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A convergent scheme for Hamilton-Jacobi equations

on a junction: application to traffic

G. Costeseque∗†, J-P. Lebacque†, R. Monneau∗

January 22, 2014

Abstract

In this paper, we consider first order Hamilton-Jacobi (HJ) equations posed on a “junction”, that is to say the

union of a finite number of half-lines with a unique common point. For this continuous HJ problem, we propose a

finite difference scheme and prove two main results. As a first result, we show bounds on the discrete gradient and

time derivative of the numerical solution. Our second result is the convergence (for a subsequence) of the numerical

solution towards a viscosity solution of the continuous HJ problem, as the mesh size goes to zero. When the solution

of the continuous HJ problem is unique, we recover the full convergence of the numerical solution. We apply this

scheme to compute the densities of cars for a traffic model. We recover the well-known Godunov scheme outside the

junction point and we give a numerical illustration.

Keywords: Hamilton-Jacobi equations, junctions, viscosity solutions, numerical scheme, traffic problems.

MSC Classification: 65M12, 65M06, 35F21, 90B20.

1 Introduction

The main goal of this paper is to prove properties of a numerical scheme to solve Hamilton-Jacobi (HJ)
equations posed on a junction. We also propose a traffic application that can be directly found in Section 4.

1.1 Setting of the PDE problem

In this subsection, we first define the junction, then the space of functions on the junction and finally the
Hamilton-Jacobi equations. We follow [29].

The junction. Let us consider N ≥ 1 different unit vectors eα ∈ R
2 for α = 1, . . . , N . We define the

branches as the half-lines generated by these unit vectors

Jα = [0,+∞)eα and J∗
α = Jα \ {0R2}, for all α = 1, . . . , N,

and the whole junction (see Figure 1) as

J =
⋃

α=1,...,N

Jα.

The origin y = 0R2 (we just call it “y = 0” in the following) is called the junction point. For a time T > 0,
we also consider the time-space domain defined as

JT = (0, T )× J.

∗Université Paris-Est, Ecole des Ponts ParisTech, CERMICS, 6 & 8 avenue Blaise Pascal, Cité Descartes, Champs sur Marne,

77455 Marne la Vallée Cedex 2, France.
†Université Paris-Est, IFSTTAR, GRETTIA, 14-20 Boulevard Newton, Cité Descartes, Champs sur Marne, 77447 Marne la

Vallée Cedex 2, France.
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Figure 1: Junction model

Space of test functions. For a function u : JT → R, we denote by uα the “restriction” of u to (0, T )× Jα
defined as follows for x ≥ 0

uα(t, x) := u(t, xeα).

Then we define the natural space of functions on the junction:

(1.1) C1
∗ (JT ) =

{

u ∈ C(JT ), uα ∈ C1 ((0, T )× [0,+∞)) for α = 1, . . . , N
}

.

In particular for u ∈ C1
∗ (JT ) and y = xeα with x ≥ 0, we define

ut(t, y) = uα
t (t, x) =

∂uα

∂t
(t, x) and uα

x(t, x) =
∂uα

∂x
(t, x).

HJ equation on the junction. We are interested in continuous functions u : [0, T ) × J → R which are
viscosity solutions (see Definition 3.3) on JT of

(1.2)































uα
t +Hα(u

α
x) = 0 on (0, T )× (0,+∞), for α = 1, . . . , N,

uβ =: u, for all β = 1, . . . , N

ut + max
β=1,...,N

H−
β (uβ

x) = 0

∣

∣

∣

∣

∣

∣

∣

∣

on (0, T )× {0},

for functions Hα and H−
α that will be defined below in assumption (A1).

We consider an initial condition

(1.3) uα(0, x) = uα
0 (x), with x ∈ [0,+∞) for α = 1, . . . , N.

We make the following assumptions:
(A0) Initial data
The initial data u0 := (uα

0 )α is globally Lipschitz continuous on J , i.e. each associated uα
0 is Lipschitz

continuous on [0,+∞) and uα
0 (0) = uβ

0 (0) for any α 6= β.

(A1) Hamiltonians
For each α = 1, ..., N ,

• we consider functions Hα ∈ C1(R;R) which are coercive, i.e. lim
|p|→+∞

Hα(p) = +∞;

• we assume that there exists a pα0 ∈ R such that Hα is non-increasing on (−∞, pα0 ] and non-decreasing
on [pα0 ,+∞), and we set:

(1.4) H−
α (p) =











Hα(p) for p ≤ pα0

Hα(p
α
0 ) for p ≥ pα0

and H+
α (p) =











Hα(p
α
0 ) for p ≤ pα0

Hα(p) for p ≥ pα0

where H−
α is non-increasing and H+

α is non-decreasing.

Remark 1.1 Assumption (A1) allows the Hamiltonians Hα to have plateaus, in particular at the minimum
of Hα. In such a case the value pα0 is not unique.
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1.2 Presentation of the scheme

We denote by ∆x the space step and by ∆t the time step. We denote by Uα,n
i an approximation of

uα(n∆t, i∆x) for n ∈ N, i ∈ N, where α stands for the index of the considered branch.
We define the discrete space derivatives

(1.5) pα,ni,+ :=
Uα,n
i+1 − Uα,n

i

∆x
and pα,ni,− :=

Uα,n
i − Uα,n

i−1

∆x
,

and similarly the discrete time derivative

(1.6) Wα,n
i :=

Uα,n+1
i − Uα,n

i

∆t
.

Then we consider the following numerical scheme corresponding to the discretization of the HJ equation
(1.2) for n ≥ 0:

(1.7)











































Uα,n+1
i − Uα,n

i

∆t
+max

{

H+
α (pα,ni,− ), H−

α (pα,ni,+ )
}

= 0, for i ≥ 1, α = 1, . . . , N,

Uβ,n
0 =: Un

0 , for all β = 1, . . . , N

Un+1
0 − Un

0

∆t
+ max

β=1,...,N
H−

β (pβ,n0,+) = 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

for i = 0,

with the initial condition

(1.8) Uα,0
i = uα

0 (i∆x) for i ≥ 0, α = 1, . . . , N.

It is natural to introduce the following Courant-Friedrichs-Lewy (CFL) condition [15]:

(1.9)
∆x

∆t
≥ sup

α=1,...,N
i≥0, 0≤n≤nT

|H ′
α(p

α,n
i,+ )|

where the integer nT is assumed to be defined as nT =

⌊

T

∆t

⌋

for a given T > 0.

We then have

Proposition 1.2 (Monotonicity of the numerical scheme)
Let Un := (Uα,n

i )
α,i

and V n := (V α,n
i )

α,i
two solutions of (1.7). If the CFL condition (1.9) is satisfied and

if U0 ≤ V 0, then the numerical scheme (1.7) is monotone, that is

Un ≤ V n for any n ∈ {0, ..., nT}.

Our scheme (1.7) is related to the Godunov scheme for conservation laws in one space dimension, as it is
explained in our application to traffic in Section 4.

1.3 Main results

We first notice that even if we can always check a posteriori the CFL condition (1.9), it is not obvious to
satisfy it a priori. Indeed the CFL condition (1.9) depends on the discrete gradients pα,ni,± which are themselves
functions of ∆t through the scheme (1.7). For this reason, we will consider below a more restrictive CFL
condition (see (1.12)) that can be checked from the initial data. To this end, we need to introduce a few
notations.
For sake of clarity we first consider σ ∈ {+1,−1} denoted by abuse of notation σ ∈ {+,−} in the remaining,
with the convention −σ = − if σ = + and −σ = + if σ = −.
Under assumption (A1), we need to use a sort of inverse of (H±

α ) that we define naturally for σ ∈ {+,−} as:

(1.10) (H−σ
α )−1(a) := σ

(

inf{σp, H−σ
α (p) = a}

)
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with the additional convention that (H±
α )−1(+∞) = ±∞.

We set

(1.11)











p
α
= (H−

α )−1(−m0)

pα = (H+
α )−1(−m0)

with m0 = inf
β=1,...,N,

i∈N

W β,0
i

where (W β,0
i )β,i, defined in (1.6), is given by the scheme (1.7) for n = 0 in terms of (Uβ,0

i )β,i (itself defined
in (1.8)). It is important to notice that with this construction, p

α
and pα depend on ∆x, but not on ∆t.

We now consider another CFL condition which turns out to be more restrictive than CFL condition (1.9)
(see Theorem 1.3). This condition is given by

(1.12)
∆x

∆t
≥ sup

α=1,...,N
pα∈[p

α
,pα]

|H ′
α(pα)|

which is then satisfied for ∆t small enough.

Note that by construction we have −∞ < p
α

≤ pα < +∞ because −m0 ≥ max
α=1,...,N

(

min
R

Hα

)

(see also

Remark 2.4 (i)).
Our first main result is the following:

Theorem 1.3 (Gradient and time derivative estimates)
Assume (A1). If (Uα,n

i ) is the numerical solution of (1.7)-(1.8) and if the CFL condition (1.12) is satisfied
with m0 finite, then the following two properties hold for any n ≥ 0:

(i) For p
α
and pα defined in (1.11), we have the following gradient estimate:

(1.13) p
α
≤ pα,ni,+ ≤ pα, for all i ≥ 0, and α = 1, ..., N.

(ii) Considering Mn = sup
α,i

Wα,n
i and mn = inf

α,i
Wα,n

i , we have the following time derivative estimate:

(1.14) m0 ≤ mn ≤ mn+1 ≤ Mn+1 ≤ Mn ≤ M0.

Remark 1.4 Notice that due to (1.13), the more restrictive CFL condition (1.12) implies the natural CFL
condition (1.9) for any nT ≥ 0.

Our second main result is the following convergence result which also gives the existence of a solution to
equations (1.2)-(1.3).

Theorem 1.5 (Convergence of the numerical solution up to a subsequence)
Assume (A0)-(A1). Let T > 0 and

ε := (∆t,∆x)

such that the CFL condition (1.12) is satisfied. Then there exists a subsequence ε′ of ε such that the
numerical solution (Uα,n

i ) of (1.7)-(1.8) converges as ε′ goes to zero, locally uniformly on any compact set
K ⊂ [0, T )× J , towards a solution u := (uα)α of (1.2)-(1.3) in the sense of Definition 3.3, i.e.

(1.15) lim sup
ε′→0

sup
(n∆t,i∆x)∈K

|uα(n∆t, i∆x) − Uα,n
i | = 0,

where the index α in (1.15) is chosen such that (n∆t, i∆x) ∈ K ∩ [0, T )× Jα.

In order to give below sharp Lipschitz estimates on the continuous solution u, we first define Lα,− and Lα,+

as the best Lipschitz constants for the initial data uα
0 , i.e. satisfying for any x ≥ 0 and a ≥ 0

(1.16) aLα,− ≤ uα
0 (x+ a)− uα

0 (x) ≤ aLα,+.
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Let us consider

(1.17)















m0
0 := inf

α=1,...,N
Lα,−≤pα≤Lα,+

−Hα(pα),

M0
0 := max

[

max
α=1,...,N

{

− max
σ∈{+,−}

H−σ
α (Lα,σ)

}

, − max
α=1,...,N

{

H−
α (Lα,+)

}]

,

and

(1.18)











p0
α
:= (H−

α )−1(−m0
0),

p0α := (H+
α )−1(−m0

0).

Corollary 1.6 (Gradient and time derivative estimates for a continuous solution)
Assume (A0)-(A1). Let T > 0 and u := (uα)α be a solution of (1.2)-(1.3) constructed in Theorem 1.5. Then
for all a ≥ 0, for all 0 ≤ t ≤ T and x ≥ 0, the function u satisfies the following properties:

(1.19)











am0
0 ≤ uα(t+ a, x)− uα(t, x) ≤ aM0

0 ,

ap0
α
≤ uα(t, x+ a)− uα(t, x) ≤ ap0α,

where m0
0, M

0
0 , p

0
α
and p0α are defined in (1.17) and (1.18).

Recall that under the general assumptions of Theorem 1.5, i.e. (A0)-(A1), the uniqueness of a solution u of
(1.2)-(1.3) is not known. If we replace condition (A1) by a stronger assumption (A1’) below, it is possible
to recover the uniqueness of the solution (see [29] and Theorem 1.7 below).
This is the following assumption:

(A1’) Strong convexity
There exists a constant γ > 0, such that for each α = 1, ..., N , there exists a lagrangian function Lα ∈
C2(R;R) satisfying L′′

α ≥ γ > 0 such that Hα is the Legendre-Fenchel transform of Lα, i.e.

(1.20) Hα(p) = L∗
α(p) = sup

q∈R

(pq − Lα(q))

and

(1.21) H−
α (p) = sup

q≤0
(pq − Lα(q)) and H+

α (p) = sup
q≥0

(pq − Lα(q)).

We can easily check that assumption (A1’) implies assumption (A1).
We are now ready to recall the following result extracted from [29]:

Theorem 1.7 (Existence and uniqueness for a solution of the HJ problem)
Assume (A0)-(A1’) and let T > 0. Then there exists a unique viscosity solution u of (1.2)-(1.3) on JT in
the sense of the Definition 3.3, satisfying for some constant CT > 0

|u(t, y)− u0(y)| ≤ CT for all (t, y) ∈ JT .

Moreover the function u is Lipschitz continuous with respect to (t, y) on JT .

Our last main result is the following:

Theorem 1.8 (Convergence of the numerical solution under uniqueness assumption)
Assume (A0)-(A1’). Let T > 0 and ε = (∆t,∆x) such that the CFL condition (1.12) is satisfied. If
u := (uα)α is the unique solution of (1.2)-(1.3) in the sense of Definition 3.3, then the numerical solution
(Uα,n

i ) of (1.7)-(1.8) converges locally uniformly to u when ε goes to zero, on any compact set K ⊂ [0, T )×J ,
i.e.

(1.22) lim sup
ε→0

sup
(n∆t,i∆x)∈K

|uα(n∆t, i∆x) − Uα,n
i | = 0,

where the index α in (1.22) is chosen such that (n∆t, i∆x) ∈ K ∩ [0, T )× Jα.

Using our scheme (1.7), we will present in Section 5 illustrations by numerical simulations with application
to traffic.
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1.4 Brief review of the literature

Hamilton-Jacobi formulation. We mainly refer here to the comments provided in [29] and references
therein. There is a huge literature dealing with HJ equations and mainly with equations with discontinuous
Hamiltonians. However, concerning the study of HJ equation on a network, there exist a few works: the
reader is referred to [1, 2] for a general definition of viscosity solutions on a network, and [12] for Eikonal
equations. Notice that in those works, the Lagrangians depend on the position x and are continuous with
respect to this variable. Conversely, in [29] the Lagrangians do not depend on the position but they are
allowed to be discontinuous at the junction point. Even for discontinuous Lagrangians, the uniqueness of
the viscosity solution has been established in [29].

Numerical schemes for Hamilton-Jacobi equations. Up to our knowledge, there are no numerical
schemes for HJ equations on junctions (except the very recent work [27], see our Section 4 for more details),
while there are a lot of schemes for HJ equations for problems without junctions. The majority of numerical
schemes which were proposed to solve HJ equations are based on finite difference methods; see for instance
[16] for upwind and centered discretizations, and [20, 38] for ENO or WENO schemes. For finite elements
methods, the reader could also refer to [28] and [44]. Explicit classical monotone schemes have convergence
properties but they require to satisfy a CFL condition and they exhibit a viscous behaviour. We can also
cite Semi-Lagrangian schemes [13, 19, 20]. Anti-diffusive methods coming from numerical schemes adapted
for conservation laws were thus introduced [7, 43]. Some other interesting numerical advances are done along
the line of discontinuous Galerkin methods [14, 6]. Notice that more generally, an important effort deals
with Hamilton-Jacobi-Bellman equations and Optimal Control viewpoint. It is out of the scope here.

1.5 Organization of the paper

In Section 2, we point out our first main property, namely Theorem 1.3 about the time and space gradient
estimates. Then in Section 3, we first recall the notion of viscosity solutions for HJ equations. We then
prove the second main property of our numerical scheme, namely Theorem 1.5 and Theorem 1.8 about the
convergence of the numerical solution toward a solution of HJ equations when the mesh grid goes to zero. In
Section 4, we propose the interpretation of our numerical results to traffic flows problems on a junction. In
particular, the numerical scheme for HJ equations (1.7) is derived and the junction condition is interpreted.
Indeed, we recover the well-known junction condition of Lebacque (see [33]) or equivalently those for the
Riemann solver at the junction as in the book of Garavello and Piccoli [23]. Finally, in Section 5 we illustrate
the numerical behaviour of our scheme for a junction with two incoming and two outgoing branches.

2 Gradient estimates for the scheme

This section is devoted to the proofs of the first main result namely the time and space gradient estimates.

2.1 Proof of Proposition 1.2

We begin by proving the monotonicity of the numerical scheme.

Proof of Proposition 1.2: We consider the numerical scheme given by (1.7) that we rewrite as follows for
n ≥ 0:

(2.23)















Uα,n+1
i = Sα

[

Uα,n
i−1 , U

α,n
i , Uα,n

i+1

]

for i ≥ 1, α = 1, ..., N,

Un+1
0 = S0

[

Un
0 , (U

β,n
1 )β=1,...,N

]

for i = 0,

where

(2.24)



























Sα

[

Uα,n
i−1 , U

α,n
i , Uα,n

i+1

]

:= Uα,n
i −∆tmax

{

H+
α

(

Uα,n
i − Uα,n

i−1

∆x

)

, H−
α

(

Uα,n
i+1 − Uα,n

i

∆x

)}

,

S0

[

Un
0 , (U

β,n
1 )β=1,...,N

]

:= Un
0 −∆t max

β=1,...,N
H−

β

(

Uβ,n
1 − Un

0

∆x

)

.
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Checking the monotonicity of the scheme means checking that Sα and S0 are non-decreasing in all their
variables.
Case 1: i ≥ 1
This case is very classical. It is straightforward to check that Sα for any α = 1, ..., N is non-decreasing in
Uα,n
i−1 and Uα,n

i+1 . We compute

∂Sα

∂Uα,n
i

=















1−
∆t

∆x
(H+

α )′(pα,ni,− ) if max
{

H+
α (pα,ni,− ), H−

α (pα,ni,+

}

= H+
α (pα,ni,− ),

1−
∆t

∆x
(H−

α )′(pα,ni,+ ) if max
{

H+
α (pα,ni,− ), H−

α (pα,ni,+

}

= H−
α (pα,ni,+ )

which is non-negative if the CFL condition (1.9) is satisfied.
Case 2: i = 0
Similarly, it is straightforward to check that S0 is non-decreasing in each Uβ,n

1 for β = 1, ..., N . We compute

∂S0

∂Un
0

= 1−
∆t

∆x
(H−

α )′(pα,n0,+) if H−
α (pα,n0,+) > H−

β (pβ,n0,+) for all β ∈ {1, ..., N} \ {α}

which is also non-negative due to the CFL condition (1.9).
From cases 1 and 2, we deduce that the scheme is monotone. �

2.2 Proof of Theorem 1.3

In this subsection, we prove the first main result Theorem 1.3 about time and space gradient estimates.
Let us first define for any n ≥ 0

(2.25) mn := inf
α,i

Wα,n
i and Mn := sup

α,i

Wα,n
i ,

where Wα,n
i represents the time gradient defined in (1.6).

We also define

(2.26) Iα,ni,σ :=















[

pα,ni,σ , pα,n+1
i,σ

]

if pα,ni,σ ≤ pα,n+1
i,σ ,

[

pα,n+1
i,σ , pα,ni,σ

]

if pα,ni,σ ≥ pα,n+1
i,σ .

for σ ∈ {+,−},

with pα,ni,σ defined in (1.5) and we set

(2.27) Dα,n
i,+ := sup

pα∈I
α,n

i,+

|H ′
α(pα)|.

In order to establish Theorem 1.3, we need the two following results namely Proposition 2.1 and Lemma 2.2:

Proposition 2.1 (Time derivative estimate)
Assume (A1). Let n ≥ 0 fixed and ∆x, ∆t > 0. Let us consider (Uα,n

i )
α,i

satisfying for some constant
Cn > 0:

(2.28) |pα,ni,+ | ≤ Cn, for i ≥ 0, α = 1, ...N.

We also consider
(

Uα,n+1
i

)

α,i
and

(

Uα,n+2
i

)

α,i
computed using the scheme (1.7).

If we have

(2.29) Dα,n
i,+ ≤

∆x

∆t
for any i ≥ 0 and α = 1, ..., N,

Then it comes that
mn ≤ mn+1 ≤ Mn+1 ≤ Mn.
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Proof
Step 0: Preliminaries.
We introduce for any n ≥ 0, α = 1, ..., N and for any i ≥ 1, σ ∈ {+,−} or for i = 0 and σ = +:

(2.30) Cα,n
i,σ := −σ

∫ 1

0

dτ(H−σ
α )′(pα,n+1

i,σ + τ(pα,ni,σ − pα,n+1
i,σ )) ≥ 0.

Notice that Cα,n
i,σ is defined as the integral of (H−σ

α )′ over a convex combination of p with p ∈ Iα,ni,σ . Hence
for any n ≥ 0, α = 1, ..., N and for any i ≥ 1, σ ∈ {+,−} or for i = 0 and σ = +, we can check that

(2.31) Cα,n
i,σ ≤ sup

β=1,...,N
j≥0

Dβ,n
j,+ .

We also underline that for any n ≥ 0, α = 1, ..., N and for any i ≥ 1, σ ∈ {+,−} or for i = 0 and σ = +, we
have the following relationship:

(2.32)
pα,ni,σ − pα,n+1

i,σ

∆t
= −σ

Wα,n
i+σ −Wα,n

i

∆x
.

Let n ≥ 0 be fixed and consider (Uα,n
i )

α,i
with ∆x, ∆t > 0 given. We compute

(

Uα,n+1
i

)

α,i
and

(

Uα,n+2
i

)

α,i

using the scheme (1.7).
Step 1: Estimate on mn

We want to show that Wα,n+1
i ≥ mn for any i ≥ 0 and α = 1, ..., N . It is then sufficient to take the infimum

over i ≥ 0 and α = 1, ..., N to conclude that

mn+1 ≥ mn.

Let i ≥ 0 be fixed and we distinguish two cases:
Case 1: Proof of Wα,n+1

i ≥ mn for all i ≥ 1
Let a branch α fixed. We assume that

(2.33) max
{

H+
α (pα,n+1

i,− ), H−
α (pα,n+1

i,+ )
}

= H−σ
α (pα,n+1

i,σ ) for one σ ∈ {+,−}.

We have

Wα,n+1
i −Wα,n

i

∆t
=

1

∆t

(

max
{

H+
α (pα,ni,− ), H−

α (pα,ni,+ )
}

−max
{

H+
α (pα,n+1

i,− ), H−
α (pα,n+1

i,+ )
})

≥
1

∆t

(

H−σ
α (pα,ni,σ )−H−σ

α (pα,n+1
i,σ )

)

=
1

∆t

∫ 1

0

dτ(H−σ
α )′(pα,n+1

i,σ + τp)p with p = pα,ni,σ − pα,n+1
i,σ

= Cα,n
i,σ

(

Wα,n
i+σ −Wα,n

i

∆x

)

where we use (2.32) and (2.30) in the last line.
Using (2.31) and (2.29), we thus get

Wα,n+1
i ≥

(

1− Cα,n
i,σ

∆t

∆x

)

Wα,n
i + Cα,n

i,σ

∆t

∆x
Wα,n

i+σ

≥ min(Wα,n
i ,Wα,n

i+σ)

≥ mn.

Case 2: Proof of Wn+1
i ≥ mn for i = 0

We recall that in this case, we have Uβ,n
0 =: Un

0 for any β = 1, ..., N . Let us denote W β,n
0 =: Wn

0 =

Un+1
0 − Un

0

∆t
for any β = 1, ..., N . Then we define α0 such that

H−
α0
(pα0,n+1

0,+ ) = max
α=1,...,N

H−
α (pα,n+1

0,+ ).
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We argue like in Case 1 above and we get

Wn+1
0 −Wn

0

∆t
≥ Cα0,n

0,+

(

Wα0,n
1 −Wn

0

∆x

)

.

Then using (2.31) and (2.29) we conclude that:

Wn+1
0 ≥ mn.

Step 2: : Estimate on Mn

We recall that n ≥ 0 is fixed. The proof for Mn is directly adapted from Part 1. We want to show that
Wα,n+1

i ≤ Mn for any i ≥ 0 and α = 1, ..., N . We distinguish the same two cases:

• If i ≥ 1, instead of (2.33) we simply choose σ such that

max
{

H+
α (pα,ni,− ), H−

α (pα,ni,+ )
}

= H−σ
α (pα,ni,σ ) for one σ ∈ {+,−}.

• If i = 0, we define α0 such that

H−
α0
(pα0,n

0,+ ) = max
α=1,...,N

H−
α (pα,n0,+).

Then taking the supremum, we can easily prove that

Mn+1 ≤ Mn, for any n ≥ 0.

By definition of mn and Mn for a given n ≥ 0, we recover the result

mn ≤ mn+1 ≤ Mn+1 ≤ Mn.

�

The second important result needed for the proof of Theorem 1.3 is the following one:

Lemma 2.2 (Gradient estimate)
Assume (A1). Let n ≥ 0 fixed and ∆x, ∆t > 0. We consider that (Uα,n

i )
α,i

is given and we compute
(

Uα,n+1
i

)

α,i
using the scheme (1.7).

If there exists a constant K ∈ R such that for any i ≥ 0 and α = 1, ..., N , we have

K ≤ Wα,n
i :=

Uα,n+1
i − Uα,n

i

∆t

Then it follows for any i ≥ 0 and α = 1, ..., N

(H−
α )−1(−K) ≤ pα,ni,+ ≤ (H+

α )−1(−K)

with pα,ni,+ defined in (1.5) and (H−
α )−1, (H+

α )−1 defined in (1.10).

Proof
Let n ≥ 0 be fixed and consider (Uα,n

i )
α,i

with ∆x, ∆t > 0 given. We compute
(

Uα,n+1
i

)

α,i
using the

scheme (1.7).
Let us consider any i ≥ 0 and α = 1, ..., N . We distinguish two cases according to the value of i.
Case 1: i ≥ 1
Assume that we have

K ≤ Wα,n
i = − max

σ∈{+,−}
H−σ

α (pα,ni,σ ).

It is then obvious that we get

−K ≥ H−σ
α (pα,ni,σ ), for any σ ∈ {+,−}.
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According to (A1) on the monotonicity of the Hamiltonians Hα, we obtain

(2.34)











(H+
α )−1(−K) ≥ pα,ni,− = pα,ni−1,+

(H−
α )−1(−K) ≤ pα,ni,+

for any i ≥ 1, n ≥ 0 and α = 1, . . . , N.

Case 2: i = 0
The proof is similar to Case 1 because on the one hand we have

K ≤ Wα,n
0 =: Wn

0 = − max
β=1,...,N

H−
β (pβ,n0,+)

which obviously leads to
(H−

α )−1(−K) ≤ pα,n0,+,

where we use the monotonicity of H−
α from assumption (A1). On the other hand, from (2.34) we get

(H+
α )−1(−K) ≥ pα,n1,− = pα,n0,+.

We conclude

(H−
α )−1(−K) ≤ pα,ni,+ ≤ (H+

α )−1(−K), for any i, n ≥ 0 and α = 1, ..., N

which ends the proof. �

Proof of Theorem 1.3: The idea of the proof is to introduce new continuous Hamiltonians H̃α that satisfy
the following properties:

(i) the new Hamiltonians H̃α are equal to the old ones Hα on the segment [p
α
, pα],

(ii) the derivative of the new Hamiltonians |H̃ ′
α| taken at any point is less or equal to sup

p∈[p
α
,pα]

|H ′
α(p)|.

This modification of the Hamiltonians is done in order to show that the gradient stays in the interval [p
α
, pα].

Step 1: Modification of the Hamiltonians
Let the new Hamiltonians H̃α for all α = 1, ..., N be defined as

(2.35) H̃α(p) =











glα(p) for p ≤ p
α

Hα(p) for p ∈ [p
α
, pα]

grα(p) for p ≥ pα

with p
α
, pα defined in (1.11) and glα, g

r
α two functions such that







































glα ∈ C1((−∞, p
α
]),

glα(pα) = −m0,

(glα)
′(p

α
) = H ′

α(pα),

(glα)
′ < 0 on (−∞, p

α
),

|(glα)
′(p)| < |H ′

α(pα)| for p < p
α
,

glα → +∞ for p → −∞,

and







































grα ∈ C1([pα,+∞)),

grα(pα) = −m0,

(grα)
′(pα) = H ′

α(pα),

(grα)
′ > 0 on (pα,+∞),

|(grα)
′(p)| < |H ′

α(pα)| for p > pα,

grα → +∞ for p → +∞.

We can easily check that

(2.36) 0 < H̃ ′
α < sup

pα∈[p
α
,pα]

|H ′
α(pα)|, on R \ [p

α
, pα],

and

(2.37) H̃α > −m0 on R \ [p
α
, pα].

We can also check that H̃α satisfies (A1). Then Proposition 2.1 and Lemma 2.2 hold true for the new
Hamiltonians H̃α (especially we can adapt (1.10) to the H̃α for defining a sort of inverse).

10



Let H̃+
α (resp. H̃−

α ) denotes the non-decreasing (resp. non-increasing) part of H̃α.
We consider the new numerical scheme for any n ≥ 0 that reads as:

(2.38)











































Ũα,n+1
i − Ũα,n

i

∆t
+max

{

H̃+
α (p̃α,ni,− ), H̃−

α (p̃α,ni,+ )
}

= 0, for i ≥ 1, α = 1, . . . , N,

Ũβ,n
0 =: Ũn

0 , for all β = 1, . . . , N

Ũn+1
0 − Ũn

0

∆t
+ max

β=1,...,N
H̃−

β (pβ,n0,+) = 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

for i = 0,

subject to the initial condition

(2.39) Ũα,0
i = Uα,0

i = uα
0 (i∆x), i ≥ 0, α = 1, . . . , N.

The discrete time and space gradients are defined such as:

(2.40) p̃α,ni,+ :=
Ũα,n
i+1 − Ũα,n

i

∆x
and W̃α,n

i :=
Ũα,n+1
i − Ũα,n

i

∆t
.

Let us consider

(2.41) m̃n := inf
i,α

W̃α,n
i and M̃n := sup

i,α

W̃α,n
i

where W̃α,n
i is defined in (2.40). We also set

(2.42) D̃α,n
i,+ := sup

pα∈Ĩ
α,n

i,+

|H̃ ′
α(pα)|,

where Ĩα,ni,+ is the analogue of Iα,ni,+ defined in (2.26) with p̃α,ni,+ and p̃α,n+1
i,+ given in (2.40).

According to (2.36), the supremum of |H̃ ′
α| is reached on [p

α
, pα]. As H̃α ≡ Hα on [p

α
, pα], the CFL

condition (1.12) gives that for any i ≥ 0, n ≥ 0 and α = 1, ..., N :

(2.43) D̃α,n
i,+ ≤ sup

pα∈[p
α
,pα]

|H ′
α(pα)| ≤

∆x

∆t
.

Step 2: First gradient bounds
Let n ≥ 0 be fixed. By definition (2.41) and if m̃n is finite, we have

m̃n ≤ W̃α,n
i , for any i ≥ 0, α = 1, ..., N.

Using Lemma 2.2, it follows that

(2.44) (H̃−
α )−1(−m̃n) ≤ p̃α,ni,+ ≤ (H̃+

α )−1(−m̃n), for any i ≥ 0 and α = 1, ..., N.

We define
Cn = max

{∣

∣

∣(H̃−
α )−1(−m̃n)

∣

∣

∣ ,
∣

∣

∣(H̃+
α )−1(−m̃n)

∣

∣

∣

}

> 0,

and we recover that
|p̃α,ni,+ | ≤ Cn, for any i ≥ 0, α = 1, ..., N.

Step 3: Time derivative and gradient estimates
For any n ≥ 0, (2.43) holds true. Moreover, if m̃n is finite, then there exists Cn > 0 such that

|p̃α,ni,+ | ≤ Cn, for any i ≥ 0, α = 1, ..., N.

Then using Proposition 2.1 we get

(2.45) m̃n ≤ m̃n+1 ≤ M̃n+1 ≤ M̃n for any n ≥ 0.

In particular, m̃n+1 is also finite.
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Using the assumption that m0 is finite and according to (1.11), Lemma 2.2 and the scheme (1.7), we can
check that

(2.46) p
α
≤ pα,0i,+ ≤ pα for any i ≥ 0 and α = 1, ..., N.

From (2.39), we have pα,0i,+ = p̃α,0i,+. Therefore, from (2.35), (1.7) and (2.46), we deduce that W̃α,0
i = Wα,0

i

and we obtain that
m̃0 = m0.

According to (2.45), we deduce that m0 ≤ W̃α,n
i for any i ≥ 0, n ≥ 0 and α = 1, ..., N .

Then using Lemma 2.2 and (2.37), we conclude that for all i ≥ 0, n ≥ 0 and α = 1, ..., N

(2.47) p
α
≤ p̃α,ni,+ ≤ pα.

Step 4: Conclusion
If (2.47) holds true, then H̃α(p̃

α,n
i,+ ) = Hα(p̃

α,n
i,+ ) for all i ≥ 0, n ≥ 0 and α = 1, ..., N . Thus the modified

scheme (2.38) is strictly equivalent to the original scheme (1.7) and Uα,n
i = Ũα,n

i . We finally recover the
results for all i ≥ 0, n ≥ 0 and α = 1, ..., N :

(i) (Time derivative estimate)
mn ≤ mn+1 ≤ Mn+1 ≤ Mn,

(ii) (Gradient estimate)
p
α
≤ pα,ni,+ ≤ pα.

�

Remark 2.3 (Do the bounds (1.14) always give informations on the gradient?)
We assume that the assumptions of Theorem 1.3 hold true.

(i) (Bounds on mn) From the scheme (1.7), we can rewrite

mn = inf
α,i

min
σ∈{+,−}

{

−H−σ
α (pα,ni,σ )

}

.

It is then obvious that
−m0 ≥ min

pα∈R

Hα(pα) for α = 1, ..., N,

which ensures that the bound from below in (1.14) always gives an information on the gradient (pα,ni,+ ).

(ii) (Bounds on Mn) For the bounds from above in (1.14), we get

(2.48) Hα

(

pα,ni,+

)

≥ −M0 for all α = 1, ..., N, i ≥ 0 and n ≤ nT .

Then (2.48) is always true if −M0 ≤ min
R

Hα. Therefore for each α = 1, ..., N , (2.48) gives an

information on the (pα,ni,+ ) only if
−M0 > min

pα∈R

Hα(pα).

Remark 2.4 (Extension to weaker assumptions on Hα than (A1))
All the results of this paper can be extended if we consider weaker conditions than (A1) on the Hamiltonians
Hα. Indeed, we can assume that the Hα for any α = 1, ..., N are locally Lipschitz instead of being C1. This
assumption is more adapted for our traffic application (see Section 4).
We now focus on what should be modified if we do so.
How to modify CFL condition (1.9)?
The main new idea is then to consider the closed convex hull for the discrete gradient defined by

Iα,n := Conv(pα,ni,+ )
i≥0

.

Then the Lipschitz constant Lα,n of the considered Hα is a natural upper bound

|Hα(p+ q)−Hα(p)| ≤ Lα,n|q| with p, p+ q ∈ Iα,n.
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Then the natural CFL condition which replaces (1.9) is the following one:

(2.49)
∆x

∆t
≥ sup

α=1,...,N
n≤nT

Lα,n.

With such a condition, we can easily prove the monotonicity of the numerical scheme.

How to modify CFL condition (1.12)?
Assume that CFL condition (1.12) is replaced by the following one

(2.50)
∆x

∆t
≥ ess sup

α=1,...,N
pα∈[p

α
,pα]

|H ′
α(pα)|,

where ess sup denotes the essential supremum.
In the proof of Theorem 1.3, the time derivative estimate uses the integral of H ′

α which is defined almost
everywhere if Hα is at least Lipschitz. The remaining of the main results of Section 1.3 do not use a definition
of H ′

α, except in the CFL condition. We just need to satisfy the new CFL condition (2.50).

3 Convergence result for the scheme

3.1 Viscosity solutions

We introduce the main definitions related to viscosity solutions for HJ equations that are used in the
remaining. For a more general introduction to viscosity solutions, the reader could refer to Barles [5] and to
Crandall, Ishii, Lions [17].
Let T > 0. We set u := (uα)α=1,...,N ∈ C1

∗ (JT ) where C1
∗ (JT ) is defined in (1.1) and we consider the

additional condition
uα(t, 0) = uβ(t, 0) =: u(t, 0) for any α, β.

Remark 3.1 Following [29], we recall that (1.2) can be rigorously rewritten as

(3.51) ut +H(y, uy) = 0, for (t, y) ∈ [0, T )× J,

with

H(y, p) :=











Hα(p), for p ∈ R, if y ∈ J∗
α,

max
α=1,...,N

H−
α (pα), for p = (p1, ..., pN ) ∈ R

N, if y = 0,

subject to the initial condition

(3.52) u(0, y) = u0(y) := (uα
0 (x))α=1,...,N , for y = xeα ∈ J with x ∈ [0,+∞).

Definition 3.2 (Upper and lower semi-continuous envelopes)
For any function u : [0, T )× J → R, upper and lower semi-continuous envelopes are respectively defined as:

u∗(t, y) = lim sup
(t′,y′)→(t,y)

u(t′, y′) and u∗(t, y) = lim inf
(t′,y′)→(t,y)

u(t′, y′).

Moreover, we recall






















u is upper semi-continuous if and only if u = u∗,

u is lower semi-continuous if and only if u = u∗,

u is continuous if and only if u∗ = u∗.

Definition 3.3 (Viscosity solutions)
i) Viscosity sub and super-solution on JT = (0, T )× J
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A function u : JT → R is a viscosity subsolution (resp. supersolution) of (1.2) on JT if it is an upper semi-
continuous (resp. lower semi-continuous) function, and if for any P = (t, y) ∈ JT and any test function
ϕ := (ϕα)α ∈ C1

∗ (JT ) such that u− ϕ ≤ 0 (resp. u− ϕ ≥ 0) at the point P , we have

(3.53) ϕα
t (t, x) +Hα(ϕ

α
x (t, x)) ≤ 0 if y = xeα ∈ J∗

α,

(3.54)
(

resp. ϕα
t (t, x) +Hα(ϕ

α
x (t, x)) ≥ 0 if y = xeα ∈ J∗

α

)

,

(3.55) ϕt(t, 0) + max
α=1,...,N

H−
α (ϕα

x (t, 0)) ≤ 0 if y = 0,

(3.56)
(

resp. ϕt(t, 0) + max
α=1,...,N

H−
α (ϕα

x (t, 0)) ≥ 0 if y = 0
)

.

ii) Viscosity sub and super-solution on [0, T )× J
A function u : [0, T ) × J → R is said to be a viscosity subsolution (resp. supersolution) of (1.2)-(1.3) on
[0, T )× J , if u is upper semi-continuous (resp. lower semi-continuous), if it is a viscosity subsolution (resp.
supersolution) of (1.2) on JT and if moreover it satisfies:















u(0, y) ≤ u0(y) for all y ∈ J,

(

resp. u(0, y) ≥ u0(y) for all y ∈ J
)

,

when the initial data u0 is assumed to be continuous.

iii) Viscosity solution on JT and on [0, T )× J
A function u : [0, T ) × J → R is said to be a viscosity solution of (1.2) on JT (resp. of (1.2)-(1.3) on
[0, T ) × J) if u∗ is a viscosity subsolution and u∗ is a viscosity supersolution of (1.2) on JT (resp. of
(1.2)-(1.3) on [0, T )× J).

Hereafter, we recall two properties of viscosity solutions on a junction that are extracted from [29]:

Proposition 3.4 (Comparison principle)
Assume (A0)-(A1’) and let T > 0. Assume that u and u are respectively a viscosity subsolution and a
viscosity supersolution of (1.2)-(1.3) on [0, T )× J in the sense of Definition 3.3. We also assume that there
exists a constant CT > 0 such that for all (t, y) ∈ [0, T )× J

u(t, y) ≤ CT (1 + |y|) (resp. u(t, y) ≥ −CT (1 + |y|)) .

Then we have u ≤ u on JT .

Proposition 3.5 (Equivalence with relaxed junction conditions)
Assume (A1’) and let T > 0. A function u : [0, T ) × J → R is a viscosity subsolution (resp. a viscosity
supersolution) of (1.2) on JT if and only if for any function ϕ := (ϕα)α ∈ C1

∗(JT ) and for any P = (t, y) ∈ JT
such that u− ϕ ≤ 0 (resp. u− ϕ ≥ 0) at the point P , we have the following properties

• if y = xeα ∈ J∗
α, then

ϕα
t (t, x) +Hα(ϕ

α
x (t, x)) ≤ 0 (resp. ≥ 0)

• if y = 0, then either there exists one index α ∈ {1, ..., N} such that

ϕα
t (t, 0) +Hα(ϕ

α
x (t, 0)) ≤ 0 (resp. ≥ 0)

or (3.55) (resp. (3.56)) holds true for y = 0.

We skip the proof of Proposition 3.4 and Proposition 3.5 which are directly available in [29].
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3.2 Convergence of the numerical solution

We assume (A0), (A1’) and we set
ε := (∆t,∆x)

satisfying the CFL condition (1.12). This section first deals with a technical result (see Lemma 3.6) that
is very useful for the proof of Theorem 1.8 that is the convergence of the numerical solution of (1.7)-(1.8)
towards a solution of (1.2)-(1.3) when ε goes to zero. According to Theorem 1.7, we know that the equation
(1.2)-(1.3) admits a unique solution in the sense of Definition 3.3. For Theorem 1.5, we extend the con-
vergence proof, assuming the weakest assumption (A1) instead of (A1’). We close this subsection with the
proof of gradient estimates for the continuous solution (see Corollary 1.6).

For α = 1, ..., N , i ≥ 0 and n ≥ 0, recall that (Uα,n
i ) solves the numerical scheme (1.7)-(1.8). This numerical

solution Uα,n
i is expected to be a certain approximation of uα(n∆t, i∆x) where uα is the unique viscosity

solution of (1.2)-(1.3) given by Theorem 1.7. For sake of clarity, we then denote our numerical solution as
follows

uα
ε (n∆t, i∆x) := Uα,n

i , for any α = 1, ..., N and any i ≥ 0, n ≥ 0,

and we recall
uα
ε (n∆t, 0) =: uε(n∆t, 0), for any α = 1, ..., N.

We also denote by Gα
ε the set of all grid points (n∆t, i∆x) on [0, T )× Jα for any branch α = 1, ..., N , and

we set

(3.57) Gε =
⋃

α=1,...,N

Gα
ε

the whole set of grid points on [0, T )×J , with identification of the junction points (n∆t, 0) of each grid Gα
ε .

We call uε the function defined by its restrictions to the grid points of the branches

uε = uα
ε on Gα

ε .

For any point (t, y) ∈ [0, T )× J , we define the half relaxed limits

(3.58) u(t, y) = lim sup
ε→0

Gε∋(t′,y′)→(t,y)

uε(t
′, y′),

(3.59)



resp. u(t, y) = lim inf
ε→0

Gε∋(t′,y′)→(t,y)

uε(t
′, y′)



 .

Thus we have that u := (uα)α (resp. u := (uα)α) is upper semi-continuous (resp. lower semi-continuous).

Lemma 3.6 (ε-uniform space and time gradient bounds)
Assume (A0)-(A1). Let T > 0 and ε = (∆t,∆x) such that the CFL condition (1.12) is satisfied. If (Uα,n

i )
is the numerical solution of (1.7)-(1.8), then for any α = 1, ..., N , i ≥ 0 and n ≥ 0, we have

(3.60) p0
α
≤

Uα,n
i+1 − Uα,n

i

∆x
≤ p0α and m0

0 ≤
Uα,n+1
i − Uα,n

i

∆t
≤ M0

0 ,

where the quantities (independent of ε) m0
0, M

0
0 , p

0
α
and p0α are respectively defined in (1.17) and (1.18).

Proof of Lemma 3.6:
Let ε = (∆t,∆x) be fixed such that the CFL condition (1.12) is satisfied.
Step 1: Proof of m0 ≥ m0

0, p
0
α
≤ p

α
and pα ≤ p0α

We first show that

(3.61) m0 ≥ m0
0.
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Indeed using (A1) and the fact that Hα(p) = max {H−
α (p), H+

α (p)} for any p ∈ R, we get

m0 = inf
α,i

{

−Hα(p
α,0
i )

}

≥ inf
α

pα∈[Lα,−,Lα,+]

{−Hα(pα)} =: m0
0,

where we recall that Lα,− and Lα,+ are the best Lipschitz constants defined in (1.16) that implies

(3.62) Lα,− ≤ pα,0i,+ ≤ Lα,+, for any i ≥ 0.

From (1.18) and the monotonicity of H±
α , we deduce

(3.63) p0
α
≤ p

α
and pα ≤ p0α, for any α = 1, ..., N.

Step 2: Proof of M0 ≤ M0
0

Recall the definitions

M0 := sup
α,i

Wα,0
i = max{A,B}, with











A := min
α=1,...,N

{

−H−
α (pα,00,+)

}

,

B := sup
α,i≥1

(

min
σ∈{+,−}

{

−H−σ
α (pα,0i,σ )

}

)

.

and

M0
0 := max

[

max
α=1,...,N

(

min
σ∈{+,−}

{

−H−σ
α (Lα,σ)

}

)

, min
α=1,...,N

{

−H−
α (Lα,+)

}

]

.

Let us show that

(3.64) M0 ≤ M0
0 .

We distinguish two cases according to the value of M0:

• If M0 = A, then

M0
0 ≥ min

α=1,...,N
(−H−

α (Lα,+)) ≥ min
α=1,...,N

(−H−
α (pα,00,+)) = A = M0,

where we use (3.62) and the monotonicity of H−
α .

• If M0 = B, then

M0
0 ≥ max

α=1,...,N

(

min
σ∈{+,−}

(−H−σ
α (Lα,σ))

)

≥ sup
α,i≥1

(

min
σ∈{+,−}

(−H−σ
α (pα,0i,σ ))

)

= B = M0.

which comes from (3.62) and the following inequality (due to (3.62))

min
σ∈{+,−}

(−H−σ
α (Lα,σ)) ≥ min

σ∈{+,−}
(−H−σ

α (pα,0i,σ )), for any i ≥ 1.

Step 3: Conclusion
The estimates (3.60) directly follow from (3.61), (3.64) and (3.63) and Theorem 1.3. �

Proof of Theorem 1.8:
Step 0: Preliminaries
Let T > 0 be fixed and let ε := (∆t,∆x) satisfy the CFL condition (1.12).
Assume that uε is the numerical solution of (1.7)-(1.8). We consider u and u respectively defined in (3.58)
and (3.59). By construction, we have

u ≤ u.

We will show in the following steps that u (resp. u) is a viscosity supersolution (resp. viscosity subsolution)
of equation (1.2)-(1.3), such that there exists a constant CT > 0 such that for all (t, y) ∈ [0, T )× J

u(t, y) ≥ −CT (1 + |y|) (resp. u(t, y) ≤ CT (1 + |y|)) ,
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and such that
u(0, y) ≥ u0(y) (resp. u(0, y) ≤ u0(y)) for all y ∈ J.

Using the comparison principle (Proposition 3.4), we obtain

u ≤ u ≤ u.

Thus from Definition 3.3, we can conclude that u = u = u. This implies the statement of Theorem 1.8.

Step 1: First bounds on the half relaxed limits
From Lemma 3.6, we deduce that for any α = 1, ..., N , any i ≥ 0 and any n ≥ 0, we have

m0
0n∆t ≤ Uα,n

i − Uα,0
i ≤ M0

0n∆t.

Passing to the limit with ε → 0 (always satisfying CFL condition (1.12)), we get

u0(y) +m0
0t ≤ u(t, y) ≤ u(t, y) ≤ u0(y) +M0

0 t, for (t, y) ∈ [0, T )× J.

This implies that

(3.65) u(0, y) ≤ u0(y) ≤ u(0, y), for all y ∈ J,

and
u(t, y) ≤ CT (1 + |y|) and u(t, y) ≥ −CT (1 + |y|),

with CT = max
{

|m0
0|T, |M

0
0 |T
}

+ |u0(0)|+ L and L = max
α,σ∈{±}

|Lα,σ|.

In next step, we show that u is a supersolution of (1.2)-(1.3) in the viscosity sense. We skip the proof that
u is a viscosity subsolution because it is similar.

Step 2: Proof of u being a viscosity supersolution
Let us consider u = (uα)α=1,...,N as defined in (3.59) and a test function ϕ := (ϕα)α ∈ C1

∗([0, T ) × J)
satisfying

{

u ≥ ϕ on [0, T )× J,

u = ϕ at P0 = (t0, y0) ∈ [0, T )× J, with t0 > 0.

Thus up to replacing ϕ(P ) by ϕ̂(P ) = ϕ(P ) + |P − P0|2, we can assume that
{

u > ϕ on Br(P0) \ {P0},

u = ϕ at P0.

We set Br(P0) the open ball in [0, T )× J centred at P0 with fixed radius r > 0 i.e.

Br(P0) :=
{

(t, y) ∈ [0, T )× J, (t− t0)
2 + d(y, y0)

2 < r
}

where d(·, ·) denotes the natural distance on J . We also set Ωε defined as the intersection between the closed
ball centred on P0 and the grid points Gε (defined in (3.57)), i.e.

Ωε := Br(P0) ∩Gε.

Note that for ε small enough, we have Ωε 6= ∅. Up to decreasing r, we can assume that Br(P0) ⊂ [0, T−r)×J .
Define also

Mε = inf
Ωε

(uε − ϕ) = (uε − ϕ)(Pε),

where

Pε = (tε, yε) ∈ [0, T )× Jαε
with yε = xεeαε

and

{

tε := nε∆t

xε := iε∆x
.

By the definition of u in (3.59), it is classical to show that if ε → 0 we get the following (at least for a
subsequence)

(3.66)







Mε = (uε − ϕ)(Pε) → M0 = inf
Br(P0)

(u− ϕ) = 0,

Pε → P0.

Let us now check that u is a viscosity supersolution of (1.2). To this end, using Proposition 3.5 we want to
show that

17



• if y0 = x0eα0
∈ J∗

α0
for a given α0, then

ϕα0

t +Hα0
(ϕα0

x ) ≥ 0 at (t0, x0),

• if y0 = 0, then either there exists one index α0 such that

ϕα0

t +Hα0
(ϕα0

x ) ≥ 0 at (t0, 0),

or we have
ϕt + sup

α=1,...,N

{

H−
α (ϕα

x )
}

≥ 0 at (t0, 0).

Because t0 > 0 and Pε → P0, this implies in particular that nε ≥ 1 for ε small enough. We have to distinguish
two cases according to the value of y0.
Case 1: P0 = (t0, y0) with y0 = 0
We distinguish two subcases, up to subsequences.
Subcase 1.1: Pε = (tε, yε) with yε = y0 = 0

Using the definitions (2.23), (2.24) and the numerical scheme (1.7), we recall that for all n ≥ 0 and for any
α = 1, ..., N

Uα,n+1
0 =: Un+1

0 = Un
0 −∆t max

α=1,...,N
H−

α

(

Uα,n
1 − Un

0

∆x

)

= S0

[

Un
0 , (U

α,n
1 )α=1,...,N

]

where S0 is monotone under the CFL condition (1.12) (see Proposition 1.2).
Let ϕε := Mε + ϕ such that

ϕε(Pε) = uε(Pε) = Unε

0

= S0

[

Unε−1
0 ,

(

Uα,nε−1
1

)

α=1,...,N

]

≥ S0

[

ϕε((nε − 1)∆t, 0), (ϕα
ε ((nε − 1)∆t,∆x))α=1,...,N

]

where we use the monotonicity of the scheme in the last line and the fact that uε ≥ ϕε on Ωε.
Thus we have

ϕε(nε∆t, 0)− ϕε((nε − 1)∆t, 0)

∆t
+ max

α=1,...,N
H−

α

(

ϕα
ε ((nε − 1)∆t,∆x)− ϕα

ε ((nε − 1)∆t, 0)

∆x

)

≥ 0.

This implies
(ϕε)t + max

α=1,...,N
H−

α ((ϕα
ε )x) + oε(1) ≥ 0 at (tε, 0)

and passing to the limit with ε → 0, we get the supersolution condition at the junction point

(3.67) ϕt + max
α=1,...,N

H−
α (ϕα

x ) ≥ 0 at (t0, 0).

Subcase 1.2: Pε = (tε, yε) with yε ∈ J∗
αε

In this case, the infimum Mε is reached for a point on the branch αε which is different from the junction
point. Thus the definitions (2.23), (2.24) and the numerical scheme (1.7) give us that for all n ≥ 0 and i ≥ 1

Uαε,n+1
i = Uαε,n

i +∆tmin {−H−
αε
(pαε,n

i,+ ),−H+
αε
(pαε,n

i,− )}

= Sαε
[Uαε,n

i−1 , Uαε,n
i , Uαε,n

i+1 ].

Let ϕαε
ε := Mε + ϕαε such that

ϕαε
ε (Pε) = uαε

ε (Pε) = Uαε,nε

iε

= Sαε
[Uαε,nε−1

iε−1 , Uαε,nε−1
iε

, Uαε,nε−1
iε+1 ]

≥ Sαε
[ϕαε

ε ((nε − 1)∆t, (iε − 1)∆x), ϕαε

ε ((nε − 1)∆t, iε∆x), ϕαε

ε ((nε − 1)∆t, (iε + 1)∆x)]

where we use the monotonicity of the scheme and the fact that uαε
ε ≥ ϕαε

ε in the neighbourhood of (tε, xε).
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Thus we have that for any ε = (∆t,∆x)

0 ≤
ϕαε
ε (nε∆t, iε∆x)− ϕαε

ε ((nε − 1)∆t, iε∆x)

∆t

+max

{

H+
αε

(

ϕαε
ε (nε∆t, iε∆x)− ϕαε

ε (nε∆t, (iε − 1)∆x)

∆x

)

,

H−
αε

(

ϕαε
ε (nε∆t, (iε + 1)∆x)− ϕαε

ε (nε∆t, iε∆x)

∆x

)

}

.

Since Hα(p) = max {H+
α (p), H−

α (p)}, this implies

(ϕαε)t +Hαε
((ϕαε)x) + oε(1) ≥ 0 at (tε, xε).

Up to a subsequence, we can assume that αε is independent of ε and equal to α0. Thus passing to the limit
with ε → 0, we obtain

(3.68) ϕα0

t +Hα0
(ϕα0

x ) ≥ 0 at (t0, 0).

Case 2: P0 = (t0, y0) with y0 = x0eα0
∈ J∗

α0

As Pε → P0 from (3.66), we can always consider that for ε small enough, we can write Pε = (tε, yε) with
yε ∈ J∗

αε
. Thus the proof for this case is similar to the one in Subcase 1.2. We then conclude

(3.69) ϕα0

t +Hα0
(ϕα0

x ) ≥ 0 at (t0, x0).

Step 3: Conclusion
The results (3.65), (3.67), (3.68) and (3.69) imply that u is a viscosity supersolution of (1.2)-(1.3). This ends
the proof of Theorem 1.8. �

Proof of Theorem 1.5: The proof is quite similar to the proof of Theorem 1.8. However it differs on some
points mainly because we do not know if the comparison principle from Proposition 3.4 holds for (1.2).

• We recall from Lemma 3.6 that uα
ε (n∆t, i∆x) := Uα,n

i with ε = (∆t,∆x) enjoys some discrete Lipschitz
bounds in time and space, independent of ε.

• It is then possible to extend the discrete function uε, defined only on the grid points, into a continuous
function ũε, with the Q1 quadrilateral finite elements approximation for which we have the same
Lipschitz bounds. We recall that the approximation is the following: consider a map (t, x) 7→ u(t, x)
that takes values only on the vertex of a rectangle ABCD with A = (0, 0), B = (0, 1), C = (1, 1) and
D = (1, 0) (for sake of simplicity we take ∆t = 1 = ∆x). Then we extend the map u to any point (t, x)
of the rectangle such that

u(t, x) = [uA + x(uB − uA)](1 − t) + [uD + x(uC − uD)]t.

• In this way we can apply the Ascoli theorem which shows that there exists a subsequence ũε′ which
converges towards a function u, uniformly on every compact set (in time and space).

• We can then conclude that u is a viscosity super and subsolution of (1.2)-(1.3) repeating the proof of
Theorem 1.8.

This ends the proof. �

Proof of Corollary 1.6: The proof combines the gradient and time derivative estimates from Lemma 3.6
and the results of convergence from Theorem 1.5. Indeed, passing to the limit in (3.60) for a subsequence
ε′, using the convergence result of Theorem 1.5, we finally get (1.19). �
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4 Application to traffic flow

As our motivation comes from traffic flow modelling, this section is devoted to the traffic interpretation of
the model and the scheme. Notice that [29] has already focused on the meaning of the junction condition in
this framework.

4.1 Settings

We first recall the main variables adapted for road traffic modelling as they are already defined in [29]. We
consider a junction with NI ≥ 1 incoming roads and NO ≥ 1 outgoing ones. We also set that NI +NO =: N .

Densities and scalar conservation law. We assume that the vehicles densities denoted by (ρα)α solve
the following scalar conservation laws (also called LWR model for Lighthill, Whitham [37] and Richards
[40]):

(4.70)

{

ραt + (fα(ρα))X = 0, for (t,X) ∈ [0,+∞)× (−∞, 0), α = 1, ..., NI ,

ραt + (fα(ρα))X = 0, for (t,X) ∈ [0,+∞)× (0,+∞), α = NI + 1, ..., NI +NO,

where we assume that the junction point is located at the origin X = 0.
We assume that for any α the flux function fα : R → R reaches its unique maximum value for a critical
density ρ = ραc > 0 and it is non decreasing on (−∞, ραc ) and non-increasing on (ραc ,+∞). In traffic
modelling, ρα 7→ fα(ρα) is usually called the fundamental diagram.
Let us define for any α = 1, ..., N the Demand function fα

D (resp. the Supply function fα
S ) such that

(4.71) fα
D(p) =

{

fα(p) for p ≤ ραc
fα(ραc ) for p ≥ ραc

(

resp. fα
S (p) =

{

fα(ραc ) for p ≤ ραc
fα(p) for p ≥ ραc

)

.

We assume that we have a set of fixed coefficients 0 ≤ (γα)α ≤ 1 that denote:

• either the proportion of the flow from the branch α = 1, ..., NI which enters in the junction,

• or the proportion of the flow on the branch α = NI + 1, ..., N exiting from the junction.

We also assume the natural relations

NI
∑

α=1

γα = 1 and

NI+NO
∑

β=NI+1

γβ = 1.

Remark 4.1 We consider that the coefficients (γα)α=1,...,N are fixed and known at the beginning of the
simulations. Such framework is particularly relevant for “quasi stationary” traffic flows.

Vehicles labels and Hamilton-Jacobi equations. Extending for any NI ≥ 1 the interpretation and the
notations given in [29] for a single incoming road, let us consider the continuous analogue uα of the discrete
vehicles labels (in the present paper with labels increasing in the backward direction with respect to the
flow)

(4.72)























uα(t, x) = u(t, 0)−
1

γα

∫ −x

0

ρα(t, y)dy, for x := −X > 0, if α = 1, ..., NI ,

uβ(t, x) = u(t, 0)−
1

γβ

∫ x

0

ρβ(t, y)dy, for x := X > 0, if β = NI + 1, ..., N,

with equality of the functions at the junction point (x = 0), i.e.

(4.73) uα(t, 0) = uβ(t, 0) =: u(t, 0) for any α, β.

where the common value u(t, 0) is nothing else than the (continuous) label of the vehicle at the junction
point.
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Following [29], for a suitable choice of the function u(t, 0), it is possible to check that the vehicles labels uα

satisfy the following Hamilton-Jacobi equation:

(4.74) uα
t +Hα(u

α
x) = 0, for (t, x) ∈ [0,+∞)× (0,+∞), α = 1, ..., N

where

(4.75) Hα(p) :=



















−
1

γα
fα(γαp) for α = 1, ..., NI ,

−
1

γα
fα(−γαp) for α = NI + 1, ..., NI +NO.

Following definitions of H−
α and H+

α in (1.4) we get
(4.76)

H−
α (p) =



















−
1

γα
fα
D(γαp) for α ≤ NI ,

−
1

γα
fα
S (−γαp) for α ≥ NI + 1,

and H+
α (p) =



















−
1

γα
fα
S (γ

αp) for α ≤ NI ,

−
1

γα
fα
D(−γαp) for α ≥ NI + 1.

The junction condition in (1.2) that reads

(4.77) ut(t, 0) + max
α=1,...,N

H−
α (ux(t, 0

+)) = 0.

is a natural condition from the traffic point of view. Indeed condition (4.77) can be rewritten as

(4.78) ut(t, 0) = min

(

min
α=1,...,NI

1

γα
fα
D(ρα(t, 0−)), min

β=NI+1,...,N

1

γβ
fβ
S (ρ

β(t, 0+))

)

.

The condition (4.78) claims that the passing flux is equal to the minimum between the upstream demand
and the downstream supply functions as they were presented by Lebacque in [32] and [33] (also for the case
of junctions). This condition maximises the flow through the junction. This is also related to the Riemann
solver RS2 in [24] for junctions.

4.2 Review of the literature with application to traffic

Junction modelling. There is an important and fast growing literature about junction modeling from a
traffic engineering viewpoint: see [30, 42, 21] for a critical review of junction models. The literature mainly
refers to pointwise junction models [30, 34, 35]. Pointwise models are commonly restated in many instances
as optimization problems.

Scalar one dimensional conservation laws and networks. Classically, macroscopic traffic flow models
are based on a scalar one dimensional conservation law, e.g. the so-called LWR model (Lighthill, Whitham
[37] and Richards [40]). The literature is also quite important concerning hyperbolic systems of conversation
laws (see for example [8, 18, 31, 41] and references therein) but these books also propose a large description
of the scalar case. It is well-known that under suitable assumptions there exists a unique weak entropy
solution for scalar conservation laws without junction.

Until now, existence of weak entropy solutions for a Cauchy problem on a network has been proved for
general junctions in [24]. See also Garavello and Piccoli’s book [23]. Uniqueness for scalar conservation laws
for a junction with two branches has been proved first in [22] and then in [3] under suitable assumptions.
Indeed [3] introduces a general framework with the notion of L1-dissipative admissibility germ that is a
selected family of elementary solutions. To the best authors’ knowledge, there is no uniqueness result for
general junctions with N ≥ 3 branches and a differential characterization of the solution.

The conservation law counterpart of model (4.74),(4.73),(4.77) has been studied in [24] as a Riemann solver
called RS2. In [24] an existence result is presented for concave flux functions, using the Wave Front Tracking
(WFT) method. Moreover the Lipschitz continuous dependence of the solution with respect to the initial
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data is proven. This shows that the process of construction of a solution (here the WFT method) creates a
single solution. Nevertheless, up to our knowledge, there is no differential characterization of this solution.
Therefore the uniqueness of this solution is still an open problem.

Numerical schemes for conservation laws. According to [26] and [36], the numerical treatment of
scalar conservation laws mainly deals with first order numerical schemes based on upwind finite difference
method, such as the Godunov scheme [25] which is well-adapted for the LWR model [33].
As finite difference methods introduce numerical viscosity, other techniques were developed such as kinetic
schemes that derive from the kinetic formulation of hyperbolic equations [39]. Such kinetic schemes are
presented in [4] and they are applied to the traffic case in [9, 10, 11].

In [27] the authors apply a semidiscrete central numerical scheme to the Hamilton-Jacobi formulation of the
LWR model. The equivalent scheme for densities recovers the classical Lax-Friedrichs scheme. Notice that
the authors need to introduce at least two ghost-cells on each branch near the junction point to counterstrike
the dispersion effects when computing the densities at the junction.

4.3 Derived scheme for the densities

The aim of this subsection is to properly express the numerical scheme satisfied by the densities in the traffic
modelling framework. Let us recall that the density denoted by ρα is a solution of (4.70).
Let us consider a discretization with time step ∆t and space step ∆x. Then we define the discrete car density
ρα,ni ≥ 0 for n ≥ 0 and i ∈ Z (see Figure 2) by

(4.79) ρα,ni :=







γαpα,n|i|−1,+, for i ≤ −1, α = 1, ..., NI ,

−γαpα,ni,+ , for i ≥ 0, α = NI + 1, ..., NI +NO,

where we recall

pα,nj,+ :=
Uα,n
j+1 − Uα,n

j

∆x
, for j ∈ N, α = 1, ..., N.

Jλ

x > 0x < 0

−2 −1 21

JNI+NO

JNI+1

J1

Jβ

JNI

ρ
β,n
−1 ρ

λ,n
0

0

Figure 2: Discretization of the branches with the nodes for
(

Uα,n

|i|

)

i∈Z

and the segments for (ρα,ni )
i∈Z

.

We have the following result:

Lemma 4.2 (Derived numerical scheme for the density)
If (Uα,n

i ) stands for the solution of (1.7)-(1.8), then the density (ρα,ni ) defined in (4.79) is a solution of the
following numerical scheme for α = 1, ..., N
(4.80)

∆x

∆t
{ρα,n+1

i −ρα,ni } =











































Fα(ρα,ni−1, ρ
α,n
i )− Fα(ρα,ni , ρα,ni+1) for

{

i ≤ −1 if α ≤ NI ,

i ≥ 1 if α ≥ NI + 1,

Fα
0

(

(ρβ,n−1 )β≤NI
, (ρλ,n0 )λ≥NI+1

)

− Fα(ρα,ni , ρα,ni+1) for i = 0, α ≥ NI + 1,

Fα(ρα,ni−1, ρ
α,n
i )− Fα

0

(

(ρβ,n−1 )β≤NI
, (ρλ,n0 )λ≥NI+1

)

for i = −1, α ≤ NI ,
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where we define the fluxes by

(4.81)















































Fα(ρα,ni−1, ρ
α,n
i ) := min

{

fα
D(ρα,ni−1), fα

S (ρ
α,n
i )

}

for

{

i ≤ −1 if α ≤ NI ,

i ≥ 1 if α ≥ NI + 1,

Fα
0

(

(ρβ,n−1 )β≤NI
, (ρλ,n0 )λ≥NI+1

)

:= γαF0 for α = 1, ..., N,

F0 := min

{

min
β≤NI

1

γβ
fβ
D(ρ

β,n
−1 ), min

λ≥NI+1

1

γλ
fλ
S (ρ

λ,n
0 )

}

.

and fα
S , f

α
D are defined in (4.71).

The initial condition is given by

(4.82) ρα,0i :=



















γαu
α
0 (|i|∆x)− uα

0 ((|i| − 1)∆x)

∆x
, for i ≤ −1, α = 1, ..., NI ,

γαu
α
0 (i∆x)− uα

0 ((i + 1)∆x)

∆x
, for i ≥ 0, α = NI + 1, ..., NI +NO.

Remark 4.3 Notice that (4.80) recovers the classical Godunov scheme [25] for i 6= 0,−1 while it is not
standard for the two other cases i = 0,−1. Moreover we can check that independently of the chosen CFL
condition, the scheme (4.80) is not monotone (at the junction, i = 0 or i = −1) if the total number of
branches N ≥ 3 and is monotone if N = 2 for a suitable CFL condition.

Remark 4.4 From (1.11), (1.7) and (4.76), we can easily show that

m0 = min

{

min
α≤NI

i≤−1

min

(

1

γα
fα
D(ρα,0i−1),

1

γα
fα
S (ρ

α,0
i )

)

,

min
α≥NI+1

i≥1

min

(

1

γα
fα
D(ρα,0i−1),

1

γα
fα
S (ρ

α,0
i )

)

,

min

(

min
α≤NI

1

γα
fα
D(ρα,0−1 ), min

α≥NI+1

1

γα
fα
S (ρ

α,0
0 )

)

}

,

with the first part dealing with incoming branches, the second with outgoing branches and the third with the
junction point. As fα(p) = min {fα

S (p), f
α
D(p)} for any p, the latter can be rewritten as the minimal initial

flux

m0 = min







min
α≤NI

i≤−1

(

1

γα
fα(ρα,0i )

)

, min
α≥NI+1

i≥0

(

1

γα
fα(ρα,0i )

)







.

We set for any α = 1, ..., N
{

ρ−α := (fα
D)−1 (γαm0),

ρ+α := (fα
S )

−1
(γαm0),

From Theorem 1.3 and Remark 1.4, if (1.12) is satisfied then it is easy to check that

ρ−α ≤ ρα,ni ≤ ρ+α , for all n ≥ 0.

Then the CFL condition (1.12) can be rewritten for the densities as

(4.83)
∆x

∆t
≥ sup

α=1,...,N

ρα∈[ρ−

α ,ρ+
α ]

|(fα)′(ρα)| .

Proof of Lemma 4.2: We distinguish two cases according to if we are either on an incoming or an outgoing
branch. We investigate the incoming case. The outgoing case can be done similarly.
Let us consider any α = 1, ..., NI , n ≥ 0 and i ≤ −1.
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According to (4.79), for i ≤ −2 we have that:

ρα,n+1
i − ρα,ni

∆t
=

γα

∆x∆t

{(

Uα,n+1
|i| − Uα,n+1

|i|−1

)

−
(

Uα,n

|i| − Uα,n

|i|−1)
)}

=
γα

∆x

{

min
(

−H−
α (pα,n|i|,+),−H+

α (pα,n|i|,−)
)

−min
(

−H−
α (pα,n|i|−1,+),−H+

α (pα,n|i|−1,−)
)}

=
1

∆x

{

min
(

fα
D(ρα,ni−1), f

α
S (ρ

α,n
i )

)

−min
(

fα
D(ρ

α,n
i ), fα

S (ρ
α,n
i+1)

)}

where we use the numerical scheme (1.7) in the second line and (4.76) in the last line.
We then recover the result if we set the fluxes functions Fα as defined in (4.81).

For the special case of i = −1, we have

ρα,n+1
−1 − ρα,n−1

∆t
=

γα

∆x

{(

Uα,n+1
1 − Uα,n

1

∆t

)

−

(

Uα,n+1
0 − Uα,n

0

∆t

)}

=
γα

∆x

{

min
(

−H−
α (pα,n1,+),−H+

α (pα,n1,−)
)

− min
β=1,...,N

(

−H−
β (pβ,n0,+)

)

}

=
1

∆x

{

min
(

fα
D(ρα,n−2 ), f

α
S (ρ

α,n
−1 )

)

− γα min

(

min
β=1,...,NI

1

γβ
fβ
D(ρβ,n−1 ), min

λ=NI+1,...,N

1

γλ
fλ
S (ρ

λ,n
0 )

)}

where in the last line we have used (4.76). Setting the flux function Fα
0 for i = 0 as defined in (4.81), we

also recover the result in that case. �

4.4 Numerical extension for non-fixed coefficients (γα)

Up to now, we were considering fixed coefficients γ := (γα)α and the flux of the scheme at the junction point
at time step n ≥ 0 was

F0(γ) := min

{

min
β≤NI

1

γβ
fβ
D(ρβ,n−1 ), min

λ≥NI+1

1

γλ
fλ
S (ρ

λ,n
0 )

}

.

In certain situations, we want to maximize the flux F0(γ) for γ belonging to an admissible set Γ. Indeed we
can consider the set

A := argmax
γ∈Γ

F0(γ).

In the case where this set is not a singleton, we can also use a priority rule to select a single element γ∗,n of
A. This defines a map

(

(ρβ,n−1 )β≤NI
, (ρλ,n0 )λ≥NI+1

)

7→ γ∗,n.

At each time step n ≥ 0 we can then choose this value γ = γ∗,n in the numerical scheme (4.80), (4.81).

5 Simulation

In this section, we present a numerical experiment. The main goal is to check if the numerical scheme
(1.7),(1.8) (or equivalently the scheme (4.80),(4.82)) is able to illustrate the propagation of shock or rarefac-
tion waves for densities on a junction.

5.1 Settings

We consider the case of a junction with NI = 2 = NO, that is two incoming roads denoted α = 1 and 2 and
two outgoing roads denoted α = 3 and 4.
For the simulation, we consider that the flow functions are equal on each branch fα =: f for any α = 1, ..., 4.
Moreover the function f is bi-parabolic (and only Lipschitz) as depicted on Figure 3. It is defined as follows

(5.84) f(ρ) =























(1 − k)fmax

ρ2c
ρ2 +

kfmax

ρc
ρ, for ρ ≤ ρc,

(1− k)fmax

(ρmax − ρc)2
ρ2 +

(kρc + (k − 2)ρmax)fmax

(ρmax − ρc)2
ρ−

ρmax(kρc − ρmax)fmax

(ρmax − ρc)2
, for ρ > ρc,
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with the jam density ρc = 20 veh/km, the maximal ρmax = 160 veh/km, the maximal flow
fmax = 1000 veh/h and k = 1.5.
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Figure 3: Graph of the function f

The Hamiltonians Hα for α = 1, ..., 4 are defined in (4.75) according to the flow function f given in (5.84).
Because f is not C1 at ρc, the Hamiltonians Hα do not satisfy assumption (A1). Nevertheless, we can use
Remark 2.4 and the fact that f is Lipschitz to extend our results for those Hamiltonians. We also assume
that the coefficients (γα) are all identical

γα =
1

2
for any α = 1, ..., 4.

Notice that the computations are carried out for different ∆x. In each case the time step ∆t is set to the
maximal possible value satisfying the CFL condition (1.12). We consider branches of length L = 200 m and

we have Nb :=

⌊

L

∆x

⌋

points on each branch such that i ∈ {0, ..., Nb}.

5.2 Initial and boundary conditions

Initial conditions. In traffic flow simulations it is classical to consider Riemann problems for the vehicles
densities at the junction point. We not only consider a Riemann problem at the junction but we also choose
the initial data to be discontinuous (with two values of the densities (left and right)) on the outgoing branch
number 3 (see Table 1 where left (resp. right) stands for the left (resp. right) section of branch 3). We then
consider initial conditions (uα

0 (x))α=1,...,N corresponding to the primitive of the densities depicted on Figure
6 (a). We also take the initial label at the junction point such that

uα
0 (0) =: u0(0) = 0, for any α.

We can check that the initial data (uα
0 (x))α=1,...,N satisfy (A0).

We are interested in the evolution of the densities. We stop to compute once we get a stationary final state
as shown on Figure 6 (f). The values of densities and flows are summarized in Table 1.
Boundary conditions. For any i ≤ Nb we use the numerical scheme (1.7) for computing (Uα,n

i ). Never-
theless at the last grid point i = Nb, we have

Uα,n+1
Nb

− Uα,n
Nb

∆t
+max

{

H+
α (pα,nNb,−

), H−
α (pα,nNb,+

)
}

= 0, for α = 1, . . . , N,

where pα,nNb,−
is defined in (1.5) and we set the boundary gradient as follows

pα,nNb,+
=







ρα0
γα

, if α ≤ NI ,

pα,nNb,−
= pα,nNb−1,+, if α ≥ NI + 1.
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Initial state Final state
Branch Density Flow Density Flow

(veh/km) (veh/h) (veh/km) (veh/h)
1 15 844 90 625
2 15 844 90 625

3 (left) 30 962 90 625
3 (right) 90 625 90 625

4 5 344 10 625

Table 1: Values of densities and flows for initial and final states on each branch

These boundary conditions are motivated by our traffic application. Indeed while they are presented for the
scheme (1.7) on (Uα,n

i ), the boundary conditions are easily translatable to the scheme (4.80) for the densities.
For incoming roads, the flow that can enter the branch is given by the minimum between the supply of the
first cell and the demand of the virtual previous cell which correspond to the value of f evaluated for the
initial density on the branch ρα0 (see Table 1). For outgoing roads, the flow that can exit the branch is given
by the minimum between the demand of the last cell H+

α (pα,nNb,−
) and the supply of the virtual next cell

H−
α (pα,nNb,+

) which is the same than the supply of the last cell H−
α (pα,nNb−1,+).

5.3 Simulation results

Vehicles labels and trajectories. Notice that here the computations are carried out for the discrete
variables (Uα,n

i ) while the densities (ρα,ni ) are computed in a post-treatment using (4.79). It is also possible
to compute directly the densities (ρα,ni ) according to the numerical scheme (4.80). Hereafter we consider
∆x = 5m (that corresponds to the average size of a vehicle) and ∆t = 0.16s.
The numerical solution (Uα,n

i ) is depicted on Figure 4 (a). The vehicles trajectories are deduced by consid-
ering the iso-values of the labels surface (Uα,n

i ) (see Figure 4 (b)). In this case, one can observe that the
congestion (described in the next part) induces a break in the velocities of the vehicles when going through
the shock waves. The same is true when passing through the junction.
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Figure 4: Numerical solution and vehicles trajectories

We can also recover the gradient properties of Theorem 1.3. On Figure 5, the gradients
(

pα,ni,+

)

are plotted
as a function of time. We numerically check that the gradients stay between the bounds pα and pα.

Propagation of waves. We describe hereafter the shock and rarefaction waves that appear from the
considered initial data (see Figure 6). At the initial state (Figure 6 (a)), the traffic situation on roads 1,

2 and 4 is fluid (ρ
{1,2,4}
0 ≤ ρc) while the road 3 is congested (ρ30 ≥ ρc). Nevertheless the demands at the
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Figure 5: Bounds pα and pα on the gradient

junction point are fully satisfied. As we can see on Figure 6 (b), there is the apparition of a rarefaction
wave on road 4 and a shock wave on road 3, just downstream the junction point. At the same time, there
is a shock wave propagating from the middle of the section on road 3 due to the initial discontinuous data
there. This shock wave should propagate backward at the Rankine-Hugoniot speed ṽ1 = −6 km/h. A while
later (Figure 6 (c)), the shock wave coming from the junction point and the shock wave coming from the
middle of road 3 generate a new shock wave propagating backward at the speed of ṽ2 = −3 km/h. The
congestion spreads all over the branch 3 and reaches the junction point. At that moment (Figure 6 (d)), the
supply on road 3 (immediately downstream the junction point) collapses. The demand for road 3 cannot be
satisfied. Then it generates a congestion on both incoming roads. The shock wave continues to propagate
backward in a similar way on roads 1 and 2 at speed ṽ2 (Figure 6 (e)). This congestion creates a shock wave
on road 4 (see Figure 6 (d)) and then decreases also the possible passing flow from the incoming roads to the
road 4. However road 3 is still congested while the traffic situation on road 4 is fluid (see Figures 6 (e) and (f)).

Figure 6 numerically illustrates the convergence of the numerical solution (ρα,ni ) when the grid size (∆x,∆t)
goes to zero. The rate of convergence is let to further research.
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(a) Initial conditions for densities (b) Densities at t = 10 s
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(c) Densities at t = 50 s (d) Densities at t = 100 s
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Figure 6: Time evolution of vehicles densities for different ∆x
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