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Time-Consistency: from Optimization to Risk Measures

Michel De Lara and Vincent Leclère

Université Paris-Est, CERMICS (ENPC), 6-8 Avenue Blaise Pascal, Cité Descartes ,
F-77455 Marne-la-Vallée

Abstract

Stochastic optimal control is concerned with sequential decision-making un-
der uncertainty. The theory of dynamic risk measures gives values to stochastic
processes (costs) as time goes on and information accumulates. Both theories
coin, under the same vocable of time-consistency (or dynamic-consistency), two
different notions: the latter is consistency between successive evaluations of a
stochastic processes by a dynamic risk measure as information accumulates (a
form of monotonicity); the former is consistency between solutions to intertem-
poral stochastic optimization problems as information accumulates. Interest-
ingly, time-consistency in stochastic optimal control and time-consistency for
dynamic risk measures meet in their use of dynamic programming, or nested,
equations. We provide a theoretical framework that offers i) basic ingredi-
ents to jointly define dynamic risk measures and corresponding intertemporal
stochastic optimization problems ii) common sets of assumptions that lead to
time-consistency for both. Our theoretical framework highlights the role of time
and risk preferences, materialized in one-step aggregators, in time-consistency.
Depending on how you move from one-step time and risk preferences to in-
tertemporal time and risk preferences, and depending on their compatibility
(commutation), you will or will not observe time-consistency. We also shed
light on the relevance of information structure by giving an explicit role to a
state control dynamical system, with a state that parameterizes risk measures
and is the input to optimal policies.

Keywords: Dynamic programming, Time consistency, Dynamic risk measures

Introduction

Stochastic optimal control is concerned with sequential decision-making un-
der uncertainty. The theory of dynamic risk measures gives values to stochastic
processes (costs) as time goes on and information accumulates. Both theories
coin, under the same vocable of time-consistency (or dynamic-consistency), two5

different notions. We discuss one after the other.

In stochastic optimal control, we consider a dynamical process that can be
influenced by exogenous noises as well as decisions made at every time step.
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The decision maker wants to optimize a criterion (for instance, minimize a net
present value) over a given time horizon. As time goes on and the system evolves,10

observations are made. Naturally, it is generally more profitable for the decision
maker to adapt his decisions to the observations on the system. He is hence
looking for policies (strategies, decision rules) rather than simple decisions: a
policy is a function that maps every possible history of the observations to
corresponding decisions.15

The notion of “consistent course of action” (see [1]) is well-known in the
field of economics, with the seminal work of [2]: an individual having planned
his consumption trajectory is consistent if, reevaluating his plans later on, he
does not deviate from the originally chosen plan. This idea of consistency as
“sticking to one’s plan” may be extended to the uncertain case where plans are20

replaced by decision rules (“Do thus-and-thus if you find yourself in this portion
of state space with this amount of time left”, Richard Bellman cited in [3]): [4]
addresses “consistency” and “coherent dynamic choice”, [5] refers to “temporal
consistency”.

In this context, we loosely state the property of time-consistency in stochas-25

tic optimal control as follows [6]. The decision maker formulates an optimization
problem at time t0 that yields a sequence of optimal decision rules for t0 and
for the following increasing time steps t1, . . . , tN = T . Then, at the next time
step t1, he formulates a new problem starting at t1 that yields a new sequence
of optimal decision rules from time steps t1 to T . Suppose the process continues30

until time T is reached. The sequence of optimization problems is said to be dy-
namically consistent if the optimal strategies obtained when solving the original
problem at time t0 remain optimal for all subsequent problems. In other words,
dynamic consistency means that strategies obtained by solving the problem at
the very first stage do not have to be questioned later on.35

Now, we turn to dynamic risk measures. At time t0, you value, by means

of a risk measure ρt0,T , a stochastic process
{
A

t

}tN

t=t0
, that represents a stream

of costs indexed by the increasing time steps t0, t1, . . . , tN = T . Then, at the

next time step t1, you value the tail
{
A

t

}tN

t=t1
of the stochastic process knowing

the information obtained and materialized by a σ-field Ft1 . For this, you use a40

conditional risk measure ρt1,T with values in Ft1 -measurable random variables.

Suppose the process continues until time T is reached. The sequence
{
ρt,T

}tN

t=t0
of conditional risk measures is called a dynamic risk measure.

Dynamic or time-consistency has been introduced in the context of risk mea-
sures (see [7, 8, 9, 10, 11] for definitions and properties of coherent and consis-45

tent dynamic risk measures). We loosely state the property of time-consistency

for dynamic risk measures as follows. The dynamic risk measure
{
ρt,T

}tN

t=t0
is said to be time-consistent when the following property holds. Suppose that

two streams of costs,
{
A

t

}tN

t=t0
and

{
A

t

}tN

t=t0
, are such that they coincide from

time ti up to time tj > ti and that, from that last time tj , the tail stream50 {
A

t

}tN

t=tj
is valued more than

{
A

t

}tN

t=tj
(ρtj ,T (

{
A

t

}tN

t=tj
) ≥ ρtj ,T (

{
A

t

}tN

t=tj
)).

Then, the whole stream
{
A

t

}tN

t=ti
is valued more than

{
A

t

}tN

t=ti
(ρti,T (

{
A

t

}tN

t=ti
) ≥

2



ρti,T (
{
A

t

}tN

t=ti
)).

We observe that both notions of time-consistency look quite different: the
latter is consistency between successive evaluations of a stochastic processes by a55

dynamic risk measure as information accumulates (a form of monotonicity); the
former is consistency between solutions to intertemporal stochastic optimization
problems as information accumulates. We now stress the role of information ac-
cumulation in both notions of time-consistency, because of its role in how the
two notions can be connected. For dynamic risk measures, the flow of informa-60

tion is materialized by a filtration
{
Ft

}tN

t=t1
. In stochastic optimal control, an

amount of information more modest than the past of exogenous noises is often
sufficient to make an optimal decision. In the seminal work of [12], the minimal
information necessary to make optimal decisions is captured in a state variable
(see [13] for a more formal definition). Moreover, the famous Bellman or Dy-65

namic Programming Equation (DPE) provides a theoretical way to find optimal
strategies (see [14] for a broad overview on Dynamic Programming (DP)).

Interestingly, time-consistency in stochastic optimal control and time-consistency
for dynamic risk measures meet in their use of DPEs. On the one hand, in
stochastic optimal control, it is well known that the existence of a DPE with70

state x for a sequence of optimization problems implies time-consistency when
solutions are looked after as feedback policies that are functions of the state x.
On the other hand, proving time-consistency for a dynamic risk measure appears
rather easy when the corresponding conditional risk measures can be expressed
by a nested formulation that connects successive time steps. In both contexts,75

such nested formulations are possible only for proper information structures. In
stochastic optimal control, a sequence of optimization problems may be consis-
tent for some information structure while inconsistent for a different one (see
[6]). For dynamic risk measures, time-consistency appears to be strongly de-
pendent on the underlying information structure (filtration or scenario tree).80

Moreover, in both contexts, nested formulations and the existence of a DPE are
established under various forms of decomposability of operators that display
monotonicity and commutation properties.

Our objective is to provide a theoretical framework that offers i) basic ingre-
dients to jointly define dynamic risk measures and corresponding intertemporal85

stochastic optimization problems ii) common sets of assumptions that lead to
time-consistency for both. Our theoretical framework highlights the role of time
and risk preferences, materialized in one-step aggregators, in time-consistency.
Depending on how you move from one-step time and risk preferences to in-
tertemporal time and risk preferences, and depending on their compatibility90

(commutation), you will or will not observe time-consistency. We also shed
light on the relevance of information structure by giving an explicit role to a
dynamical system with state X .

In §1, we present examples of intertemporal optimization problems display-
ing a DPE, and of dynamic risk measures (time-consistent or not, nested or95
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not). In §2, we introduce the basic material to formulate intertemporal op-
timization problems, in the course of which we define “cousins” of dynamic
risk measures, namely dynamic uncertainty criteria; we end with definitions of
time-consistency, on the one hand, for dynamic risk measures and, in the other
hand, for intertemporal stochastic optimization problems. In §3, we introduce100

the notions of time and uncertainty-aggregators, define their composition, and
show four ways to craft a dynamic uncertainty criterion from one-step aggrega-
tors; then, we provide general sufficient conditions for the existence of a DPE
and for time-consistency, both for dynamic risk measures and for intertemporal
stochastic optimization problems; we end with applications. In §4, we extend105

constructions and results to Markov aggregators.

1. Introductory Examples

The traditional framework for DP consists in minimizing the expectation of
the intertemporal sum of costs as in Problem (3). As we see it, the intertem-
poral sum is an aggregation over time, and the mathematical expectation is an110

aggregation over uncertainties. We claim that other forms of aggregation lead
to a DPE with the same state but, before developing this point in §3, we lay
out in §1.1 three settings (more or less familiar) in which a DPE holds. We do
the same job for dynamic risk measures in §1.2 with time-consistency.

To alleviate notations, for any sequence
{
Hs

}
s=t1,...,t2

of sets, we denote by
[
Hs

]t2
t1
, or by H[t1:t2], the Cartesian product

H[t1:t2] =
[
Hs

]t2
t1

=
[
Hs

]t2
s=t1

= Ht1 × · · · ×Ht2 , (1a)

and a generic element by

h[t1:t2] =
{
ht
}t2

t1
=

{
ht
}t2

t=t1
= (ht1 , . . . , ht2) . (1b)

In the same vein, we also use the following notation for any sequence

H[t1:t2] =
{
Hs

}t2

t1
=

{
Hs

}t2

s=t1
=

{
Hs

}
s=t1,...,t2

. (1c)

In this chapter, we denote by R̄ the set R ∪ {+∞}.115

1.1. Examples of DPEs in Intertemporal Optimization

Anticipating on material to be presented in §2.1, we consider a dynamical
system influenced by exogenous uncertainties and by decisions made at discrete
time steps t = 0, t = 1, . . . , t = T − 1, where T is a positive integer. For any
t ∈ [[0, T ]], where [[a, b]] denote the set of integers between a and b, we suppose
given a state set Xt, and for any t ∈ [[0, T − 1]] a control set Ut, an uncertainty
set Wt and a mapping ft that maps Xt × Ut ×Wt into Xt+1. We consider the
control stochastic dynamical system

∀t ∈ [[0, T − 1]], Xt+1 = ft(Xt, Ut,Wt) . (2)
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We call policy a sequence π = (πt)t∈[[0,T−1]] of mappings where, for all t ∈
[[0, T − 1]], πt maps Xt into Ut. We denote by Π the set of all policies. More
generally, for all t ∈ [[0, T ]], we call (tail) policy a sequence π = (πs)s∈[[t,T−1]]

and we denote by Πt the set of all such policies.120

Let
{
Wt

}T

t=0
be a sequence of independent random variables (noises). Let

{
Jt
}T−1

0
be a sequence of cost functions Jt : Xt×Ut×Wt 7→ R, and a final cost

function JT : XT ×WT → R.
With classic notations, and assuming all proper measurability and integra-

bility conditions, we consider the dynamic optimization problem

min
π∈Π

E

[ T−1∑

t=0

Jt(Xt,Ut,Wt) + JT (XT ,WT )

]
, (3a)

s.t. Xt+1 = ft(Xt,Ut,Wt), ∀t ∈ [[0, T − 1]] , (3b)

Ut = πt(Xt), ∀t ∈ [[0, T − 1]] . (3c)

It is well-known that a DPE with state X can be associated with this problem.
The main ingredients for establishing the DPE are the following: the intertem-125

poral criterion is time-separable and additive, the expectation is a composition

of expectations over the marginals law (because the random variables
{
Wt

}T

t=0
are independent), and the sum and the expectation operators are commuting.
Our main concern is to extend these properties to other “aggregators” than the
intertemporal sum

∑T−1
t=0 and the mathematical expectation E, and to obtain130

DPEs with state X , thus retrieving time-consistency.
In this example, we aggregate the streams of cost first with respect to

time (through the sum over the stages), and then with respect to uncertain-
ties (through the expectation). This formulation is called TU for “time then
uncertainty”. All the examples of this §1.1 follow this template.135

We do not present proofs of the DPEs exposed here as they fit into the
framework developed later in §3.

1.1.1. Expected and Worst Case with Additive Costs

We present together two settings in which a DPE holds true. They share
the same time-aggregator — time-separable and additive — but with distinct140

uncertainty-aggregators, namely the mathematical expectation operator and the
so-called “fear” operator.

Expectation Operator. Consider, for any t ∈ [[0, T ]], a probability Pt on the
uncertainty space Wt (equipped with a proper σ-algebra), and the product
probability P = P0 ⊗ · · · ⊗ PT . In other formulations of stochastic optimization145

problems, the probabilities Pt are the image distributions of independent ran-
dom variables with value in Wt. However, we prefer to ground the problems
with probabilities on the uncertainty spaces rather than with random variables,
as this approach will more easily easily extend to other contexts without stochas-
ticity.150
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The so-called value function Vt, whose argument is the state x, is the optimal
cost-to-go defined by

Vt(x) = min
π∈Πt

E

[ T−1∑

s=t

Js(Xs,Us,Ws) + JT (XT ,WT )

]
, (4a)

s.t. Xt = x , (4b)

Xs+1 = ft(Xs,Us,Ws), ∀s ∈ [[t, T − 1]] ,

(4c)

Us = πs(Xs) . (4d)

The DPE associated with problem (3) is





VT (x) = EPT

[
JT (x,WT )

]
,

Vt(x) = minu∈Ut
EPt

[
Jt(x, u,Wt) + Vt+1 ◦ ft(x, u,Wt)

]
,

(5)

for all state x ∈ Xt and all time t ∈ [[0, T − 1]].
It is well-known that, if there exists a policy π♯ (with proper measurability

assumptions that we do not discuss here [see [15]]) such that, for each t ∈
[[0, T − 1]], and each x ∈ Xt, we have

π♯
t(x) ∈ argmin

u∈Ut

E

[
Jt(x, u,Wt) + Vt+1 ◦ ft(x, u,Wt)

]
, (6)

then π♯ is an optimal policy for Problem (3).
Time-consistency of the sequence of Problems (4), when t runs from 0 to T ,

is ensured by this very DPE, when solutions are looked after as policies over the
state x. We insist that the property of time-consistency may or may not hold155

depending on the nature of available information at each time step. Here, our
assumption is that the state xt is available for decision-making at each time t.1

Remark 1. To go on with information issues, we can notice that the so-called
“non-anticipativity constraints”, typical of stochastic optimization, are contained
in our definition of policies. Indeed, we considered policies are function of the160

state, which a summary of the past, hence cannot anticipate the future. Why
can we take the state as a proper summary? If, in Problem (3), we had con-
sidered policies as functions of past uncertainties (non-anticipativity) and had
assumed that the uncertainties are independent, it is well-known that we could
have restricted our search to optimal Markovian policies, that is, only functions165

of the state. This is why, we consider policies only as functions of the state.

1In the literature on risk measures, information is rather described by filtrations than by
variables.
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Fear Operator. In [16], Pierre Bernhard coined fear operator the worst-case
operator, widely considered in the field of robust optimization (see [17] and
[18]).

We consider the optimization problem

min
π∈Π

sup
w∈W[0:T ]

[ T−1∑

t=0

Jt(xt, ut, wt) + JT (xT , wT )

]
, (7a)

s.t. xt+1 = ft(xt, ut, wt), (7b)

ut = πt(xt). (7c)

Contrarily to previous examples we do not use bold letters for state x, control u
and uncertainty w as these variables are not random variables. In [19, Section
1.6], it is shown that the value function

Vt(x) = min
π∈Πt

sup
w∈W[t:T ]

[ T−1∑

s=t

Js(xs, us, ws) + JT (xT , wT )

]
, (8a)

s.t. xt = x , (8b)

xs+1 = fs(xs, us, ws) , (8c)

us = πs(xs) . (8d)

satisfies the DPE




VT (x) = sup
wT∈WT

JT (x,wT ) ,

Vt(x) = min
u∈Ut

sup
wt∈Wt

[
Jt(x, u, wt) + Vt+1 ◦ ft(x, u, wt)

]
,

(9)

for all state x ∈ Xt and all time t ∈ [[0, T − 1]].170

1.1.2. Expectation with Multiplicative Costs

An expected multiplicative cost appears in a financial context if we consider a
final payoff K(XT+1) depending on the final state of our system, but discounted
at rate rt(Xt). In this case, the problem of maximizing the discounted expected
product reads

max
π∈Π

E

[ T−1∏

t=1

( 1

1 + rt(Xt)

)
K(XT )

]
.

We present another interesting setting where multiplicative cost appears.
In control problems, we thrive to find controls such that the state xt satisfies
constraints of the type xt ∈ Xt ⊂ Xt for all t ∈ [[0, T ]]. In a deterministic setting,
the problem has either no solution (there is no policy such that, for all t ∈ [[0, T ]],175

xt ∈ Xt) or has a solution depending on the starting point x0. However, in a
stochastic setting, satisfying the constraint xt ∈ Xt, for all time t ∈ [[0, T ]] and
P−almost surely, can lead to problems without solution. For example, if we
add to a controled dynamic a nondegenerate Gaussian random variable, then
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the resulting state can be anywhere in the state space, and thus a constraint180

Xt ∈ Xt ⊂ Xt where Xt is, say, a bounded set, cannot be satisfied almost surely.
For such a control problem, we propose alternatively to maximize the prob-

ability of satisfying the constraint (see [20], where this is approach is called
stochastic viability):

max
π∈Π

P

({
∀t ∈ [[0, T ]] , Xt ∈ Xt

})
, (10a)

s.t Xt+1 = ft
(
Xt,Ut,Wt

)
, (10b)

Ut = π(Xt) . (10c)

This problem can be written

max
π∈Π

E

[ T∏

t=0

✶{Xt∈Xt}

]
, (11a)

s.t Xt+1 = ft
(
Xt,Ut,Wt

)
, (11b)

Ut = π(Xt) . (11c)

It is shown in [21] that, assuming that noises are independent (i.e the probability
P can be written as a product P = P0 ⊗ · · · ⊗ PT ), the associated DPE is





VT (x) = E

[
✶{x∈XT }

]
,

Vt(x) = maxu∈Ut
E

[
✶{x∈Xt} · Vt+1 ◦ ft(x, u,Wt)

]
,

(12)

for all state x ∈ Xt and all time t ∈ [[0, T − 1]].
If there exists a measurable policy π♯ such that, for all t ∈ [[0, T − 1]] and all

x ∈ Xt,

π♯
t(x) ∈ argmax

u∈Ut

E

[
✶{x∈Xt} · Vt+1 ◦ ft(x, u,Wt)

]
, (13)

then π♯ is optimal for Problem (10).

1.2. Examples of Dynamic Risk Measures

Consider a probability space
(
Ω,F,P

)
, and a filtration F = {Ft}

T
0 . The ex-185

pression {As}
T
0 denotes an arbitrary, F-adapted, real-valued, stochastic process.

Anticipating on recalls in §2.2.2, we call conditional risk measure a function
ρt,T that maps tail sequences {As}

T
t , where each As is Fs measurable, into the

set of Ft measurable random variables. A dynamic risk measure is a sequence
{ρt,T }

T
0 of conditional risk measures.190

A dynamic risk measure {ρt,T }
T
t=0, is said to be time-consistent if, for any

couples of times 0 ≤ t < t ≤ T , the following property holds true. If two
adapted stochastic processes {A

s
}T0 and {A

s
}T0 satisfy

A
s
=A

s
, ∀s ∈ [[t, t− 1]] , (14a)

ρt,T
(
{A

s
}T
t

)
≤ρt,T

(
{A

s
}T
t

)
, (14b)

8



then we have:
ρt,T

(
{A

s
}Tt

)
≤ ρt,T

(
{A

s
}Tt

)
. (14c)

We now lay out examples of dynamic risk measure.

1.2.1. Expectation and Sum

Unconditional Expectation. The first classical example, related to the optimiza-
tion Problem (3), consists in the dynamic risk measure {ρt,T }

T
t=0 given by

ρt,T
(
{As}

T
t

)
= E

[ T∑

s=t

As

]
, ∀t ∈ [[0, T ]] . (15)

We write (15) under three forms — denoted by TU, UT, NTU, and discussed
later in §3.1:

ρt,T
(
{As}

T
t

)
= E

[ T∑

s=t

As

]
(TU)

=

T∑

s=t

E
[
As

]
(UT )

= E

[
At + E

[
At+1 + · · ·+ E

[
AT−1 + E

[
AT

]]
· · ·

]]
(NTU)

To illustrate the notion, we show that the dynamic risk measure {ρt,T }
T
t=0 is

time-consistent. Indeed, if two adapted stochastic processes A and B sat-

isfy (14a) and (14b), with t = t < t ≤ T , we conclude that

ρt,T
(
{A

s
}Tt

)
=E

[ t−1∑

s=t

A
s
+ ρt,T

(
{A

s
}T
t

)]

≤E

[ t−1∑

s=t

A
s
+ ρt,T

(
{A

s
}T
t

)]
= ρt,T

(
{A

s
}Tt

)
.

Conditional Expectation. Now, we consider a “conditional variation” of (15) by
defining

ρt,T
(
{As}

T
t

)
= E

[ T∑

s=t

As

∣∣∣ Ft

]
. (16)

9



We write2 the induced dynamic risk measure {ρt,T }
T
t=0 under four forms —

denoted by TU, UT, NTU, NUT, and discussed later in §3.1:

ρt,T
(
{As}

T
t

)
= E

Ft

[ T∑

s=t

As

]
(TU)

=

T∑

s=t

E
Ft
[
As

]
(UT )

= E
Ft

[
At + E

Ft+1

[
At+1 + · · ·+ E

FT−1

[
AT−1 + E

FT
[
AT

]]
· · ·

]]
(NTU)

= At + E
Ft+1

[
At+1 + · · ·+ E

FT−2
[
AT−1 + E

FT−1
[
AT

]]
· · ·

]
(NUT )

The dynamic risk measure {ρt,T }
T
t=0 is time-consistent: indeed, if two adapted

stochastic processes A and B satisfy (14a) and (14b), with t = t < t ≤ T , we

conclude that

ρt,T
(
{A

s
}Tt

)
= E

[ t−1∑

s=t

A
s
+ ρt,T

(
{A

s
}T
t

) ∣∣∣∣ Ft

]

≤ E

[ t−1∑

s=t

A
s
+ ρt,T

(
{A

s
}T
t

) ∣∣∣∣ Ft

]
= ρt,T

(
{A

s
}Tt

)
.

1.2.2. AV@R and Sum

In the following examples, it is no longer possible to display three or four
equivalent expressions for the same conditional risk measure. This is why, we195

present different dynamic risk measures.

Unconditional AV@R. For 0 < α < 1, we define the Average-Value-at-Risk of
level α of a random variable X by

AV@Rα

[
X

]
= inf

r∈R

{
r +

E
[
X − r

]+

α

}
. (17)

Let
{
αt

}T

t=0
and

{
αt,s

}T

s,t=0
be two families in (0, 1). We lay out three dif-

ferent dynamic risk measures, given by the following conditional risk measures:

2Here, for notational clarity, we denote by EFt
[
·
]
the conditional expectation E

[
·
∣∣ Ft

]
.
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ρt,T
[
{As}

T
t

]
= AV@Rαt

[ T∑

s=t

As

]
, (TU)

ρt,T
[
{As}

T
t

]
=

T∑

s=t

AV@Rαt,s

[
As

]
, (UT )

ρNTU
t,T

(
{As}

T
t

)
= AV@Rαt,t

[
At +AV@Rαt,t+1

[
At+1 + · · ·

AV@Rαt,T

[
AT

]
· · ·

]]
. (UT )

The dynamic risk measure {ρTU
t,T }

T
t=0 is not time-consistent, whereas the dy-

namic risk measure {ρUT
t,T }

T
t=0 and the dynamic risk measure {ρNTU

t,T }Tt=0 are
time consistent, as soon as the levels αt,s do not depend on t.

Conditional AV@R. For 0 < α < 1, and a subfield G ⊂ F we define the condi-
tional Average-Value-at-Risk of level α of a random variable X knowing G by

AV@RG
α

[
X

]
= inf

r G-measurable

{
r +

E
[
X − r

∣∣ G
]+

α

}
. (19)

Let
{
αt

}T

t=0
and

{
αt,s

}T

s,t=0
be two families in (0, 1). We lay out four dif-

ferent dynamic risk measures, given by the following conditional risk measures:

ρt,T
(
{As}

T
t

)
= AV@RFt

αt

[ T∑

s=t

As

]
, (TU)

ρt,T
(
{As}

T
t

)
=

T∑

s=t

AV@RFt

αt,s

[
As

]
, (UT )

ρt,T
(
{As}

T
t

)
=

T∑

s=t

AV@RFt

αt,t

[
AV@RFt+1

αt,t+1

[
· · ·AV@RFs

αt,s

[
As

]]]
, (UT )

ρt,T
(
{As}

T
t

)
= AV@RFt

αt,t

[
At+

AV@RFt+1
αt,t+1

[
At+1 + · · ·AV@RFT

αt,T

[
AT

]
· · ·

]]
. (NTU)

Examples of this type are found in papers like [22, 23, 24, 25].200

Markovian AV@R. Let a policy π ∈ Π, a time t ∈ [[0, T ]] and a state xt ∈ Xt be
fixed. With this and the control stochastic dynamical system (2), we define the

11



Markov chain {Xxt

s
}Ts=t produced by (3b)–(3c) starting from X

t
= xt. We also

define, for each s ∈ [[t, T ]], the σ-algebra X xt
s = σ(Xxt

s
). With this, we define a

conditional risk measure by

ρxt

t,T

(
{As}

T
t

)
=AV@RX

xt
t

αt,t

[
At+

AV@R
X

xt
t+1

αt,t+1

[
At+1 + · · ·AV@R

X
xt
T

αt,T

[
AT

]
· · ·

]]
.

(21)

Repeating the process, we obtain a family
{{
̺xt

t,T

}
xt∈Xt

}T

t=0
, such that

{
̺xt

t,T

}T

t=0

is a dynamic uncertainty criterion, for all sequence
{
xt
}T

t=0
of states, where

xt ∈ Xt, for all t ∈ [[0, T ]].

2. Time-Consistency: Problem Statement

In §2.1, we lay out the basic material to formulate intertemporal optimiza-205

tion problems. In §2.2, we define “cousins” of dynamic risk measures, namely
dynamic uncertainty criteria. In §2.3, we provide definitions of time-consistency,
on the one hand, for dynamic risk measures and, in the other hand, for intertem-
poral stochastic optimization problems.

2.1. Ingredients for Intertemporal Optimization Problems210

In §2.1.1, we recall the formalism of Control Theory, with dynamical sys-
tem, state, control and costs. Mimicking the definition of adapted processes in
Probability Theory, we introduce adapted uncertainty processes. In §2.1.2, we
show how to produce an adapted uncertainty process of costs.

2.1.1. Dynamical System, State, Control and Costs215

We define a control T -stage dynamical system, with T ≥ 2, as follows. We
consider

• a sequence
{
Xt

}T

0
of sets of states;

• a sequence
{
Ut

}T−1

0
of sets of controls;

• a sequence
{
Wt

}T

0
of sets of uncertainties, and we define

W[0:T ] =
[
Ws

]T
0
, the set of scenarios, (22a)

W[0:t] =
[
Ws

]t
0
, the set of head scenarios, ∀t ∈ [[0, T ]] , (22b)

W[s:t] =
[
Ws

]T
t
, the set of tail scenarios, ∀t ∈ [[0, T ]] ; (22c)

• a sequence
{
ft
}T−1

0
of functions, where ft : Xt×Ut×Wt → Xt+1, to play220

the role of dynamics;

12



• a sequence
{
Ut

}T−1

0
of T multifunctions Ut : Xt ⇒ Ut, to play the role of

constraints;

• a sequence
{
Jt
}T−1

0
of cost functions Jt : Xt × Ut ×Wt 7→ R̄, and a final

cost function JT : XT ×WT → R̄.3225

Mimicking the definition of adapted processes in Probability Theory, we
introduce the following definition of adapted uncertainty processes, where the
increasing sequence of head scenarios sets in (22b) corresponds to a filtration.

Definition 1. We say that a sequence A[0:T ] =
{
As

}T

0
is an adapted uncertainty

process if As ∈ F
(
W[0:s]; R̄

)
(that is, As : W[0:s] → R̄), for all s ∈ [[0, T ]]. In230

other words,
[
F(W[0:s]; R̄)

]T
s=0

is the set of adapted uncertainty processes.

A policy π = (πt)t∈[[0,T−1]] is a sequence of functions πt : Xt → Ut, and we
denote by Π the set of all policies. More generally, for all t ∈ [[0, T ]], we call
(tail) policy a sequence π = (πs)s∈[[t,T−1]] and we denote by Πt the set of all
such policies.235

We restrict our search of optimal solutions to so-called admissible policies
belonging to a subset Πad ⊂ Π. An admissible policy π ∈ Πad always satisfies:

∀t ∈ [[0, T − 1]] , ∀x ∈ Xt, πt(x) ∈ Ut(x) .

We can express in Πad other types of constraints, such as measurability or
integrability ones when in a stochastic setting. Naturally, we set Πad

t = Πt∩Π
ad.

Definition 2. For any time t ∈ [[0, T ]], state x ∈ Xt and policy π ∈ Π, the flow
{Xx,π

t,s }Ts=t is defined by the forward induction:

∀w ∈ W[0:T ] ,





Xx,π
t,t (w) = x ,

Xx,π
t,s+1(w) = fs

(
Xx,π

t,s (w), πs(X
x,π
t,s (w)), ws

)
, ∀s ∈ [[t, T ]] .

(23)

The expression Xx,π
t,s (w) is the state xs ∈ Xs reached at time s ∈ [[0, T ]], when

starting at time t ∈ [[0, s]] from state x ∈ Xt and following the dynamics (2) with240

the policy π ∈ Π along the scenario w ∈ W[0:T ].

Remark 2. For 0 ≤ t ≤ s ≤ T , the flow Xx,π
t,s is a function that maps the set

W[0:T ] of scenarios into the state space Xs:

Xx,π
t,s : W[0:T ] → Xs . (24)

By (23),

3For notational consistency with the Jt for t = [[0, T − 1]], we will often write JT (x, u, w)
to mean JT (x,w).
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• when t > 0, the expression Xx,π
t,s (w) depends only on the inner part w[t:s−1]

of the scenario w = w[0:T ], hence depends neither on the head w[0:t−1], nor
on the tail w[s:T ],245

• when t = 0, the expression Xx,π
0,s (w) in (23) depends only on the head w[0:s−1]

of the scenario w = w[0:T ], hence does not depend on the tail w[s:T ].

This is why we often consider that the flow Xx,π
t,s is a function that maps the set

W[t:s−1] of scenarios into the state space Xs:

∀s ∈ [[1, T ]] , ∀t ∈ [[0, s− 1]], Xx,π
t,s : W[t:s−1] → Xs . (25)

A state trajectory is a realization of the flow
{
Xx,π

0,s (w)
}T

s=0
for a given sce-

nario w ∈ W[0:T ]. The flow property

∀t, s, s′ , t < s′ < s , ∀x ∈ Xt , X
x,π
t,s ≡ X

X
x,π

t,s′
,π

s′,s (26)

expresses the fact that we can stop anywhere along a state trajectory and start
again.250

2.1.2. Producing Streams of Costs

Definition 3. For a given policy π ∈ Π, and for all times t ∈ [[0, T ]] and s ∈
[[t, T ]], we define the uncertain costs evaluated along the state trajectories by:

Jx,π
t,s : w ∈ W[0:T ] 7−→ Js

(
Xx,π

t,s (w), π
(
Xx,π

t,s (w)
)
, ws

)
. (27)

Remark 3. By Remark 2,

• when t > 0, the expression Jx,π
t,s (w) in (27) depends only on the in-

ner part w[t:s] of the scenario w = w[0:T ], hence depends neither on the255

head w[0:t−1], nor on the tail w[s+1:T ],

• when t = 0, the expression Jx,π
0,s (w) in (27) depends only on the head w[0:s]

of the scenario w = w[0:T ], hence does not depend on the tail w[s+1:T ].

This is why we often consider that Jx,π
t,s is a function that maps the set W[t:s] of

scenarios into R̄:

∀s ∈ [[0, T ]] , ∀t ∈ [[0, s]], Jx,π
t,s : W[t:s] → R̄ . (28)

As a consequence, the stream
{
Jx,π
0,s

}T

s=0
of costs is an adapted uncertainty pro-

cess.260

By (27) and (23), we have, for all t ∈ [[0, T ]] and s ∈ [[t+ 1, T ]],

∀w[t:T ] ∈ W[t:T ] ,





Jx,π
t,t (wt) = Jt

(
x, πt(x), wt

)
,

Jx,π
t,s (wt, {wr}

T
t+1) = J

ft(x,πt(x),wt),π
t+1,s ({wr}

T
t+1) .

(29)
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2.2. Dynamic Uncertainty Criteria and Dynamic Risk Measures

Now, we stand with a stream
{
Jx,π
0,s

}T

s=0
of costs, which is an adapted un-

certainty process by Remark 2. To craft a criterion to optimize, we need to
aggregate such a stream into a scalar. For this purpose, we define dynamic un-
certainty criterion in §2.2.1, and relate them to dynamic risk measures in §2.2.2.265

2.2.1. Dynamic Uncertainty Criterion

Inspired by the definitions of risk measures and dynamic risk measures in
Mathematical Finance, and motivated by intertemporal optimization, we in-
troduce the following definitions of dynamic uncertainty criterion, and Markov
dynamic uncertainty criterion. Examples have been given in §1.2.270

Definition 4. A dynamic uncertainty criterion is a sequence {̺t,T }
T
t=0, such

that, for all t ∈ [[0, T ]],

• ̺t,T is a mapping

̺t,T :
[
F(W[0:s]; R̄)

]T
s=t

→ F(W[0:t]; R̄) , (30a)

• the restriction of ̺t,T to the domain4
[
F(W[t:s]; R̄)

]T
s=t

yields constant
functions, that is,

̺t,T :
[
F(W[t:s]; R̄)

]T
s=t

→ R̄ , (30b)

A Markov dynamic uncertainty criterion is a family
{{
̺xt

t,T

}
xt∈Xt

}T

t=0
, such

that
{
̺xt

t,T

}T

t=0
is a dynamic uncertainty criterion, for all sequence

{
xt
}T

t=0
of275

states, where xt ∈ Xt, for all t ∈ [[0, T ]].

We relate dynamic uncertainty criteria and optimization problems as follows.

Definition 5. Given aMarkov dynamic uncertainty criterion
{{
̺xt

t,T

}
xt∈Xt

}T

t=0
,

we define a Markov optimization problem as the following sequence of families
of optimization problems:

(Pt)(x) min
π∈Πad

̺xt,T

({
Jx,π
t,s

}T

s=t

)
, ∀t ∈ [[0, T ]] , ∀x ∈ Xt . (31)

Each Problem (31) is indeed well defined by (30b), because
{
Jx,π
t,s

}T

s=t
∈
[
F(W[t:s]; R̄)

]T
s=t

by (28).280

4Where F(W[t:s]; R̄) is naturally identified as a subset of F(W[0:s]; R̄).
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2.2.2. Dynamic Risk Measures in a Nutshell

We establish a parallel between uncertainty criteria and risk measures. For
this purpose, when needed, we implicitely suppose that each uncertainty set Wt

is endowed with a σ-algebra Wt, so that the set W[0:T ] of scenarios is naturally
equipped with the filtration

Ft = W0 ⊗ · · · ⊗Wt ⊗ {∅,Wt+1} ⊗ · · · ⊗ {∅,WT } , ∀t ∈ [[0, T ]] . (32)

Then, we make the correspondence between (see also the correspondence Ta-
ble 1)

• the measurable space (W[0:T ],FT ) and the measurable space (Ω,F) in §2.2.2,

• the set F
(
W[0:t]; R̄

)
of functions and a set Lt of random variables that are285

Ft-measurable in §2.2.2,

• the set
[
F(W[s:T ]; R̄)

]T
s=t

and a set Lt,T of adapted processes, as in (35)
in §2.2.2.

Notice that, when the σ-algebra Wt is the complete σ-algebra made of all sub-
sets of Wt, F

(
W[0:t]; R̄

)
is exactly the space of random variables that are Ft-290

measurable.
We follow the seminal work [26], as well as [27, 28], for recalls about risk

measures.

Static Risk Measures. Let
(
Ω,F

)
be a measurable space. Let L be a vector space

of measurable functions taking values in R (for example, L = Lp
(
Ω,F,P;R

)
).

We endow the space L with the following partial order:

∀X ,Y ∈ L, X ≤ Y ⇐⇒ ∀ω ∈ Ω , X (ω) ≤ Y (ω) .

Definition 6. A risk measure (with domain L) is a mapping ρ : L → R.
A convex risk measure is a mapping ρ : L → R displaying the following295

properties:

• Convexity: ∀X ,Y ∈ L , ∀t ∈ [0, 1], ρ
(
tX + (1 − t)Y

)
≤ tρ

(
X

)
+

(1− t)ρ
(
Y
)
,

• Monotonicity: if Y ≥ X , then ρ
(
Y
)
≥ ρ

(
X

)
,

• Translation equivariance: ∀c ∈ R , ∀X ∈ L, ρ(c+X ) = c+ ρ(X ) .300

A coherent risk measure is a convex risk measure ρ : L → R with the
following additional property:

• Positive homogeneity: ∀t ≥ 0 , ∀X ∈ L, ρ(tX ) = tρ(X ) .
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Let P be a set of probabilities on
(
Ω,F

)
and let Υ be a function mapping

the space of probabilities on
(
Ω,F

)
onto R. The functional defined by

ρ(X ) = sup
P∈P

{
EP

[
X

]
−Υ(P)

}
(33)

is a convex risk measure on a proper domain L (for instance, the bounded
functions over Ω). The expression

ρ(X ) = sup
P∈P

EP

[
X

]
(34)

defines a coherent risk measure.
Under proper technical assumptions, it can be shown that any convex or305

coherent risk measure can be represented by the above expressions.

Conditional Risk Mappings. We present the conditional risk mappings as de-
fined in [28], extending the work of [29].

Let
(
Ω,F

)
be a measurable space, F1 ⊂ F2 ⊂ F be two σ-algebras, and

L1 ⊂ L2 be two vector spaces of functions Ω → R that are measurable with310

respect to F1 and F2, respectively.

Definition 7. A conditional risk mapping is a mapping ρ : L2 → L1.
A convex conditional risk mapping ρ : L2 → L1 has the following properties:

• Convexity: ∀X ,Y ∈ L2 , ∀t ∈ [0, 1], ρ
(
tX + (1 − t)Y

)
≤ tρ

(
X

)
+

(1− t)ρ
(
Y
)
,315

• Monotonicity: if Y ≥ X , then ρ
(
Y
)
≥ ρ

(
X

)
,

• Translation equivariance: ∀c ∈ L1 , ∀X ∈ L2, ρ(c+X ) = c+ρ(X ) .

Conditional and Dynamic Risk Measures. We follow [23, Section 3]. Let
(
Ω,F

)

be a measurable space, with a filtration F1 ⊂ · · · ⊂ FT ⊂ F, and L1 ⊂ · · · ⊂ LT

be vector spaces of functions Ω → R that are measurable with respect to F1,
. . . , FT , respectively. We set

Lt,T = Lt × · · · × LT , ∀t ∈ [[0, T ]] . (35)

An element {A
s
}T0 of Lt,T is an adapted process since every A

s
∈ Ls is Fs-

measurable. Conditional and dynamic risk measures have adapted processes
as arguments, to the difference of risk measures that take random variables as320

arguments.

Definition 8. Let t ∈ [[0, T ]]. A one-step conditional risk mapping is a condi-
tional risk mapping ρt : Lt+1 → Lt. A conditional risk measure is a mapping
ρt,T : Lt,T 7→ Lt.

A dynamic risk measure is a sequence
{
ρt,T

}T

t=0
of conditional risk measures.325
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Dynamic uncertainty criteria {̺t,T }
T
t=0, as introduced in Definition 4 corre-

spond to dynamic risk measures.

Remark 4. A conditional risk measure ρt,T : Lt,T 7→ Lt is said to be monotonous5

if, for all {A
s
}Ts=t and {A

s
}Ts=t in Lt,T , we have

∀s ∈ [[t, T ]] , A
s
≤ A

s
=⇒ ρt,T

({
A

s

}T

s=t

)
≤ ρt,T

({
A

s

}T

s=t

)
. (36)

Markov Risk Measures. In [23], Markov risk measures are defined with respect
to a given controlled Markov process. We adapt this definition to the setting
developed in the Introduction, and we consider the control stochastic dynamical
system (3b)

Xt+1 = ft(Xt,Ut,Wt) ,

where
{
Wt

}T

0
is a sequence of independent random variables. Then, for all

policy π, when Ut = πt(Xt) we obtain a Markov process {Xt}t∈[[0,T ]], where

Xt = Xx0,π
0,t

(
{Ws}

t−1
0

)
is given by the flow (23).330

Let
{
Ft

}T

t=0
be the filtration defined by Ft = σ(

{
Ws

}t

0
). For any t ∈ [[0, T ]],

let Vt be a set of functions mapping Xt into R such that we have v
(
X

x0,π
0,t

)
∈ Lt,

for all policy π ∈ Πad.

Definition 9. A one-step conditional risk measure ρt−1 : Lt → Lt−1 is a
Markov risk measure with respect to the control stochastic dynamical sys-
tem (3b) if there exists a function Ψt : Vt+1 × Xt × Ut → R, such that, for
any policy π ∈ Πad, and any function v ∈ Vt+1, we have

ρt−1

(
{Ws}

t
0 7→ v

(
X

x0,π
0,t+1

(
{Ws}

t
0

)))

=Ψt

(
v,Xx0,π

0,t

(
{Ws}

t−1
0

)
, πt

(
X

x0,π
0,t

(
{Ws}

t−1
0

)))
.

(37)

A Markov risk measure is said to be coherent (resp. convex) if, for any state
x ∈ Xt, any control u ∈ Ut, the function

v 7→ Ψt

(
v, x, u

)
, (38)

is a coherent (resp convex) risk measure on Vt+1 (equipped with a proper σ-
algebra).335

Dynamic Markov uncertainty criteria {̺t,T }
T
t=0, as introduced in Defini-

tion 4 correspond to Markov risk measures.

Correspondence Table.

5In [23, Section 3], a conditional risk measure is necessarily monotonous, by definition.
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Risk Measures Uncertainty Criteria

measurable space (Ω,F) (W[0:T ],FT ) measurable space

Ft-measurable F
(
W[0:t]; R̄

)

adapted processes L0,T

[
F(W[0:s]; R̄)

]T
s=0

adapted uncertainty
processes

dynamic risk {ρt,T }
T
t=0 {̺t,T }

T
t=0 dynamic uncertainty

measure criteria

Markov dynamic
{{
ρxt

t,T

}
xt∈Xt

}T

t=0

{{
̺xt

t,T

}
xt∈Xt

}T

t=0
Markov dynamic

risk measure uncertainty criterion

Table 1: Correspondence Table

Time-Consistency for Dynamic Risk Measures. The literature on risk measures
has introduced a notion of time-consistency for dynamic risk measures, that we340

recall here (see [30, 29, 9]).

Definition 10. A dynamic risk measure {ρt,T }
T
t=0, where ρt,T : Lt,T 7→ Lt,

is said to be time-consistent if, for any couples of times 0 ≤ t < t ≤ T , the
following property holds true. If two adapted stochastic processes {A

s
}T0 and

{A
s
}T0 in L0,T satisfy

A
s
=A

s
, ∀s ∈ [[t, t− 1]] , (39a)

ρt,T
(
{A

s
}T
t

)
≤ρt,T

(
{A

s
}T
t

)
, (39b)

then we have:
ρt,T

(
{A

s
}Tt

)
≤ ρt,T

(
{A

s
}Tt

)
. (39c)

Remark 5. In [23], the equality (39a) is replaced by the inequality

A
s
≤ A

s
, ∀s ∈ [[t, t]] . (39d)

Depending whether we choose (39a) or (39d) as assumption to define a time-
consistent dynamic risk measure, we have to adapt or not an assumption in
Theorem 9 (see Remark 10).345

2.3. Definitions of Time-Consistency

With the formalism of §2.2.1, we give a definition of time-consistency for
Markov optimization problems in §2.3.1, and for Markov dynamic uncertainty
criteria in §2.3.2.
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2.3.1. Time-Consistency for Markov Optimization Problems350

With the formalism of §2.2.1, we here give a definition of time-consistency
for Markov optimization problems. We refer the reader to Definition 5 for the
terminology.

Consider the Markov optimization problem
{{

(Pt)(x)
}
x∈Xt

}T

t=0
defined in (31).

For the clarity of exposition, suppose for a moment that any optimization Prob-
lem (Pt)(x) has a unique solution, that we denote πt,x = {πs

t,x}T−1
s=t ∈ Πad

t .
Consider 0 ≤ t < t ≤ T . Suppose that, starting from the state x at time t, the
flow (23) drives you to

x = X
x,π

t,t
(w) , π = πt,x (40)

at time t, along the scenario w ∈ W[0:T ] and adopting the optimal policy πt,x ∈

Πad
t . Arrived at x, you solve (Pt)(x) and get the optimal policy πt,x = {πs

t,x}T−1
s=t

∈

Πad
t
. Time-consistency holds true when

∀s ≥ t, πs
t,x = πs

t,x , (41)

that is, when the “new” optimal policy, obtained by solving (Pt)(x), coincides,
after time t, with the “old” optimal policy, obtained by solving (Pt)(x). In355

other words, you “stick to your plans” (here, a plan is a policy) and do not
reconsider your policy whenever you stop along an optimal path and optimize
ahead from this stop point.

To account for non-uniqueness of optimal policies, we propose the following
formal definition.360

Definition 11. For any policy π ∈ Π, suppose given a Markov dynamic un-

certainty criterion
{{
̺xt,π
t,T

}
xt∈Xt

}T

t=0
. We say that the Markov optimization

problem

(Pt)(x) min
π∈Πad

t

̺x,πt,T

({
Jx,π
t,s

}T

s=t

)
, ∀t ∈ [[0, T ]] , ∀x ∈ Xt . (42)

is time-consistent if, for any couple of times t ≤ t in [[0, T ]] and any state x ∈ Xt,

the following property holds: there exists a policy π♯ = {π♯
s}

T−1
s=t ∈ Πad

t such
that

• {π♯
s}

T−1
s=t is optimal for Problem Pt(x);

• the tail policy {π♯
s}

T−1
s=t

is optimal for Problem Pt(x), where x ∈ Xt is any365

state achieved by the flow X
x,π♯

t,t
in (23).

We stress that the above definition of time-consistency of a sequence of
families of optimization problems is contingent on the state x and on the dy-

namics
{
ft
}T−1

0
by the flow (23). In particular, we assume that, at each time

step, the control is taken only in function of the state: this defines the class of370

solutions as policies that are feedbacks of the state x.

20



2.3.2. Time-Consistency for Markov Dynamic Uncertainty Criteria

We provide a definition of time-consistency for Markov dynamic uncertainty
criteria, inspired by the definitions of time-consistency for, on the one hand,
dynamic risk measures (recalled in §2.2.2) and, on the other hand, Markov375

optimization problems. We refer the reader to Definition 4 for the terminology.

Definition 12. The Markov dynamic uncertainty criterion {{̺xt

t,T }xt∈Xt
}Tt=0 is

said to be time-consistent if, for any couple of times 0 ≤ t < t ≤ T , the following
property holds true.

If two adapted uncertainty processes {As}
T
0 and {As}

T
0 , satisfy

As = As , ∀s ∈ [[t, t]] , (43a)

ρx
t,T

(
{As}

T
t

)
≤ ρx

t,T

(
{As}

T
t

)
, ∀x ∈ Xt , (43b)

then we have:

ρ
x
t,T

(
{As}

T
t

)
≤ ρ

x
t,T

(
{As}

T
t

)
, ∀x ∈ Xt . (43c)

380

This Definition 12 of time-consistency is quite different from Definition 11.
Indeed, if the latter looks after consistency between solutions to intertemporal
optimization problems, the former is a monotonicity property. Several authors
establish connections between these two definitions [31, 32, 23, 33] for case spe-
cific problems. In the following §3, we provide what we think is one of the most385

systematic connections between time-consistency for Markov dynamic uncer-
tainty criteria and time-consistency for intertemporal optimization problems.

3. Proving Joint Time-Consistency

In §3.1, we introduce the notions of time and uncertainty-aggregators, de-
fine their composition, and outline the general four ways to craft a dynamic390

uncertainty criterion from one-step aggregators. In §3.2, we present two ways
to craft a nested dynamic uncertainty criterion; for each of them, we provide
sufficient monotonicity assumptions on one-step aggregators that ensure time-
consistency and the existence of a DPE. In §3.3, we introduce two commutation
properties, that will be the key ingredients for time-consistency and for the ex-395

istence of a DPE in non-nested cases. In §3.4, we present two ways to craft a
non-nested dynamic uncertainty criterion; for each of them, we provide suffi-
cient monotonicity and commutation assumptions on one-step aggregators that
ensure time-consistency and the existence of a DPE.

3.1. Aggregators and their Composition400

We introduce the notions of time and uncertainty-aggregators, define their
composition, and outline the general four ways to craft a dynamic uncertainty
criterion from one-step aggregators.
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3.1.1. One-Step Time-Aggregators and their Composition

Time preferences are reflected in how streams of costs — elements of R̄T+1,405

like {Jx,π
0,t (w)}

T
t=0 introduced in Definition 3 — are aggregated with respect to

time thanks to a function Φ : R̄T+1 → R̄, called multiple-step time-aggregator.
Commonly, multiple-step time-aggregators are built progressively backward.
In §1.1, the multiple-step time-aggregator is the time-separable and additive

Φ
{
cs
}T

s=0
=

∑T
s=0 cs, obtained as the initial value of the backward induc-410

tion
∑T

s=t cs = (
∑T

s=t+1 cs) + ct; the time-separable and multiplicative ag-

gregator Φ
{
cs
}T

s=0
=

∏T
s=0 cs is the initial value of the backward induction∏T

s=t cs = (
∏T

s=t+1 cs)ct. A multiple-step time-aggregator aggregates the T +1

costs {Jx,π
0,t (w)}

T
t=0, whereas a one-step time-aggregator aggregates two costs,

the current one and the “cost-to-go” (as in [13]).415

Definition 13. A multiple-step time-aggregator is a function mapping R̄
k into

R̄, where k ≥ 2. When k = 2, we call one-step time-aggregator a function
mapping R̄

2 into R̄.
A one-step time-aggregator is said to be non-decreasing if it is non-decreasing

in its second variable.420

We define the composition of time-aggregators as follows.

Definition 14. Let Φ1 : R̄2 → R̄ be a one-step time-aggregator and Φk : R̄k →
R̄ be a multiple-step time-aggregator. We define Φ1 ⊙ Φk : R̄k+1 → R̄ by

(
Φ1 ⊙ Φk

){
c1, c2, . . . , ck+1

}
= Φ1

{
c1,Φ

k
{
c2, . . . , ck+1

}}
. (44)

Quite naturaly, we define the composition of sequences of one-step time-
aggregators as follows.

Definition 15. Consider a sequence
{
Φt

}T−1

t=0
of one-step time-aggregators Φt :

R̄× R̄ → R̄, for t ∈ [[0, T − 1]]. For all t ∈ [[0, T − 1]], we define the composition
T−1

⊙
s=t

Φs as the multiple-step time-aggregator from R̄
T+1−t towards R̄, inductively

given by

T−1

⊙
t=T−1

Φt = ΦT−1 and
( T−1

⊙
s=t

Φs

)
= Φt ⊙

( T−1

⊙
s=t+1

Φs

)
. (45a)

That is, for all sequence c[t:T ] where cs ∈ R̄, we have:

( T−1

⊙
s=t

Φs

)(
c[t:T ]

)
= Φt

{
ct,

( T−1

⊙
s=t+1

Φs

)(
c[t+1:T ]

)}
. (45b)
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Example 6. Consider the sequence
{
Φt

}T−1

t=0
of one-step time-aggregators given

by
Φt

{
ct, ct+1

}
= αt(ct) + βt(ct)ct+1 , ∀t ∈ [[0, T − 1]] , (46)

where (αt)t∈[[0,T−1]] and (βt)t∈[[0,T−1]] are sequences of functions, each mapping
R̄ into R. We have

( T−1

⊙
s=t

Φs

){
cs
}T

t
=

T∑

s=t

(
αs

(
cs
) s−1∏

r=t

βr
(
cr
))

, ∀t ∈ [[0, T − 1]] , (47)

with the convention that αT (cT ) = cT .425

Example 7. Consider the one-step aggregators

Φ{c1, c2} = c1 + c2 , Ψ{c1, c2} = c1c2 .

The first one Φ corresponds to the sum, as in (3); the second one Ψ corre-
sponds to the product, as in (11). As an illustration, we form four compositions
(multiple-step time-aggregators):

Φ⊙ Φ{c1, c2, c3} = Φ
{
c1,Φ{c2, c3}

}
= c1 + c2 + c3 ,

Ψ⊙Ψ{c1, c2, c3} = Ψ
{
c1,Ψ{c2, c3}

}
= c1c2c3 ,

Φ⊙Ψ{c1, c2, c3} = Φ
{
c1,Ψ{c2, c3}

}
= c1 + c2c3 ,

Ψ⊙ Φ{c1, c2, c3} = Ψ
{
c1,Φ{c2, c3}

}
= c1(c2 + c3).

We extend the composition
( T−1

⊙
s=t

Φs

)
: R̄T+1−t → R̄ into a mapping (48) as

follows.

Definition 16. Consider a sequence
{
Φt

}T−1

t=0
of one-step time-aggregators, for

t ∈ [[0, T − 1]]. For t ∈ [[0, T − 1]], we define the composition6
〈

T−1

⊙
s=t

Φs

〉
as a

mapping 〈
T−1

⊙
s=t

Φs

〉
:
(
F(W[0:T ]; R̄)

)T−t+1

→ F(W[0:T ]; R̄) (48)

by, for any {A}Tt ∈
(
F(W[0:T ]; R̄)

)T−t+1

,

(〈
T−1

⊙
s=t

Φs

〉(
{A}Tt

))(
w
)
=

( T−1

⊙
s=t

Φs

)(
{At

(
w
)
}Tt

)
, ∀w ∈ W[0:T ] . (49)

In other words, we simply plug the values {At

(
w
)
}Tt into

( T−1

⊙
s=t

Φs

)
.

6We will consistently use the symbol
〈 〉

to denote a mapping with image a set of func-

tions.
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3.1.2. One-Step Uncertainty-Aggregators and their Composition430

As with time, risk or uncertainty preferences are materialized by a function
G : F(W[0:T ]; R̄) → R̄, called multiple-step uncertainty-aggregator. A multiple-
step aggregator is usually defined on a subset F of F(W[0:T ]; R̄) (for example
the measurable and integrable functions), and then extended to F(W[0:T ]; R̄)
by setting G[A] = +∞ for any function A /∈ F. Indeed, as we are interested in435

minimizing G, being not defined or equal to +∞ amount to the same result.
In the first part of §1.1, the multiple-step uncertainty-aggregator is the ex-

tended expectation with respect to the probability P; still denoted by EP, it is
defined as the usual expectation if the operand is measurable and integrable,
and as +∞ otherwise. In the second part of §1.1, the multiple-step uncertainty-440

aggregator is the fear operator, namely the supremum supw∈W[0:T ]
over scenarios

in W[0:T ].

Definition 17. Let t ∈ [[0, T ]] and s ∈ [[t, T ]]. A [t :s]-multiple-step uncertainty-
aggregator is a mapping7 G

[t:s] from F(W[t:s]; R̄) into R̄. When t = s, we call

G
[t:t] a t-one-step uncertainty-aggregator.445

A [t :s]-multiple-step uncertainty-aggregator is said to be non-decreasing if,
for any functions8 Dt and Dt in F(W[t:s]; R̄), we have

(
∀w[t:s] ∈ W[t:s] , Dt

(
w[t:s]

)
≤ Dt

(
w[t:s]

))
=⇒ G

[t:s]
[
Dt

]
≤ G

[t:s]
[
Dt

]
.

Definition 18. Let t ∈ [[1, T ]] and s ∈ [[t, T ]]. To a [t :s]-multiple-step uncertainty-
aggregator G[t:s], we attach a mapping9

〈
G

[t:s]
〉
: F(W[0:s]; R̄) → F(W[0:t−1]; R̄) , (50a)

obtained by freezing the first variables as follows. For any A : W[0:s] → R̄, and
any w[0:s] ∈ W[0:s], we set

(〈
G

[t:s]
〉 [
A
])(

w[0:t−1]

)
= G

[t:s]
[
w[t:s] 7→ A

(
w[0:t−1], w[t:s]

)]
. (50b)

Multiple-step uncertainty-aggregators are commonly built progressively back-
ward: in §1.1, the expectation operator EP0⊗···⊗PT

is the initial value of the in-
duction EPt⊗···⊗PT

= EPt
EPt+1⊗···⊗PT

; the fear operator supw∈W[0:T ]
is the initial

value of the induction supw∈W[t:T ]
= supwt∈Wt

supw∈W[t+1:T ]
.450

We define the composition of uncertainty-aggregators as follows.

7The superscript notation indicates that the domain of the mapping G[t:s] is F(W[t:s]; R̄)

(not to be confused with G[t:s] =
{
Gr

}s

r=t
).

8We will consistently use the symbol D to denote a function in F
(
W[t:s]; R̄

)
, that is,

D : W[t:s] → R̄.
9See Footnote 6 about the notation 〈 〉.
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Definition 19. Let t ∈ [[0, T ]] and s ∈ [[t + 1, T ]]. Let G
[t:t] : F(Wt; R̄) → R̄

be a t-one-step uncertainty-aggregator, and G
[t+1:s] : F(W[t+1:s]; R̄) → R̄ be a

[t+ 1:s]-multiple-step uncertainty-aggregator. We define the [t :s]-multiple-step
uncertainty-aggregator G[t:t] ⊡G

[t:s] by
(
G

[t:t]
⊡G

[t:s]
)[
At

]
= G

[t:t]
[
wt 7→ G

[t+1:s]
[
w[t+1:s] 7→ At

(
wt, w[t+1:s]

)]]
, (51)

for all function At ∈ F
(
W[t:s]; R̄

)
.

Quite naturaly, we define the composition of sequences of one-step uncertainty-
aggregators as follows.

Definition 20. We say that a sequence
{
Gt

}T

t=0
of one-step uncertainty-aggregators455

is a chained sequence if Gt is a t-one-step uncertainty-aggregator, for all t ∈
[[0, T ]].

Consider a chained sequence
{
Gt

}T

t=0
of one-step uncertainty-aggregators.

For t ∈ [[0, T ]], we define the composition
T

⊡
s=t

Gs as the [t : T ]-multiple-step

uncertainty-aggregator

T

⊡
s=t

Gs : F
(
W[t:T ]; R̄

)
→ R̄ , (52)

inductively given by

T

⊡
s=T

Gs = GT and
( T

⊡
s=t

Gs

)
= Gt ⊡

( T

⊡
s=t+1

Gs

)
. (53a)

That is, for all function Bt ∈ F
(
W[t:T ]; R̄

)
, we have:

( T

⊡
s=t

Gs

)[
Bt

]
= Gt

[
wt 7→

( T

⊡
s=t+1

Gs

)[
w[t+1:T ] 7→ Bt

(
wt, w[t+1:T ]

)]]
. (53b)

3.1.3. Crafting Dynamic Uncertainty Criteria from Aggregators

We outline four ways to craft a dynamic uncertainty criterion from aggre-460

gators. Let A[0:T ] =
{
As

}T

s=0
denote an arbitrary adapted uncertainty process

(that is, As : W[0:s] → R̄, as in Definition 1).

Non Nested Dynamic Uncertainty Criteria. The two following ways to craft a
dynamic uncertainty criterion {̺t,T }

T
t=0 display a natural economic interpreta-

tion in term of preferences over streams of uncertain costs like A[0:T ]. They mix465

time and uncertainty preferences, either first with respect to uncertainty then
with respect to time (UT) or first with respect to time, then with respect to
uncertainty (TU). However, they are not directly amenable to a DPE.

TU, or time, then uncertainty. Let t ∈ [[0, T ]] be fixed.
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• First, we aggregate A[t:T ] with respect to time by means of a multiple-470

step time-aggregator Φt from R̄
T−t+1 towards R̄, and we obtain

Φt
(
A[t:T ]

)
.

• Second, we aggregate Φt
(
A[t:T ]

)
with respect to uncertainty by means

of a multiple-step uncertainty-aggregator G[t:T ], and we obtain

̺t,T
(
A[t:T ]

)
=

〈
G

[t:T ]
〉 [

Φt
(
A[t:T ]

)]
. (54)

All the examples in §1.1 belong to this TU class, and some in §1.2.

UT, or uncertainty, then time.

• First, we aggregate A[t:T ] with respect to uncertainty by means of a475

sequence
[
Gs

[t:s]
]T
s=t

of multiple-step time-aggregatorsGt
[t:s] : F(W[t:s]; R̄) →

R̄, and we obtain a sequence
{〈

Gs
[t:s]

〉 [
As

]}T

s=t
.

• Second, we aggregate
{〈

Gs
[t:s]

〉 [
As

]}T

s=t
by means of a multiple-

step time-aggregator Φt from R̄
T−t+1 towards R̄, and we obtain

̺t,T
(
A[t:T ]

)
= Φt

({〈
Gs

[t:t]
〉 [
As

]}T

s=t

)
. (55)

Some examples in §1.2 belong to this UT class.

Nested Dynamic Uncertainty Criteria. The two following ways to craft a dy-
namic uncertainty criterion {̺t,T }

T
t=0 do not display a natural economic inter-480

pretation in term of preferences [34], but they are directly amenable to a DPE.
Indeed, they are produced by a backward induction, nesting uncertainty and
time. Consider

• on the one hand, a sequence
{
Φt

}T−1

t=0
of one-step time-aggregators,

• on the other hand, a chained sequence
{
Gt

}T

t=0
of one-step uncertainty-485

aggregators.

NTU, or nesting time, then uncertainty, then time, etc. We define a dynamic
uncertainty criterion by the following backward induction:

̺T,T

(
AT

)
= 〈GT 〉

[
AT

]
, (56a)

̺t,T

({
As

}T

s=t

)
= 〈Gt〉

[
Φt

{
At, ̺t+1,T

({
As

}T

s=t+1

)}]
, ∀t ∈ [[0, T − 1]] .

(56b)

By the Definition 18 of 〈Gt〉, we have, by construction, produced a dy-
namic uncertainty criterion {̺t,T }

T
t=0 (see Definition 4). Indeed, recalling
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that As : W[0:s] → R̄), for s ∈ [[0, T ]], we write

F
(
W[0:T−1];R̄

)
︷ ︸︸ ︷
̺T,T

(
AT

)
= 〈GT 〉

[
F
(
W[0:T ];R̄

)
︷︸︸︷
AT

]
,

̺t,T

({
As

}T

s=t

)

︸ ︷︷ ︸
F
(
W[0:t−1];R̄

)
= 〈Gt〉

[
Φt

{
At︸︷︷︸

F
(
W[0:t];R̄

)
, ̺t+1,T

(

[
F
(
W[0:s];R̄

)]T
s=t+1︷ ︸︸ ︷{

As

}T

s=t+1

)

︸ ︷︷ ︸
F
(
W[0:t];R̄

)

}]
,

∀t ∈ [[0, T − 1]] .

NUT, or nesting uncertainty, then time, then uncertainty, etc. We define a
dynamic uncertainty criterion by the following backward induction:

̺T,T

(
AT

)
= 〈GT 〉

[
AT

]
, (57a)

̺t,T

({
As

}T

s=t

)
= Φt

{
〈Gt〉

[
At

]
, 〈Gt〉

[
̺t+1,T

({
As

}T

s=t+1

)]}
, (57b)

∀t ∈ [[0, T − 1]] .

Some examples in §1.2 belong to this nested class, made of NTU and NUT.

3.2. Time-Consistency for Nested Dynamic Uncertainty Criteria

Consider

• on the one hand, a sequence
{
Φt

}T−1

t=0
of one-step time-aggregators,490

• on the other hand, a chained sequence
{
Gt

}T

t=0
of one-step uncertainty-

aggregators.

With these ingredients, we present two ways to craft a nested dynamic uncer-
tainty criterion {̺t,T }

T
t=0, as introduced in Definition 4. For each of them, we

establish time-consistency.495
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3.2.1. NTU Dynamic Uncertainty Criterion

With a slight abuse of notation, we define the sequence
{
(PNTU

t )(x)
}T

t=0
of

optimization problems parameterized by the state x ∈ Xt as the nesting

(PNTU
t )(x) min

π∈Πad
t

Gt

[
Φt

{
Jt
(
xt, ut, wt

)
,

Gt+1

[
Φt+1

{
Jt+1

(
xt+1, ut+1, wt+1

)
, · · · (58a)

GT−1

[
ΦT−1

{
JT−1

(
xT−1, uT−1, wT−1

)
,

GT

[
JT

(
xT , wT

)]}]
· · ·

}]}]
,

s.t. xt = x , (58b)

xs+1 = fs
(
xs, us, ws

)
, (58c)

us = πs(xs) , (58d)

us ∈ Us(xs) , (58e)

where constraints are satisfied for all s ∈ [[t, T − 1]].

Definition 21. We construct inductively a NTU-dynamic uncertainty criterion{
̺NTU
t,T

}T

t=0
by, for any adapted uncertainty process

{
As

}T

s=0
,

̺NTU
T

(
AT

)
= 〈GT 〉

[
AT

]
, (59a)

̺NTU
t,T

({
As

}T

s=t

)
= 〈Gt〉

[
Φt

{
At, ̺

NTU
t+1,T

({
As

}T

s=t+1

)}]
, ∀t ∈ [[0, T − 1]] .

(59b)

We define the Markov optimization problem (58) formally by

(PNTU
t )(x) min

π∈Πad
t

̺NTU
t,T

({
Jx,π
t,s

}T

s=t

)
, ∀t ∈ [[0, T ]] , ∀x ∈ Xt , (60)

where the functions Jx,π
t,s are defined by (27).

Definition 22. We define the value functions inductively by the DPE

V NTU
T (x) = GT

[
JT (x, ·)

]
, ∀x ∈ XT , (61a)

V NTU
t (x) = inf

u∈Ut(x)
Gt

[
Φt

{
Jt(x, u, ·), V

NTU
t+1 ◦ ft(x, u, ·)

}]
, (61b)

∀t ∈ [[0, T − 1]] , ∀x ∈ Xt .

500
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The following Proposition 8 expresses sufficient conditions under which any
Problem (PNTU

t )(x), for any time t ∈ [[0, T − 1]] and any state x ∈ Xt, can be
solved by means of the value functions {V NTU

t }Tt=0 in Definition 22.

Proposition 8. Assume that

• for all t ∈ [[0, T − 1]], Φt is non-decreasing,505

• for all t ∈ [[0, T ]], Gt is non-decreasing.

Assume that there exists10 an admissible policy π♯ ∈ Πad such that

π♯
t(x) ∈ argmin

u∈Ut(x)

Gt

[
Φt

{
Jt(x, u, ·),V

NTU

t+1 ◦ ft(x, u, ·)

}]
,

∀t ∈ [[0, T − 1]] , ∀x ∈ Xt .

(62)

Then, π♯ is an optimal policy for any Problem (PNTU
t )(x), for all t ∈ [[0, T ]] and

for all x ∈ Xt, and

V NTU

t (x) = min
π∈Πad

t

̺NTU

t,T

({
Jx,π
t,s

}T

s=t

)
, ∀t ∈ [[0, T ]] , ∀x ∈ Xt . (63)

Proof. In the proof, we drop the superscript in the value function V NTU
t , that

we simply denote by Vt. Let π ∈ Πad be a policy. For any t ∈ [[0, T ]], we define
V π
t (x) as the intertemporal cost from time t to time T when following policy π

starting from state x:

V π
t (x) = ̺NTU

t,T

({
Jx,π
t,s

}T

s=t

)
, ∀t ∈ [[0, T ]] , ∀x ∈ Xt . (64)

This expression is well defined because Jx,π
t,s : W[t:s] → R̄, for s ∈ [[t, T ]] by (28).

First, we show that the functions {V π
t }Tt=0 satisfy a backward equation “à

la Bellman”:

V π
t (x) = Gt

[
Φt

{
Jt(x, πt(x), ·), V

π
t+1◦ft(x, πt(x), ·)

}]
, ∀t ∈ [[0, T−1]] , ∀x ∈ Xt .

(65)
Indeed, we have,

V π
T (x) = ̺NTU

T,T

(
Jx,π
T,T

)
by the definition (64) of V π

T (x),

= ̺NTU
T,T

(
JT (x, ·)

)
by (27) that defines Jx,π

T,T ,

= 〈GT 〉
[
JT (x, ·)

]
by the definition (59a) of ̺NTU

T ,

= GT

[
JT (x, ·)

]
by Definition 18 of 〈GT 〉.

10It may be difficult to prove the existence of a measurable selection among the solutions
of (62). Since it is not our intent to consider such issues, we make the assumption that an
admissible policy π♯ ∈ Πad exists, where the definition of the set Πad is supposed to include
all proper measurability conditions.
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We also have, for t ∈ [[0, T − 1]],

V π
t (x) = ̺NTU

t,T

({
Jx,π
t,s

}T

s=t

)

by the definition (64) of V π
t (x),

= 〈Gt〉

[
Φt

{
Jx,π
t,t , ̺

NTU
t+1,T

({
Jx,π
t,s

}T

s=t+1

)}]

by the definition (59b) of ̺NTU
t+1,T ,

= 〈Gt〉

[
Φt

{
Jx,π
t,t , ̺

NTU
t+1,T

({
J
ft(x,πt(x),·),π
t+1,s

}T

s=t+1

)}]

by the flow property (29),

= 〈Gt〉

[
Φt

{
Jx,π
t,t , V

π
t+1 ◦ ft(x, πt(x), ·)

}]

by the definition (64) of V π
t (x),

= 〈Gt〉

[
Φt

{
Jt(x, πt(x), ·), V

π
t+1 ◦ ft(x, πt(x), ·)

}]

by the flow property (29),

= Gt

[
Φt

{
Jt(x, πt(x), ·), V

π
t+1 ◦ ft(x, πt(x), ·)

}]

by Definition 18 of 〈Gt〉.

Second, we show that Vt(x), as defined in (61) is lower than the value of the
optimization problem PNTU

t (x) in (58). For this purpose, we denote by (Ht)
the following assertion

(Ht) : ∀x ∈ Xt , ∀π ∈ Πad, Vt(x) ≤ V π
t (x) .

By definition of V π
T (x) in (64) and of VT (x) in (61a), assertion (HT ) is true.510

Now, assume that (Ht+1) holds true. Let x be an element of Xt. Then, by
definition of Vt(x) in (61b), we obtain

Vt(x) ≤ inf
π∈Πad

Gt

[
Φt

{
Jt
(
x, πt(x), ·

)
, Vt+1 ◦ ft

(
x, πt(x), ·

)}]
, (66)

since, for all π ∈ Πad we have πt(x) ∈ Ut(x). By (Ht+1) we have, for any
π ∈ Πad,

Vt+1 ◦ ft
(
x, πt(x), ·

)
≤ V π

t+1 ◦ ft
(
x, πt(x), ·

)
.

From monotonicity of Φt and monotonicity of Gt, we deduce:

Gt

[
Φt

{
Jt
(
x, πt(x), ·

)
, Vt+1 ◦ ft

(
x, πt(x), ·

)}]

≤ Gt

[
Φt

{
Jt
(
x, πt(x), ·

)
, V π

t+1 ◦ ft
(
x, πt(x), ·

)}]
.

(67)
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We obtain:

Vt(x) ≤ inf
π∈Πad

Gt

[
Φt

{
Jt
(
x, πt(x), ·

)
, Vt+1 ◦ ft

(
x, πt(x), ·

)}]
by (66),

≤ inf
π∈Πad

Gt

[
Φt

{
Jt
(
x, πt(x), ·

)
, V π

t ◦ ft+1

(
x, πt(x), ·

)}]
by (67),

= inf
π∈Πad

V π
t (x) by the definition (64) of V π

t (x).

Hence, assertion (Ht) holds true.

Third, we show that the lower bound Vt(x) for the value of the optimization
problem PNTU

t (x) is achieved for the policy π♯ in (62). For this purpose, we
consider the following assertion

(H ′
t) : ∀x ∈ Xt, V π♯

t (x) = Vt(x) .

By definition of V π♯

T (x) in (64) and of VT (x) in (61a), (H ′
T ) holds true. For

t ∈ [[0, T − 1]], assume that (H ′
t+1) holds true. Let x be in Xt. We have

Vt(x) = Gt

[
Φt

{
Jt
(
x, π♯

t(x), ·
)
, Vt+1 ◦ ft(x, π

♯
t(x), ·)

}]
by definition of π♯ in (62),

= Gt

[
Φt

{
Jt
(
x, π♯

t(x), ·
)
, V π♯

t+1 ◦ ft(x, π
♯
t(x), ·)

}]
by (H ′

t+1)

= V π♯

t (x) by (64).

Hence (H ′
t) holds true, and the proof is complete by induction.

The following Theorem 9 is our main result on time-consistency in the NTU
case.

Theorem 9. Assume that515

• for all t ∈ [[0, T − 1]], Φt is non-decreasing,

• for all t ∈ [[0, T ]], Gt is non-decreasing.

Then

1. the NTU-dynamic uncertainty criterion
{
̺NTU

t,T

}T

t=0
defined by (59) is

time-consistent;520

2. the Markov optimization problem
{{

(PNTU
t )(x)

}
x∈Xt

}T

t=0
defined in (58)

is time-consistent, as soon as there exists an admissible policy π♯ ∈ Πad

such that (62) holds true.

Proof. In the proof, we drop the superscripts in V NTU
t , (PNTU

t )(x) and ̺NTU
t,T .

525
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The second assertion is a straightforward consequence of the property that π♯

is an optimal policy11 for all Problems (Pt)(x). Hence, the Markov optimization
problem (58) is time-consistent.

We now prove the first assertion.
Let t < t be both in [[0, T ]]. Consider two adapted uncertainty processes

{As}
T
0 and {As}

T
0 , where As : W[0:T ] → R̄ and As : W[0:T ] → R̄, satisfying (39a)

and (39b), that is,

As =As , ∀s ∈ [[t, t]] , (68a)

̺t,T
(
{As}

T
t

)
≤̺t,T

(
{As}

T
t

)
, (68b)

We show by backward induction that, for all t ∈ [[t, t]], the following state-
ment (Ht) holds true:

(Ht) ̺t,T
(
{As}

T
t

)
≤ ̺t,T

(
{As}

T
t

)
. (69)

First, we observe that (Ht) holds true by assumption (68b). Second, let us
assume that, for t > t, the assertion (Ht) holds true. Then, by (Ht), and as
At−1 = At−1 by (68a), monotonicity12 of Φt−1 yields

Φt−1

{
At−1, ̺t,T

(
{As}

T
t

)}
≤ Φt−1

{
At−1, ̺t,T

(
{As}

T
t

)}
.

Monotonicity of Gt−1 then gives

〈Gt−1〉
[
Φt−1

{
At−1, ̺t,T

(
{As}

T
t

)}]
≤ 〈Gt−1〉

[
Φt−1

{
At−1, ̺t,T

(
{As}

T
t

)}]
.

By definition of ̺t−1,T in (59), we obtain (Ht−1). This ends the proof by530

induction.

Remark 10. As indicated in Remark 5, if we choose the inequality

∀s ∈ [[t, t]], As ≤ As , (70)

as assumption to define a time-consistent dynamic uncertainty criterion (rather
than the equality (43a)), we have to make, in Theorem 9, the assumption
“for all t ∈ [[0, T − 1]],”

• “the two-variables function (ct, ct+1) 7→ Φt(ct, ct+1) is non-decreasing”,535

• instead of “for all ct, the single variable function ct+1 7→ Φt(ct, ct+1) is
non-decreasing”.

11In all rigor, we should say that, for all t ∈ [[0, T −1]], the tail policy {π♯
s}

T−1
s=t is an optimal

policy for Problem (Pt)(x), for any x ∈ Xt.
12Recall that, by Definition 13, Φt−1 is non-decreasing in its second argument. Remark 10

below will enlighten this comment.
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3.2.2. NUT Dynamic Uncertainty Criterion

With a slight abuse of notation, we define the sequence
{
(PNUT

t )(x)
}T

t=0
of

optimization problems parameterized by the state x ∈ Xt as the nesting

(PNUT
t )(x) min

π∈Πad
t

Φt

{
Gt

[
Jt
(
xt, ut, wt

)]
,Gt

[

Φt+1

{
Gt+1

[
Jt+1

(
xt+1, ut+1, wt+1

)]
, · · · (71a)

ΦT−1

{
GT−1

[
JT−1

(
xT−1, uT−1, wT−1

)]
,

GT

[
JT

(
xT , wT

)]}
· · ·

}]}
,

s.t. xt = x , (71b)

xs+1 = fs
(
xs, us, ws

)
, (71c)

us = πs(xs) , (71d)

us ∈ Us(xs) , (71e)

where constraints are satisfied for all s ∈ [[t, T − 1]].

Definition 23. We construct inductively a NUT-dynamic uncertainty criterion{
̺NUT
t,T

}T

t=0
by, for any adapted uncertainty process

{
As

}T

s=0
,

̺NUT
T

(
AT

)
= 〈GT 〉

[
AT

]
, (72a)

̺NUT
t,T

({
As

}T

s=t

)
= Φt

{
〈Gt〉

[
At

]
, 〈Gt〉

[
̺NUT
t+1,T

({
As

}T

s=t+1

)]}
, (72b)

∀t ∈ [[0, T − 1]] .

540

We define the Markov optimization problem (71) formally by

(PNUT
t )(x) min

π∈Πad
t

̺NUT
t,T

({
Jx,π
t,s

}T

s=t

)
, ∀t ∈ [[0, T ]] , ∀x ∈ Xt , (73)

where the functions Jx,π
t,s are defined by (27).

Definition 24. We define the value functions inductively by the DPE

V NUT
T (x) = GT

[
JT (x, ·)

]
, ∀x ∈ XT , (74a)

V NUT
t (x) = inf

u∈Ut(x)
Φt

{
Gt

[
Jt(x, u, ·)

]
,Gt

[
V NUT
t+1 ◦ ft(x, u, ·)

]}
, (74b)

∀t ∈ [[0, T − 1]] , ∀x ∈ Xt .
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The following Proposition 11 expresses sufficient conditions under which any
Problem (PNUT

t )(x), for any time t ∈ [[0, T − 1]] and any state x ∈ Xt, can be
solved by means of the value functions {V NUT

t }Tt=0 in Definition 24.545

Proposition 11. Assume that

• for all t ∈ [[0, T − 1]], Φt is non-decreasing,

• for all t ∈ [[0, T ]], Gt is non-decreasing.

Assume that there exists13 an admissible policy π♯ ∈ Πad such that

π♯
t(x) ∈ argmin

u∈Ut(x)

Φt

{
Gt

[
Jt(x, u, ·)

]
,Gt

[
V NUT

t+1 ◦ ft(x, u, ·)
]}

,

∀t ∈ [[0, T − 1]] , ∀x ∈ Xt .

(75)

Then, π♯ is an optimal policy for any Problem (PNUT
t )(x), for all t ∈ [[0, T ]] and

for all x ∈ Xt, and

V NUT

t (x) = min
π∈Πad

t

̺NUT

t,T

({
Jx,π
t,s

}T

s=t

)
, ∀t ∈ [[0, T ]] , ∀x ∈ Xt . (76)

Proof. In the proof, we drop the superscript in the value function V NUT
t , that

we simply denote by Vt. Let π ∈ Πad be a policy. For any t ∈ [[0, T ]], we define
V π
t (x) as the intertemporal cost from time t to time T when following policy π

starting from state x:

V π
t (x) = ̺NUT

t,T

({
Jx,π
t,s

}T

s=t

)
, ∀t ∈ [[0, T ]] , ∀x ∈ Xt . (77)

This expression is well defined because Jx,π
t,s : W[t:s] → R̄, for s ∈ [[t, T ]] by (28).550

First, we show that the functions {V π
t }Tt=0 satisfy a backward equation “à

la Bellman”:

V π
t (x) = Φt

{
Gt

[
Jt(x, πt(x), ·)

]
,Gt

[
V π
t+1◦ft(x, πt(x), ·)

]}
, ∀t ∈ [[0, T−1]] , ∀x ∈ Xt .

(78)
Indeed, we have,

V π
T (x) = ̺NUT

T,T

(
Jx,π
T,T

)
by the definition (77) of V π

T (x),

= ̺NUT
T,T

(
JT (x, ·)

)
by (27) that defines Jx,π

T,T ,

= 〈GT 〉
[
JT (x, ·)

]
by the definition (72a) of ̺NTU

T ,

= GT

[
JT (x, ·)

]
by Definition 18 of 〈GT 〉.

13See Footnote 10.
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We also have, for t ∈ [[0, T − 1]],

V π
t (x) = ̺NUT

t,T

({
Jx,π
t,s

}T

s=t

)

by the definition (77) of V π
t (x),

= Φt

{
〈Gt〉

[
Jx,π
t,t

]
, 〈Gt〉

[
̺NUT
t+1,T

({
Jx,π
t,s

}T

s=t+1

)]}

by the definition (72b) of ̺NUT
t+1,T ,

= Φt

{
〈Gt〉

[
Jx,π
t,t

]
, 〈Gt〉

[
̺NUT
t+1,T

({
J
ft(x,πt(x),·),π
t+1,s

}T

s=t+1

)]}

by the flow property (29)

= Φt

{
〈Gt〉

[
Jx,π
t,t

]
, 〈Gt〉

[
V π
t+1 ◦ ft(x, πt(x), ·)

]}

by the definition (77) of V π
t (x),

= Φt

{
〈Gt〉

[
Jt(x, πt(x), ·)

]
, 〈Gt〉

[
V π
t+1 ◦ ft(x, πt(x), ·)

]}

by the flow property (29)

= Φt

{
Gt

[
Jt(x, πt(x), ·)

]
,Gt

[
V π
t+1 ◦ ft(x, πt(x), ·)

]}

by Definition 18 of 〈Gt〉.

Second, we show that Vt(x), as defined in (74) is lower than the value of the
optimization problem PNUT

t (x) in (71). For this purpose, we denote by (Ht)
the following assertion

(Ht) : ∀x ∈ Xt , ∀π ∈ Πad, Vt(x) ≤ V π
t (x) .

By definition of V π
T (x) in (77) and of VT (x) in (74a), assertion (HT ) is true.

Now, assume that (Ht+1) holds true. Let x be an element of Xt. Then, by
definition of Vt(x) in (74b), we obtain

Vt(x) ≤ inf
π∈Πad

Φt

{
Gt

[
Jt
(
x, πt(x), ·

)]
,Gt

[
Vt+1 ◦ ft

(
x, πt(x), ·

)]}
, (79)

since, for all π ∈ Πad we have πt(x) ∈ Ut(x). By (Ht+1) we have, for any
π ∈ Πad,

Vt+1 ◦ ft
(
x, πt(x), ·

)
≤ V π

t+1 ◦ ft
(
x, πt(x), ·

)
.

From monotonicity of Φt and monotonicity of Gt, we deduce:

Φt

{
Gt

[
Jt
(
x, πt(x), ·

)]
,Gt

[
Vt+1 ◦ ft

(
x, πt(x), ·

)]}

≤ Φt

{
Gt

[
Jt
(
x, πt(x), ·

)]
,Gt

[
V π
t+1 ◦ ft

(
x, πt(x), ·

)]}
.

(80)
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We obtain:

Vt(x) ≤ inf
π∈Πad

Φt

{
Gt

[
Jt
(
x, πt(x), ·

)]
,Gt

[
Vt+1 ◦ ft

(
x, πt(x), ·

)]}
by (79),

≤ inf
π∈Πad

Φt

{
Gt

[
Jt
(
x, πt(x), ·

)]
,Gt

[
V π
t+1 ◦ ft+1

(
x, πt(x), ·

)]}
by (80),

= inf
π∈Πad

V π
t (x) by the definition (77) of V π

t (x).

Hence (Ht) holds true.

Third, we show that the lower bound Vt(x) for the value of the optimization
problem PNUT

t (x) is achieved for the policy π♯ in (75). For this purpose, we
consider the following assertion

(H ′
t) : ∀x ∈ Xt, V π♯

t (x) = Vt(x) .

By definition of V π♯

T (x) in (77) and of VT (x) in (74a), (H ′
T ) holds true. For

t ∈ [[0, T − 1]], assume that (H ′
t+1) holds true. Let x be in Xt. We have

Vt(x) = Φt

{
Gt

[
Jt
(
x, π♯

t(x), ·
)]
,Gt

[
Vt+1 ◦ ft

(
x, πt(x), ·

)]}
by definition of π♯ in (75),

= Φt

{
Gt

[
Jt
(
x, π♯

t(x), ·
)]
,Gt

[
V π♯

t+1 ◦ ft
(
x, πt(x), ·

)]}
by (H ′

t+1)

= V π♯

t (x) by (77).

Hence (H ′
t) holds true, and the proof is complete by induction.

The following Theorem 12 is our main result on time-consistency in the NUT555

case.

Theorem 12. Assume that

• for all t ∈ [[0, T − 1]], Φt is non-decreasing,

• for all t ∈ [[0, T ]], Gt is non-decreasing.

Then560

1. the NUT-dynamic uncertainty criterion
{
̺NUT

t,T

}T

t=0
defined by (72) is

time-consistent;

2. the Markov optimization problem
{{

(PNUT
t )(x)

}
x∈Xt

}T

t=0
defined in (71)

is time-consistent, as soon as there exists an admissible policy π♯ ∈ Πad

such that (75) holds true.565

Proof. In the proof, we drop the superscripts in V NUT
t , (PNUT

t )(x) and ̺NUT
t,T .
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The second assertion is a straightforward consequence of the property that π♯

is an optimal policy14 for all Problems (Pt)(x). Hence, the Markov optimization
problem (71) is time-consistent.570

We now prove the first assertion. We suppose given a policy π ∈ Π, and a
sequence {xs}

T
0 of states, where xs ∈ Xs.

Let t < t be both in [[0, T ]]. Consider two adapted uncertainty processes
{As}

T
0 and {As}

T
0 , where As : W[0:T ] → R̄ and As : W[0:T ] → R̄, satisfying (39a)

and (39b), that is,

As = As , ∀s ∈ [[t, t]] , (81a)

̺t,T
(
{As}

T
t

)
≤ ̺t,T

(
{As}

T
t

)
, (81b)

We show by backward induction that, for all t ∈ [[t, t]], the following state-
ment (Ht) holds true:

(Ht) ̺t,T
(
{As}

T
t

)
≤ ̺t,T

(
{As}

T
t

)
. (82)

First, we observe that (Ht) holds true by assumption (81b). Second, let us as-
sume that, for t > t, the assertion (Ht) holds true. Then, by (Ht), monotonicity
of Gt−1 gives

〈Gt−1〉
[
̺t,T

(
{As}

T
t

)]
≤ 〈Gt−1〉

[
̺t,T

(
{As}

T
t

)]
.

As At−1 = At−1 by (81a), monotonicity15 of Φt−1 yields

Φt−1

{
At−1, 〈Gt−1〉

[
̺t,T

(
{As}

T
t

)]}
≤ Φt−1

{
At−1, 〈Gt−1〉

[
̺t,T

(
{As}

T
t

)]}
.

By definition of ̺t−1,T in (72), we obtain (Ht−1). This ends the proof by
induction.

3.3. Commutation of Aggregators575

We introduce two notions of commutation between time and uncertainty
aggregators.

3.3.1. TU-Commutation of Aggregators

The following notion of TU-commutation between time and uncertainty ag-
gregators stands as one of the key ingredients for a DPE.580

Definition 25. Let t ∈ [[0, T ]] and s ∈ [[t+1, T ]]. A [t :s]-multiple-step uncertainty-
aggregator G

[t:s] is said to TU-commute with a one-step time-aggregator Φ if

G
[t:s]

[
w[t:s] 7→ Φ

{
c,Dt

(
w[t:s]

)}]
= Φ

{
c,G[t:s]

[
w[t:s] 7→ Dt

(
w[t:s]

)]}
, (83)

for any function Dt ∈ F(W[t:s]; R̄) and any extended scalar c ∈ R̄.

14See Footnote 11.
15See Footnote 12.
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In particular, a one-step time-aggregator Φ TU-commutes with a one-step uncertainty-
aggregator G[t:t] if

G
[t:t]

[
Φ
{
c, Ct

}]
= Φ

{
c,G[t:t]

[
Ct

]}
, (84)

for any function16 Ct ∈ F(Wt; R̄) and any extended scalar c ∈ R̄.

Example 13. If (Wt,Ft,Pt) is a probability space and if

Φ
{
c, ct

}
= α(c) + β(c)ct , (85)

where α : R̄ → R and β : R̄ → R+, then the extended17 expectation G
[t:t] = EPt

TU-commutes with Φ.

Proposition 14. Consider a sequence
{
Φt

}T−1

t=0
of one-step time-aggregators585

and a chained sequence
{
Gt

}T

t=0
of one-step uncertainty-aggregators. Suppose

that, for any 0 ≤ t < s ≤ T , Gs TU-commutes with Φt.

Then,
〈 T

⊡
s=t

Gs

〉
TU-commutes with Φr, for any 0 ≤ r < t ≤ T , that is,

〈 T

⊡
s=t

Gs

〉[
Φr

{
cr, A

}]
= Φr

{
c,
〈 T

⊡
s=t

Gs

〉[
A
]}

, ∀ 0 ≤ r < t ≤ T , (86)

for any extended scalar c ∈ R̄ and any function A ∈ F
(
W[0:T ]; R̄

)
.

Proof. We prove by induction that

( T

⊡
s=t

Gs

)[
Φr

{
c,Dt

}]
= Φr

{
c,
( T

⊡
s=t

Gs

)[
Dt

]}
, ∀ 0 ≤ r < t ≤ T , (87)

for any extended scalar c ∈ R̄ and any function Dt ∈ F
(
W[t:T ]; R̄

)
. For t ∈

[[1, T ]], let (Ht) be the following assertion

(Ht) : ∀r ∈ [[0, t− 1]] , ∀c ∈ R̄ , ∀Dt ∈ F
(
W[t:T ]; R̄

)
,

( T

⊡
s=t

Gs

)[
Φr

{
c,Dt

}]
= Φr

{
c,
( T

⊡
s=t

Gs

)[
Dt

]}
.

(88)

The assertion (HT ) is

(HT ) : ∀r ∈ [[0, T − 1]] , ∀c ∈ R̄ , ∀DT ∈ F
(
WT ; R̄

)
,

GT

[
Φr

{
c,DT

}]
= Φr

{
c,GT

[
DT

]}
.

16We will consistently use the symbol Ct to denote a function in F(Wt; R̄), that is, Ct :
Wt → R̄.

17We set β ≥ 0, so that, when Ct ∈ F(Wt; R̄) is not integrable with respect to Pt, the
equality (83) still holds true.
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Thus, the assertion (HT ) is true, since it coincides the property that, for any
0 ≤ r < T , GT TU-commutes with Φr (apply (83) where t = T , Φ = Φr).590

Now, suppose that (Ht+1) holds true. Let r < t, c ∈ R̄ andDt ∈ F
(
W[t:T ]; R̄

)
.

We have

( T

⊡
s=t

Gs

)[
Φr

{
c,Dt

}]
,

= Gt

[
wt 7→

( T

⊡
t+1

Gs

)[
w[t+1:T ] 7→ Φr

{
c,Dt

(
wt, w[t+1:T ]

)}]
]
,

by the definition (53) of composition,

= Gt

[
wt 7→ Φr

{
c,
( T

⊡
s=t+1

Gs

)[
w[t+1:T ] 7→ Dt

(
wt, w[t+1:T ]

)]}
]

by (Ht+1) since r < t < t+ 1,

and where, for all wt, Dt+1 : w[t+1:T ] 7→ Dt

(
wt, w[t+1:T ]

)
∈ F

(
W[t:T ]; R̄

)
,

= Φr

{
c,Gt

[
wt 7→

( T

⊡
s=t+1

Gs

)[
w[t+1:T ] 7→ Dt

(
wt, w[t+1:T ]

)]]
}
,

by commutation property (83) of Gt with Φ = Φr, since 0 ≤ r < t ≤ T ,

and where Ct : wt 7→
( T

⊡
s=t+1

Gs

)[
w[t+1:T ] 7→ Dt

(
wt, w[t+1:T ]

)]
∈ F

(
Wt; R̄

)
,

= Φr

{
c,
( T

⊡
s=t

Gs

)[
Dt

]}
by the definition (53) of composition.

This ends the induction, hence the proof of (87). Then, (86) easily follows by
the extensions of Definitions 16 and 18.

3.3.2. UT-Commutation of Aggregators

The following notion of UT-commutation between time and uncertainty ag-
gregators stands as one of the key ingredients for a DPE. In practice, it is much595

more restrictive than TU-commutation.

Definition 26. Let t ∈ [[0, T ]]. A multiple-step time-aggregator Φ : R̄k+1 → R̄

is said to UT-commute with a one-step uncertainty-aggregator G[t:t] if

〈
G

[t:t]
〉 [

Φ
({
As

}k

s=0

)]
= Φ

({〈
G

[t:t]
〉 [
As

]}k

s=0

)
, (89)

for any adapted uncertainty process
{
As

}k

s=0
.

In particular, a one-step time-aggregator Φ UT-commutes with a one-step uncertainty-
aggregator G[t:t] if

G
[t:t]

[
Φ
{
Bt, Ct

}]
= Φ

{
G

[t:t]
[
Bt

]
,G[t:t]

[
Ct

]}
, (90)
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for any functions Bt, Ct in F(Wt; R̄). Comparing (90) with (84), we observe
that UT-commutation requires a property bearing on the first argument of the
one-step time-aggregator Φ, whereas TU-commutation does not. In practical600

applications, UT-commutation is much more restrictive than TU-commutation.

Example 15. If (Wt,Ft,Pt) is a probability space, then the extended expecta-
tion G

[t:t] = EPt
UT-commutes with Φ, given by Φ

{
c, ct

}
= α(c)+β(c)ct in (85),

only in the case where α is linear and β is a constant. Comparing with Exam-
ple 13, UT-commutation appears much more restrictive than TU-commutation.605

Proposition 16. Consider a sequence
{
Φt

}T−1

t=0
of one-step time-aggregators

and a chained sequence
{
Gt

}T

t=0
of one-step uncertainty-aggregators. Suppose

that, for any 0 ≤ t < s ≤ T , Φs TU-commutes with Gt.

Then,

〈
T−1

⊙
s=t

Φs

〉
TU-commutes with Gr, for any r ∈ [[0, t − 1]], that is, for

any
{
As

}T

s=t
, where As ∈ F

(
W[0:T ]; R̄

)
,

〈
T−1

⊙
s=t

Φs

〉{{
Gr

[
As

]}T

s=t

}
= Gr

[〈
T−1

⊙
s=t

Φs

〉{{
As

}T

s=t

}]
, ∀0 ≤ r < t ≤ T .

(91)

Proof. We prove by induction that

〈
T−1

⊙
s=t

Φs

〉{{
Gr

[
Cs

]}T

s=t

}
= Gr

[〈T−1

⊙
s=t

Φs

〉{{
Cs

}T

s=t

}]
, ∀0 ≤ r < t ≤ T ,

(92)

for any
{
Cs

}T

s=t
, where Cs ∈ F

(
Wr; R̄

)
.610

For t ∈ [[0, T − 1]], let (Ht) be the following assertion

(Ht) : ∀r ∈ [[0, t− 1]] , ∀s ∈ [[t, T ]] , ∀Cs ∈ F
(
Wr; R̄

)
,

〈
T−1

⊙
s=t

Φs

〉{{
Gr

[
Cs

]}T

s=t

}
= Gr

[〈T−1

⊙
s=t

Φs

〉{{
Cs

}T

s=t

}]
.

(93)

The assertion (HT−1) is

(HT−1) : ∀r ∈ [[0, T − 2]] , ∀CT ∈ F
(
Wr; R̄

)
, ∀CT−1 ∈ F

(
Wr; R̄

)
,

〈ΦT−1〉
{
Gr

[
CT−1

]
,Gr

[
CT

]}
= Gr

[
〈ΦT−1〉

{
CT−1, CT

}]
.

(94)

Thus, the assertion (HT−1) is true, since it coincides the property that, for any
0 ≤ r < T , ΦT−1 TU-commutes with Gr (apply (89) where t = T , Φ = ΦT−1,
As = Cs).

40



Now, suppose that (Ht+1) holds true. With r < t, and Cs ∈ F
(
Wr; R̄

)
, for

all s ∈ [[t, T ]], we have

〈
T−1

⊙
s=t

Φs

〉{{
Gr

[
Cs

]}T

s=t

}
= Φt

{
Gr

[
Ct

]
,

〈
T−1

⊙
s=t+1

Φs

〉{{
Gr

[
Cs

]}T

s=t+1

}}

by the definition (45) of composition,

= Φt

{
Gr

[
Ct

]
,Gr

[〈 T−1

⊙
s=t+1

Φs

〉{{
Cs

}T

s=t+1

}]}

by (Ht+1) since r < t < t+ 1

= Gr

[
Φt

{
Ct,

〈
T−1

⊙
s=t+1

Φs

〉{{
Cs

}T

s=t+1

}}]

by commutation property (89) of Gr with Φ = Φt

since 0 ≤ r < t ≤ T ,

= Gr

[〈T−1

⊙
s=t

Φs

〉{{
Cs

}T

s=t

}]

by the definition (45) of composition.

This ends the induction, hence the proof of (92). The property that

〈
T−1

⊙
s=t

Φs

〉

TU-commutes with Gr, for any r ∈ [[0, t− 1]], easily follows by the extensions of615

Definitions 16 and 18.

3.4. Time-Consistency for Non Nested Dynamic Uncertainty Criteria

Consider

• on the one hand, a sequence
{
Φt

}T−1

t=0
of one-step time-aggregators,

• on the other hand, a chained sequence
{
Gt

}T

t=0
of one-step uncertainty-620

aggregators.

With these ingredients, and with the compositions
( T

⊡
s=t

Gs

)
and

〈
T

⊡
s=t

Gs

〉
in-

troduced in Definitions 20 and 18, and

〈
T−1

⊙
s=t

Φs

〉
in Definition 16, we present

two ways to craft a non-nested dynamic uncertainty criterion {̺t,T }
T
t=0, as intro-

duced in Definition 4. For each of them, we provide a DPE under the assumption625

that time and uncertainty aggregators commute.

41



3.4.1. TU Dynamic Uncertainty Criterion

With a slight abuse of notation, we define the sequence
{
(PTU

t )(x)
}T

t=0
of

optimization problems parameterized by the state x ∈ Xt as

(PTU
t )(x) min

π∈Πad
t

Gt

[
Gt+1

[
· · ·GT

[

Φt

{
Jt
(
xt, ut, wt

)
,

Φt+1

{
Jt+1

(
xt+1, ut+1, wt+1

)
, · · · (95a)

ΦT−1

{
JT−1

(
xT−1, uT−1, wT−1

)
, JT

(
xT , wT

)}

· · ·
}}]

· · ·

]]
,

s.t. xt = x , (95b)

xs+1 = fs
(
xs, us, ws

)
, (95c)

us = πs(xs) , (95d)

us ∈ Us(xs) , (95e)

where constraints are satisfied for all s ∈ [[t, T − 1]].
We define the Markov optimization problem (95) formally by

(PTU
t )(x) min

π∈Πad
t

̺TU
t,T

({
Jx,π
t,s

}T

s=t

)
, ∀t ∈ [[0, T ]] , ∀x ∈ Xt , (96)

where the functions Jx,π
t,s are defined by (27), and where ̺TU

t,T is defined as follows.
When we compose

[
F(W[0:s]; R̄)

]T
s=t

〈
T−1

⊙
s=t

Φs

〉

−−−−−−−→ F(W[0:T ]; R̄)

〈
T

⊡
s=t

Gs

〉

−−−−−−→ F(W[0:t−1]; R̄) , (97)

we obtain the following Definition.630

Definition 27. We define the dynamic uncertainty criterion {̺TU
t,T }

T
t=0 by18

̺TU
t,T =

〈 T

⊡
s=t

Gs

〉
◦

〈
T−1

⊙
s=t

Φs

〉
, ∀t ∈ [[0, T − 1]] . (98)

When we plug the stream
{
Jx,π
t,s

}T

s=t
of costs, introduced in Definition 3,

into the operator above, this two-stage process displays a natural economic
interpretation in term of preferences: we mix time and uncertainty preferences,
first with respect to time, then with respect to uncertainty.635

18With the convention that
( T−1

⊙
r=T

Φr

)
is the identity mapping.
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• We aggregate streams
{
Jx,π
t,s (w)

}T

s=t
of costs, first with respect to time,

thanks to the function
( T−1

⊙
s=t

Φs

)
: R̄

T+1 → R̄. However, the result

( T−1

⊙
s=t

Φs

)({
Jx,π
t,s (w)

}T

s=t

)
still depends upon the scenario w.

• Then, we aggregate uncertain intertemporal costs w 7→
( T−1

⊙
s=t

Φs

)({
Jx,π
t,s (w)

}T

s=t

)

— elements of the set F(W[t:T ]; R̄) of functions — second with respect to640

uncertainty, thanks to the multiple-step uncertainty-aggregator
T

⊡
s=t

Gs :

F(W[t:T ]; R̄) → R̄.

The following Theorem 17 is our main result on time-consistency in the TU
case.

Theorem 17. Assume that645

• for any 0 ≤ s < t ≤ T , Gt TU-commutes with Φs,

• for all t ∈ [[0, T − 1]], Φt is non-decreasing,

• for all t ∈ [[0, T ]], Gt is non-decreasing.

Then

1. the TU-dynamic uncertainty criterion
{
̺TU

t,T

}T

t=0
defined by (98) is time-650

consistent;

2. the Markov optimization problem
{{

(PTU
t )(x)

}
x∈Xt

}T

t=0
defined in (95)

is time-consistent, as soon as there exists an admissible policy π♯ ∈ Πad

such that (62) holds true, where the value functions are the
{
V NTU
t

}T

t=0
in Definition 22.655

Proof. Since, for any 0 ≤ s < t ≤ T , Gt TU-commutes with Φs, the TU-
dynamic uncertainty criterion {̺TU

t,T }
T
t=0, given by Definition 27, coincides with

{̺NTU
t,T }Tt=0, given by Definition 21. Indeed, we prove that {̺TU

t,T }
T
t=0 satisfies the

backward induction (59).

With the convention19 that
( T−1

⊙
r=T

Φr

)
is the identity mapping, we have

19See Footnote 18
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̺TU
T = 〈GT 〉, that is, (59a). For any

{
As

}T

t
∈
[
F(W[0:s]; R̄)

]T
s=t

, we have:

̺TU
t

({
As

}T

s=t

)
=

〈 s

⊡
r=t

Gr

〉[〈T−1

⊙
r=t

Φr

〉{{
As

}T

s=t

}]
by (98),

= Gt

[〈 s

⊡
r=t+1

Gr

〉[〈T−1

⊙
r=t

Φr

〉{{
As

}T

s=t

}]]
by (53),

= Gt

[〈 s

⊡
r=t+1

Gr

〉
Φt

{
At,

( T−1

⊙
r=t+1

Φr

){
As

}T

s=t+1

}]
by (45),

= Gt

[
Φt

{
At,

〈 s

⊡
r=t+1

Gr

〉[( T−1

⊙
r=t+1

Φr

){
As

}T

s=t+1

]}]

by commutation property (91),

= Gt

[
Φt

(
At, ̺

TU
t+1

({
As

}T

s=t+1

))]
by (98).

3.4.2. UT Dynamic Uncertainty Criterion660

With a slight abuse of notation, we define the sequence
{
(PUT

t )(x)
}T

t=0
of

optimization problems parameterized by the state x ∈ Xt as

(PUT
t )(x) min

π∈Πad
t

Φt

{
Gt

[
Jt
(
xt, ut, wt

)
]
,

Φt+1

{
GtGt+1

[
Jt+1

(
xt+1, ut+1, wt+1

)
, · · ·

ΦT−1

{
Gt · · ·GT−1

[
JT−1

(
xT−1, uT−1, wT−1

)]
,

Gt · · ·GT

[
JT

(
xT , wT

)]}]
· · ·

}}
,

(99a)

s.t. xt = x , (99b)

xs+1 = fs
(
xs, us, ws

)
, (99c)

us = πs(xs) , (99d)

us ∈ Us(xs) , (99e)

where constraints are satisfied for all s ∈ [[t, T − 1]].
We define the Markov optimization problem (99) formally by

(PUT
t )(x) min

π∈Πad
t

̺UT
t,T

({
Jx,π
t,s

}T

s=t

)
, ∀t ∈ [[0, T ]] , ∀x ∈ Xt , (100)

where the functions Jx,π
t,s are defined by (27), and where ̺UT

t,T is defined as follows.
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We define the mapping

{( s

⊡
r=t

Gr

)}T

s=t
:
[
F(W[t:s]; R̄)

]T
s=t

→ R̄
T+1 , (101)

for any
{
Dr

}T

r=t
∈
[
F(W[t:s]; R̄)

]T
s=t

, componentwise by

( s

⊡
r=t

Gr

)[{
Ds

}T

s=t

]
=

{( s

⊡
r=t

Gr

)[
Ds

]}T

s=t
. (102)

In the same way, we define the mapping (see Definition 18):

{〈 s

⊡
r=t

Gr

〉}T

s=t
:
[
F(W[0:s]; R̄)

]T
s=t

→

(
F(W[0:t]; R̄)

)T+1

. (103)

Definition 28. We define the dynamic uncertainty criterion {̺UT
t,T }

T
t=0 by

̺UT
t,T =

〈
T−1

⊙
s=t

Φs

〉
◦
{〈 s

⊡
r=t

Gr

〉}T

s=t
, ∀t ∈ [[0, T − 1]] . (104)

The expression ̺UT
t,T is the output of the composition20

[
F(W[0:s]; R̄)

]T
s=t

{〈
s

⊡
r=t

Gr

〉}T

s=t−−−−−−−−−−−→

(
F(W[0:t]; R̄)

)T+1

(
T−1

⊙
s=t

Φs

)

−−−−−−−→ F(W[0:t]; R̄) .

When we plug the stream
{
Jx,π
t,s

}T

s=t
of costs, introduced in Definition 3,

into the operator above, this two-stage process displays a natural economic
interpretation in term of preferences: we mix time and uncertainty preferences,665

first with respect to uncertainty, then with respect to time.

• We aggregate the stream
{
Jx,π
t,s

}T

s=t
of uncertain costs, first with respect

to uncertainty, producing

{ s

⊡
r=t

Gr

[
Jx,π
t,s

]}T

s=t
=

{
Gt

[
Jx,π
t,t

]
, . . . ,

( T

⊡
r=t

Gr

)[
Jx,π
t,T

]}
, (105)

thanks to the multiple-step uncertainty-aggregators
s

⊡
r=t

Gr : F(W[t:s]; R̄) →

R̄, for s ∈ [[t, T ]]. However, the resulting quantity
{( s

⊡
r=t

Gr

)[
Jx,π
t,s

]}T

s=t
still depends upon time s.

20With the convention that F(W[0:−1]; R̄) = R̄, we have ̺UT
0 :

[
F(W[0:s]; R̄)

]T
s=t

→ R̄.
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• Then, we aggregate the time sequence
{( s

⊡
r=t

Gr

)[
Jx,π
t,s

]}T

s=t
of costs, sec-670

ond with respect to time, thanks to
( T−1

⊙
r=t

Φr

)
: R̄T+1 → R̄.

The following Theorem 18 is our main result on time-consistency in the UT
case.

Theorem 18. Assume that

• for any 0 ≤ s < t ≤ T , Gt UT-commutes with Φs,675

• for all t ∈ [[0, T − 1]], Φt is non-decreasing,

• for all t ∈ [[0, T ]], Gt is non-decreasing.

Then

1. the UT-dynamic uncertainty criterion
{
̺UT

t,T

}T

t=0
defined by (104) is time-

consistent;680

2. the Markov optimization problem
{{

(PUT
t )(x)

}
x∈Xt

}T

t=0
defined in (99)

is time-consistent, as soon as there exists an admissible policy π♯ ∈ Πad

such that (75) holds true, where the value functions are the
{
V NUT
t

}T

t=0
in Definition 24.

Proof. Since, for any 0 ≤ s < t ≤ T , Gt UT-commutes with Φs, the UT-685

dynamic uncertainty criterion {̺UT
t,T }

T
t=0, given by Definition 28, coincides with

{̺NUT
t,T }Tt=0, given by Definition 23.

Indeed, we prove that {̺UT
t,T }

T
t=0 satisfies the backward induction (72).

With the convention21 that
( T−1

⊙
r=T

Φr

)
is the identity mapping, we have

21See Footnote 18
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̺UT
T = 〈GT 〉, that is, (72a). For any

{
As

}T

t
∈
[
F(W[0:s]; R̄)

]T
s=t

, we have:

̺Nt

({
As

}T

t

)
=

( T−1

⊙
r=t

Φr

){〈 s

⊡
r=t

Gr

〉[
As

]}T

s=t
by (104),

= Φt

{
Gt

[
At

]
,
( T−1

⊙
r=t+1

Φr

){〈 s

⊡
r=t

Gr

〉[
As

]}T

s=t+1

}
by (45),

= Φt

{
Gt

[
At

]
,
( T−1

⊙
r=t+1

Φr

){
Gt

[〈 s

⊡
r=t+1

Gr

〉[
As

]]}T

s=t+1

}
by (53),

= Φt

{
Gt

[
At

]
,
( T−1

⊙
r=t+1

Φr

)
Gt

[{〈 s

⊡
r=t+1

Gr

〉[
As

]}T

s=t+1

]}
by (102),

= Φt

{
Gt

[
At

]
,Gt

[( T−1

⊙
r=t+1

Φr

){〈 s

⊡
r=t+1

Gr

〉[
As

]}T

s=t+1

]}

by commutation property (91),

= Φt

{
Gt

[
At

]
,Gt

[
̺Nt

({
As

}T

s=t+1

)]}
by (104),

This ends the proof.

3.5. Applications690

Now, we present applications of Theorem 17, that is, the TU case. In-
deed, Theorems 9 and 12 in the nested cases NTU and NUT are less interest-
ing because they cover cases where time-consistency is commonplace since it
only depends on monotonocity assumptions. Regarding Theorem 18, it is not
powerful because UT-commutation appears much more restrictive than TU-695

commutation: in practice, Theorem 18 only applies to linear one-step time-
aggregators Φ

{
c, d

}
= αc+ βd (see Example 15), that obviously commute with

expectations.

3.5.1. Coherent Risk Measures

We introduce a class of TU-dynamic uncertainty criteria, that are related700

to coherent risk measures (see Definition 6), and we show that they display
time-consistency. We thus extend, to more general one-step time-aggregators,
results known for the sum (see e.g. [23, 35]).

We denote by P(Wt) the set of probabilities over (Wt,Wt). Let P0 ⊂ P(W0),
. . . , PT ⊂ P(WT ). If A and B are sets of probabilities, then A ⊗ B is defined
as

A⊗B = {PA ⊗ PB |PA ∈ A , PB ∈ B} . (106)

Let (αt)t∈[[0,T−1]] and (βt)t∈[[0,T−1]] be sequences of functions, each mapping R̄

into R, with the additional property that βt ≥ 0, for all t ∈ [[0, T − 1]]. We set,
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for all t ∈ [[0, T ]],

̺cot,T (
{
As

}T

s=t
) = sup

Pt∈Pt

EPt

[
· · · sup

PT∈PT

EPT

[ T∑

s=t

(
αs

(
As

) s−1∏

r=t

βr
(
Ar

))]
· · ·

]
,

(107)

for any adapted uncertain process
{
At

}T

0
, with the convention that αT (cT ) =

cT .705

Proposition 19. Time-consistency holds true for

• the dynamic uncertainty criterion {̺cot,T }
T
t=0 given by (107),

• the Markov optimization problem

min
π∈Πad

̺cot,T (
{
Jx,π
t,s

}T

s=t
) , ∀t ∈ [[0, T ]] , ∀x ∈ Xt , (108)

where Jx,π
t,s (w) is defined by (27), as soon as there exists an admissible

policy π♯ ∈ Πad such that, for all t ∈ [[0, T − 1]], for all x ∈ Xt,

π♯
t(x) ∈ argmin

u∈Ut(x)

sup
Pt∈Pt

{
EPt

[
αt

(
Jt(x, u, ·)

)
+βt

(
Jt(x, u, ·)

)
Vt+1◦ft(x, u, ·)

]}
,

where the value functions are given by the following DPE

VT (x) = sup
PT∈PT

EPT

[
JT (x, ·)

]
, (109a)

Vt(x) = min
u∈Ut(x)

sup
Pt∈Pt

{
EPt

[
αt

(
Jt(x, u, ·)

)
(109b)

+ βt
(
Jt(x, u, ·)

)
Vt+1 ◦ ft(x, u, ·)

]}
.

Proof. The setting is that of Theorem 17 and Proposition 8, where

• the one-step time-aggregators are defined by

Φt

{
ct, ct+1

}
= αt(ct) + βt(ct)ct+1 , ∀t ∈ [[0, T − 1]] , ∀

(
ct, ct+1

)
∈ R̄

2 ,
(110a)

• the one-step uncertainty-aggregators are defined by

Gt

[
Ct

]
= sup

Pt∈Pt

EPt

[
Ct

]
, ∀t ∈ [[0, T − 1]] , ∀Ct ∈ F(Wt; R̄) . (110b)

The DPE (109) is the DPE (61), which holds true as soon as the assumptions
of Theorem 17 hold true.710

First, we prove that, for any 0 ≤ t < s ≤ T , Gs TU-commutes with Φt. In-
deed, letting ct be an extended real number in R̄ and Cs a function in F(Ws; R̄),
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we have22

Gs

[
Φt{ct, Cs}

]
= sup

Ps∈Ps

{
EPs

[
α(ct) + β(ct)Cs

]}
by (110b) and (110a),

= αt(ct) + βt(ct) sup
Ps∈Ps

{
EPs

[Cs]
}

as βt ≥ 0 ,

= αt(ct) + βt(ct)Gs[Cs] by (110b),

= Φt{ct,Gs[Cs]} by (110a).

Second, we observe that Gt is non-decreasing (see Definition 17), and that ct+1 ∈
R̄ 7→ Φt

{
ct, ct+1

}
= αt(ct) + βt(ct)ct+1 is non-decreasing, for any ct ∈ R̄.

This ends the proof.

The one-step uncertainty-aggregators Gt in (110b) correspond to a coherent
risk measure, by Definition 6 and the comments that follow it.715

Our result differs from [23, Theorem 2] in two ways. On the one hand,
in [23], arguments are given to show that there exists an optimal Markovian
policy among the set of adapted policies (that is, having a policy taking as
argument the whole past uncertainties would not give a better cost than a
policy taking as argument the current value of the state). We do not tackle this720

issue since we directly deal with policies as functions of the state. Where we
suppose that there exists an admissible policy π♯ ∈ Πad such that (62) holds
true, [23] gives conditions ensuring this property. On the other hand, where [23]
restricts to the sum to aggregate instantaneous costs, we consider more general
one-step time-aggregators Φt. For instance, our results applies to the product725

of costs.

3.5.2. Convex Risk Measures

We introduce a class of TU-dynamic uncertainty criteria, that are related to
convex risk measures (see Definition 6), and we show that they display time-
consistency. We consider the same setting as for coherent risk measures, with730

the restriction that βt ≡ 1 and an additional data (Υt)t∈[[0,T ]].
Let P0 ⊂ P(W0), . . . , PT ⊂ P(WT ), and (Υt)t∈[[0,T ]] be sequence of func-

tions, each mapping P(Wt) into R̄. Let (αt)t∈[[0,T ]] be sequence of functions,
each mapping R̄ into R. We set, for all t ∈ [[0, T ]],

̺cxt,T (
{
As

}T

t
) = sup

Pt∈Pt

EPt

[
· · · sup

PT∈PT

EPT

[ T∑

s=t

(
αs(As)−Υs(Ps)

)]
· · ·

]
, (111)

for any adapted uncertain process
{
At

}T

0
, with the convention that αT (cT ) =

cT .

Proposition 20. Time-consistency holds true for

22This result can also be obtained by use of Proposition 24 with I = Ps.
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• the dynamic uncertainty criterion {̺cxt,T }
T
t=0 given by (111),735

• the Markov optimization problem

min
π∈Πad

̺cxt,T (
{
Jx,π
t,s

}T

s=t
) , ∀t ∈ [[0, T ]] , ∀x ∈ Xt , (112)

where Jx,π
t,s (w) is defined by (27), as soon as there exists an admissible

policy π♯ ∈ Πad such that, for all t ∈ [[0, T − 1]], for all x ∈ Xt,

π♯
t(x) ∈ argmin

u∈Ut(x)

sup
Pt∈Pt

{
EPt

[
αt

(
Jt(x, u, ·)

)
+ Vt+1 ◦ ft(x, u, ·)

]
−Υt(Pt)

}
,

where the value functions are given by the following DPE

VT (x) = sup
PT∈PT

EPT

[
JT (x, ·)

]
−ΥT (PT ) , (113a)

Vt(x) = min
u∈Ut(x)

sup
Pt∈Pt

{
EPt

[
αt

(
Jt(x, u, ·)

)

+ Vt+1 ◦ ft(x, u, ·)
]
−Υt(Pt)

}
. (113b)

Proof. The setting is that of Theorem 17 and Proposition 8, where

• the one-step time-aggregators are defined by

Φt

{
ct, ct+1

}
= αt(ct) + ct+1 , ∀t ∈ [[0, T − 1]] , ∀

(
ct, ct+1

)
∈ R̄

2 , (114a)

• the one-step uncertainty-aggregators are defined by

Gt

[
Ct

]
= sup

Pt∈Pt

EPt

[
Ct

]
−Υt(Pt) , ∀t ∈ [[0, T − 1]] , ∀Ct ∈ F(Wt; R̄) .

(114b)

The DPE (113) is the DPE (61), which holds true as soon as the assumptions
of Theorem 17 hold true.

First, we prove that, for any t ∈ [[0, T − 1]] and s ∈ [[t + 1, T ]], Gs TU-
commutes with Φt. Indeed, letting ct be an extended real number in R̄ and Cs

a function in F(Ws; R̄), we have23

Gs

[
Φt{ct, Cs}

]
= sup

Ps∈Ps

{
EPs

[
α(ct) + Cs

]
−Υs(Ps)

}
by (114b) and (114a)

= αt(ct) + sup
Ps∈Ps

{
EPs

[Cs]−Υs(Ps)
}

= αt(ct) +Gs[Cs] by (114b)

= Φt{ct,Gs[Cs]} by (114a).

Second, we observe that Gt is non-decreasing (see Definition 17), and that ct+1 ∈
R̄ 7→ Φt

{
ct, ct+1

}
= αt(ct) + ct+1 is non-decreasing, for any ct ∈ R̄.740

This ends the proof.

23This result can also be obtained by use of Proposition 24 with I = Ps.

50



The one-step uncertainty-aggregators Gt in (114b) correspond to a convex
risk measure, by Definition 6 and the comments that follow it.

3.5.3. Worst-Case Risk Measures (Fear Operator)

A special case of coherent risk measures consists of the worst case scenario745

operators, also called “fear operators” and introduced in §1. For this subclass
of coherent risk measures, we show that time-consistency holds for a larger class
of time-aggregators than the ones above.

For any t ∈ [[0, T−1]], let W̃t be a non empty subset of Wt, and let Φt : R̄
2 →

R̄ be a function which is continuous and non-decreasing in its second variable.
We set, for all t ∈ [[0, T ]],

̺wc
t,T (

{
As

}T

t
) = sup{

ws

}T

t
∈W̃t×···×W̃T

Φt

{
At(

{
ws

}T

t
),Φt+1

{
· · · ,

ΦT−1

{
AT−1(wT−1, wT ), AT (wT )

}}}
,

(115)

for any adapted uncertain process
{
At

}T

0
.

Proposition 21. Time-consistency holds true for750

• the dynamic uncertainty criterion {̺wc

t,T }
T
t=0 given by (115),

• the Markov optimization problem

min
π∈Πad

̺wc

t,T (
{
Jx,π
t,s

}T

s=t
) , (116)

where Jx,π
t,s (w) is defined by (27), as soon as there exists an admissible

policy π♯ ∈ Πad such that, for all t ∈ [[0, T − 1]], for all x ∈ Xt,

π♯
t(x) ∈ argmin

u∈Ut(x)

sup
wt∈W̃t

Φt

{
Jt
(
x, u, wt

)
, Vt+1 ◦ ft

(
x, u, wt

)}
,

where the value functions are given by the following DPE

VT (x) = sup
wT∈W̃T

JT (x,wT ) , (117a)

Vt(x) = min
u∈Ut(x)

sup
wt∈W̃t

Φt

{
Jt
(
x, u, wt

)
, Vt+1 ◦ ft

(
x, u, wt

)}
. (117b)

Proof. The setting is that of Theorem 17 and Proposition 8, where the one-
step uncertainty-aggregators are defined by

Gt

[
Ct

]
= sup

wt∈W̃t

Ct(wt) , ∀t ∈ [[0, T − 1]] , ∀Ct ∈ F(Wt; R̄) . (118)
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The DPE (117) is the DPE (61), which holds true as soon as the assumptions
of Theorem 17 hold true.

First, we prove that, for any t ∈ [[0, T − 1]] and s ∈ [[t + 1, T ]], Gs TU-
commutes with Φt. Indeed, letting ct be an extended real number in R̄ and Cs

a function in F(Ws; R̄), we have24

Gs

[
Φt{ct, Cs}

]
= sup

ws∈W̃s

[
Φt

{
ct, Cs(ws)

}]
by (118),

= Φt

{
ct, sup

w∈W̃s

[
Cs(ws)

]}
by continuity of Φt{ct, ·} ,

= Φt

{
ct,Gs[Cs]

}
by (118).

Second, we observe that Gt is non-decreasing (see Definition 17), and that
ct+1 7→ Φt(ct, ct+1) is non-decreasing for any ct ∈ R̄, by assumption.755

This ends the proof.

Note that ̺wc
t,T is simply the fear operator on the Cartesian product W̃t ×

· · ·×W̃T . An example of monotonous one-step time-aggregator is Φt

{
ct, ct+1

}
=

max
{
ct, ct+1

}
, used in the so-called Rawls or maximin criterion [21].

3.6. Complements on TU-Commuting Aggregators760

Here, we present how we can construct new TU-commuting aggregators from
known TU-commuting aggregators. We do not consider UT-commutation, since
we have seen that it appears much more restrictive than TU-commutation (see
Example 15).

For this purpose, we consider a fixed non empty set I and a mapping Γ from765

R̄
I to R̄.

3.6.1. Time-Aggregators

Let (Φi)i∈I be a family of one-step time-aggregators. Thanks to the mapping
Γ : R̄I → R̄, we define the one-step time-aggregator Γ

[
(Φi)i∈I

]
by

Γ
[
(Φi)i∈I

]{
c, d

}
= Γ

({
Φi{c, d}

}
i∈I

)
, (119)

for all c ∈ R̄ and d ∈ R̄.

Proposition 22. Let t ∈ [[0, T ]] and Gt be a t-one-step uncertainty-aggregator.
Suppose that770

• Gt TU-commutes with ψi, for all i ∈ I,

• for all i ∈ I and for all Ci
t ∈ F(Wt; R̄),

Gt

[
Γ
({
Ci

t

}
i∈I

)]
= Γ

({
Gt

[
Ci

t

]}
i∈I

)
. (120)

24This result can also be obtained by use of Proposition 24 with I = W̃s.
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Then Gt TU-commutes with Γ
[
(Φi)i∈I

]
.

Proof. We set Φ = Γ
[
(Φi)i∈I

]
. For c ∈ R̄ and Ct ∈ F(Wt, R̄), we have

Gt

[
Φ
{
c, Ct

}]
= Gt

[
Γ
({

Φi{c, Ct}
}
i∈I

)]
by definition of Φ in (119),

= Γ

({
Gt

[
Φi{c, Ct}

]}
i∈I

)
by (120) with Ci

t = Φi{c, Ct} ,

= Γ

({
Φi

{
c,Gt[Ct]

}
i∈I

})
by TU-commutation (83),

= Φ
{
c,Gt[Ct]

}
by definition of Φ in (119).

By Definition 25, this ends the proof.

3.6.2. Uncertainty-Aggregators

Let t ∈ [[0, T ]] and {Gt
i}i∈I be a family of t-one-step uncertainty-aggregators.

Thanks to the mapping Γ : R̄
I → R̄, we define the t-one-step uncertainty-

aggregator Γ
[
{Gt

i}i∈I

]
by

Γ
[
{Gt

i}i∈I

][
Ct

]
= Γ

({
Gt

i
[
Ct

]}
i∈I

)
, ∀Ct ∈ F(Wt; R̄) . (121)

We do not give the proof of the next Proposition 23, as it follows the same line775

as that of Proposition 22.

Proposition 23. Let Φ be a one-step time-aggregator. Suppose that

• Φ TU-commutes with Gt
i, for all i ∈ I,

• for all c ∈ R̄, for all i ∈ I and for all ci ∈ R̄,

Φ
(
c,Γ

({
ci
}
i∈I

))
= Γ

({
Φ
(
c,
{
ci
})

i∈I

})
. (122)

Then Φ TU-commutes with Γ
[
{Gt

i}i∈I

]
.

As a corollary, we obtain the following practical result.780

Proposition 24. Let Φ be a one-step time-aggregator. Suppose that

• Gt
i TU-commutes with Φ, for all i ∈ I,

• for all c ∈ R̄, Φ
{
c, ·

}
is continuous and non-decreasing.25

25Instead of the continuity of Φ
{
c, ·

}
, we can assume that, for all Ct ∈ F(Wt, R̄),

supi∈I Gt
i[Ct] is achieved (always true for I finite).
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Then, the t-one-step uncertainty-aggregator supi∈I Gt
i TU-commutes with Φ,

and so does infi∈I Gt
i, provided infi∈I Gt

i never takes the value −∞.785

Proof. We are going to show that (119) holds true, and then the proof is a
straightforward application of Proposition 23. We set Ḡt = θ supi∈I Gt

i + (1−

θ) infi∈I Gt
i, with θ ∈ [0, 1] (only at the end, do we take θ ∈ {0, 1}). For any

(c, Ct) ∈ R̄×F(Wt, R̄), we have

Ḡt

[
Φ
{
c, Ct

}]
= (θ sup

i∈I

+(1− θ) inf
i∈I

)Gt
i
[
Φ
{
c, Ct

}]
by definition of Ḡt ,

= (θ sup
i∈I

+(1− θ) inf
i∈I

)Φ
{
c,Gt

i
[
Ct

]}
by TU-commutation (83),

= θ sup
i∈I

Φ
{
c,Gt

i
[
Ct

]}
+ (1− θ) inf

i∈I
Φ
{
c,Gt

i
[
Ct

]}
,

= θΦ
{
c, sup

i∈I

Gt
i
[
Ct

]}
+ (1− θ)Φ

{
c, inf

i∈I
Gt

i
[
Ct

]}
,

by continuity and monotonicity of Φ
{
c, ·

}
,

= Φ
{
c, (θ sup

i∈I

+(1− θ) inf
i∈I

)Gt
i
[
Ct

]}
when θ ∈ {0, 1} .

The rest of the proof is a straightforward application of Proposition 23.

The following Proposition 25 is an easy extension of Proposition 24.

Proposition 25. Suppose that the assumptions of Proposition 24 hold true.
Let Ij ⊂ I, j ∈ J and Ij ⊂ I, j ∈ J be finite families of non empty subsets of
I.790

• If Φ is affine in its second variable, that is, if

Φ
{
c, d

}
= α(c) + β(c)d , (123)

and if ({θj}j∈J , {θj}j∈J) are non-negative scalars that sum to one, the
convex combination

∑

j∈J

θj inf
i∈Ij

Gt
i +

∑

j∈J

θj sup
i∈Ij

Gt
i (124)

of infimum or supremum of subfamilies of {Gt
i}i∈I TU-commutes with Φ,

provided infi∈Ij
Gt

i never takes the value −∞.

• If Φ is linear in its second variable, that is, if

Φ
{
c, d

}
= β(c)d , (125)

and if ({θj}j∈J , {θj}j∈J) are non-negative scalars, the combination
∑

j∈J

θj inf
i∈Ij

Gt
i +

∑

j∈J

θj sup
i∈Ij

Gt
i (126)

of infimum or supremum of subfamilies of {Gt
i}i∈I TU-commutes with Φ,

provided infi∈Ij
Gt

i never takes the value −∞.
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4. Extension to Markov Aggregators795

Here, we extend the results of §3 to the case where we allow one-step time and
uncertainty aggregators of depend on the state. The difficulty of this extension
is mainly one of notations. We do not give the proofs because they follow the
sketch of those in §3.2 and in §3.4. We will reap the benefits of this extension
in §4.6, where we present applications.800

4.1. Markov Time-Aggregators and their Composition

We allow one-step time-aggregators to depend on the state as follows (Defi-
nition 29 differs from Definition 13 only through the indexation by the state).

Definition 29. Let t ∈ [[0, T ]]. A one-step Markov time-aggregator is a family{
Φxt

t

}
xt∈Xt

of one-step time-aggregators Φxt

t : R̄2 → R̄ indexed by the state xt ∈805

Xt.

Now, we introduce the composition of one-step Markov time-aggregators.

Definition 30. Let
{{

Φxt

t

}
xt∈Xt

}T−1

t=0
be a sequence of one-step Markov time-

aggregators. Let t ∈ [[0, T − 1]]. Given a policy π ∈ Π and xt ∈ Xt, we define

the composition

〈
xt,π

⊙
t≤s≤T−1

Φs

〉
:
[
F(W[0:T ]; R̄)

]T
t
→ F(W[0:T ]; R̄) by

(〈 xt,π

⊙
t≤s≤T−1

Φs

〉{
{As}

T
t

})(
w
)
=

( xt,π

⊙
t≤s≤T−1

Φ
X

xt,π
t,s (w)

s

){
{As

(
w
)
}Tt

}
, (127)

for all scenario w ∈ W[0:T ], for any sequence {As}
T
s=t ∈

(
F(W[0:T ]; R̄)

)T−t+1

,

that is, where As ∈ F
(
W[0:T ]; R̄

)
.

Notice that the extension, to one-step Markov time-aggregators, of the com-810

position involves the dynamical system (2) and a policy (whereas, in Defini-
tion 16, the composition is independent of the policy).

Remark 26. Observe that we have defined

〈
xt,π

⊙
t≤s≤T−1

Φs

〉
, defined over func-

tions, but not
( xt,π

⊙
t≤s≤T−1

Φs

)
, defined over extended reals. Observe also that

the image by

〈
xt,π

⊙
t≤s≤T−1

Φs

〉
of any sequence c[t:T ] of extended reals is not an

extended real, but is a function:

(〈 xt,π

⊙
t≤s≤T−1

Φs

〉{
c[t:T ]

})(
w
)
=

( xt,π

⊙
t≤s≤T−1

Φ
X

xt,π
t,s (w)

s

){
c[t:T ]

}
. (128)
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4.2. Markov Uncertainty-Aggregators and their Composition

We allow one-step uncertainty-aggregators to depend on the state as follows815

(Definition 31 differs from Definition 17 only through the indexation by the
state).

Definition 31. Let t ∈ [[0, T − 1]]. A t-one-step Markov uncertainty-aggregator
is a family

{
G

xt

t

}
xt∈Xt

of t-one-step uncertainty-aggregators indexed by the
state xt ∈ Xt.820

We say that a sequence
{{

G
xt

t

}
xt∈Xt

}T

t=0
of one-step Markov uncertainty-

aggregators is a chained sequence if Gxt

t is a t-one-step uncertainty-aggregator,
for all t ∈ [[0, T ]].

The extension, to one-step Markov uncertainty-aggregators, of the composi-
tion involves the dynamical system (2) and a policy (whereas, in Definition 20,825

the composition is independent of the policy). The formal definition is as fol-
lows.

Definition 32. Consider a chained sequence
{{

G
xt

t

}
xt∈Xt

}T

t=0
of one-step Markov

uncertainty-aggregators.
For a policy π ∈ Π, for t ∈ [[0, T ]] and for a state xt ∈ Xt, we define the

composition
xt,π

⊡
t≤s≤T

Gs as a functional mapping F
(
W[t:T ]; R̄

)
into R̄, inductively

given by
xT ,π

⊡
T≤s≤T

Gs = G
xT

T , (129a)

and then backward by, for any function Dt ∈ F
(
W[t:T ]; R̄

)
,

( xt,π

⊡
t≤s≤T

Gs

)[
Dt

]
= G

xt

t

[
wt 7→

( ft(xt,πt(xt),wt),π

⊡
t+1≤s≤T

Gs

)[
w[t+1:T ] 7→ Dt

(
wt, w[t+1:T ]

)]]
.

(129b)

830

4.3. Time-Consistency for Nested Dynamic Uncertainty Criteria

Consider

• on the one hand, a sequence
{{

Φxt

t

}
xt∈Xt

}T−1

t=0
of one-step Markov time-

aggregators,

• on the other hand, a chained sequence
{{

G
xt

t

}
xt∈Xt

}T

t=0
of one-step Markov835

uncertainty-aggregators.

With these ingredients, we present two ways to design a Markov dynamic un-
certainty criterion as introduced in Definition 4.
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4.3.1. NTU Dynamic Markov Uncertainty Criterion

Definition 33. Let a policy π ∈ Π be given. We construct inductively a NTU-

Markov dynamic uncertainty criterion
{{
̺xt,π,NTU
t,T

}
xt∈Xt

}T

t=0
by

̺xT ,π,NTU
T

(
AT

)
= 〈GxT

T 〉
[
AT

]
, (130a)

̺xt,π,NTU
t,T

({
As

}T

s=t

)
= 〈Gxt

t 〉

[
Φxt

t

{
At, ̺

ft(xt,πt(xt),·),π,NTU
t+1,T

({
As

}T

s=t+1

)}]
,

∀t ∈ [[0, T − 1]] , (130b)

for any sequence {xs}
T
0 of states, where xs ∈ Xs.840

We define the Markov optimization problem

(PMNTU
t )(x) min

π∈Πad
t

̺xt,π,NTU
t,T

({
Jx,π
t,s

}T

s=t

)
, ∀t ∈ [[0, T ]] , ∀x ∈ Xt , (131)

where the functions Jx,π
t,s are defined by (27).

Definition 34. We define the value functions inductively by the DPE

V MNTU
T (x) = G

x
T

[
JT (x, ·)

]
, ∀x ∈ XT , (132a)

V MNTU
t (x) = inf

u∈Ut(x)
G

x
t

[
Φx

t

{
Jt(x, u, ·), V

MNTU
t+1 ◦ ft(x, u, ·)

}]
, (132b)

∀t ∈ [[0, T − 1]] , ∀x ∈ Xt .

The following Proposition 27 expresses sufficient conditions under which any
Problem (PMNTU

t )(x), for all t ∈ [[0, T ]] and for all x ∈ Xt, can be solved by
means of the value functions in Definition 34.845

Proposition 27. Assume that

• for all t ∈ [[0, T − 1]], for all xt ∈ Xt, Φ
xt

t is non-decreasing,

• for all t ∈ [[0, T ]], for all xt ∈ Xt, G
xt

t is non-decreasing.

Assume that there exists26 an admissible policy π♯ ∈ Πad such that

π♯
t(x) ∈ argmin

u∈Ut(x)

G
x
t

[
Φx

t

{
Jt(x, u, ·),V

MNTU

t+1 ◦ ft(x, u, ·)

}]
,

∀t ∈ [[0, T − 1]] , ∀x ∈ Xt .

(133)

26See Footnote 10.
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Then, π♯ is an optimal policy for any Problem (PMNTU
t )(x), for all t ∈ [[0, T ]]

and for all x ∈ Xt, and

V MNTU

t (x) = min
π∈Πad

t

̺x,π,NTU

t,T

({
Jx,π
t,s

}T

s=t

)
, ∀t ∈ [[0, T ]] , ∀x ∈ Xt . (134)

The following Theorem 28 is our main result on time-consistency in the NTU850

Markov case.

Theorem 28. Assume that

• for all t ∈ [[0, T − 1]], for all xt ∈ Xt, Φ
xt

t is non-decreasing,

• for all t ∈ [[0, T ]], for all xt ∈ Xt, G
xt

t is non-decreasing.

Then855

1. for all policy π ∈ Π, the NTU-Markov dynamic uncertainty criterion{{
̺xt,π,NTU

t,T

}
xt∈Xt

}T

t=0
defined by (130) is time-consistent;

2. the Markov optimization problem
{{

(PMNTU
t )(x)

}
x∈Xt

}T

t=0
defined in (131)

is time-consistent, as soon as there exists an admissible policy π♯ ∈ Πad

such that (133) holds true.860

4.3.2. NUT Dynamic Markov Uncertainty Criterion

Definition 35. Let a policy π ∈ Π be given. We construct inductively a NUT-

Markov dynamic uncertainty criterion
{{
̺xt,π,NUT
t,T

}
xt∈Xt

}T

t=0
by

̺xT ,π,NUT
T

(
AT

)
= 〈GxT

T 〉
[
AT

]
, (135a)

̺xt,π,NUT
t,T

({
As

}T

s=t

)
= Φxt

t

{
〈Gxt

t 〉
[
At

]
,

〈Gxt

t 〉
[
̺
ft(xt,πt(xt),·),π,NUT
t+1,T

({
As

}T

s=t+1

)]}
,

∀t ∈ [[0, T − 1]] , (135b)

for any sequence {xs}
T
s=0 of states, where xs ∈ Xs.

We define the Markov optimization problem

(PMNUT
t )(x) min

π∈Πad
t

̺xt,π,NUT
t,T

({
Jx,π
t,s

}T

s=t

)
, ∀t ∈ [[0, T ]] , ∀x ∈ Xt , (136)

where the functions Jx,π
t,s are defined by (27).
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Definition 36. We define the value functions inductively by the DPE

V MNUT
T (x) = G

x
T

[
JT (x, ·)

]
, ∀x ∈ XT , (137a)

V MNUT
t (x) = inf

u∈Ut(x)
Φx

t

{
G

x
t

[
Jt(x, u, ·)

]
,Gx

t

[
V MNUT
t+1 ◦ ft(x, u, ·)

]}
, (137b)

∀t ∈ [[0, T − 1]] , ∀x ∈ Xt .

The following Proposition 29 expresses sufficient conditions under which any865

Problem (PMNUT
t )(x), for all t ∈ [[0, T ]] and for all x ∈ Xt, can be solved by

means of the value functions in Definition 36.

Proposition 29. Assume that

• for all t ∈ [[0, T − 1]], for all xt ∈ Xt, Φ
xt

t is non-decreasing,

• for all t ∈ [[0, T ]], for all xt ∈ Xt, G
xt

t is non-decreasing.870

Assume that there exists27 an admissible policy π♯ ∈ Πad such that

π♯
t(x) ∈ argmin

u∈Ut(x)

Φx
t

{
G

x
t

[
Jt(x, u, ·)

]
,Gx

t

[
V MNUT

t+1 ◦ ft(x, u, ·)
]}

,

∀t ∈ [[0, T − 1]] , ∀x ∈ Xt .

(138)

Then, π♯ is an optimal policy for any Problem (PMNUT
t )(x), for all t ∈ [[0, T ]]

and for all x ∈ Xt, and

V MNUT

t (x) = min
π∈Πad

t

̺x,π,NUT

t,T

({
Jx,π
t,s

}T

s=t

)
, ∀t ∈ [[0, T ]] , ∀x ∈ Xt . (139)

The following Theorem 30 is our main result on time-consistency in the NUT
Markov case.

Theorem 30. Assume that

• for all t ∈ [[0, T − 1]], for all xt ∈ Xt, Φ
xt

t is non-decreasing,875

• for all t ∈ [[0, T ]], for all xt ∈ Xt, G
xt

t is non-decreasing.

Then

1. for all policy π ∈ Π, the NUT-Markov dynamic uncertainty criterion{{
̺xt,π,NUT

t,T

}
xt∈Xt

}T

t=0
defined by (135) is time-consistent;

2. the Markov optimization problem
{{

(PMNUT
t )(x)

}
x∈Xt

}T

t=0
defined in (136)880

is time-consistent, as soon as there exists an admissible policy π♯ ∈ Πad

such that (138) holds true.

27See Footnote 10.
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4.4. Commutation of Markov Aggregators
We extend the results on commutation obtained in §3.3 to Markov time and

uncertainty aggregators. We do not give the proofs.885

Consider a sequence
{{

Φxt

t

}
xt∈Xt

}T−1

t=0
of one-step Markov time-aggregators

and a sequence
{{

G
xt

t

}
xt∈Xt

}T

t=0
of one-step Markov uncertainty-aggregators.

4.4.1. TU-Commutation of Markov Aggregators

The following Proposition 31 extends Proposition 14 to one-step Markov
aggregators.890

Proposition 31. Suppose that, for any 0 ≤ t < s ≤ T , for any states xt ∈ Xt

and xs ∈ Xs, G
xs
s TU-commutes with Φxt

t .
Then, for any policy π ∈ Π, any 0 ≤ r < t ≤ T , any states xt ∈ Xt and

xr ∈ Xr,

〈
xt,π

⊡
t≤s≤T

Gs

〉
and

〈
Φxr

r

〉
TU-commute, that is,

〈
xt,π

⊡
t≤s≤T

Gs

〉[〈
Φxr

r

〉{
c, A

}]
=

〈
Φxr

r

〉{
c,

〈
xt,π

⊡
t≤s≤T

Gs

〉
[
A
]}

, (140)

for any extended scalar c ∈ R̄ and any function A ∈ F
(
W[0:T ]; R̄

)
.

4.4.2. UT-Commutation of Markov Aggregators

The following Proposition 32 extends Proposition 16 to one-step Markov895

aggregators.

Proposition 32. Suppose that, for any 0 ≤ t < s ≤ T , for any states xt ∈ Xt

and xs ∈ Xs, Φ
xs
s TU-commutes with G

xt

t .
Then, for any policy π ∈ Π, for any 0 ≤ r < t ≤ T , any states xr ∈ Xr and

xt ∈ Xt,

〈
xt,π

⊙
t≤s≤T−1

Φs

〉
TU-commutes with 〈Gxr

r 〉, that is,

〈 xt,π

⊙
t≤s≤T−1

Φs

〉{{
〈Gxr

r 〉
[
As

]}T

t

}
= 〈Gxr

r 〉

[〈 xt,π

⊙
t≤s≤T−1

Φs

〉{{
As

}T

t

}]
,

(141)

for any
{
As

}T

s=t
, where As ∈ F

(
W[0:T ]; R̄

)
.

4.5. Time-Consistency for Non Nested Dynamic Uncertainty Criteria900

4.5.1. TU Dynamic Markov Uncertainty Criterion

Definition 37. Let a policy π ∈ Π be given. We define the TU-Markov dy-

namic uncertainty criterion
{{
̺xt,π,TU
t,T

}
xt∈Xt

}T

t=0
by28

̺xt,π,TU
t,T =

〈
xt,π

⊡
t≤s≤T

Gs

〉
◦

〈 xt,π

⊙
t≤s≤T−1

Φs

〉
, ∀t ∈ [[0, T ]] , ∀xt ∈ Xt . (142)

28See Footnote 18
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We define the Markov optimization problem

(PMTU
t )(x) min

π∈Πad
t

̺MTU
t,T

({
Jx,π
t,s

}T

s=t

)
, ∀t ∈ [[0, T ]] , ∀x ∈ Xt , (143)

where the functions Jx,π
t,s are defined by (27).

The following Theorem 33 is our main result on time-consistency in the TU
Markov case.905

Theorem 33. Assume that

• for any 0 ≤ s < t ≤ T , for any states xt ∈ Xt and xs ∈ Xs, G
xt

t TU-
commutes with Φxs

s ,

• for all t ∈ [[0, T − 1]], for all xt ∈ Xt, Φ
xt

t is non-decreasing,

• for all t ∈ [[0, T ]], for all xt ∈ Xt, G
xt

t is non-decreasing.910

Then

1. the TU-Markov dynamic uncertainty criterion
{
̺xt,π,TU

t,T

}T

t=0
defined by (142)

is time-consistent;

2. the Markov optimization problem
{{

(Pxt,π,MTU

t )(x)
}
x∈Xt

}T

t=0
defined in (143)

is time-consistent, as soon as there exists an admissible policy π♯ ∈ Πad
915

such that (133) holds true, where the value functions are the
{
V NTU
t

}T

t=0
in Definition 34.

4.5.2. UT Dynamic Markov Uncertainty Criterion

For UT-Markov dynamic uncertainty criteria, we have to restrict the def-

inition to the case where the sequence
{{

Φxt

t

}
xt∈Xt

}T−1

t=0
of one-step Markov920

time-aggregators is a sequence
{
Φt

}T−1

t=0
of one-step time-aggregators (see Re-

mark 26).

Definition 38. Let a policy π ∈ Π be given. We define the UT-Markov dy-

namic uncertainty criterion
{{
̺xt,π,UT
t,T

}
xt∈Xt

}T

t=0
by29

̺xt,π,UT
t,T =

〈
T−1

⊙
s=t

Φs

〉
◦
〈 xt,π

⊡
t≤s≤T

Gs

〉
, ∀t ∈ [[0, T ]] , ∀xt ∈ Xt . (144)

29See Footnote 18
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We define the Markov optimization problem

(PMUT
t )(x) min

π∈Πad
t

̺MUT
t,T

({
Jx,π
t,s

}T

s=t

)
, ∀t ∈ [[0, T ]] , ∀x ∈ Xt , (145)

where the functions Jx,π
t,s are defined by (27).

The following Theorem 34 is our main result on time-consistency in the UT925

Markov case.

Theorem 34. Assume that

• for any 0 ≤ s < t ≤ T , for any states xt ∈ Xt, G
xt

t UT-commutes with
Φs,

• for all t ∈ [[0, T − 1]], Φt is non-decreasing,930

• for all t ∈ [[0, T ]], for all xt ∈ Xt, G
xt

t is non-decreasing.

Then

1. the UT-Markov dynamic uncertainty criterion
{
̺xt,π,UT

t,T

}T

t=0
defined by (144)

is time-consistent;

2. the Markov optimization problem
{{

(Pxt,π,MUT

t )(x)
}
x∈Xt

}T

t=0
defined in (145)935

is time-consistent, as soon as there exists an admissible policy π♯ ∈ Πad

such that (138) holds true, where the value functions are the
{
V NUT
t

}T

t=0
in Definition 36. (where Φt does not depend on xt).

4.6. Applications

Now, we present applications of Theorem 33, that is, the TU Markov case940

(see the discussion introducing §3.5).

4.6.1. Coherent Markov Risk Measures

We introduce a class of TU Markov dynamic uncertainty criteria, that are
related to coherent risk measures (see Definition 6), and we show that they
display time-consistency.945

For all t ∈ [[0, T ]] and all xt ∈ Xt, let be given Pt(xt) ⊂ P(Wt). Let
(αt)t∈[[0,T−1]] and (βt)t∈[[0,T−1]] be sequences of functions, each mapping Xt × R̄

into R, with the additional property that βt ≥ 0, for all t ∈ [[0, T − 1]]. Notice
that, to the difference with the setting in §3.5, αt and βt can be functions of
the state x.950

For a policy π ∈ Π, for t ∈ [[0, T ]] and for a state xt ∈ Xt, we set

̺xt,π,co
t,T (

{
As

}T

s=t
) = sup

Pt∈Pt(xt)

EPt

[
· · · sup

PT∈PT (X
xt,π

t,T
)

EPT

[

T∑

s=t

(
αs

(
Xxt,π

t,s , As

) s−1∏

r=t

βr
(
Xxt,π

t,r , Ar

))]
· · ·

]
,

(146)

for any adapted uncertain process
{
At

}T

0
, with the convention that αT (xT , cT ) =

cT .
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Proposition 35. Time-consistency holds true for

• the Markov dynamic uncertainty criterion {{̺xt,π,co
t,T }xt∈Xt

}Tt=0 given by (146),

• the Markov optimization problem

min
π∈Πad

̺x,π,cot,T (
{
Jx,π
t,s

}T

s=t
) , ∀t ∈ [[0, T ]] , ∀x ∈ Xt , (147)

where Jx,π
t,s (w) is defined by (27), as soon as there exists an admissible

policy π♯ ∈ Πad such that, for all t ∈ [[0, T − 1]], for all x ∈ Xt,

π♯
t(x) ∈ argmin

u∈Ut(x)

sup
Pt∈Pt(x)

{
EPt

[
αt

(
x, Jt(x, u, wt)

)

+ βt
(
x, Jt(x, u, wt)

)
Vt+1 ◦ ft(x, u, wt)

]}
,

where the value functions are given by the following DPE

VT (x) = sup
PT∈PT (x)

EPT

[
JT (x, ·)

]
, (148a)

Vt(x) = min
u∈Ut(x)

sup
Pt∈Pt(x)

{
EPt

[
αt

(
x, Jt(x, u, ·)

)
(148b)

+ βt
(
x, Jt(x, u, ·)

)
Vt+1 ◦ ft(x, u, ·)

]}
.

With the one-step Markov uncertainty-aggregator

G
x
t

[
·
]
= sup

Pt∈Pt(x)

EPt

[
·
]
, (149)

the expression
〈
G

X0,t−1
t

〉
(see Definition 18) defines a coherent Markov risk

measure (Definition 9). The associated function Ψt in (37) is given by

Ψt

(
v, x, u

)
= sup

Pt∈Pt(x)

EPt

[
v ◦ ft

(
x, u, ·

)]
. (150)

We see by (34) that, for any state x ∈ Xt, and any control u ∈ Ut, the function955

v 7→ Ψt

(
v, x, u

)
, is a coherent risk measure (see Definition 9).

4.6.2. Convex Markov Risk Measures

We introduce a class of TU-dynamic uncertainty criteria, that are related to
convex risk measures (see Definition 6), and we show that they display time-
consistency. We consider the same setting as for coherent risk measures, with960

the restriction that βt ≡ 1 and an additional data (Υt)t∈[[0,T ]].
For all t ∈ [[0, T ]] and all xt ∈ Xt, let be given Pt(xt) ⊂ P(Wt). Let

(Υt)t∈[[0,T ]] be a sequence of functions Υt mapping Xt × P(Wt) into R̄. Let
(αt)t∈[[0,T ]] be a sequence of functions αt mapping Xt× R̄ into R. Notice that, to
the difference with the setting in §3.5, αt and Υt can be functions of the state x.965
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For a policy π ∈ Π, a time t ∈ [[0, T ]] and a state xt ∈ Xt, we set

̺xt,π,cx
t,T (

{
As

}T

s=t
) = sup

Pt∈Pt(xt)

EPt

[
· · · sup

PT∈PT (xT )

EPT

[

T∑

s=t

(
αs

(
xs, As

)
−Υs(xs,Ps)

)]
· · ·

]
,

(151)

for any adapted uncertain process
{
At

}T

0
, with the convention that αT (cT ) =

cT .

Proposition 36. Time-consistency holds true for

• the dynamic uncertainty criterion {{̺xt,π,cx
t,T }xt∈Xt

}Tt=0 given by (151),

• the Markov optimization problem

min
π∈Πad

̺x,π,cxt,T (
{
Jx,π
t,s

}T

s=t
) , ∀t ∈ [[0, T ]] , ∀x ∈ Xt , (152)

where Jx,π
t,s (w) is defined by (27), as soon as there exists an admissible

policy π♯ ∈ Πad such that, for all t ∈ [[0, T − 1]], for all x ∈ Xt,

π♯
t(x) ∈ argmin

u∈Ut(x)

sup
Pt∈Pt(x)

{
EPt

[
αt

(
x, Jt(x, u, ·)

)
+Vt+1◦ft(x, u, ·)

]
−Υt(x,Pt)

}
,

where the value functions are given by the following DPE

VT (x) = sup
PT∈PT (x)

{
EPT

[
αT

(
x, JT (x, ·)

)]
−ΥT (x,PT )

}
, (153a)

Vt(x) = min
u∈Ut(x)

sup
Pt∈Pt(x)

{
EPt

[
αt

(
x, Jt(x, u, ·)

)

+ Vt+1 ◦ ft(x, u, ·)
]
−Υt(x,Pt)

}
. (153b)

With the one-step Markov uncertainty-aggregator

G
x
t

[
·
]
= sup

Pt∈Pt(x)

{
EPt

[
·
]
−Υt(x,Pt)

}
, (154)

the expression
〈
G

X0,t−1
t

〉
(see Definition 18) defines a convex Markov risk mea-

sure (Definition 9). The associated function Ψt in (37) is given by

Ψt

(
v, x, u

)
= sup

Pt∈Pt(x)

{
EPt

[
v ◦ ft

(
x, u,Wt

)]
−Υt(x,Pt)

}
. (155)

We see by (34) that, for any state x ∈ Xt, and any control u ∈ Ut, the function970

v 7→ Ψt

(
v, x, u

)
, is a convex risk measure (see Definition 9).
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5. Discussion

We discuss how our assumptions and results in §3 relate to other results in
the literature on time-consistency for dynamic risk measures

First, we examine the connections between time-consistency for Markov dy-975

namic uncertainty criteria and the existence of a DPE. When we analyze the
literature on time-consistency for risk measures with our tools (aggregators), we
observe that

• most, if not all results, are obtained for the specific case of linear one-step
time-aggregators Φt

{
ct, ct+1

}
= ct + ct+1,980

• a key ingredient to obtain time-consistency is an equation like (156a),
which corresponds to the commutation of one-step uncertainty-aggregators
with the sum (that is, with the linear one-step time-aggregators actually
used).

Therefore, Theorems 9, 12, 17, 18 in §3 provide an umbrella for most of the re-985

sults establishing time-consistency for dynamic risk measures, and yields exten-
sions to more general time-aggregators than the sum. In [32], time-consistency
for dynamic risk measures is not defined by a monotonicity property like in [23]
but in line with the existence of a DPE. In [33], the time-consistency property
is comparable to Definition 11, though being restricted to the multiplicative990

time-aggregator.
We discuss to some extent [23] where time-consistency for dynamic risk mea-

sures plus an additional assumption like (156a) lead to the existence of a DPE,
within the original framework of Markov risk measures sketched above. Here is
the statement of Theorem 1 in [23], with the notations of §2.2.995

Theorem 37 ([23]). Suppose that a dynamic risk measure
{
ρt,T

}T

t=0
satisfies,

for all t ∈ [[0, T ]], and all A
t
∈ Lt the conditions

ρt,T

({
A

s

}T

s=t

)
= A

t
+ ρt,T

({
0,A

t+1
, · · · ,A

T

})
, (156a)

ρt,T

({
0
}T

s=t

)
= 0 . (156b)

Then ρ is time-consistent iff, for all 0 ≤ s ≤ t ≤ T and all {A
s
}T0 ∈ L0,T , the

following identity is true:

ρs,T

({
A

r

}T

r=s

)
= ρs,t

({
A

r

}t

r=s
, ρt,T

({
A

r

}T

r=t

))
. (157)

In [23, Section 5], the finite horizon problem corresponds to Problem (95), start-
ing at t = 0, where the one-step uncertainty aggregator Gt in (95) corresponds
to the one-step conditional risk measure ρt, the one-step time-aggregator Φt1000

in (95) corresponds to the sum, and the cost Jt in (95) is denoted ct in [23].
Commutation of the one-step time-aggregators Φt and the one-step uncertainty-
aggregators Gs is ensured through the equivariance translation property (156a)

65



of a coherent measure of risk. Monotonicity of the uncertainty aggregator Gs

corresponds to the monotonicity property of a coherent risk measure, and mono-1005

tonicity of the time aggregator is obvious. Thus, Theorem 17 leads to the same
DPE as [23, Theorem 2].

Let us now focus on the differences between [23] and our results. In [23],
arguments are given to show that there exists an optimal Markovian policy
among the set of adapted policies (that is, having a policy taking as argument1010

the whole past uncertainties would not give a better cost than a policy tak-
ing as argument the current value of the state). We do not tackle this issue
since we directly deal with policies as functions of the state. Where we sup-
pose that there exists an admissible policy π♯ ∈ Πad such that (62) holds true,
[23] gives conditions ensuring this property. Finally, where [23] restricts to the1015

sum to aggregate instantaneous costs, we consider more general one-step time-
aggregators Φt. Moreover where we give a sufficient condition for a Markovian
policy to be optimal, [23] gives a set of assumptions such that this sufficient
condition is also necessary (typically assumption ensuring that minimums are
attained).1020

Second, we discuss the possibility to modify a Markov optimization problem
or a dynamic risk measure, in order to make it time-consistent (if it were not
originally). When sequences of optimization problems are not time-consistent
with the original “state”, they can be made time-consistent by extending the
state. In [6], this is done for a sequence of optimization problem under a chance1025

constraint. In [22, Example 1], the sum of AV@R of costs is considered (given
by the dynamic risk measure defined in 1.2.2 and labeled (TU)). This formula-
tion is not time consistent. However, exploiting the formulation (19) of AV@R,
we suggest to extend the state and add the variables {rs}

T
0 so that, after trans-

formation, we obtain a problem with expectation as uncertainty aggregator, and1030

sum as time aggregator, thus yielding time-consistency. In [31], it is shown how
a large class of possibly time-inconsistent dynamic risk measures, called spectral
risk measures and constructed as a convex combination of AV@R, can be made
time-consistent by what we interpret as an extension of the state.
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