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ABSTRACT 

 

Estrogens are associated with the development and progression of breast cancer in 

addition to their role in normal reproductive physiology, and estrogen receptors (ER) mediate the 

actions of estrogen in target tissues by regulating the expression of numerous biologically 

important target genes. The progression of human breast cancer and the development of 

resistance to endocrine therapies are thought to be associated with ER  phosphorylation. We 

generated multiple combinations of ER phospho-mutants, at residues serine 104, 106, 118, 167, 

236, and 305, and examined their impact on receptor half-life, the agonist and antagonist balance 

of selective estrogen receptor modulators (SERMs) and selective estrogen receptor 

downregulators (SERDs), the regulation of ER transcriptional activity, and stimulation of cell 

proliferation in response to estradiol and SERMs/SERD. We showed that changes in ER  

affecting the phosphorylation status of the receptor greatly impact receptor function and 

differential SERM and SERD modulated cellular responses that could contribute to resistance to 

endocrine therapies in breast cancer. We also studied the regulation of microRNAs (miRNAs) by 

estradiol and growth factors through ER  and extracellular signal-regulated kinase 2 (ERK2) in 

order to understand their physiological impact on breast cancer. We identified nine miRNA-

encoding genes harboring overlapping ER  and ERK2 binding sites close to their transcription 

start sites, which require ER  and ERK2 for transcriptional induction as well as estradiol-

mediated miRNA regulation. We then identified TP63, a target of miR-101, miR-190 and miR-

196a2, and showed that TP63 plays an important role in estradiol- or growth factor-mediated 

cellular response in breast cancer cells (MCF-7 and MDA-MB-231) by increasing tumor cell 

growth and in vitro invasion mainly controlled by miR-196a2 action. These results suggest a 
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tumor-suppressive role of miR-196a2 in regulating TP63 expression and the aggressive behavior 

of breast cancers.  
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CHAPTER 1 

Introduction 

 

1.1 Estrogen Receptors 

Estrogens are the major hormones regulating female reproductive functions and actions 

in the breast and uterus. Estrogen plays key roles in reproductive physiology and development 

but also exerts central effects in breast and endometrial cancers [1]. Estrogen functions are 

mediated through two estrogen receptors, ER  and ER , which differ in their tissue distribution 

and physiological functions [2]. The estrogen receptors (ER) are members of the nuclear receptor 

(NR) superfamily of ligand-activated DNA-binding transcription factors [3].  

The estrogen receptor, like other members of the NR superfamily, contains several 

functional domains [4]. The N-terminal portion is largely unstructured and contains the so called 

ligand-independent activation function (AF-1) [5]. AF-1 activity can be modulated by the action 

of intracellular signaling pathways via post-translational modifications. In response to ligand 

binding, AF-1 synergizes with the ligand-dependent activation function (AF-2) which resides in 

the C-terminal ligand binding domain (LBD) [6, 7]. The LBD contains 12 alpha-helices (H1-

H12) which undergo conformational changes upon ligand binding [8]. In particular, the 

rearrangement of helix 12 results in a docking surface for interaction with coactivator proteins 

[9-11] such as the p160 family (SRC-1/NcoA1; SRC-2/TIF2/GRIP-1; SRC-

3/pCIP/RAC3/ACTR/AIB-1/TRAM-1) and the HATs p300/CBP [12]. The position of helix 12 

also determines whether or not a ligand behaves as an agonist or an antagonist [10, 13, 14]. The 

central region of the receptor contains the DNA-binding domain (DBD) with two alpha-helices 

and two type-II zinc fingers that are involved in recognition and binding to the cognate response 
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elements (EREs) or DNA [15, 16] and also form surfaces involved in receptor dimerization [17, 

18]. 

 

1.2 Molecular Mechanisms of Estrogen Action 

ER functions primarily as a ligand-dependent transcription factor by regulating the 

expression of its target genes through direct genomic activity [19]. Regulation of ER  target 

genes in many different tissues has been identified thanks to recent technological advances 

which allowed the analysis of global changes in gene expression and genome-wide DNA 

interaction sites (e.g. cDNA microarrays, ChIP-chip, ChIP-Seq or ChIP-PET) [20]. In the 

absence of ligand, the ER resides mostly in the nucleus as an inactive apoprotein bound to 

molecular chaperones. Upon ligand binding, ER is released from the chaperones, dimerizes and 

binds to response elements within the regulatory regions of target genes [21]. Recent genome-

wide studies showed that many ER binding sites do not contain a consensus ERE motif [22-24] 

and it has been shown that ERs can also tether to DNA interacting with transcription factors such 

as stimulating protein 1 (SP1) [25], and activating protein 1 (AP1) [26] in order to mediate 

estrogen-regulated gene expression. Once on DNA, ER acts as a nucleation site for coregulators 

which induce histone modifications and stabilize the basal transcriptional machinery leading to 

the formation of a competent transcription initiation complex [27, 28]. The strength and duration 

of the signal is controlled by the clearance of ER via the ubiquitin-proteasome pathway [29].  

ER  activities can also exert rapid stimulatory effects on a variety of cytosolic signal 

transduction pathways [21, 30-32]. This rapid nongenomic activity occurs outside the nucleus 

and is independent of gene transcription. Membrane-associated or cytoplasmic ER couples with 

components of signaling complexes such as receptor tyrosine kinases (EGFR, IGFR, HER2 
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receptor), Src or G proteins triggering the activities of downstream signaling pathways [33-35]. 

These cytoplasmic signals can then be transduced to the nucleus where they result in post-

translational modifications on ER itself or other transcription factors and cofactors thus affecting 

target gene expression [36]. 

 

1.3 Phosphorylation of ER  and Kinase Signaling 

Post-translational modifications (PTMs) are a major mechanism by which protein 

function can be regulated. Transient modifications such as phosphorylation, sumoylation, 

acetylation, ubiquitination and methylation are essential for the regulation of protein function. 

Proteins can be modified combinatorially at multiple sites increasing the complexity and adding 

another layer of functional control [37]. The important roles of PTMs in nuclear receptor (NR) 

biology have been proposed by multiple studies which suggested that these modifications can 

provide a potential explanation for cell- and gene-specific regulation by steroid receptors. They 

can affect receptor stability, ligand binding affinity, subcellular localization and protein-protein 

interactions [38, 39]. The transcriptional activity of steroid nuclear receptors is mainly governed 

by ligand binding, but post-translational modifications serve as integrating signal from 

intracellular pathways. 

The best characterized PTM that affects NR transcriptional activities is phosphorylation 

[40]. ER  possesses multiple phosphorylation sites mainly scattered along the N-terminal region 

(Ser-104/106/118/167) and DBD (Ser-236). These sites have been shown to be targets of 

multiple kinases. It has been demonstrated that ERα phosphorylation on serine residues is also 

enhanced in response to E2 or growth factors in a number of different cell types [41-44]. Ser-

104, Ser-106 and Ser-118 were initially identified as phosphorylation sites by comparison of 
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phosphopeptide patterns generated by wild type and mutant ERs [42]. These three sites are 

proline-directed protein kinase consensus sequences, and they are targeted upon activation of the 

MAPK pathway by EGF or estradiol [45, 46]. Also the cyclin-A-cyclin dependent kinase 2 

(Cdk2) complex has been shown to phosphorylate Ser-104 and Ser-106 [47]. However, as 

inhibition of MAPK was not able to prevent the estradiol-induced phosphorylation on Ser-118, 

the presence of other kinases regulating Ser-118 phosphorylation has been proposed [48, 49]. 

Ser-167 is targeted by p90 ribosomal S6 kinase (Rsk) after activation of the MAPK pathway [46] 

or by casein kinase II and AKT, at least in vitro [50-53]. Ser-236 and Ser-305 are located in the 

DBD and the LBD, respectively, and are targets of different kinase pathways. In vitro, Protein 

kinase A (PKA) can phosphorylate Ser-236 [54], while p21-activated kinase-1 (Pak1) directly 

phosphorylates Ser-305 [55]. It has been reported that Tyr-537 can also be phosphorylated in 

MCF-7 cells but not in response to E2 [56, 57]. In vitro, Tyr-537 can be phosphorylated by src 

tyrosine kinases [57].  

 

1.4 Estrogen Receptor and Breast Cancer 

In addition to their roles in normal reproductive physiology, estrogens are also associated 

with the development and progression of breast cancer [58]. A majority (70%) of primary human 

breast cancers is ERα positive, which correlates with better prognosis [59]. As ER  plays the 

major role in breast cancer development and progression, clinical targeting of the receptor by 

antiestrogens has become the most important treatment option for women with ER-positive 

breast cancer [60]. One of the selective estrogen receptor down-regulators (SERDs), ICI 182,780 

blocks ER  action by mediating receptor degradation in estrogen-target tissues such as the 

breast, uterus and bone [61]. However, completely abrogating estrogenic activity in all tissues is 
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not desirable because it can lead to loss of bone density [62]. Thus, selective estrogen-receptor 

modulators (SERMs) which selectively inhibit or stimulate ER action in selected target tissues 

would serve as a more optimal treatment option. The most widely used SERM, tamoxifen is a 

partial agonist/antagonist which blocks estrogen action by binding to ER in breast cancers but 

acts as an agonist in uterus [63]. Unfortunately many patients fail to respond to initial drug 

therapy primarily due to lack of expression of ER  (intrinsic resistance) and responsive patients 

also develop resistance to SERM therapy following prolonged exposure to tamoxifen (acquired 

resistance) [64, 65]. Therefore, a greater understanding on the mechanisms that cause endocrine 

resistance is in high demand.  

 

1.5 ER/HER2 Pathway Crosstalk and Endocrine Resistance 

The progression of human breast cancer and the development of resistance to endocrine 

therapies are thought to be associated with alterations of multiple pathways which are also 

involved in ERα phosphorylation [66, 67]. Overexpression of growth factor receptors such as the 

epidermal growth factor receptor (EGFR) and the human epidermal growth factor receptor 2 

(HER2) has been associated with resistance to endocrine therapy [68, 69]. The activation of 

downstream effectors through signaling pathways can phosphorylate ER  and its coactivators 

such as AIB1, leading to the abnormal regulation of ER target gene expression [70-72].  

There are several clinical reports showing that ER  site-specific phospho-status 

correlates with patient survival and endocrine resistance in breast cancer. ERα phosphorylated at 

Ser-118 could be a possible biomarker of responsiveness to endocrine therapy as patients with 

higher levels of phospho-Ser-118 have better disease-free and overall survival than phospho-Ser-

118 poor tumors [73, 74]. Another group showed the association between recurrence-free 
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survival after tamoxifen treatment and ER S118-P expression in 239 premenopausal patients 

with breast cancer. They found a benefit from adjuvant tamoxfien among patients whose tumors 

had high ER S118-P expression [75]. Phosphorylation of ERα Ser-167 is also predictive of 

response to endocrine therapy and could serve as a prognostic marker for metastatic breast 

cancer [76], while also contributing to tamoxifen resistance [77]. More recent studies 

demonstrated that the combined phosphorylation status of ER  affects survival in ER-positive 

breast cancer and endocrine therapy resistance. Yamashita et al. (2008) showed that the 

combination of low phosphorylation of ER  Ser-118 and high phosphorylation of ER  Ser-167 

was associated with improved disease-free and overall survival and better response to tamoxifen 

treatment in ER-positive breast cancer [78]. 

 

1.6 MicroRNAs, key post-transcriptional regulators of gene expression 

MicroRNAs (miRNAs) are a class of 21-23 nucleotide-long noncoding RNAs that 

modulate gene expression by post-transcriptional repression [79-81]. miRNAs have emerged as 

an important focus of research in molecular biology following the initial identification of two 

small noncoding RNAs, lin-4 and let-7, and their regulatory roles in timing of the nematode 

worm Caenorhabditis elegans development [82-84]. Many more have since been found in 

animals, plants and fungi, reflected with 677 human miRNA sequences detailed as of September 

2008 in the Miranda database (www.microrna.org), and bioinformatics predictions indicate that 

mammalian miRNAs can regulate ~30% of all protein-coding genes [80, 85]. miRNAs can affect 

both the translation and stability of mRNAs by their sequence complementarity to the 3’ UTR of 

the mRNAs of target genes in the cytoplasm [80]. However, additional functions of miRNAs are 

http://www.microrna.org/
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possible, for they could regulate pre-mRNA processing in the nucleus or act as chaperones 

modifying mRNA structure or modulating mRNA-protein interactions [86].     

 

1.7 miRNA biogenesis and target recognition 

miRNAs are processed from precursor transcripts (pri-miRNAs), which are either 

transcribed from independent miRNA genes or are portions of introns of protein-coding RNA 

polymerase II transcripts. Each pri-miRNA contains one or more hairpin structures that are 

recognized and processed by the RNase III type endonuclease Drosha and its partner, DGGR8 

(DiGeorge syndrome critical region gene 8) [86]. The Drosha-DGGR8 complex generates a 70-

nucleotide stem loop known as pre-miRNA, which is transported to the cytoplasm by exportin 5 

[79, 81, 87, 88]. The pre-miRNA is recognized by Dicer, another RNase III type endonuclease 

complexed with TRBP (TAR RNA-binding protein), to yield a 21-nucleotide miRNA duplex 

with a protruding 2-nucleotide 3’ end. One strand is then selected to function as a mature 

miRNA (generally, the strand with 5’ terminus), and the other strand is degraded [79, 87, 89, 90]. 

The mature miRNA is loaded into the RNA-induced silencing complex (RISC), which contains 

Argonaute (AGO) proteins and the single-stranded miRNA. In mammals, four AGO proteins 

(AGO1 to AGO4) function in the miRNA repression by RNA interference (RNAi) or by 

repressing protein synthesis when tethered to the mRNA 3’ UTR [88, 91, 92]. Apart from AGOs, 

miRNA-ribonucleoprotein (RNP) complexs (miRNPs) can contain other proteins that function as 

regulatory factors or effectors mediating the inhibitory function of miRNPs [88-90]. Mature 

miRNA allows the RISC to recognize target mRNAs through partial sequence complementarity 

with its target. Most miRNA-binding sites in metazoan mRNAs reside in the 3’ UTR and are 

usually present in multiple copies in order for effective repression of translation [93], but 
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miRNAs also exert their repressive function through interaction with the binding sites in the 5’ 

UTR or coding regions of target mRNAs [94]. One rule for miRNA-target recognition is a 

contiguous and perfect base pairing of the miRNA 5’ region nucleotides 2-8 (the seed region), 

which nucleates the miRNA-mRNA interaction [95, 96]. GU pairs or mismatches in the seed 

region greatly affect repression, whereas an A residue across position 1 of the miRNA and an 

AU-rich composition across from position 9 improve the site efficiency [96]. Bulges or 

mismatches must be present in the central region of the miRNA-mRNA duplex to prevent the 

AGO-mediated endonucleolytic cleavage of mRNA, while there must be reasonable 

complementarity to the miRNA 3’ half to stabilize the interaction [95, 97]. For long 3’ UTRs, a 

position that is not too far away from the poly(A) tail or the termination codon can make the 3’ 

UTR regions less structured and hence more accessible to miRNP recognition [97, 98], affecting 

miRNA-mediated repression [99].  

 

1.8 Mechanisms of post-transcriptional regulation by miRNAs 

The effects of miRNAs on protein synthesis can result from mRNA destabilization or 

translational repression. The studies carried out using HeLa cells and reporter mRNAs that had 

multiple binding sites for miRNAs in their 3’ UTR showed that the 7-methylguanosine (m
7
G) 

cap at the 5’ UTR of mRNA is essential for translational repression [100, 101]. Also, some 

factors bound at the 3’ UTR exert their inhibitory effect on translational repression by recruiting 

proteins that either interfere with the eukaryotic translation initiation factors (eIFs), eIF4E-eIF4G 

interaction or bind directly to the cap preventing the assembly of the 40S ribosome initiation 

complex [102-104]. The miRNA-mediated deadenylation of a poly(A) tail contributed to the 

repression of m
7
G-capped mRNAs by disrupting the eIF4F-mediated mRNA circularization in 
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vitro [105, 106]. An alternative mechanism of miRNA action besides preventing the synergy 

between the 5’ cap and 3’ poly(A) tail, is translational repression by preventing 60S ribosomal 

subunit joining to the 40S initiation complex through the interaction between RISC and eIF6 

[107].  The repression can also occur at post-initiation phases of translation by stalling or 

slowing down of elongating ribosomes [108-110].  miRNA can destabilize mRNAs and change 

the transcript levels by binding of miRNPs to mRNA 3’ UTR, which can induce deadenylation 

and decay of target mRNAs [111-113]. It is not known what determines whether an mRNA 

undergoes the miRNA-mediated degradation or translational-repression pathway. However, 

accessory proteins bound to the 3’UTR or structural subtleties of miRNA-mRNA duplexes are 

suggested to be involved in the process [114, 115].  

 

1.9 miRNAs and signal transduction 

Despite great advances, the physiological functions of miRNAs and their target gene 

regulation in cells and organisms are still largely undiscovered. Due to the numerous putative 

targets of each miRNA and the presence of miRNAs as families of redundant genes as well as 

their often rather modest effects on protein output [116], it has been challenging to predict and 

experimentally prove the biological impact of individual miRNAs [80, 117]. Different cell types 

respond differently to a signal according to their interpretation, and the unique set of miRNAs in 

each cell type can serve in such context-dependent gene expression. Signal transduction 

pathways are ideal candidates for miRNA-mediated regulation as signaling complexes exert 

dose-dependent responses to the environmental inputs, which is amenable to the multi-gene 

regulatory nature of miRNAs for quantitative fluctuations [118, 119]. For example, Nodal, a 

morphogen that induces the germ layers in early vertebrate embryos, is regulated by miR-15 and 
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miR-16 to create the asymmetry by targeting the Nodal receptor activin receptor type 2A 

(ACVR2A) [120]. The miR-23b cluster has been shown to target three Smads (SMAD3, 

SMAD4 and SMAD5), inhibiting the TGF -mediated anti-proliferative response in liver stem 

cells [121]. miR-21 also serves as a general enhancer of  receptor tyrosine kinase (RTK) 

signaling by targeting PTEN and Sprouty [122, 123], perhaps explaining its frequent up-

regulation in various human tumors including breast cancer [124]. miRNAs can also serve as 

mediators of crosstalk between signaling pathways. For example, miR-192 enables positive 

crosstalk between TGF  and AKT signaling [125]. Recent studies have reported a type of 

reciprocal regulation between miRNAs and their targets. Reciprocal inhibition between the 

transcription factors zinc finger E-box-binding homeobox 1 (ZEB1), ZEB2 and the miR-200 

family regulates the switch between epithelial and mesenchymal states by TGF  signaling in 

stem cells [126, 127]. Signaling networks can also regulate the processing of miRNA precursor. 

TGF  and BMP signaling affects the expression of mature miR-21 by Smads associating with 

the Drosha complex and promoting the processing of pri-miR-21 [128].   

 

1.10 miRNAs and breast cancer 

The association of miRNAs in cancer biology is of great interest in regards to their 

regulatory functions in proliferation, differentiation and apoptosis [124, 129, 130]. Because of 

miRNAs’ broad influence over diverse genetic pathways, the alteration in miRNA expression is 

likely to be pleiotropic and contribute to disease, including cancer [131, 132]. miRNA expression 

correlates with various cancers, and these are thought to function as both tumor suppressors and 

oncogenes [131]. High-throughput miRNA expression profiling in breast cancer cell lines and 

tissues identified a large set of miRNAs expressed at different levels compared to the normal 



 11 

breast [133-135]. miRNA signatures predicting the expression levels of the estrogen, 

progesterone and HER2/neu receptors which characterize different breast cancer phenotypes 

have also been identified to elucidate the role for these miRNAs in disease classification of 

breast cancer and also serving as a prognostic biomarker [136]. In the study by Iorio et al. 

(2005), miR-125b, miR-145, miR-21, and miR-155 were significantly deregulated, and the 

expression of those miRNAs were correlated with specific breast cancer pathologic features such 

as estrogen and progesterone receptor expression, tumor stage or proliferation index [135]. 

Another group also identified four miRNAs (miR-7, miR-128a, miR-210 and miR-516-3p) 

associated with aggressiveness of lymph node-negative, estrogen receptor-positive human breast 

cancer [137]. Epigenetic mechanisms have also been proposed to play a role in the regulation of 

miRNA expression in breast cancer [138, 139]. Five miRNAs (miR-9-1, miR-124a3, miR-148, 

miR-152 and miR-663) showed hypermethylation and inactivation from 71 primary human 

breast cancer specimens [138]. Also, a functional genetic variant in the mature region of miR-

196a2 and its potential oncogenic role in breast tumorigenesis was identified by functional 

analysis [140].  

More interesting, several studies have reported the regulation between miRNAs and 

estrogen receptor alpha (ER ) signaling and its impact on endocrine resistance in breast cancer. 

miRNA-221/222 expression was up-regulated in ER -negative breast cancer and conferred 

tamoxifen resistance by targeting ER  and the cell cycle inhibitor p27
Kip1

 [141, 142]. miR-206 

expression was down-regulated in ER -positive breast cancer and repressed ER  mRNA and 

protein synthesis [143, 144]. It was also revealed that estradiol can regulate miRNA expression 

(i.e. miR-21) and modulate target gene expression in breast cancer cells [145, 146]. More 

profound understanding of the association of miRNAs in regulation of specific gene sets and 
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signaling pathways, and further pathological processes in breast cancer biology will definitely 

provide insight into the underlying mechanisms of oncogenesis as well as putative treatment 

strategies using miRNA therapies [131]. In the studies described below in Chapter 3, we have 

focused on miRNAs regulating tumor protein p63 (TP63) and several other proteins because of 

their likely important roles in controlling the phenotypic properties of breast cancer cells.  
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CHAPTER 2 

Phosphorylation Status of Estrogen Receptor alpha and Endocrine Resistance in 

Breast Cancer 

 

2.1 Abstract  

The estrogen receptor alpha (ER) contains multiple serine residues capable of undergoing 

post-translational modification by phosphorylation. In order to understand the role of 

phosphorylation status in affecting the response of receptor to the natural hormone estradiol, the 

selective estrogen receptor modulator, tamoxifen, and the selective estrogen receptor down-

regulator, ICI182,780 (Fulvestrant), we generated multiple combinations of ER phospho-

mutants, at residues serine 104, 106, 118, 167, 236, and 305, and examined their impact on 

receptor half-life, the agonist and antagonist balance of SERMs and SERDs, the regulation of ER 

transcriptional activity, and stimulation of cell proliferation in response to estradiol and 

SERMs/SERD. ER  mutants were generated by substituting serine residues with either alanine 

or glutamic acid, and of the sixteen mutants screened, half were selected for further analysis.  

The mutant receptors were generated into U2OS osteosarcoma-tetracycline regulated- ER  

stable cell lines for characterization.  These phospho-ER mutant receptors were also expressed in 

MCF-7 breast cancer cells with concomitant knock-down of endogenous ER . Receptors with 

changes at Ser-118 and Ser-167 showed altered responses to the antiestrogens tamoxifen and 

ICI182,780, i.e. strong agonistic stimulation and weak estrogen antagonistic activity of 

tamoxifen and ICI182,780 on gene regulation and differential stimulation of cell proliferation. 

Other mutant ERs showed increased protein stability in the presence of estradiol or ICI182,780. 

Hence, changes in ER  affecting the phosphorylation status of the receptor greatly impact 



 22 

receptor function and differential SERM and SERD modulated cellular responses that could 

contribute to resistance to endocrine therapies in breast cancer. 

 

2.2 Introduction 

The estrogen receptor (ER) is a member of the nuclear receptor (NR) superfamily of 

transcription factors that, upon hormone binding, mediates the actions of estrogen in target 

tissues by regulating the expression of numerous biologically important target genes [1]. The 

transcriptional activity of ER is fine tuned by a variety of coregulators that are recruited by ER to 

DNA regulatory elements. These coregulators can be divided into co-activators and co-repressors 

according to their stimulatory or inhibitory actions, respectively, on the transcription of target 

genes [2, 3].  

Post-translational modifications (PTMs) are a major mechanism by which protein 

function can be regulated. Transient modifications such as phosphorylation, sumoylation, 

acetylation, ubiquitination and methylation are essential for the regulation of protein function. 

Proteins can be modified combinatorially at multiple sites increasing the complexity and adding 

another layer of functional control [4]. The important roles of PTMs in NR biology have been 

proposed by multiple studies which suggested that these modifications can provide a potential 

explanation for cell- and gene-specific regulation by steroid receptors. They can affect receptor 

stability, ligand binding affinity, subcellular localization and protein-protein interactions [5, 6]. 

The transcriptional activity of steroid nuclear receptors is mainly governed by ligand binding, but 

post-translational modifications can also serve to integrate signaling from intracellular pathways. 

The best characterized PTM that affects ER transcriptional activities is phosphorylation. ER  is 

phosphorylated by different kinases such as c-Src, PKA, MAPK and Akt, impacting on its ligand 
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binding affinity, coregulator binding and transcriptional activity [7]. An additional layer of 

complexity is added by the regulation of coregulator proteins via PTMs which are required to 

fine tune NRs activity. Moreover, an interplay between different PTMs has been suggested [8, 

9].  

Several amino acid residues in ER  can be subjected to phosphorylation (e.g. Ser, Thr 

and Tyr) in response to estradiol or growth factors via activation of intracellular signaling 

pathways [10-14]. The estrogen receptor, like other members of the NR superfamily, contains 

several functional domains [15]. The N-terminal domain is largely unstructured and contains the 

so called ligand-independent activation function (AF-1) [16]. AF-1 activity can be modulated by 

the action of intracellular signaling pathways via post-translational modifications. The central 

region of the receptor contains the DNA-binding domain (DBD) with two alpha-helices and two 

type-II zinc fingers that are involved in recognition and binding to the cognate response elements 

(EREs) or DNA [17, 18] and also form surfaces involved in dimerization [19, 20]. ER  

possesses multiple phosphorylation sites mainly scattered along the N-terminal region (Ser-

104/106/118/167) and DBD (Ser-236). These sites have been shown to be targets of multiple 

kinases. Phosphorylation of ER  modulates the action of the receptor by altering or fine-tuning 

its compatibility with other proteins or DNA, and may impact on the outcome of breast cancer 

treatments.  

In addition to their role in normal reproductive physiology, estrogens are also associated 

with the development and progression of breast cancer [21]. As ER  plays a major role in breast 

cancer development and progression, clinical targeting of the receptor by antiestrogens has 

become the most important treatment option for women with ER-positive breast cancer [22]. 

Tamoxifen, the most widely used selective estrogen-receptor modulator (SERM) is a partial 
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agonist/antagonist which blocks estrogen action by binding to ER in breast cancers but acts as an 

agonist in uterus [23]. Unfortunately, many patients fail to respond to initial drug therapy 

primarily due to lack of expression of ER  (intrinsic resistance) and responsive patients also 

often develop resistance to SERM therapy following prolonged exposure to tamoxifen (acquired 

resistance) [24, 25]. The progression of human breast cancer and the development of resistance 

to endocrine therapies are thought to be associated with alterations of multiple pathways which 

are also involved in ERα phosphorylation [26, 27]. Overexpression of growth factor receptors 

such as the epidermal growth factor receptor (EGFR) and the human epidermal growth factor 

receptor 2 (HER2) has been associated with resistance to endocrine therapy [28, 29]. There are 

also several clinical reports showing that ER  site-specific phospho-status correlates with patient 

survival and endocrine resistance in breast cancer [27]. ERα phosphorylated at Ser-118 could be 

a possible biomarker of responsiveness to endocrine therapy as patients with higher levels of 

phospho-Ser-118 have a better disease free and overall survival than phospho-Ser-118 poor 

tumors [30-33]. Phosphorylation of ERα at Ser-167 is also predictive of response to endocrine 

therapy and could serve as a prognostic marker for metastatic breast cancer [34, 35]. More recent 

studies demonstrated that the combination of the phosphorylation status of ER  affects survival 

in ER-positive breast cancer and endocrine therapy resistance. Yamashita et al. (2008) showed 

that the combination of low phosphorylation of ER  Ser-118 and high phosphorylation of ER  

Ser-167 was associated with improved disease-free and overall survival and better response to 

tamoxifen treatment in ER-positive breast cancer [36]. Breast tumors with an ER  mutation at 

Lys-303 (K303R) exhibit decreased sensitivity to tamoxifen and increased resistance to an 

aromatase inhibitor when coupled with phosphorylation of Ser-305 which appears to confer 

increasing ligand-independent activity of the mutant receptor [37, 38]. 
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In this study, we focused on how the combinatorial phosphorylation status of ER  

impacts receptor function and its response to SERMs and SERDs. For this purpose we generated 

ER  phospho-mutants with combinatorial mutations at known phospho-serine sites. We first 

used ER-negative osteosarcoma U2OS cells to characterize several ER  phospho-mutants. In 

two different systems (U2OS and MCF-7 cells), receptors with opposite changes at Ser-118 and 

Ser-167 (e.g. 118A/167E vs. 118E/167A) were examined and found to exhibit altered responses 

to 4-hydroxytamoxifen (Tam) and ICI 182,780 (ICI) on gene regulation and stimulation of cell 

proliferation. These results correlate well with the tamoxifen resistance observed in breast 

tumors with high phosphorylation at Ser-118 and low phosphorylation at Ser-167 of ER  [36]. 

We also detected mutants with altered affinity for E2 or SERMs and mutants that were not 

down-regulated by ICI. Thus, this study demonstrates that changes in the combinatorial 

phosphorylation status of ER greatly impact receptor function and show differential SERM and 

SERD activity that could contribute to resistance to endocrine therapies in breast cancer. 

 

2.3 Materials and Methods 

Cell culture and Generation of U2OS-ER  stable cell lines 

MCF-7 (human breast cancer), U2OS (human osteosarcoma) and Hec-1 (human 

endometrial adenocarcinoma) cells were maintained as previously described [39-41]. Four days 

before
 
ligand treatment, cells were switched to treatment media (phenol red-free MEM [Sigma] 

containing
 
5 % charcoal dextran-treated calf serum). U2OS cells were stably infected with the 

lentivirus delievering tetracycline repressor and ER  wild type (Wt) or mutants and grown as 

previously described [40]. U2OS-ER  stable cells were seeded 2 days prior to induction of ER 

expression with tetracycline (Invitrogen). Induction was for 48 hr prior to ligand treatments. The 
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amount of tetracycline used was adjusted to induce the expression of flag-ER  Wt and mutants 

to comparable levels (250 – 1000 ng/ l). 

 

Mutagenesis, viral system generation and luciferase reporter assays 

Site-directed mutagenesis was performed on pCMV5-Flag-ERα Wt plasmid using the 

QuickChange II kit (Stratagene) according to the manufacturer’s instructions. The pCMV5-Flag-

ERα Wt plasmid was previously created in the lab by inserting a FLAG epitope at the N-

terminus of ERα. Multiple rounds of site-directed mutagenesis were performed to generate the 

desired combinatorial mutations. All plasmids were sequenced to confirm the introduction of the 

desired mutations. pCMV5-Flag-ERα Wt and mutant plasmids were then subcloned into the 

Gateway
®

 entry vector pENTR
TM

/TEV/D-TOPO
®
, followed by the generation of lentivirus 

expression vectors pLenti4/TO/V5-DEST-ERα Wt or mutants. Lentiviral-delivered ERα Wt and 

mutants were generated using a ViraPower T-REx Lentiviral Expression System according to the 

manufacturer’s instructions (Invitrogen). Lentivirus was produced by transfecting the 293FT 

producer cell line with the expression constructs pLenti4/TO/V5-DEST-ERα Wt or mutants. 

Recombinant adenovirus (Ad) pAdEasy-1 carrying Wt or selected mutant ER  were generated 

and prepared as described (Stratagene) [42]. Virus was concentrated up to 10
12

 effective plaque-

forming units/ml, using CsCl gradients. Hec-1 cells were seeded in 24-well plates 24 hr before 

transfection and transfected with 500 ng of 2X-ERE-pS2-Luc, 100 ng of pCMV-β-gal and 5 ng 

of pCMV5-Flag-ERα (Wt or mutants) using Lipofectin-transfection method (Invitrogen, 

Carlsbad, CA). Four hours after transfection, cells were treated with 0.1 % ethanol or E2 for 24 

hr. Cell extracts were then prepared and luciferase assays were performed using the Luciferase 

Assay System according to the manufacturer’s instructions (Promega).  
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Chromatin Immunoprecipitation 

U2OS-ER  or MCF-7 cells were treated with 0.1 % ethanol, 10 nM E2 or 100 nM Tam 

for 45 min. ChIP assays were performed essentially as described before [43]. Antibodies used 

were: ER  (HC-20) and p300 (N-15) from Santa Cruz Biotechnology.  

 

Ligand binding and RBA assays  

 ER  Wt or mutants were transfected in 293FT cells and nuclear extracts were prepared in 

protein extraction buffer (20 mM HEPES pH 8, 0.4 M NaCl, 1 mM EDTA, 1 mM DTT, 0.5 mM 

PMSF, 10 % glycerol and protease inhibitor cocktail), diluted with binding buffer (50 mM Tris 

pH 7.5, 10 % glycerol, pH 7.4) and then incubated in duplicate with a range of 
3
H-E2

 

concentrations alone or with 100-fold excess unlabeled E2 for
 
3 hr on ice. Aliquots were used to 

determine the total 
3
H-E2 in the sample. Hydroxylapatite slurry was added and incubated for

 
an 

additional 15 min on ice. The slurry was washed twice and
 
its radioactivity then determined by 

scintillation counting. Relative binding affinities were determined by competitive radiometric 

binding assays using 10 nM 
3
H-E2 as tracer, using methods previously described [44, 45]. 

Incubations were done at 0 C for 18–24 hr, and hydroxylapatite was used to absorb bound 

receptor-ligand complex. The binding affinities are expressed as relative binding affinity (RBA) 

values, where the RBA of estradiol is 100 %.  

 

Western Immunoblotting and In-Cell Western assays 

Whole cell extracts were prepared in lysis buffer (20 mM Tris pH 7.5, 150 mM NaCl, 1 

% NP-40, 1 % SDS, 5 % glycerol, and
 
protease inhibitor cocktail). Western blot analysis of 
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whole cell extracts followed common protocols and specific antibodies were used for ER  (HC-

20, Santa Cruz Biotechnology) and -actin (AC-15, Sigma). ER  expression in U2OS stable cell 

lines was quantified using infrared-based In-Cell Western assay system as described by the 

manufacturer (Li-Cor Biosciences).  

 

RT-PCR and Real-time Quantitative PCR 

Total RNA from U2OS-ER  stable cells and MCF-7 cells was isolated using TRIzol  

(Invitrogen) following manufacturer’s instruction. RNA samples were reverse transcribed by M-

MuLV Reverse Transcriptase (New England Biolabs) in 20 l and subsequently diluted to 500 l 

with sterile water. Real-time PCR was performed to quantify gene expression levels and ChIP 

samples. Each real-time PCR reaction contained 4 l of diluted cDNA or ChIP sample, 5 l of 

2X SYBR Green PCR Master Mix (Applied Biosystems. Foster City, CA), 0.5 l of 1.25 M 

forward and reverse primers and 0.5 l of ddH2O. The real-time PCR was carried out in an ABI 

prism 7900 HT Sequence Detection System (Applied Biosystems. Foster City, CA) for 40 cycles 

(95 C for 15 sec and 60 C for 1 min) after an initial 10 min incubation at 95 C. The fold 

change in expression of each gene was calculated as described previously, with 36B4 as an 

internal control [46].  

 

siRNA transfection and adenovirus (Ad) infection 

To knock down endogenous ER  in MCF-7 cells, siRNA duplexes against the 3’ UTR 

region of ER  were transfected at a final concentration of 5 nM using DharmaFECT transfection 

reagent (Dharmacon, Lafayett,CO) as per manufacturer’s recommendations 72 hr before harvest. 

The following sequences were used: siER  sense: 5'-
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rGrUrArArUrArCrCrArGrCrUrArArArGrCrCrArArArCrAAT-3’; siER  antisense: 5'-

rArUrUrGrUrUrUrGrGrCrUrUrUrArGrCrUrGrGrUrArUrUrArCrArU-3’; siNT (siGENOME 

Non-Targeting siRNA #2) as a negative control. The cells were then infected with control 

adenovirus (CMV) or Adenoviruses expressing ER -Wt or mutants for 64 hr before harvest. 

Conditions were used to express comparable amounts of adenovirus-carried ERs to those of 

endogenous ER  in MCF-7 cells.  

 

Proliferation assays 

 MCF-7 cells expressing AdER -Wt or mutants Ae or Ea followed by siER  transfection 

as described above were seeded at a concentration of 1,000 cells/well in 100 l of culture 

medium and treated with 0.1 % ethanol, 10 nM E2, 100 nM Tam or 100 nM ICI. Cell 

proliferation was assessed using a WST-1 kit according to the manufacturer’s instructions 

(Roche Applied Science). The absorbance of the samples was analyzed using a microplate 

ELISA reader at 450 nm.  

 

2.4 Results 

Generation and Characterization of ER  phospho-mutant.  

To address the combinatorial role of phosphorylation at multiple serine sites on ER 

activity, we designed mutant ERs that mimic specific phosphorylation states. We introduced the 

combinatorial changes at known ER phospho-sites, namely Ser-104, 106, 118, 167, 236, and 

305. We mutated each site into an alanine to mimic lack of phosphorylation, or into a glutamic 

acid to mimic a constitutively phosphorylated state. To reduce the number of possible 

combinations, we grouped the first three functionally related [47-49] serine sites (targeted by the 
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serine/proline-directed protein kinases), Ser-104, 106, 118, into a single coordinated mutant (e.g. 

all three Ala or Glu). The 16 mutant ERs that were generated thus contained coordinate changes 

at Site I (the three MAPK sites, Ser-104, 106, 118), plus individual changes at Site II (Ser-167), 

Site III (Ser-236), and Site IV (Ser-305) (Figure 2.1A). In order to characterize these ER 

mutants, we first transfected ER negative HEC-1 (and U2OS) cells and, by Western blot 

analysis, we found that all the ER mutants were expressed similarly indicating that there was no 

apparent effect on the protein synthesis by the combinations of the mutations (Figure 2.1B). We 

then transiently transfected ER  mutants in HEC-1 (and U2OS) cells together with 2xERE 

reporter gene construct (2xERE-pS2-luciferase) to check if the ER mutants showed different 

transactivation responses (Figure 2.1C). The most striking observation was the fact that the 

alternation of activity occurs, in most cases, in pairs of mutant ERs. This is consistent with an 

overall high activity when Site III (Ser-236) is mutated to generate A and low activity when Site 

III is mutated to generate E. By contrast, changing Site IV (Ser-305) to either E or A had no 

effect on their transcriptional activity, as evident from the equivalent activity of adjacent pairs of 

ER mutants. The effect of Site II depended on the status of Site I. When Site I (Ser-104, 106, 

118) was mutated into an A, the only effects on transcriptional activity was determined by Site 

III, where activity alternates between wild type (A) and essentially null (E). By contrast, when 

Site I was mutated into an E, Site II showed major effects on receptor activity (alternating 

between superactive and null), provided that Site III was mutated as As. When Site III is a 

glutamic acid, however, the pronounced modulatory effect of Site II was eliminated, always 

resulting in receptors with low activity.  

 

Generation of U2OS-ER  stable cell lines and tetracycline-induced ER  expression. 



 31 

Based on these findings, we chose five ER  mutants for further characterization. We then 

generated tetracycline inducible stable U2OS-ER  Wt or mutant cell lines. The chosen ER  

mutants and their abbreviations are shown in Figure 2.2A. Different amounts of tetracycline 

were used to obtain comparable level of expression of Wt and mutant ERs in each stable cell 

line, and this was confirmed by Western blot analysis (Figure 2.2B). 

 

The Ee mutant requires a high concentration of E2 to respond to ligands. 

We first wanted to check if phospho-mutant ERs showed alterations in sensitivity to E2. 

For this purpose we conducted E2 dose response studies in HEC-1 cells using a 2xERE reporter 

gene construct. As shown in Figure 2.3A, we could subdivide the ER mutants into 3 groups; 

group 1 was comprised of a single mutant (Ee) which showed a right-shift in the dose-response 

curve indicating less potency but more efficacy than Wt in transient transactivation activity. 

Phosphorylation at Ser-236 which is mimicked by an glutamic acid substitution at Site III, has 

been reported to alter receptor dimerization and DNA binding [50], and we also saw that mutants 

containing a glutamic acid at that position lacked transcriptional activity (group 3). Group 2 was 

comprised of the mutants containing an alanine at Site III showing the similar pattern of dose 

responses with that of Wt. We then checked if similar responses were occurring also in the 

U2OS-ER  Wt or mutants stable cell lines using either a 2xERE luciferase reporter assay (data 

not shown) or quantitative PCR analysis measuring the induction of the endogenous pS2 mRNA 

(Figure 2.3B). Also in these experiments, the ER -Ee showed a right-shifted curve of E2 

response in both assays as 1 M E2 was able to fully restore E2 responsiveness; while the mutant 

Eaea, that presumably has a defect in DNA binding due to the glutamic acid substitution at site 

III, did not show any activity even at high concentration of E2. We then checked, by ChIP assay, 
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if ER  recruitment to the pS2 promoter (-300 bp) also followed the same pattern as gene 

expression, and we found it to be the case as we could detect recovery of ER recruitment at high 

E2 concentration for the Ee mutant and no recruitment for the Eaea mutant (Figure 2.3C). We 

also determined if the protein half-life was different between ER -Wt and Ee, and thus we 

performed a tetracycline-removal experiment and found that, for ER  Wt, the receptor half-life 

was decreased by E2 treatment from 5 hr to 3 hr independently of E2 concentration whereas only 

the high concentration of E2 (1 M) was able to induce E2-mediated protein degradation of 

mutant Ee receptor (Figure 2.3D). Because of the differences in receptor degradation and 

transcriptional activity, we examined if the ER mutants would bind E2 or other ligands with 

altered affinity. Because mutation of Site IV (Ser-305) had no effect on ER transcriptional 

activity in reporter gene assays, we examined E2 binding of the eight ER mutants that contained 

an alanine at Site IV. As shown in Table 1, generally the changes in E2 binding affinity were 

relatively small, ranging, compared to wild type ER , from ca. 2-fold higher to a 4-fold lower 

affinity. The Ee mutant showed the lowest estradiol binding affinity with a Kd that was 4 fold 

higher than the wild type receptor. This might at least partially explain the need for higher E2 

concentration in order to elicit full transcriptional response of the Ee mutant. Relative binding 

affinities (RBAs) of 4-hydroxytamoxifen (Tam) and ICI 182,780 (ICI) were also analyzed, and 

only the mutants AAAEAA (Ae) and EEEEEA showed statistically different Tam and ICI RBAs 

(Table 2.1).  

 

The ER -Ee mutant shows altered transcriptional response to Tam and ICI, and reduced ICI-

mediated protein degradation. 
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To understand the effects of SERMs/SERD on the mutant receptor Ee, the mRNA 

induction of well-known E2-mediated ER  target genes GREB1 and PDZK1 was measured with 

quantitative PCR in a comparison between U2OS-ER  Wt and Ee cells. Agonistic and 

antagonistic effects of Tam and ICI were tested by treating the cells with Tam or ICI with or 

without E2. As the mutant Ee were shown to have lower E2 binding affinity, 1 M E2 was 

treated to elicit the E2-induced gene expression in U2OS-ER  Ee cells. The agonistic effects of 

Tam were also seen only with the higher concentration (5 M) in ER -Ee cells, although the 

Tam RBA of the mutant Ee was not significantly different from that of Wt. In ER -Ee cells, 

Tam and ICI had weaker antagonistic effects on E2-induced transcriptional activation than in 

ER -Wt cells. However, Tam agonistic effects were carried to levels comparable to Wt except 

that the Ee mutant needed higher concentration of Tam to be effective (Figure 2.4A). Notably, 

ICI-induced antagonism of E2 action was highly suppressed in ER -Ee cells, driving the 

question whether ICI-induced ER  degradation is affected or suppressed in the Ee mutant. ER  

protein levels were, therefore, compared after 4 hr treatment of E2, Tam or ICI in U2OS stable 

cells expressing ER -Wt or Ee. Lesser degradation of ER  protein mediated by ICI with or 

without E2 was detected in ER -Ee cells, and appeared to follow the reduction of ICI-induced 

antagonism on the Ee mutant ER (Figure 2.4B). 

 

Differential antagonistic responses to Tam and ICI in ER -Ae and Ea mutants.  

Because of increasing evidence from clinical studies that the phospho-status of ER  is 

highly correlated with patients’ response to endocrine therapies in breast tumors [32, 36, 51, 52], 

we studied the effects of SERMs/SERD using the ER  phospho-mutants Ae and Ea, which have 

opposite combinations of phosphorylation mutations at Sites 1 and II ,mimicking the 
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phosphorylation status observed by Yamashita et al. in primary tumors [36]. We first treated 

U2OS-ER  Wt, Ae, and Ea stable cell lines with 10 nM E2 alone or in combination with 100 

nM Tam or 100 nM ICI and checked their effect on known ER  target genes by QPCR. The 

ER -Ae mutant showed ca. 50% of Wt receptor activity in terms of E2 transcription and ER 

recruitment at both pS2 and GREB1 genes. In this mutant cell line, Tam acted as a full 

antagonist thus losing any partial agonistic effect. No effect was seen on ICI antagonistic effect. 

In contrast, the Ea mutant displayed a very strong Tam agonist response and Tam failed to 

subdue E2 action, both by QPCR and ChIP assays (Figure 2.5).  

 

ER  phospho-mutants Ae and Ea elicit differential antagonism by Tam in MCF-7 cells. 

Because of the differential responses to Tam by the ER  phospho-mutants in the U2OS 

stable cell lines, we wanted to confirm this finding in MCF-7 cells which is a widely used ER  

positive cell model to study breast cancer biology and endocrine sensitivity and resistance. 

Because MCF-7 cells express endogenous ER , we devised an siRNA approach by targeting the 

3’ UTR of ER , which is missing from the ER  sequence used to generate phospho-mutants in 

the adenoviralvector expression system. Using this method, we were able to knock-down 

endogenous ER  by siRNA transfection in MCF-7 cells, and successfully re-express ER  Wt, 

Ae and Ea mutants using adenoviral infection. As shown in Figure 2.6A, we were able to express 

Wt and mutant ERs to levels similar to the endogenous ER  in MCF-7 cells.  

We then assessed regulation of gene expression and recruitment of ER  and cofactors by 

E2 and Tam treatment in MCF-7 cells. MCF-7 cells were transfected with non-targeting (NT) or 

ER  3’-UTR siRNAs, and then transduced with or without adenoviruses carrying ER -Wt or 

mutants, followed by E2 and Tam treatment for 24 hr. We confirmed that the responses with 
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ligand treatment in adenovirus-carrying cells were exerted by ectopically introduced ERs by 

comparing with negative control samples (NT or siER  without adER ). As shown in the 

experiments with U2OS-ER  Ae and Ea cells, MCF-7 cells expressing ER -Ea showed higher 

pS2 and GREB1 mRNA induction by Tam without altering E2 agonistic effects compared to 

siER +Wt cells (Figure 2.6B). We then analyzed ER  recruitment to the pS2 ER-binding site in 

the promoter region. Similarly to what we observed in U2OS-ER  stable cell lines (Figure 2.5), 

Tam elicited a full agonistic response on ER  recruitment in the Ea mutant compared to the Ae 

and Wt receptors (Figure 2.6C). Chromatin recruitment of cofactors that are known to interact 

with ER  (e.g. SRC-3 or p300) was also examined in an effort to explain the differential 

tamoxifen-mediated responses in gene expression between two phospho-mutant ERs. The ER  

coactivator SRC-3 did not show any differential pattern of recruitment to the ER-binding sites by 

E2 or Tam in the mutant ER  expressing cells compared to Wt (data not shown). However, the 

histone acetyltransferase p300 was recruited to the pS2 promoter region by the mutant Ea at an 

increased level compared to ER -Wt after Tam treatment, providing a possible mechanistic 

explanation to the increased tamoxifen agonism of the ER  phospho-mutant Ea (Figure 2.6D). 

 

Increased Tamoxifen-induced cell growth of MCF-7 cells expressing the ER -Ee mutant.  

To examine the role of the Ea mutant in Tam agonism, we performed cell proliferation 

assays in MCF-7 cells expressing exogenous ER  Wt or mutants Ae or Ea treated 10 nM E2, 

100 nM Tam, 100 nM ICI or Tam plus ICI for four days. As shown in Figure 2.7, Tam 

stimulated the growth of Ea cells more, compared to the Wt or Ae cells, whereas E2-mediated 

growth was similar for all the three ER types. These results strongly suggest that the phospho-

combination of ER  mimicking high phosphorylation at Ser-118 and low phosphorylation at 
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Ser-167, which is exemplified by the ER -Ea mutant, could be a cause of endocrine resistance 

due to diminished antiestrogenic capabilities accompanied with an increased cofactor recruitment 

to E2-responsive genes, resulting in the aberrant cell proliferation in response to tamoxifen.  

 

2.5 Discussion 

ER  is a key transcription factor that controls breast cancer biology. In fact, the majority 

(70 %) of primary human breast cancers are ERα positive, and ERα expression in breast tumors 

is usually an indication of good prognosis [53]. Even though endocrine therapy with selective 

estrogen-receptor modulators (SERMs) or selective estrogen-receptor downregulators (SERDs) 

are very important treatment options for women with ER-positive breast cancer, the development 

of resistance to endocrine therapies is also prominent and results in the progression of the disease 

[24, 25]. Overexpression of tyrosine kinases such as HER2 or EGFR is thought to contribute to 

the development of endocrine resistance [28, 29], and the activation of downstream signaling 

effectors results in phosphorylation of ERα and its cofactors leading to the abnormal regulation 

of ER  target gene expression [27, 54].  

In this study, we developed a systematic approach to study the impact of the 

combinatorial effect of phosphorylation sites on ER  activity, by generating a series of ER  

phospho-mutants and analyzed them in both ER-negative (U2OS) and -positive cell lines (MCF-

7). We generated sixteen ER  phospho-mutants by site-directed mutagenesis altering Ser-104, 

106,118, 167, 236 and 305 either to an alanine, to mimic lack of phosphorylation, or a glutamic 

acid, to mimic constitutively phosphorylated state. By using reporter gene assays, we identified 

different groups of receptor mutants; group1 was comprised of a single mutant (Ee) which 

showed a right-shift in the dose-response curve indicating less potency but more efficacy than 
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Wt in both transient transactivation activity and pS2 endogenous gene expression, accompanied 

with ER recruitment only at high E2 concentration to the pS2 ER-binding site. Group 2 was 

comprised of the mutants containing an alanine at Site III showing the similar pattern of E2 dose 

responses with that of Wt. We saw that mutants containing a glutamic acid at Site III lack 

transcription activity as well as ER recruitment (group 3) presumably due to the hindered 

receptor dimerization and DNA binding. We also found that the Wt receptor half-life was 

decreased by E2 treatment independently of the concentration whereas only the high 

concentration of E2 (1 M) was able to induce E2-mediated protein degradation of mutant Ee 

receptor. In fact, the Ee mutant showed lower estradiol binding affinity than the Wt receptor, 

explaining the need for higher E2 concentration in order to elicit full transcriptional response of 

the Ee mutant.  

We examined agonistic and antagonistic effects of SERMs/SERD on the ER phospho-

mutants, and saw that ICI-induced antagonism of E2 action was highly suppressed in ER -Ee 

cells, and this corresponded with less degradation of ER  protein mediated by ICI with or 

without E2 in ER -Ee cells. Because the combination of high S118P/low S167P was shown to 

be more resistant to tamoxifen in primary breast cancer [36], we focused on the mutants ER -Ae 

and ER -Ea which mimic the phosphorylation status in their mutation. Tam acted as a full 

antagonist, thus losing any partial agonistic effect on the Ae mutant. This observation might be 

providing an explanatory mechanism on a molecular level of the better response to endocrine 

therapy in patients with breast tumors showing low phosphorylation at Ser-118 and high 

phosphorylation at Ser-167 of ER . In contrast, the Ea mutant mimicking high S118P/low 

S167P displayed a very strong Tam agonist response which failed to subdue E2 action, both in 

terms of E2 transcription and ER chromatin recruitment. Similarly to what we observed in 
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U2OS-ER  stable cell lines, MCF-7 cells expressing ER -Ea showed higher pS2 and GREB1 

mRNA induction by Tam without altering E2 agonistic effects compared to siER +Wt cells, and 

Tam also exerted a full agonistic response on ER  recruitment. The role of cofactors in altering 

the responses to SERMs through their dynamic interaction with ER  is suggested in several 

cancer environments such as uterus carcinoma or osteoblastic cell lines [55, 56]. The histone 

acetyltransferase p300, which is a known ER  cofactor, was recruited to the pS2 promoter 

region by the Ea mutant at an increased level compared to ER -Wt after Tam treatment, 

demonstrating the increased tamoxifen agonisim of the Ea mutant. This result provides an 

example of how the altered tamoxifen response of the ER  phospho-mutants is regulated by the 

preferential use of cofactors according to the phospho-code of ER . We also observed an 

increased tamoxifen-induced growth of MCF-7 cells expressing the ER -Ee mutant, confirming 

the diminished antiestrogenic capabilities of tamoxifen on the Ea mutant receptor, accompanied 

with an increased cofactor recruitment by Tam. These observations strongly suggest that the 

phospho-combination of ER  mimicking high phosphorylation at Ser-118 and low 

phosphorylation at Ser-167, which is exemplified by the ER -Ea mutant, could be a cause of 

endocrine resistance and, hence, contribute to the aggressiveness and recurrence of breast cancer. 

In this study, we have demonstrated that post-transcriptionally modified ER  exhibited 

altered gene regulation, affinity for ligands and stimulation of cell proliferation according to their 

phospho-code. Also the regulation of ER  activity resulted from the combination of PTMs on 

multiple residues. In conclusion, the changes in the combinatorial phosphorylation status of ER 

greatly impact receptor function and show differential SERM and SERD activity that could 

contribute to resistance to endocrine therapies in breast cancer. Understanding the potential 

mechanism of differential SERMs/SERD-modulated cellular responses driven by the phospho-
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status of ERα could give new strategies in endocrine therapy for many different types of breast 

tumors in terms of their ER  phosphorylation status.  
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Figure. 2.1 (cont.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1 Generation and characterization of ER phospho-mutants.  

 

(A) Schematics of the location of serine sites in ER  that have been mutated in this study.  

(B) Wild type (Wt) and mutant ERs were transfected into HEC-1 cells. Whole cell extracts were  

prepared and analyzed by Western immunoblotting with ER -specific antibody. β-actin was  

used as a loading control.  

(C) HEC-1 cells were transfected with pCMV5-Flag-ER  (Wt or mutants) and 2xERE-pS2- 

luciferase reporter gene. Luciferase assay activity was measured after 24 hr treatment with 0.1 % 

ethanol vehicle (veh) or 1 nM E2, and normalized to β-galactosidase. Data are expressed as  

relative luciferase units (RLU) with ER  wild type set as 100 ± SD of triplicate samples. 
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Figure 2.2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2 Generation of U2OS-tetracycline regulated-ER  stable cell lines.  

 

(A) Mutations were made at Ser-104/106/118 (site I) and at the other sites (site II, III and IV,  

respectively) by site-directed mutagenesis. Mutations introduced at site I are represented as A  

(three alanines) or E (three glutamic acids), and those at the other sites are represented as a  

(alanine) or e (glutamic acid). Abbreviations for the mutants are the combination of site I and II,  

except for the mutant Eaea.  

(B) Induction of ER protein expression in U2OS-ER  stable cell lines by tetracycline was  

verified by western blotting analysis with ER -specific antibody. β-actin was used as a loading  

control.  
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Figure 2.3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3 Transactivation activity of ER  Wt and mutants in transient or stable  

expression systems, and E2-mediated gene expression, ER  recruitment and receptor  

turnover of ER -Ee. 

 

(A) HEC-1 cells were transfected with pCMV5-Flag-ER  (Wt or mutants) constructs. Receptor  

transcriptional activities were measured by luciferase assay after 24 hr treatment with five  

concentrations of E2 (10
-11

, 10
-10

, 10
-9

, 10
-8

 and 10
-7

 M), and were normalized to β-galactosidase.  

Data are expressed as relative luciferase units (RLU) with ER  Wt 1 nM E2 set as 100 ± SD of 
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Figure 2.3 (cont.) 

 

 

triplicate samples. The ER  phospho-mutants are categorized into three groups (Group 1, 2 and  

3) based on their E2 dose response patterns.   

(B) Transcription level of endogenous pS2 gene in U2OS-ER  stable cell lines (Wt, Ee, Ae, and  

Eaea) was assessed by QPCR after 24 hr treatment with E2 in concentrations indicated following  

ER  induction by tetracycline for 24 hr. Data represent average fold change ± SD of triplicate  

samples. 

(C) ER  recruitment to the pS2 ER-binding site was measured by qPCR after 45 min treatment  

with 0.1 % ethanol vehicle (veh) or E2 (10 nM or 1 mM) following ER  induction by  

tetracycline for 48 hrs. Data are expressed as fold change normalized to wild type veh ± SD of  

triplicate samples. 

(D) ER  protein levels were measured by In-Cell Western assay at indicated times after  

tetracycline removal by changing media containing 0.1 % ethanol vehicle (veh) or E2 (10 nM or  

1 mM). ER  Wt or Ee expression in U2OS-ER  stable cells was induced by tetracycline for 48  

hrs prior to the media change. Data are expressed as ER  level at 0 hr set as 100 ± SD of  

triplicate samples. 
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Figure 2.4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4 The ER -Ee mutant shows altered mRNA induction in response to Tam and  

ICI and reduced ICI-mediated protein degradation. 

 

(A) Induction of GREB1 and PDZK1 genes in U2OS-ER  Wt or Ee stable cell lines was  

assessed by qPCR after 24 hr treatment with 0.1 % ethanol vehicle (V), 10 nM E2 (E), 1 mM E2  

(Eh), 100 nM Tam (T), 5 mM Tam (Th), 100 nM ICI (I) or 5 mM ICI (Ih) following ER   

induction by tetracycline for 24 hrs. Data represent average fold change ± SD of triplicate  

samples. **P-value < 0.01 compared to Wt. 

(B) ER  protein levels in U2OS-ER  Wt or Ee stable cells after 24 hr treatment with 0.1 %  

ethanol vehicle (veh), E2, Tam or ICI of indicated final concentrations following ER  induction  

by tetracycline for 24 hr. β-actin was used as a loading control. The quantification of ER   

protein is represented as veh set as 100 %. 
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Figure 2.5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5 The ER -Ae and -Ea mutants show differential antagonistic response to Tam  

and ICI.   

 

(A) Induction of pS2 and GREB1 genes in U2OS-ER  Wt, Ae or Ea stable cell lines was  

assessed by QPCR after 24 hr treatment with 0.1 % ethanol vehicle (V), 10 nM E2 (E), 100 nM  

Tam (T) or 100 nM ICI (I) following ER  induction by tetracycline for 24 hr. Data represent  

average fold change ± SD of triplicate samples and normalized to Wt vehicle. **P-value < 0.01  

compared to Wt. 

(B) Differential ER  recruitment to the pS2 and GREB1 ER-binding sites in U2OS-ER  Wt, Ae  

or Ea stable cell lines was measured by QPCR after 45 min ligand treatment with 0.1 % ethanol  

vehicle (V), 10 nM E2 (E) or 100 nM Tam (T) following ER  induction by tetracycline for 48  

hr. Data are expressed as percentage of input ± SD of two separate experiments. **P-value <  

0.01 compared to Wt. 
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Figure 2.6 (cont.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.6 ER -Ae and -Ea elicit differential antagonistic effects by Tam in MCF-7 cells.  

 

(A) MCF-7 cells were transfected with 5 nM non-targeting control siRNA (NT) or ER  3’-UTR  

siRNA for 72 hr then transduced with control adenovirus (CMV) or ER  adenoviruses (Wt, Ae  

or Ea) for 64 hr. Whole cell extracts were prepared and analyzed by western immunoblotting  

with ER -specific antibody in order to verify the expression of AdER -Wt and mutants after  

knock-down of endogenous ER . β-actin was used as a loading control. 

(B) The induction of pS2 and GREB1 genes after 0.1 % ethanol vehicle (V), 10 nM E2 (E), 1  

mM Tam (T) or E2 plus Tam (E+T) treatment for 24 hr was assessed in MCF-7 cells by qPCR  

following the same procedure of siRNA transfection and adenovirus transduction as described  

above. Data represent average fold change ± SD of triplicate samples and normalized to NT  

CMV vehicle. *P-value < 0.05 compared to Wt. **P-value < 0.01 compared to Wt. 

(C) Differential ER  recruitment and (D) p300 recruitment to the pS2 ER-binding site were  

measured by QPCR after 45 min treatment with 0.1 % ethanol vehicle (V), 10 nM E2 (E), 100  

nM Tam (T). Data are expressed as fold change ± SD of three separate experiments normalized  

to each corresponding vehicle. * P-value < 0.05.  
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Figure 2.7 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.7 Increased growth of MCF-7 cells expressing the ER -Ee mutant in response to  

tamoxifen, but little change in response to E2 or ICI. 

 

MCF-7 cells expressing AdER -Wt, Ae or Ea were treated with 10 nM E2, 100 nM Tam, 100  

nM ICI or Tam plus ICI for 4 days. Cell proliferation was assessed using WTS-1 kit as described  

in Materials and Methods. The data represent the means ± SD of four determinations.  
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Table 2.1 (ccont.) 

 

 

Table 2.1 Estradiol (E2) binding affinity (Kd) of ERα Wt and eight phospho-mutants and  

their relative binding affinities for Tam and ICI.  

 

HEK 293FT cells were transfected with 8 g of pCMV5-Flag-ER  wild type or mutant  

constructs. Nuclear extracts were prepared and incubated with a range of 
3
H-E2

 
concentrations  

alone or with 100-fold excess unlabeled E2 for
 
3 hrs. Aliquots were used to determine the total  

3
H-E2 in the sample. Hydroxylapatite slurry was added, and

 
its radioactivity then determined by  

scintillation counting. Kd is measured as a constant for dissociation. Relative binding affinities  

were determined by competitive radiometric binding assays using 10 nM 
3
H-E2 as tracer. The  

binding affinities are expressed as relative binding affinity (RBA) values, where the RBA of  

estradiol is set as 100 %. The data are from two independently processed assays.  
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CHAPTER 3 

Regulation of ER -mediated Gene and Protein Expression by Estradiol and Growth 

Factors through Alterations in miRNAs 

 

3.1 Abstract 

The association of miRNAs in cancer biology is of great interest, especially in regards to 

their regulatory functions in proliferation, differentiation and survival of tumor cells. We 

investigated the regulatory role of miRNAs in breast cancer cells, focusing on their impact on 

ER -mediated gene expression by estradiol (E2) and growth factors. The aim of this project is to 

study the regulation of miRNAs by E2 and growth factors through ER  and ERK2, and to 

understand the physiological impact of select miRNAs on breast cancer by target gene regulation 

(i.e. TP63). We identified nine miRNA-encoding genes harboring overlapping ER  and ERK2 

binding sites in a 50 Kb window around their transcription start sites in MCF-7 cells. ER  and 

ERK2 were shown to directly bind to the overlapping binding sites near the E2-upregulated 

miRNAs (miR-135a2, miR-196a2, miR-101 and miR-190) and to be required for transcriptional 

induction of these miRNAs as well as for E2-mediated miRNA regulation. We also identified 

TP63, a target gene of miR-101, miR-190 and miR-196a2, and showed that TP63 plays an 

important role in E2- or growth factor-mediated cellular response in breast cancer cells by 

increasing tumor cell growth and in vitro invasion mainly controlled by miR-196a2 action. We 

observed that the expression of Np63  was correlated inversely with ER  levels in several 

breast cancer cell lines, and showed that in vitro invasion and tumor growth properties were 

reversed by enforced miR-196a2 expression in ER  negative MDA-MB-231 cells. These results 

imply that the regulation of miR-196a2 by ER  and/or ERK2 signaling in breast cancer is 
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associated with different molecular subtypes of breast cancer, possibly mediated through 

differential TP63 expression affecting tumor cell growth and invasion ability. The findings 

suggest a potential tumor-suppressive treatment strategy to alleviate the aggressive behavior and 

poor prognosis of the ER -negative basal-like breast cancer subtype by manipulating the miR-

196a2-TP63 circuit in these breast cancer cells. 

 

3.2 Introduction 

MicroRNAs (miRNAs) are a class of 21-23 nucleotide-long noncoding RNAs that 

modulate gene expression by post-transcriptional repression [1-3]. miRNAs have emerged as an 

important focus of research in molecular biology following the initial identification of two small 

noncoding RNAs, lin-4 and let-7, and their regulatory roles in timing of the nematode worm 

Caenorhabditis elegans development [4-6]. Many more have since been found in animals, plants 

and fungi, reflected with 677 human miRNA sequences detailed as of September 2008 in the 

Miranda database (www.microrna.org), and bioinformatics predictions indicate that mammalian 

miRNAs can regulate ~30% of all protein-coding genes [2, 7]. miRNAs can affect both the 

translation and stability of mRNAs by their sequence complementarity to the 3’ UTR of the 

target genes in the cytoplasm [2, 8]. However, additional functions of miRNAs are possible, for 

they could regulate pre-mRNA processing in the nucleus or act as chaperones modifying mRNA 

structure or modulating mRNA-protein interactions [9].     

The association of miRNAs in cancer biology is of great interest because of their 

regulatory functions in proliferation, differentiation and apoptosis [10-12]. Because of miRNAs’ 

broad influence over diverse genetic pathways, the alteration in miRNA expression is likely to be 

pleiotropic and contribute to disease, including cancer [13, 14]. miRNA expression correlates 

http://www.microrna.org/
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with various cancers, and these are thought to function as both tumor suppressors and oncogenes 

[13]. High-throughput miRNA expression profiling in breast cancer cell lines and tissues 

identified a large set of miRNAs expressed at different levels compared to the normal breast [15-

17]. miRNA signatures predicting the expression levels of the estrogen, progesterone and 

HER2/neu receptors, which characterize different breast cancer phenotypes, have also been 

identified to elucidate the role for these miRNAs in disease classification of breast cancer and 

also serving as a prognostic biomarker [18]. In the study by Iorio et al. (2005), miR-125b, miR-

145, miR-21, and miR-155 were significantly deregulated, and the expression of those miRNAs 

were correlated with specific breast cancer pathologic features such as estrogen and progesterone 

receptor expression, tumor stage or proliferation index [17]. Another group also identified four 

miRNAs (miR-7, miR-128a, miR-210 and miR-516-3p) associated with aggressiveness of lymph 

node-negative, estrogen receptor-positive human breast cancer [19]. Also, a functional genetic 

variant in the mature region of miR-196a2 and its potential oncogenic role in breast 

tumorigenesis was identified by functional analysis [20]. More interesting, many studies have 

reported the regulation between miRNAs and estrogen receptor alpha (ER ) signaling and its 

impact on endocrine resistance in breast cancer. miRNA-221/222 expression was up-regulated in 

ER -negative breast cancer and conferred tamoxifen resistance by targeting ER  and the cell 

cycle inhibitor p27
Kip1

 [21, 22]. miR-206 expression was down-regulated in ER -positive breast 

cancer and repressed ER  mRNA and protein synthesis [23, 24]. It was also revealed that 

estradiol can regulate miRNA expression (i.e. miR-21) and modulate target gene expression in 

breast cancer cells [25, 26]. The ratio of the miRNA level to its target transcript was also taken 

into consideration and showed a correlation with breast cancer cell migration and metastasis by 

the miR-196 family and HOXC8 [27].  



 58 

TP63, a member of p53 tumor-suppressor gene family acts at least in part as oncogenic 

and tumor suppressive genes in human cancer [28-31], and plays roles in tumor growth, 

apoptosis and metastasis of human cancer [28, 31, 32]. The translational products of TP63 are 

crucial for the maintenance of a stem cell population in the human epithelium [33] and are 

necessary for the normal development of all epithelial tissues [34], including mammary glands 

[35, 36]. Among six isoforms of TP63, Np63 , that lacks the transactivating N-terminal region, 

is the predominant form expressed in many carcinomas, which promotes tumor growth and 

inhibits apoptosis [37, 38]. TP63 is found in a subset of highly aggressive ER negative breast 

cancers that represent a basal and myoepithelial phenotype and have a poor clinical outcome [39, 

40]. Overexpression of Np63  is also reported to induce a stem cell phenotype in MCF-7 

breast cancer cells through the Notch pathway [41]. In this study, we have focused on miR-

196a2 regulating TP63 and several other proteins because of their likely important roles in the 

tumor progression and hormone regulation of breast cancer cells.  

 

3.3 Materials and Methods 

Cell Culture, RNA Extraction, and Real Time PCR Analysis  

MCF-7 and MDA-MB-231 breast cancer cells were routinely maintained in MEM 

(Sigma-Aldrich
 
Corp., St. Louis, MO) supplemented with 5% calf serum (HyClone,

 
Logan, UT) 

or in L-15 (ATCC, Manassas, VA) supplemented with 10% fetal bovine serum (HyClone, 

Logan, UT), respectively. Four days before E2 treatment, cells were switched
 
to phenol red-free 

MEM containing 5% charcoal-dextran-treated
 
calf serum or phenol red-free L-15 containing 

10% charcoal-dextran-treated fetal bovine serum, respectively. Medium was changed on day 2 

and 4 of culture, and
 
then cells were transfected with 20 nM of siGENOME Ctrl, ER  or ERK2 
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using Dharmafect. After 48 hours of transfection, cells were treated for 24h with 0.1% ethanol or 

10 nM E2. Cells were also treated with 10 ng/ml EGF (Sigma-Aldrich corp.) for the time course 

experiment. After treatments, total RNA was isolated, reverse-transcribed and analyzed by real-

time PCR as described previously [42]. For the analysis of miRNA expression total RNA was 

isolated as previously described, reverse transcribed using the primers for each miRNA (Applied 

Biosystems) and analyzed by real-time PCR using TAQMAN chemistry and primers from 

Applied biosystems.   

  

MicroRNA Array 

 Total RNA was isolated using Trizol reagent. Then miRNA was enriched using RT
2
 qPCR-

grade miRNA isolation kit according to manufacturer’s instructions. Two hundred nanograms of 

enriched small RNA were converted into cDNA using RT
2
 miRNA First strand kit. The cDNAs 

were mixed with 2 × RT2 SYBR Green PCR Master Mix (SABiosciences) and dispersed into 

384-well Human Genome miRNA PCR Array (MAH-3200E, SABiosciences) with 10 l/well 

reaction volume. The PCR array contained a panel of primer sets for 376 most abundantly 

expressed and best characterized human miRNAs, four small RNAs as the internal controls and 

four quality controls. The real-time qRT-PCR was performed on a 7900 real-time PCR system 

(Applied Biosystems Inc., Foster, CA) with following cycling parameters: 95 °C for 10 mins, 

then 40 cycles of 95 °C for 15 s, 60 °C for 30 s and 72 °C for 30 s. SYBR Green fluorescence 

was recorded from every well during the annealing step of each cycle.  

 

Anti-miR, Pre-miR or TP63 miScript Target Protector Transfection 
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 MCF-7 and MDA-MB-231 breast cancer cells were transfected with 20 nM of Anti-miR-

196a* (Ambion), Pre-miR-196a* (Ambion) or negative controls (Anti-miR or Pre-miR) using 

Dharmafect in order to knock-down or overexpress miR-196a2, respectively. After 48 hours of 

transfection, cells were treated for 24h with 0.1% ethanol or 10 nM E2. For the target protector 

assay, cells were transfected with 100 nM TP63 miScript target protector or negative control 

protector using Dharmafect. After 48 h of transfection, cells were treated for 24h with 0.1 % 

ethanol or 10 nM E2, and subjected to RNA isolation for gene expression analysis.  

 

Proliferation, Soft Agar Colony Formation and Invasion Assays 

 MCF-7 or MDA-MB-231 cells were transfected with 20 nM Anti-miR-196a* or Pre-miR-

196a*, as described above, and then were seeded at a concentration of 1,000 cells/well in 100 l 

of culture medium and treated with 0.1% ethanol or 10 nM E2. Cell proliferation was assessed 

using a WST-1 kit according to the manufacturer’s instructions (Roche Applied Science). The 

absorbance of the samples was analyzed using a microplate ELISA reader at 450 nm. Invasion 

assays were performed 24 h posttransfection using BDBioCoat MATRIGEL invasion chambers 

(BD Biosciences) with 10% fetal bovine serum as chemoattractant. Cells (2.5 X 10
4
 cells/well) 

were plated into the chambers and allowed to invade for 24 h. The remaining cells in the 

chambers were removed with cotton swabs and the invading cells on the lower surface of the 

chambers were stained with Wright-Giemsa staining solution. The number of invading cells was 

calculated by counting three different fields under a phase-contrast microscope. For the soft agar 

colony formation assay, cells (5 X 10
3
 cells/well) were seeded in 0.35% agar and cultured for 10 

days at 37°C under 5% CO2. Dishes were stained with 0.05% crystal violet, and colonies were 

counted in the entire dish.  
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Chromatin Immunoprecipitation (ChIP) Assays and Western Blot Analysis 

MCF-7 cells were treated with 0.1% ethanol or 10 nM E2 for 45 min or 2 hr. ChIP assays 

were performed essentially as described before [43]. Antibodies used were: ER  (HC-20) and 

ERK2 (D-2) from Santa Cruz Biotechnology. Whole cell extracts were prepared in lysis buffer 

(20 mM Tris pH 7.5, 150 mM NaCl, 1 % NP-40, 1 % SDS, 5 % glycerol, and
 
protease inhibitor 

cocktail). Western blot analysis of whole cell extracts followed common protocols and specific 

antibodies were used for ER  (HC-20, Santa Cruz Biotechnology), ERK2 (D-2, Santa Cruz 

Biotechnology), SPRY1 (H-120, Santa Cruz Biotechnology), TP63 (ab53039, Abcam) and -

actin (AC-15, Sigma).  

 

3.4 Results 

Identification of miRNAs harboring overlapping ER  and ERK2 binding sites in MCF-7 cells 

We mapped ERα and ERK2 binding sites to regions that contain noncoding RNAs 

(ncRNAs) to investigate possible collaboration between ERα and ERK2 in miRNA regulation, 

by utilizing a ChIP-on-chip microarray analysis of ERα and ERK2 binding with E2 treatment in 

MCF-7 cells [44]. From the genome wide ChIP-on-chip analysis of ERα and ERK2 binding 

sites, using a 50 Kb window around the transcription start site (TSS) of annotated ncRNAs in the 

human genome, we identified 10 ncRNAs (miR-101, miR-938, miR-196a2, miR-615-3p, miR-

135a2, miR-190, miR-190b, miR-21, miR944 and miR-1208) harboring both ERα and ERK2 

binding sites after E2 treatment (Figure 3.1A), and 9 of 10 miRNA-encoding genes (except for 

miR-190b) having overlapping ERα and ERK2 binding sites. We used an miRNA microarray to 

evaluate miRNA expression profiles and identified the miRNAs that are up-regulated (miR-
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196a2, miR-615-3p, miR-135a2 and miR-944) or down-regulated (miR-190b and miR-21) by 

E2. ERα or ERK2 knock-down reduced miRNA expression and blocked E2 regulation of 

miRNAs that harbor both ERα and ERK2 binding sites (Figure 3.1B). Among the 10 miRNAs, 

we chose for further investigation two E2-upregulated miRNAs, miR-135a2 and miR-196a2, that 

were highly up-regulated by E2 and harbored overlapping ER  and ERK2 binding sites close to 

the TSS (within a 10 kb window) (Figure 3.1C). 

 

miRNA target gene prediction  

The microRNA databases and target prediction tools MicroCosm Targets 

(http://www.ebi.ac.uk/enright-srv/microcosm/htdocs/targets/v5/), PicTar (http://pictar.mdc-

berlin.de/) and TargetScan (http://www.targetscan.org/index.html) were used to identify potential 

miRNA targets. Based on the observation that miR-135a2 and miR-196a2 expression was up-

regulated by E2 and down-regulated by ER  or ERK2 knock-down, we utilized the microarray 

gene expression data after E2 treatment or ER /ERK2 knock-down (done previously in the lab 

by Z. Madak-Erdogan) to narrow down the potential miRNA target genes to focus on in this 

study (Figure 3.1D). Among the genes that came up in the miRNA target prediction tools, we 

verified the target genes of miR-135a2 and miR-196a2 that were up-regulated in their mRNA 

levels after ER  or ERK2 knock-down and down-regulated after 10 nM E2 treatment for 24 h in 

MCF-7 cells by quantitative RT-PCR.  

 

Regulation of miRNA and target gene expression by ER  and ERK2  

In order to verify the impact of ERα and ERK2 on the expression of the miRNAs, we 

performed ERα and ERK2 knock-down experiments in MCF-7 cells. ERα or ERK2 depletion 

http://www.ebi.ac.uk/enright-srv/microcosm/htdocs/targets/v5/
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decreased the expression of miR-135a2 and miR-196a2 genes and blocked E2-mediated 

regulation (Figure 3.2A). By ChIP assay, the involvement of ER  and ERK2 in expression of the 

miRNAs as well as in transcriptional activation was confirmed by assessing the recruitment of 

ER , ERK2 and RNA polymerase II to the binding sites and TSS regions of miR-135a2 and 

miR-196a2. ER  and ERK2 were both recruited to the miR-135a2 binding site and one of the 

miR-196a2 binding sites (4101) at 45 min of E2 treatment and showed a decrease by 2 h (Figure 

3.2B). The recruitment of active RNA Polymerase II (pSer5-polII) was also examined by ChIP 

assay at 45 min of E2 treatment in MCF-7 cells, and supported transcriptional activation on the 

TSS of each miRNA (Figure 3.2C). We identified miR-135a2 target genes, GHR and MAP3K3, 

and miR-196a2 target genes, SPRY1 and TP63, to show down-regulated mRNA levels with 24 h 

of E2 treatment (Figure 3.2D). They also had increased basal level expression and loss of E2-

mediated repression upon knock-down of ERα or ERK2. The protein levels of SPRY1 and TP63 

( Np63  and Np63 , isoforms of TP63) were down-regulated by E2 and up-regulated by 

knock-down of ERα or ERK2, confirming the regulation of the target genes by miR-196a2 at the 

translational level as well as at the mRNA level (Figure 3.2E).  

 

Regulation of miR-196a2 and target gene expression by E2 and EGF  

To study the regulatory role of ER  in collaboration with ERK2 on altering miRNA 

target gene expression, we conducted E2 and EGF time course experiments in MCF-7 cells. The 

expression level of miR-196a2 was up-regulated ca. 7-fold by E2 over the 24-h period. miR-

196a2 RNA was also up-regulated by EGF at the early time point (6 h) and then returned to the 

basal level (Figure 3.3A). Both E2 and EGF treatment reduced the mRNA level of the target 

genes, SPRY1 and TP63, and E2 had a greater impact on repressing both of these target genes 
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compared to EGF (Figure 3.3B). The protein level of SPRY1 was decreased over time by E2 and 

also by EGF at the later time point (24 h). The protein expression of Np63  was also down-

regulated by E2 and EGF, confirming the effect of altered miRNA expression also at the 

translational level (Figure 3.3C).  

 

TP63 targeted by miR-101, miR-190 and miR-196a2 

 The miR-196a2 target gene TP63 is also targeted by miR-101 and miR-190 (Figure 

3.4A). Because we found these miRNAs (miR-101, miR-190 and miR-196a2) to be up-regulated 

by E2 and to have overlapping ER  and ERK2 binding sites, TP63 seems to be one of the major 

target genes that is regulated by E2 and potential growth factors such as EGF in MCF-7 cells. 

Besides TP63, we found eight additional common target genes of miR-101, miR-190 and miR-

196a2 by using miRNA target gene prediction tools –ASXL1, NEUROD1, IGF1, BBS2, 

C18orf37, TFAP2A, MCTS1 and MGAT4A (Figure 3.4B), and verified ER  or ERK2-mediated 

regulation of these target transcripts (Figure 3.4C).  

 

Knock-down of miR-196a2 decreases TP63 expression and increases cell growth in MCF-7 

cells 

In order to verify the effect of miRNAs on regulation of target gene expression, antisense 

inhibition of miR-196a2 expression by using Anti-miR oligos was conducted in MCF-7 cells 

(Figure 3.5A). Treatment with Anti-miR-196a* increased the basal expression of target genes, 

TP63 and SPRY1 (Figure 3.5B). In squamous epithelium, the pro-apoptotic gene IGFBP3 is 

transcriptionally repressed by Np63  [38]. We observed that IGFBP3 was down-regulated by 

knock-down of miR-196a2 (Figure 3.5C), which implies the potential suppression of apoptosis 
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and increased cell proliferation by TP63 in MCF-7 cells.  Therefore, we next investigated the 

effect of miR-196a2 knock-down on breast cancer cell growth by conducting proliferation 

assays. Inhibition of miR-196a2 enhanced cell proliferation with or without E2 treatment by day 

4 (Figure 3.5D), supporting the oncogenic role of TP63 regulated by miR-196a2 in breast cancer.  

 

Overexpression of miR-196a2 increases TP63 expression and decreases growth of MCF-7 

cells 

In order to confirm the impact of up-regulated miRNAs on target transcripts, 

overexpression of miR-196a2 was performed using Pre-miR-196a* oligos in MCF-7 cells 

(Figure 3.6A). Enforced miR-196a2 expression inhibited TP63 expression but the effect on 

SPRY1 expression levels was minimal (Figure 3.6B). The sensitivity of each transcript toward 

multiple miRNAs depends on various factors such as complimentarity of sequences or copy 

numbers of miRNA binding sites on each 3’ UTR [45-47]. Overexpression of miR-196a2 

increased the basal level of IGFBP3 mRNA (Figure 3.6C), suggesting that down-regulated TP63 

may cause cell growth repression. In subsequent cell proliferation assay experiments, we 

observed decreased cell growth with or without E2 treatment (Figure 3.6D).  

 

miR-196a2 directly targets TP63 in MCF-7 cells 

The biological activity of miRNAs is primarily mediated by interaction with matching 

recognition sequences in the 3’ UTRs of target genes and by translational repression. To 

determine whether TP63 is a direct target of miR-196a2, we utilized TP63 miScript target 

protector sequence which selectively recognizes miR-196a* target sequences only on the TP63 

3’ UTR, thereby blocking interaction between miR-196a2 and TP63 target mRNA. Transfection 
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of TP63 protector oligos increased basal TP63 mRNA levels and recovered down-regulated 

TP63 expression by Pre-miR-196a* in MCF-7 cells (Figure 3.7A). Immunoblotting with TP63 

antibody showed that Np63  was significantly down-regulated by miR-196a2 overexpression 

and it was partially recovered by cotransfection with TP63 protector (Figure 3.7B). The effect of 

TP63 protector on inhibition of miR-196a2 interaction with TP63 mRNA also resulted in 

enhanced proliferation in MCF-7 cells and enhancement of proliferation was also observed with 

miR-196a* cotransfection (Figure 3.7C).  

 

TP63-mediated regulation of cell growth and invasion in MDA-MB-231 ER  negative breast 

cancer cells by miR-196a2 overexpression 

TP63 is one of the Basal-like breast cancer markers, along with cytokeratins (CK5/6, 

CK14, CK17) and EGFR [29, 30]. To address whether the expression of TP63 and miR-196a2 is 

correlated with ER  and ERK2 levels, we examined the levels of TP63, miR-196a2, ER  and 

ERK2 in several ER  positive and negative cell lines (Figure 3.8A). Different isoforms of TP63, 

Np63  and Np63  were detected in ER  positive cells (MCF-7, T47D, ZR75-1 and MDA-

MB-231 ER+) and ER negative cells (MDA-MB-231 and MDA-MB-453; Figure 3.8A). 

Np63 , that lacks the transactivating N-terminal region, is the predominant form expressed in 

many carcinomas [37, 38], which may contribute to a basal and myoepithelial phenotype in 

highly aggressive ER negative breast cancers with a poor clinical outcome [39, 40]. Of note, 

Np63  expression was reduced with stable ER  expression in MDA-MB-231 cells when the 

Np63  level was increased. This switch of TP63 isoform expression suggests that the 

expression of Np63  is ER -dependent and may take part in developing the more aggressive 

tumorigenic phenotypes of ER -negative breast cancers [41].  
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Expression of miR-196a2 was higher in ER -positive cell lines compared to ER -

negative cells lines, except for MDA-MB-453 cells (Figure 3.8B). Interestingly, the level of 

miR-196a2 increased ca. 10 fold with stable ER  expression in MDA-MB-231 cells when the 

Np63  level was decreased. We overexpressed miR-196a2 using Pre-miR-196a* oligos in ER-

negative MDA-MB-231 cells (Figure 3.8C). In subsequent cell proliferation assay experiments, 

overexpression of miR-196a2 decreased cell growth (Figure 3.8D). We next investigated the 

effect of miR-196a2 on invasive properties of breast cancer cells by analyzing in vitro invasion 

using Matrigel invasion chambers. Enforced miR-196a2 expression inhibited in vitro invasion of 

MDA-MB-231 cells (Figure 3.8E). To examine the effect of miR-196a2 on tumor growth, soft 

agar colony formation assays were performed with miR-196a2 overexpression in MDA-MB-231 

cells. After 8 days of incubation, the colony numbers and colony size were greatly reduced with 

Pre-miR-196a* transfection compared to control (Figure 3.8F), suggesting a potent tumor 

suppressive role of miR-196a2 through TP63 regulation in breast cancer cells. 

 

3.5 Discussion 

 The involvement of miRNAs in human cancer has become a rising interest in the cancer 

research field. miRNA was introduced as an additional layer in the gene expression regulatory 

system at the post-transcriptional level by destabilizing target mRNAs using RNA interference 

mechanism and at the translational level by repressing the translation process. High-throughput 

miRNA expression profiling in breast cancer cell lines and tissues identified a large set of 

miRNAs expressed at different levels compared to the normal breast [15-17]. In this study, we 

have focused on elucidating the regulatory role of ER  and ERK2 in miRNA expression and 

understanding its physiological impact on breast cancer by target gene regulation. Using a 
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microarray analysis of ER  and ERK2 binding upon E2 treatment in MCF-7 cells, we identified 

10 miRNAs that are harboring both ER  and ERK2 binding sites within a 50 Kb window around 

the TSS of annotated ncRNAs in the human genome. Nine out of ten miRNAs had overlapping 

ER  and ERK2 binding sites, implying a possible collaborative action between ER  and ERK2 

in miRNA regulation (Figure 3.1). In addition, we identified TP63, a target gene of miR-101, 

miR-190 and miR-196a2, and showed that TP63 may be important for E2- or growth factor-

mediated cellular response in breast cancer cells, by increasing tumor cell growth or in vitro 

invasion mainly controlled by miR-196a2 action.   

ER  and ERK2 directly bind to the overlapping binding sites near the E2-upregulated 

miRNAs (miR-135a2, miR-196a2, miR-101 and miR-190) and are required for transcriptional 

induction of these miRNAs as well as E2-mediated miRNA regulation. Loss of miRNA 

expression by depletion of ER  or ERK2 induced an increase of the miRNA target gene basal 

expression levels (Figure 3.2). This shows that ER  and ERK2 serve as transcription factors not 

only regulating transcription of primary protein-encoding target genes but that they also control 

expression of groups of miRNAs to potently coordinate the functional outcome mediated through 

miRNA- targeted genes.  

Although miRNAs may target multiple genes pertinent to tumor cell growth, the tumor 

suppressive role of miR-196a2 is apparently mainly associated with TP63 because miR-196a2 

significantly inhibits TP63 expression and cell proliferation (Figure 3.7). TP63, one of the Basal-

like breast cancer biomarkers [29, 30], is targeted by three E2-regulated miRNAs, miR-101, 

miR-190 and miR-196a2. It is common that a group of miRNAs target the same gene or a group 

of genes that have similar physiological functions. This allows maintenance of a fine-tuned 

control of phenotypic properties that are attributed to multiple genes, by regulating different 
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groups of miRNAs depending on the various external inputs for signal transduction in the cell. 

Np63, a predominantly expressed TP63 isoform in cancer cells, is amino-terminally truncated 

and can oppose the transactivation capabilities of the full-length protein [28, 31]. The ability of 

Np63  to enhance proliferation and suppress apoptosis suggests a possible contribution of 

TP63 in tumorigenesis and breast cancer progression [37, 38, 41]. Particularly, an increase of 

Np63  expression upon ER  knock-down suggests an inverse relationship between ER  and 

TP63, accounting for the opposite breast cancer phenotypes of ER  positive luminal type and 

triple-negative basal-like breast cancers. It is also reported that EGFR/MAPK signaling can 

induce a switch in ER  positive luminal-A type MCF-7 breast cancer cells to an ER  negative, 

basal-like phenotype by modulating miR-206 that represses ER  activity [48].  

We showed that miR-196a2 is deeply involved in breast cancer proliferation as the 

knockdown of miR-196a2 promoted cell growth with decreased levels of an apoptotic marker 

and TP63 target gene, IGFBP3 in MCF-7 cells (Figure 3.5). The importance of miR-196a2 in 

tumor cell growth is further supported by the observation that both TP63 and MCF-7 cell 

proliferation were greatly reduced by overexpresion of miR-196a2 (Figure 3.6). Li et al. (2010) 

showed that miR-196 family suppressed in vitro invasion and in vivo spontaneous metastasis of 

breast cancer cells through inhibiting HOXC8 expression [27]. It was of great interest for us to 

examine whether overexpression of miR-196a2 might be able to alleviate the aggressive 

behavior and poor prognosis of Basal-like breast cancer subtype by down-regulating TP63 in 

ER  negative breast cancer cells. Of note, the expression of Np63  was correlated inversely 

with ER  levels in several breast cancer cell lines (Figure 3.8). Relative levels of miR-196a2 

were mainly dependent on ER  expression rather than ERK2 levels, implying that ERK2 action 

on miRNA expression is secondary to ER  activity [44]. Interestingly, MDA-MB-453 cells had 
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a comparable amount of miR-196a2 with MCF-7 cells suggesting that ERK2 may act through 

other signaling pathways to foster miRNA expression without ER  in this cell line. We also 

showed that in vitro invasion and tumor growth properties were reversed by enforced miR-196a2 

expression in ER  negative MDA-MB-231 cells (Figure 3.8). More studies are yet to be done to 

manifest a potential tumor-suppressive treatment strategy of using the miR-196a2-TP63 circuit 

in ER  negative breast cancer. However, the role of miR-196a2 on TP63 regulation seems to be 

remarkable on account of its E2 responsiveness and ER  and/or ERK2-dependent expression in 

breast cancer cells. 

Understanding the aberrant regulation of miRNAs by E2 and growth factors in breast 

cancer cells is of great significance, since those signaling pathways are heavily involved in the 

development and progression of breast tumors as well as in the responsiveness of breast cancer 

patients to endocrine therapies. Many studies have already reported the involvement of miRNAs 

in ER  signaling and their impact on endocrine resistance in breast cancer [21-26]. In this study, 

we suggest that the regulation of miR-196a2 by ER  and/or ERK2 signaling in breast cancer 

may contribute to divergent physiological properties and clinical outcomes of different subtypes 

of breast tumors, those that are ER -positive versus those that are ER -negative, possibly 

mediated through differential TP63 expression affecting tumor cell growth and invasion ability. 

Our study suggests that, in addition to relying on breast cancer subtype marker expression, 

looking into the levels of miRNAs that are regulated by ER  or growth factor signaling should 

be considered to make an accurate prognosis of breast cancer. Understanding potential 

mechanisms of miRNA-modulated cellular responses driven by ERα and cooperative growth 

factor signaling could offer new strategies in breast cancer therapy for many different subtypes 

of breast tumors in accordance with their miRNA signatures.  
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3.7 Figures and Tables 

 

Figure 3.1 
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Figure 3.1 (cont.) 

 

 

Figure 3.1 Association of ERα and ERK2 binding sites with miRNA promoters  

 

(A) Venn diagram showing the number of miRNAs (10) that harbor both ER  and ERK2  

binding sites within a 50 kb window around the transcription start site. 9 of the 10 have  

overlapping ER  and ERK2 binding sites.  

(B) Impact of ER  or ERK2 knock-down on the expression of each miRNA.  MCF-7 cells were  

transfected with siCtrl, siER  or siERK2 and treated with 0.1% ethanol (veh) or 10 nM  

E2 for 6 h. Expression levels of each miRNA were determined by the miRNA microarray 

analysis. 

(C) ER  and ERK2 binding sites near miR-135a2 and miR-196a2 genes. 

(D) Overview of approach for prediction of potential miRNA target genes by utilizing target  

prediction tools and our microarray gene expression data. 
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Figure 3.2 
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Figure 3.2 (cont.) 

 

 

Figure 3.2 Regulation of miRNAs and target gene expression by ER  and ERK2 in MCF-7  

cells 

 

(A) Impact of ER  or ERK2 knock-down on the expression of miR-135a2 and miR-196a2.  

MCF-7 cells were transfected with siCtrl, siER  or siERK2 and treated with 0.1% ethanol (veh)  

or 10 nM E2 for 0 or 24 h. Total RNA was harvested and subjected to RT-PCR using specific  

primers for each miRNA. Expression levels of each miRNA were determined using Taqman  

probe based quantitative PCR.  

(B) ER  and ERK2 recruitment to the overlapping binding sites of miR-135a2 and miR-196a2  

with 0.1% ethanol (veh) or 10 nM E2 treatment for 45 min. miR-196a2 has two binding sites  

(4101 and 4102) labeled according to the ER  binding site number.  

(C) Phospho-serine5 RNA Polymerase II recruitment to the transcription start site (TSS) of miR- 

135a2 and miR-196a2 with 0.1% ethanol (veh) or 10 nM E2 treatment for 45 min. 

(D) Impact of ER  or ERK2 knock-down on expression of miR-135a2 target mRNAs (GHR and  

MAP3K3), and miR-196a2 target mRNAs (SPRY1 and TP63). MCF-7 cells were transfected  

with siCtrl, siER  or siERK2 for 48 h then treated with 0.1% ethanol (veh) or 10 nM E2 for 24h. 

(E) Impact of ER  or ERK2 knock-down on the miR-196a2 target genes, SPRY1 and TP63  

protein levels by western blot analysis. -actin was used as a loading control. 
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Figure 3.3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3 Regulation of miR-196a2 and target gene expression by E2 and EGF in MCF-7  

cells 

 

(A) Time-course of expression of miR-196a2 by E2 or EGF. MCF-7 cells were treated with 10  

nM E2 or 10 ng/ml EGF for up to 24 h. Total RNA was harvested and subjected to RT-PCR  

using specific primers for each miRNA. Expression levels of each miRNA were determined  

using Taqman probe based quantitative PCR.  

(B) Regulation of the mRNA expression of miR-196a2 target genes with 10 nM E2 or 10 ng/ml  

EGF treatment for 0, 6, 12 and 24 h. 

(C) Regulation of the protein expression of miR-196a2 target genes by E2 or EGF was analyzed  

by western blot analysis. -actin was used as a loading control. 
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Figure 3.4 (cont.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4 TP63 targeting by miR-101, miR-190 and miR-196a2 

 

(A) Schematic of the 3’ UTR of the TP63 gene and miRNAs targeting site. 

(B) List of genes targeted by miR-101, miR-190 and miR-196a2. 

(C) Impact of ER  or ERK2 knock-down on expression of common target mRNAs of miR-101,  

miR-190 and miR-196a2. MCF-7 cells were transfected with siCtrl, siER  or siERK2 for 48 h  

then treated with 0.1% ethanol (veh) or 10 nM E2 for 24 h. 
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Figure 3.5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5 Knock-down of miR-196a2 increases expression of TP63 and SPRY1 and cell  

proliferation in MCF-7 cells  

 

(A) Knock-down of miR-196a2 in MCF-7 cells. Cells were transfected with Anti-miR-196a* or  

negative control (Ctrl) and treated with 0.1% ethanol (veh) or 10 nM E2 for 24 h. Total RNA  

was harvested and subjected to RT-PCR using specific primers for each miRNA. Expression  

levels of each miRNA were determined using Taqman probe based quantitative PCR.  

(B) Impact of miR-196a2 knock-down on the expression of miR-196a2 target genes, TP63 and  

SPRY1 with 0.1% ethanol (veh) or 10 nM E2 treatment for 24 h. * p-value < 0.05 

(C) Knock-down of miR-196a2 reduces the expression of an apoptotic marker gene, IGFBP3.  

•p-value < 0.05 

(D) Impact of miR-196a2 knock-down on MCF-7 cell proliferation. Cells were transfected with 

20 nM Anti-miR-196a* and then were seeded at a concentration of 1,000 cells/well in 100 ml of 

culture medium and treated with 0.1% ethanol or 10 nM E2 for 4 d. Cell proliferation was 

assessed using a WST-1 kit. ** p-value < 0.01 
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Figure 3.6 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6 Overexpression of miR-196a2 decreases expression of TP63 and cell  

proliferation in MCF-7 cells 

 

(A) Overexpression of miR-196a2 in MCF-7 cells. Cells were transfected with Pre-miR-196a* or  

negative control (Ctrl) and treated with 0.1% ethanol (veh) or 10 nM E2 for 24 h. Total RNA  

was harvested and subjected to RT-PCR using specific primers for each miRNA. Expression  

levels of each miRNA were determined using Taqman probe based quantitative PCR.  

(B) Impact of miR-196a2 overexpression on the expression of miR-196a2 target genes, TP63 and  

SPRY1 with 0.1% ethanol (veh) or 10 nM E2 treatment for 24 h. ** p-value < 0.01 

(C) Overexpression of miR-196a2 increases the expression of an apoptotic marker gene,  

IGFBP3. ** p-value < 0.01 

(D) Impact of miR-196a2 overexpression on MCF-7 cell proliferation. Cells were transfected  

with 20 nM Pre-miR-196a* and then were seeded at a concentration of 1,000 cells/well in 100  

ml of culture medium and treated with 0.1% ethanol or 10 nM E2 for 4 d. Cell proliferation was  

assessed using a WST-1 kit. ** p-value < 0.01 

 

 

 

 

 



 83 

Figure 3.7 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7 miR-196a2 inhibits TP63 expression and cell proliferation in MCF-7 cells 

 

(A) Impact of TP63 target protector on TP63 mRNA expression. MCF-7 cells were transfected  

with 100 nM TP63 miScript target protector or negative control protector (Ctrl) with or without  

10 nM Pre-miR-196a*. After 48 hr transfection, cells were treated with 0.1% ethanol (veh) or 10  

nM E2 for 24 hr and then subjected to RNA isolation for gene expression analysis. ** p-value <  

0.01 

(B) Np63  expression after Pre-miR-196a* transfection with or without TP63 target protector.  

-actin was used as a loading control. 

(C) Impact of TP63 target protector on MCF-7 cell proliferation. Cells were transfected with 100  

nM TP63 miScript target protector or negative control protector (Ctrl) with or without 10 nM  

Pre-miR-196a*. Cells were then seeded at a concentration of 1,000 cells/well in 100 ml of  

culture medium and treated with 0.1% ethanol or 10 nM E2 for 4 d. Cell proliferation was  

assessed using a WST-1 kit. ** p-value < 0.01 
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Figure 3.8 
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Figure 3.8 (cont.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.8 TP63 expression in breast cancer cell lines and TP63-mediated regulation of cell  

growth and invasion by miR-196a2 overexpression in MDA-MB-231 cells 

 

(A) TP63 protein expression in ER -positive and -negative breast cancer cell lines. -actin was  

used as a loading control. 

(B) Relative levels of miR-196a2 in breast cancer cell lines.  

(C) Overexpression of miR-196a2 in MDA-MB-231 cells. Cells were transfected with Pre-miR- 

196a* or negative control (Ctrl). Total RNA was harvested and subjected to RT-PCR using  

specific primers for each miRNA. Expression levels of each miRNA were determined using  

Taqman probe based quantitative PCR.  

(D) Impact of miR-196a2 overexpression on MDA-MB-231 cell proliferation. Cells were  

transfected with 20 nM Pre-miR-196a* and then were seeded at a concentration of 1,000  

cells/well in 100 ml of culture medium. Cell proliferation was assessed using a WST-1 kit. ** p- 

value < 0.01 

(E) MDA-MB-231 cells were transfected with Pre-miR-196a* or negative control (Ctrl) then  

analyzed for in vitro invasion assay as described in Materials and Methods. ** p-value < 0.01 

(F) MDA-MB-231 cells were transfected with Pre-miR-196a* or negative control (Ctrl) then  

analyzed for soft agar colony formation assay as described in Materials and Methods. Colony  

numbers per field were counted. Colony size was measured using ImageJ software. ** p-value <  

0.01 

 


