure A.11. The displacements have shapes similar to road textures. Losses of contact
and high stress are seen at the maximal heights of asperities. Road (A) generates higher stress than road (B).

[Figure 12 about here.]

[Figure 13 about here.]

The stress level, denotedL f and computed in decibels relatively to a reference value ofσ0 = 102N/m, is obtained by:

L f = 20 log10

(

|σ(ω)|
σ0

)

(52)

Figures A.14 and A.15 present the third octave force spectrafor roads (A) and (B) and for different velocities. When the
velocity increases the spectra are shifted towards higher frequencies and the maximal level is also increased. The force
level is quite significant for frequencies between 500Hz and 5000Hz. For road (A) the maximum level is obtained for
4000Hz, while for road (B) it is for 2000Hz. Globally the force level is higher for road (A) than for road(B). More
examples can be found in [15].

[Figure 14 about here.]

[Figure 15 about here.]
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6. Conclusion

A new approach of dynamic contact computation is developed to treat a tire road contact problem. For the tire, a
periodic model is used to compute Green’s function of the tire in the contact area. The model is validated by comparison
to a classical finite element model. The periodic model leadsto significant reduction of time computing. Then the contact
model developed in this paper consist of the modal expansionof the modal expansion of the pre-calculated Green’s
functions. The modal parameters are then used to construct anew convolution which allows quicker calculations than
the traditional convolution. The modal convolution is adapted to dynamic contact problems by using a kinematic contact
condition. Contact model is validated in the case of an academic example by comparison to the penalty method. Both
methods give the same result but the developed method is morestable and easier to implement. Results of the presented
tire/road contact model show that the force levels are highly dependant on the texture levels and the rolling velocities.
Increasing the rolling velocity clearly shifts the force levels towards higher frequencies and increases the global level.
Force levels are also significant between 500 Hz and 5000 Hz.
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Appendix A. LSCE algorithm

The Green’s function ˆg(ω) is supposed to be known,g(t) is its inverse Fourier transform. The Green’s function in the
frequency domain can be written in the form

ĝ(ω) =
k=N∑

k=1

[

Rk

jω − λk
+

R∗k
jω − λ∗k

]

(A.1)

DenotingRn+k = R∗k andλn+k = λ
∗
k, the Green’s function can be written as

ĝ(ω) =
k=2N∑

k=1

Rk

jω − λk
(A.2)

Then by using an inverse Fourier transform, the Green’s function in the time domain can be found as,

g(t) =
k=2N∑

k=1

Rke
λkt (A.3)

g(t) is sampled by equally spaced time intervals∆t. At the timen∆t, the discrete Green’s function can be written as

g(n∆t) =
k=2N∑

k=1

Rke
λkn∆t (A.4)

By settingzk = eλk∆t, the Green’s function can be written as,

g(n∆t) =
k=2N∑

k=1

Rkz
n
k (A.5)

We writeg(t) for different timesm∆t (m= 1, 2...2N)

g0 = g(0) =
k=2N∑

k=1

Rk

g1 = g(∆t) =
k=2N∑

k=1

Rkzk

g2 = g(2∆t) =
k=2N∑

k=1

Rkz
2
k

[...]

g2N = g(2N∆t) =
k=2N∑

k=1

Rkz
2N
k (A.6)

We assume thatzk is the solution of the polynomial equation (A.7).

β0 + β1zk + β2z2
k + .....βiz

i
k.... + β2Nz2N

k = 0 (A.7)

This equation is known as the Prony equation, and was developed by Gaspard Riche in 1975.
So, by multiplying equations (A.6) by correspondingβi and taking a sum fromi = 1 to 2N

i=2N∑

i=0

βigi =

i=2N∑

i=0

(βi

k=2N∑

k=1

Rkz
i
k) =

k=2N∑

k=1

(Rk

i=2N∑

i=0

βiz
i
k) = 0 (A.8)

Using equation (A.7), we can write
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β0g(0)+ β1g(∆t) + β2g(2∆t) + .....βig(i∆t).... + β2Ng(2N∆t) = 0 (A.9)

If we know the Green’s function at 4N time steps, we can build the Hankel matrix, then the 2N values ofβi can be
found by resolving the matrix equation





g0 g1 g2 · · · g2N−1

g1 g2 g3 · · · g2N

· · · · · · · · · · · · · · ·
g2N−2 g2N−1 g2N · · · g4N−3

g2N−1 g2N g2N+1 · · · g4N−2









β0

β1

· · ·
β2N−2

β2N−1





=





g2N

g2N+1

· · ·
g4N−2

g4N−1





(A.10)

The number of rows in the equation (A.10) can be increased fora least square solution. By settingH the Hankel
matrix,b = [β0 β1....β2N]T andh = [g2N....g4N−1]T , the 2N values ofβi are calculated as

b =
(

HTH
)−1

HTh (A.11)

Thezk values can be found easily as roots of the polynomial equation (A.7). Then the natural frequenciesωk and the
damping ratiosξk are related to thezk coefficients by

ωk =
1
∆t

√

log(zk) log(z∗k) (A.12)

ξk =
− log(zkz∗k)

2ωr∆t
(A.13)

To determine the residue valuesAk, the Green’s function can be expressed at different frequencies (Ω1, Ω2...),





1
−Ω2

1+2 jξ1Ω1ω1+ω
2
1
· · · 1

−Ω2
1+2 jξ2NΩ1ω2N+ω

2
2N

1
−Ω2

2+2 jξ1Ω2ω1+ω
2
1
· · · 1

−Ω2
2+2 jξ2NΩ2ω2N+ω

2
2N

· · · · · · · · ·
1

−Ω2
2N+2 jξ1Ω2Nω1+ω

2
1
· · · 1

−Ω2
2N+2 jξ2NΩ2Nω2N+ω

2
2N









A1

A2

· · ·
· · ·
A2N





=





ĝ(Ω1)
ĝ(Ω2)
· · ·
· · ·

ĝ(Ω2N)





(A.14)

The solution of this set of linear equations will yield the residues.
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Figure A.1: SDOF mass-spring system on a sinusoidal surface
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Figure A.2: Displacement (a) and contact force (b) obtainedby penalty (low contact stiffnesskc = 106 m/N) and
kinematic methods : —road profile,−o− penalty method ,−− kinematic method
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Figure A.3: Displacement (a) and contact force (b) obtainedby penalty (high contact stiffnesskc = 108 m/N) and
kinematic methods : —road profile,−o− penalty method ,−− kinematic method
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Figure A.4: Displacement and contact force obtained by penalty (suitable contact stiffnesskc = 107 m/N) and kinematic
methods : —road profile,−o− penalty method ,−− kinematic method
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Figure A.5: Section of the tire and displacements for an inflation pressure of 2bars.
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Figure A.6: Geometric transformation
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Figure A.9: Periodic model validation with internal pressure P = 2 bars : – periodic model,−o− full tire Abaqus model
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Figure A.10: Comparison between a Green’s function– and its approximation-+- in the least favorable case.
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Figure A.11: 3D texture of two roads: (A) upper figure and (B) lower figure.
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Figure A.12: Displacements and stress for road (A) and for points such thatx0 = 0 with V0 = 90 km/h.
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Figure A.13: Displacements and stress for road (B) and for points such thatx0 = 0 with V0 = 90km/h.
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Figure A.14: 1/3 octave spectrum of the contact stress at point (x0 = 0, y0 = 0) for road (A) and for the velocities :
-*- V0 = 50 km/h, -o- V0 = 70km/h, -�- V0 = 90 km/h.
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Figure A.15: 1/3 octave spectrum of the contact stress at 70 km/h, in point (x0 = 0, y0 = 0) :
-*- road (A),-o- road (B).
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M[Kg] K[N/m] ξ kc[N/m]
1 4 105 0.02 107

Table A.1: SDoF parameters used in the simulations
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Time step [ms] Nt
Standard convolution Modal decomposition

Ng Computing time [s] Nm Computing time [s]

0.1 2000 1900 0.06 1 0.02
0.1 20000 1900 1.01 1 0.10
0.01 20000 19000 5.50 1 0.15
0.01 200000 19000 105.14 1 1.50

Table A.2: Comparison of the computing times between standard convolutions and fast convolutions
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Internal diameter 13” (330.2 mm)
Width of the tread 165mm
Height of the sidewall 65 mm

Table A.3: Properties of tire Michelin 165/65/R13 77T.
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Part Material Property Value

Tread
pattern

ρ 1000kg/m3

Rubber E 7 MPa
ν 0.49

Bead
ρ 7850kg/m3

Steel E 162.6 GPa
ν 0.33

Sidewall
Rubber ρ 1000kg/m3

+nylon belt E 109 MPa
ν 0.48

Tread

ρ 2014kg/m3

Er 663 MPa
Rubber Ex 624 MPa
+steel belt νry 0.4

Gry 330 MPa

Table A.4: Mechanical properties of the tire.
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