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Abstract

Small Heterodimer Partner (SHP, NR0B2), a member of the nuclear receptor superfamily, is an 

orphan receptor that lacks a DNA binding domain but contains a putative ligand binding domain. 

SHP forms non-functional heterodimers with DNA binding transcriptional factors and, thereby, 

functions as a transcriptional corepressor in diverse biological processes, including cellular 

metabolism, cell proliferation, apoptosis, and sexual maturation. Of these reported functions of 

SHP, maintaining cholesterol and bile acid levels by negative feedback regulation of hepatic 

conversion of cholesterol to bile acids is well established. 

Cholesterol is essential in many biological activities in mammalian cells.  Conversion of 

hepatic cholesterol into bile acids is a major pathway to eliminate cholesterol from the body.  

However, excess amounts of cholesterol and bile acids are pathogenic.  Therefore, the levels of 

cholesterol and bile acids need to be tightly regulated. Cholesterol 7α-hydroxylase (CYP7A1), a 

liver specific P450 enzyme, is the first and rate-limiting enzyme in this process.  Increased levels

of bile acids repress transcription of CYP7A1 in a feedback manner.  In response to elevated bile 

acid levels, the nuclear bile acid receptor Farnesoid X Receptor (FXR) increases the transcription 

of SHP. SHP interacts with the hepatic DNA-binding activators, hepatic nuclear factor-4α (HNF-

4α) or liver receptor homologue-1 (LRH-1) on the CYP7A1 promoter, and represses

transcription of the CYP7A1 gene. In addition to regulating cholesterol and bile acid levels, SHP 

is known to mediate inhibition of fatty acid synthesis, hepatic lipogenesis, and glucose 

production in response to elevated bile acid levels. 

Posttranslational modifications profoundly regulate protein stability and activity.  

Recently, bile acids have been reported to function as signaling molecules that activate kinase 

pathways. We recently found that SHP stability is increased by bile acid-activated ERK-
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mediated phosphorylation through inhibition of ubiquitination. We now show that the activity of 

SHP is increased by posttranslational methylation of SHP at Arg-57 by protein arginine 

methyltransferase 5 in response to bile acids. The overall aim of this study is to delineate the 

molecular mechanism by which the post-translational modification of SHP regulates SHP 

functional activity.

In recent years, several naturally-occurring mutations in the SHP gene have been reported

in human subjects that are associated with mild obesity and diabetes. About 30% of these 

reported mutations were Arg mutations, including the R57W mutation. Though it is known that 

the mutations lead to metabolic disorders, the molecular basis underlying the mechanism by 

which the mutations lead to metabolic disease is unknown. By mass spectrometry, we identified 

Arg 57 as a site of methylation in SHP catalyzed by Protein Arginine Methyltransferase 5 

(PRMT5). Functional activity assays showed that methylation of SHP at Arg-57 by PRMT5 is 

important for SHP inhibition of LRH1 and HNF-4α transactivation. 

Our lab previously showed the molecular mechanism of SHP-mediated repression

involving the coordinate recruitment of chromatin modifying repressive cofactors, 

mSin3A/HDAC1, NCoR1/HDAC3, methyltransferase G9a, and the Swi/Snf-Brm remodeling 

complex, to the CYP7A1 promoter. Mutation of the Arg-57 site to Trp (R57W is the naturally-

occurring mutant) decreased SHP interaction with corepressors that we had previously identified,

and severely impaired inhibition of gene expression by SHP. Overexpression of wild type SHP 

in mouse liver resulted in decreased lipogenic, bile acid synthetic and gluconeogenic gene

expression, and mutation of Arg-57 blocked SHP function, but remarkably in a gene-selective 

manner. Overexpression of the R57W mutant resulted in elevated levels of triglycerides and bile 

acids in liver compared to that of wild type SHP. Differential interaction and recruitment of 



iv

corepressors by SHP in a promoter-specific manner may contribute to gene-selective repression 

by the R57W mutant.

Our studies have shown that SHP is methylated by PRMT5 after bile acid treatment.

Tandem mass spectrometry revealed that in addition to methylation at Arg-57, SHP is also 

phosphorylated at Thr-55 after bile acid treatment. Studies with kinase inhibitors showed that a 

signaling pathway involving PI3K and PKC ζ is involved in SHP Thr phosphorylation, and also 

regulates arginine methylation of SHP. The close proximity of the phosphorylation (Thr-55) and 

methylation (Arg-57) sites suggested a possible interplay between them. Studies with 

phosphorylation- and methylation-defective mutants demonstrated crosstalk between SHP Thr 

phosphorylation and Arg methylation. 

This study demonstrates a critical role for Arg-57 methylation by PRMT5 in SHP 

function, and suggests a possible mechanism for association of the reported R57W mutation with 

obesity. This study also reveals Thr-55 phosphorylation of SHP by upstream kinase signaling 

pathways to be important for SHP functional activity. Targeting post-translational modifications 

of SHP may be an effective strategy to develop new therapeutic agents to treat SHP-related 

human diseases, such as metabolic syndrome, cancer, and infertility.
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Chapter One

Introduction

I. Nuclear receptor superfamily

A. Introduction

Nuclear receptors consist of a superfamily of ligand-regulated transcription factors that function 

as transcriptional switches in response to lipophilic signaling molecules including endocrine 

hormones, vitamins, xenobiotics and dietary lipids. They bind to specific DNA sequences and 

regulate the expression of target genes involved in almost every aspect of mammalian 

physiology (1, 2).  Currently, 48 members have been identified in the human genome (3, 4) that

can be broadly divided into three sub-groups based on their physiological ligands and potential 

functions (5).  The first class of nuclear receptors is the classic endocrine receptors, the second 

class is the adopted orphan nuclear receptors and the third class includes true orphan nuclear 

receptors. The classic endocrine receptors are characterized by their very high affinity to ligands 

(Kd = nM range), and include steroid hormone receptors, such as the estrogen receptors (ER), 

glucocorticoid receptor (GR), mineralocorticoid receptor (MR), progesterone receptor (PR) and 

androgen receptor (AR) as well as thyroid hormone receptors (TR), and vitamin A (retinoid acid 

receptors, RAR) and D receptors (VDR).  Orphan nuclear receptors are the subset of nuclear 

receptors identified based on their sequence homology to the endocrine nuclear receptors, which 

originally lacked a cognate ligand (6).  Through reverse endocrinology, a receptor can be used to 

discover its natural ligand so that the receptor’s potential function can be characterized (7).  

Many endogenous and exogenous compounds have been identified specifically for some orphans 

(8-12).  These deorphanized nuclear receptors belong to the second class of nuclear receptors 
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called “adopted orphan nuclear receptors”, although for some adopted receptors, the role of 

ligand-dependent regulation mediated in physiology is not known.  This class of nuclear 

receptors is characterized by a low affinity for their ligands (Kd = μM range). The third class of 

nuclear receptors comprises of true orphan nuclear receptors and includes all the remaining

nuclear receptors for which ligands have not been identified yet.        

A typical nuclear receptor is composed of four independent but interacting functional 

modules: a ligand-independent activation function modulator domain (AF-1), a central DNA 

binding domain (DBD) containing ~70 amino acids, a hinge domain and a C-terminal ligand 

binding domain (LBD), which contains a ligand-dependent activation function domain (AF-2) 

(Fig.1.2) (13-15).  The AF-1 domain displays the most variability both in length and primary 

sequence and may regulate promoter-specific and cell-dependent activities.  The DBD, which 

consists of two cysteine-rich zinc finger motifs, is highly conserved within the nuclear receptor 

family.  The hinge domain is the region connecting the DBD and LBD, and is structurally

flexible to allow the DBD to rotate 180o which allow some receptors to bind as dimers to both 

direct and inverted hormone response elements (HREs).  The less conserved LBD, which allows 

the binding of structurally diverse small lipophilic molecules in response to different signals, is 

responsible for ligand binding, dimerization and  interaction with coactivators or corepressors 

(16-21).  

Nuclear receptors can regulate transcription by binding to specific DNA sequences, 

referred to as hormone response elements (HREs). Nuclear receptors can bind to the DNA as 

monomers or as homodimers or heterodimers typically with Retinoid X Receptor (RXR) (22).  

Nuclear receptor transcriptional activity can be modulated through binding of ligands. Upon 
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ligand binding, the LBD of nuclear receptor undergoes a conformational change, which results in 

the release of corepressors and recruitment of coactivators to the AF-2, and facilitates gene 

transcription (23).

  

In the past two decades, numerous studies have shown that nuclear receptors play 

essential roles in many metabolic pathways, such as bile acid/cholesterol homeostasis, 

lipid/glucose metabolism, energy homeostasis, and inflammation (5, 24-30).  Importantly, 

activity of nuclear receptors can be modulated by natural or synthetic ligands so that these 

pathways can be regulated.  The critical physiological functions of nuclear receptors makes them 

potential targets for the treatment of metabolic diseases (31).  

B. Orphan nuclear receptors

Historically, nuclear receptors were discovered by using ligands to "fish" for their receptors. 

These receptors were referred to as the classic hormone receptors. However with modern 

molecular biology techniques such as screening of cDNA libraries, it became possible to identify 

related receptors based on sequence similarity to known receptors without knowing what their 

ligands are, leading to the discovery of the orphan receptors.      

Adopted orphan receptors in the nuclear receptor group include the farnesoid X receptor

(FXR), liver X receptor (LXR), peroxisome proliferator-activated receptor (PPAR), constitutive 

androstane receptor (CAR), pregnane X receptor (PXR) and retinoid X receptor (RXR). Adopted 

orphans like FXR, LXR and PPAR bind metabolic intermediates such as bile acids, sterols and 

fatty acids, respectively, with relatively low affinity and hence function as metabolic sensors. 
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Others like CAR and PXR function as xenobiotic sensors up-regulating the expression of 

xenobiotic metabolizing enzymes like cytochrome P450 enzymes. RXR, whose ligand was 

identified as 9-cis-retinoic acid, associates with other nuclear receptors as a heterodimeric 

partner and participates in a wide range of nuclear receptor response systems (5, 7).

FXR acts as a sensor for bile acids, the end products of hepatic cholesterol catabolism. 

FXR is activated by primary bile acids, chenodeoxycholic acid (CDCA) and cholic acid (CA)

and to a lesser extent by secondary bile acids, lithocolic acid (LCA) and deoxycholic acid 

(DCA). In the liver, FXR plays a pivotal role in maintaining bile acid, lipid and glucose 

homeostasis by regulating genes involved in these metabolic pathways. In response to elevated 

bile acids, bile acid activated FXR represses the transcription of the CYP7A1 gene, which is the 

first and rate-limiting enzyme in the bile acid synthetic pathway. This feedback repression is 

mediated by FXR induction of SHP gene expression (2, 7). SHP in turn binds to and inhibits the 

transactivation of hepatocyte nuclear factor 4α (HNF-4α) and liver receptor homologue 1 

(LRH1) at the CYP7A1 promoter (Fig.1.1). FXR also protects the liver from elevated bile acids 

by controlling the expression of bile acid transporters, as well as fibroblast growth factors. It 

induces the expression of genes involved in bile acid efflux: bile salt export pump (BSEP), 

multidrug resistant-associated protein 2 (MRP2) and multidrug resistance P-glycoprotein 3 

(MDR3), and represses the expression of Na+-taurocholate cotransporting polypeptide (NTCP), 

which is involved in bile acid import. In addition, FXR promotes lipid clearance by inducing 

genes that regulate lipoprotein metabolism. The FXR/SHP pathway is also known to play a role 

in repression of the lipogenic gene, SREBP1c. The FXR/SHP cascade also regulates glucose 

homeostasis by repression of the gluconeogenic genes, PEPCK and G6pase.     



5

True orphan nuclear receptors, whose ligands have not been identified, include SHP,

DAX-1, Rev-erb, GCNF, TLX, PNR, COUP-TF, TR2, 4 and NR4A. SHP is an atypical orphan 

nuclear receptor since it lacks the conserved DBD and consists only of a putative LBD. Since its 

discovery, SHP has been identified as a key transcriptional repressor of genes involved in diverse 

metabolic pathways. The nuclear receptors repressed by SHP include LRH1, HNF4, ER, TR, 

estrogen-related receptor (ERR), LXR, FXR, RAR, RXR, PXR, AR, CAR and PPAR.

Repression by SHP is not limited to nuclear receptors. A few other transcription factors that have 

been reported to interact with SHP include basic helix-loop-helix transcription factor 

(BETA2/NeuroD) and forkhead transcription factor (Foxo1). In addition, SHP mediates 

inhibition of transforming growth factor-beta (TGF-β). 

SHP plays an important role in the negative feedback repression of bile acid biosynthesis

by inhibition of the CYP7A1 gene, but is also involved in regulating the expression of genes 

with roles in bile acid transport, lipid metabolism, and gluconeogenesis. In addition, SHP 

induces apoptosis in liver and cancer cells, and also plays a role in cell proliferation, drug

metabolism and energy homeostasis. In humans, mutations in the SHP gene are associated with 

mild obesity and diabetes. In SHP-null transgenic mice, bile acid pool size is elevated, energy 

expenditure is increased and pancreatic β cell function and glucose homeostasis are improved. 

The important role of orphan nuclear receptors in metabolic regulation has been clearly 

established. Orphan nuclear receptors represent a unique and pivotal resource to elucidate new 

regulatory systems that impact both normal physiology and human disease. Although it is not 



6

clear whether activity of orphan nuclear receptors can be pharmacologically modulated, further

study on the mechanisms by which orphan nuclear receptor activity is regulated may uncover 

possible therapeutic strategies through modulating receptor function. 

II. SHP, an atypical orphan nuclear receptor

A. Atypical structure 

SHP is an atypical orphan nuclear receptor that contains the dimerization and ligand-binding 

domain (LBD) found in other family members, but lacks the conserved DNA binding domain 

(DBD) (Fig. 1.2) (42-44). SHP was originally isolated in 1996 based on its interaction with 

FXR

Bile 
acids

RXR

SHP

FXRE/IR-1

SHP

HNF4 HNF4
LRH1

SHP SHP

DR1 LRHRE
BARE II

CYP7a1

Fig. 1.1 Transcriptional repression of CYP7A1 by bile acids is mediated by nuclear 
receptors FXR and SHP.  Bile acid response element II (BARE II) on the CYP7A1 promoter 
contains binding sites for nuclear receptors HNF-4α and LRH-1.  The HNF-4α homodimer binds 
to the DR-1 motif, which has three nucleotides overlapping with the binding site for LRH-1. 
Both receptors serve as activators for CYP7A1.  Bile acid activated FXR dimerizes with RXR 
and binds to the IR-1 motif on the SHP gene to increase SHP transcription.  SHP protein in turn 
binds to the LRH-1/HNF-4 on the CYP7A1 promoter and represses its transcription. 
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xenobiotic nuclear receptor CAR in a yeast two-hybrid screening (42). It is predominantly

expressed in the liver and with lower levels in the intestine, heart, adrenal gland, and pancreas 

(42, 43).  The ability of SHP to bind directly to a variety of NRs is crucial for its physiological 

function as a transcriptional inhibitor of gene expression. SHP binds to the AF-2 domain of 

nuclear receptors through two conserved functional LXXLL-related motifs (also called NR-

boxes) located in the putative N-terminal helix 1 of the LBD and in the C-terminal region of 

helix 5 (45). These motifs are found in a variety of NR-binding proteins and are usually a 

characteristic site for binding of coactivators to the ligand-dependent AF-2 domain of nuclear 

receptors (43, 44, 46). They thus serve the same function in SHP as a binding site for other 

nuclear receptors (45). Therefore, SHP can compete with coactivators for binding to the AF-2 

surface of nuclear receptors, implying a direct antagonism of coactivator function as an 

inhibitory mechanism of SHP (45). Studies also suggested that SHP possesses an intrinsic C-

terminal repression domain, which has been proposed to recruit co-repressors (Co-R) to execute

its active repression function (47). Deletion studies of SHP domains demonstrated that the 

intrinsic repression domain of SHP is required for its full inhibitory function (48, 49), implying 

the importance of active recruitment of corepressors in SHP-mediated repression. Several 

corepressors such as HDACs, mSin3A and NcoR have been reported to interact with SHP, 

supporting an active repressive mechanism for SHP (50).
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B. Molecular mechanisms of repression

Three distinct repression mechanisms have been suggested to explain the inhibitory function of 

SHP on the transcription of NR target genes: coactivator competition, active recruitment of 

corepressors, and inhibition of DNA-binding (51). The first mechanism of repression involves 

the binding of SHP to the AF-2 domain of NRs through two functional LXXLL-related motifs, 

which results in interference and direct competition with coactivator binding. This mode of 

inhibition is more pronounced in the case of SHP inhibition of transcription mediated by ERs, 

RXR, LRH-1, HNF4, AR, LXRs, ERRs, GRs and Nur77 (52). For example, SHP inhibits the 

interaction of PGC1α with LRH1 to inhibit CYP7a1 expression (53).  In addition, it was shown 

that SHP antagonizes PGC1α coactivation of both HNF-4 and GR transactivation of the PEPCK 

promoter (54). SHP also interacts directly with agonist-bound ERα and ERβ, and inhibits ER-

mediated transcriptional activation by targeting the ligand-regulated AF-2 and competing for 

binding of coactivators such as TIF2 (45, 46). 

AF1 DBD LBD AF2NR HingeN C

Zn Zn

SHP
LYTLL LKKILL

LBD AF2
1 257 aa

Fig. 1.2. Structure of a typical nuclear receptor and the atypical orphan nuclear receptor, 
SHP.  A typical nuclear receptor (NR) contains an N-terminal activation function-1 (AF-1) 
domain, a conservative DNA binding domain (DBD), which is made up of two cysteine-rich 
zinc fingers and a ligand binding domain (LBD), which contains a ligand-dependent activation 
function-2 (AF-2) domain. However, SHP is an unusual nuclear receptor that lacks a DBD.  It 
contains only a putative LBD and two LXXLL motifs for interaction with other nuclear 
receptors.    
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The second mode of repression suggested for SHP is the active recruitment of 

corepressors. Although coactivator competition on the AF-2 domain might be important for 

inhibition, recruitment of conventional corepressors could be critical for SHP to act as a direct 

transcriptional repressor since SHP contains a strong transcriptional repression domain at its C 

terminus. A few years ago, our lab demonstrated for the first time that SHP actively recruits an 

mSin3A/HDAC-1 histone deacetylase complex and a Swi/Snf-Brm chromatin remodeling 

complex to the native CYP7A1 promoter, which leads to reduced histone acetylation and a 

closed nucleosome structure on the CYP7A1 promoter, thus repressing the gene (55). SHP has 

also been shown to be associated with unmodified and lysine 9-methylated histone-H3 and to 

functionally interact with HDAC1 and the G9a methyltransferase, which led to histone 

deacetylation, followed by H3-K9 methylation and stable association of SHP itself with 

chromatin (56). Our lab also showed that G9a was recruited to the CYP7A1 promoter and H3K9 

was methylated in a SHP-dependent manner (57). These studies established a critical role for 

G9a methyltransferase, histone deacetylases, and the Swi/Snf-Brm complex in the SHP-mediated 

inhibition of hepatic bile acid synthesis via coordinated chromatin modification at CYP7a1. 

In addition, recently our group reported distinct functional specificities of Brm and Brg-1 

Swi/Snf ATPases in the feedback regulation of hepatic bile acid biosynthesis. The Swi-Snf-Brm 

remodeling complex is involved in SHP-mediated repression of CYP7A1, and interestingly auto-

repression of SHP, whereas the Swi/Snf-Brg-1 remodeling complex is involved in bile 

acid/FXR-mediated transcriptional activation of the SHP promoter. Brg-1, but not Brm, is a 

coactivator for FXR and is recruited to SHP promoter after bile acid treatment to enhance SHP 

transcription. In contrast, Brm, but not Brg-1, is involved in SHP-mediated repression of 
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CYP7a1 and auto-regulation (58). A recent interesting study showed that SHP recruited SIRT1, a 

class III histone deacetylase to LRH1 target gene promoters and SIRT1 deacetylated template-

dependent histones H3 and H4 to inhibit transcription of LRH1 target genes (59).

Both of these modes of repression are involved in SHP inhibition of many NRs such as

HNF4, ERs and LRH-1 (46, 47, 60). SHP might utilize these two distinct inhibitory steps in a 

cell type- and target gene-dependent manner. 

The third possible mode of repression by SHP is SHP binding to a DNA bound NRs 

resulting in the dissociation of the SHP-NR complex from the promoters. For example, SHP has 

been shown to inhibit DNA binding and transcriptional activation by repressing RAR-RXR 

heterodimers, RAR-PXR heterodimers, and by repressing agonist dependent ERα dimerization 

and HNF4α homodimerization. HNF-3, JunD and C/EBPα were also reported to be repressed by 

SHP via inhibition of DNA binding (61-63).

C. Function of SHP as a regulator of diverse metabolic pathways                 

SHP was discovered only a decade ago, but increasing numbers of studies here demonstrated that 

SHP is a pleiotropic regulator, influencing multiple target genes involved in diverse biological 

processes (Fig. 1.3) (51, 64, 65).

The role of SHP in the negative feedback repression of bile acid biosynthesis through 

inhibition of CYP7a1 gene transcription has been very well studied. Many lines of evidence 

demonstrate that SHP also regulates several metabolic pathways involved in fatty liver and 
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obesity by acting as a transcriptional regulator of nuclear receptors in lipid homeostasis (95, 104). 

Bile acids have long been known to affect triglyceride (TG) homeostasis. In humans, bile acid-

binding resins induce the production of VLDL TGs, whereas treatment of cholesterol gallstones 

with the bile acid CDCA has been shown to reduce hypertriglyceridemia (66). The mechanisms

underlying this reciprocal relationship between bile acid biosynthesis and TG production has 

remained elusive. One hypothesis is that bile acids, by activating FXR, induce the expression of 

SHP. SHP then interferes with the expression of a key lipogenic gene, SREBP-1c, by inhibiting 

the activity of LXR and eventually other transcription factors that stimulate SREBP-1c 

expression (66). SREBP-1c controls the expression of other genes involved in lipogenesis

including fatty acid synthase (FAS), acetyl CoA-carboxylase (ACC), acetyl-CoA synthetase

(AceCS) and stearoyl-CoA desaturase-1 (SCD-1). Consistently, study by Matsukuma et al. 

showed that while LRH-1 stimulated FAS transcription via LXR, this response was blocked by 

increased SHP and that FAS mRNA was overexpressed in SHP−/− mice (67).

The study by Boulias et al. using SHP transgenic mice showed that the constitutive 

expression of SHP led to the depletion of hepatic bile acid pools, and accumulation of 

triglycerides in the liver resulting in a fatty liver phenotype (64). In SHP-transgenic mice, the 

mRNA levels of genes involved in fatty acid and triglyceride biosynthesis, such as SREBP-1c,

FAS, ACL, ACC-1, and SCD1, and the fatty acid translocase gene, CD36 were increased

significantly, which is in contrast to the study by Watanabe et al. (66). The proposed mechanism 

for the upregulation of these genes was the indirect activation of LXRα (which activates SREBP-

1c gene), and PPARγ (which activates CD36) by SHP, probably by the action of SHP on 

cholesterol catabolic enzymes (64). 
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A second possibility is that bile acids may lower TG synthesis by activating signaling 

pathways that leads to post-translational modifications of SHP, FXR or other nuclear receptors

that modulates their activity. Recently, bile acids have been identified as signaling molecules that 

activate kinase cascades, such as mitogen-activated protein kinases (MAPKs) (68-70) , and 

growth factor receptors, as well as cell surface receptors such as G-protein-coupled receptors (71, 

72). My study has demonstrated that bile acid activated kinase signaling pathways may increase

post-translational modification of SHP, which increases the repressive activity of SHP. Detailed 

findings will be presented in Chapters 2 and 3.

Several studies have shown that SHP has a major function in regulating hepatic 

gluconeogenesis. Increased bile acids inhibit the expression of the gluconeogenic genes, G6Pase, 

PEPCK, and fructose 1, 6-bis phosphatase (FBP1), in a SHP-dependent manner and the absence 

of this repression in both FXR−/− and SHP−/− mice indicates that FXR-SHP nuclear receptor

cascade is critical for regulating glucose metabolism (73, 74). AMP-activated protein kinase 

(AMPK) is a serine/threonine kinase that regulates hepatic glucose and lipid homeostasis by 

affecting a diverse set of target genes associated with these metabolic pathways. Metformin, an 

antidiabetic drug widely used for the treatment of type 2 diabetes, and sodium arsenite which 

was previously reported to exhibit insulin-mimetic effects on glucose homeostasis have been 

reported to inhibit hepatic gluconeogenesis in an AMPK-dependent manner through SHP-

mediated inhibition of PEPCK and G6Pase gene expression (75, 76). These studies provide a 

novel molecular mechanism of SHP mediated regulation of hepatic glucose homeostasis and 

indicate that SHP may be one of the primary targets of AMPK.
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SHP inhibits the GR-mediated activation of PEPCK promoter by antagonizing interaction 

of PGC1α with GR. SHP also represses the PEPCK and G6Pase gene expression via inhibition 

of the forkhead transcription factors HNF-3 and HNF-6. It was also shown that SHP directly 

interacts with C/EBPalpha on the PEPCK promoter and inhibits its transcription. Other important 

targets of SHP in glucose metabolism are the forkhead transcription factor FOXO1, the basic 

helix-loop-helix transcriptional factor BETA2/NeuroD, and the aryl hydrocarbon receptor 

(AHR)/nuclear translocator (ARNT).   

Recent studies have shown that SHP also plays an important role in regulation of the 

transcription of several microRNAs (77-80). A recent study in our lab showed that FXR induces

expression of SHP, which in turn blocks the occupancy of p53 at the miR-34a gene promoter and 

represses miR-34a expression, which in turn leads to the positive regulation of the NAD-

dependent deacetylase SIRT1 in the liver (81). This study demonstrated that the FXR/SHP 

pathway controls SIRT1 levels via miR-34a inhibition and that elevated miR-34a levels in obese 

mice due to defective FXR/SHP pathway contributes to decreased SIRT1 levels observed in 

these mice. 

Although most studies have reported that SHP acts as a repressor of gene transcription, 

SHP has also been found to activate the nuclear factor-kappa B (NF-κB) in resting macrophage 

cells treated with oxidized low density lipoprotein (oxLDL) (82). Moreover, SHP was also 

reported to upregulate the transcriptional activity of PPARγ by directly binding to the

DBD/hinge region of PPARγ (83).
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All these findings imply that SHP is as an integrative regulator of diverse arrays of 

biological activities (66, 84). SHP gene mutants in humans have been reported to be associated 

with obesity and diabetes (85-90). SHP null mice showed increased bile acid pool size due to 

impaired feed back repression of bile acid biosynthesis (91, 92). In addition to impaired bile acid 

homeostasis, SHP-/- mice are also resistant to high-fat diet-induced obesity (93, 94).  Ob/ob mice 

(mice with deletion of Leptin gene) exhibit elevated SHP expression (93).  However SHP and 

Leptin double knockout mice do not exhibit the fatty liver observed in ob/ob mice (93).  In line 

with this, in transgenic mice over-expressing SHP bile acid pools are depleted and hepatic 

triglycerides are accumulated (64). These results strongly indicate that SHP plays an important 

role in regulating bile acid/cholesterol and lipid homeostasis.  In addition, SHP -/- mice also 

exhibited hypoinsulinemia, which was connected with increased insulin sensitivity (84).  SHP 

deletion also causes a transformed phenotype of mouse embryonic fibroblasts and a spontaneous

hepatic tumor formation was observed, implying that SHP functions as a tumor suppressor (95, 

96). These data demonstrate that SHP is also involved in glucose homeostasis and 

carcinogenesis. Recent work has shown that SHP may also play a role in macrophages. The 

expression of SHP along with target nuclear receptors during macrophage activation suggested 

an involvement in atherogenesis and inflammatory disease. As SHP plays a role in diverse 

cellular pathways, targeting SHP activity could serve as a potential therapeutic approach for 

treating several metabolic diseases.



15

D. Function of SHP in maintaining bile acid/cholesterol homeostasis

In humans, cholesterol is acquired through dietary absorption and de novo biosynthesis from 

acetyl-CoA.  The elimination of cholesterol from the body through catabolization into bile acids

is the major pathway to eliminate excess cholesterol from the body (11, 14). Biosynthesis of bile 

acids generates bile flow from the liver to the intestine, and 95% of bile acids are efficiently 

reabsorbed into the portal venous system, and transported back into the liver (14).  This 

enterohepatic circulation of bile is important for maintaining liver function and regulating 

metabolic pathways. Bile acids are amphipathic molecules that function as physiological 

detergents to facilitate absorption, excretion and transport of lipids, cholesterol as well as fat-

soluble nutrients such as vitamin D and E, and metabolites in the liver and intestine (16-18).  

SHP

HNF-4

LRH-1

Foxo-1

ERRPXR
CAR

LXR

PPARs

lipid/glucose metabolism

energy 
homeostasis

drug metabolism

reproduction, 
cell proliferation

glucose metabolism

cholesterol/bile acid metabolism

Foxa-2
ER

apoptosis

TGFβ

Fig. 1.3. Potential functions of SHP in diverse biological processes. SHP interacts 
with and inhibits the activities of numerous nuclear receptors and transcription 
factors as indicated, involved in metabolic pathways, cell cycle control and energy 
homeostasis including ER, HNF-4, LRH-1, LXR, CAR, PXR, ERRs, PPARs, Foxo-
1, Foxa-2, p53 and TGFβ. 
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Bile acid synthesis is tightly regulated under normal physiological conditions. CYP7A1, 

which is exclusively expressed in the liver, is the first and rate-limiting enzyme in the classic 

pathway; therefore the output of bile acids largely depends on the regulation of CYP7A1. In the 

presence of elevated bile acid levels in the body, CYP7A1 is predominately regulated at the 

transcriptional level by bile acids in a feedback manner (22, 31, 32, 68, 97).  Regions containing 

bile acid response element (BARE) I and II were identified in the CYP7A1 promoter (32, 68, 98).  

The identified BARE II in the human CYP7A1 promoter contains binding sites for nuclear 

receptors HNF-4α and LRH-1, which have three overlapping nucleotides (32, 68, 99).  Both 

HNF4α and LRH-1 serve as DNA-bound transcriptional activators in the regulation of CYP7A1 

(100, 101). In 2000, two independent research groups reported an elegant cascade pathway in 

bile acid-mediated repression of CYP7A1 transcription, in which SHP plays a critical role (53, 

102).  FXR has been identified as a receptor for a wide variety of endogenous bile acids through 

NRs/ligand binding assays (104, 22).  Like other adopted orphan nuclear receptors, FXR forms a 

permissive heterodimer with (RXR) and binds to specific FXR-responsive DNA elements 

(FXREs), IR-1 motifs, on SHP promoter and increases SHP gene transcription (53, 102, 105). 

Induced SHP protein in turn binds to LRH-1 on the BARE II on CYP7A1 promoter to inhibit the 

transcription of CYP7A1 (Fig. 1.1) (53, 102). The molecular basis for SHP interaction with 

LRH-1 to regulate cholesterol and bile acid homeostasis has been demonstrated in a recent 

structural and biochemical study (106).  Mice lacking SHP gene failed to repress CYP7A1 

expression in response to a FXR synthetic agonist GW4064 (107).  SHP null mice also exhibited 

two-fold higher amounts of accumulated serum bile acid compared to wild type mice (107, 108).  

These data demonstrate that SHP plays a crucial role in the regulation of CYP7A1 gene and thus 

is important in maintaining bile acid/cholesterol homeostasis.   
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III. Bile acids as signaling molecules

A. Functions of bile acids

Bile acids are synthesized from cholesterol in the liver and stored in the gall bladder as the main 

constituent of bile. After ingestion of food, bile flows into the duodenum, where it facilitates the 

solubilization and digestion of lipid-soluble nutrients and metabolites (16-18). Besides the role 

that bile acids play as physiological detergents, they have been implicated as versatile signaling 

molecules with endocrine functions. Bile acids have been shown to activate specific nuclear 

receptors including FXR, PXR and VDR, G protein coupled receptors (GPCRs) such as TGR5 

(71, 72), and cell signaling pathways including the three mitogen-activated protein kinase 

(MAPK) signaling pathways (ERK, JNK and p38 MAPK), PKA, PKC and AKT/PKB (68-70). 

Through activation of these diverse signaling pathways, bile acids have been shown to regulate 

triglyceride, cholesterol, glucose and energy homeostasis (109-112).

B. Bile acids as ligands for FXR

FXR has recently been identified as a nuclear receptor for bile acids. CDCA, DCA and LCA are 

endogenous ligands for FXR in decreasing order of potency. FXR/RXR, activated by binding to 

bile acids, induces the expression of SHP, which induces the repression of the bile acid 

biosynthetic genes, CYP7A1 and CYP8B1. Activation of FXR also leads to increased expression 

of intestinal bile acid binding protein (I-BABP) and basolateral bile acid transporters (organic 

solute transporters – OSTα and OSTβ) in the intestine that may be involved in trafficking of bile 

acids during enterohepatic circulation. FXR also increases the expression of fibroblast growth 

factor 19 (FGF19). FGF19 signals from the intestine to the liver by binding to cell-surface FGF 
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receptor 4 (FGFR4) and leads to the repression of CYP7A1 expression via a JNK-dependent 

mechanism (113, 114).

C. Major kinase signaling pathways activated by bile acids

Bile acids have been shown to activate multiple kinase signaling pathways including MAPKs, 

protein kinase A (PKA), protein kinase C (PKC) and AKT/ protein kinase B (PKB) (68-70). 

MAPKs are a family of serine/threonine kinases that play important roles in response to changes 

in the cellular environment (115-118). The MAPKs include extracellular signal-regulated kinases 

(ERK1/2), c-Jun N-terminal kinases (JNK1/2/3), p38 and ERK5 (116, 117). Bile acids activate 

the JNK1/2 signaling cascade primarily by the FXR-dependent synthesis of FGF15/19 in the 

intestine. The secreted FGF15/19 hormone is transported to the liver, where it binds to FGFR4 

and activates JNK1/2, which downregulates CYP7A1 gene transcription. It was postulated that 

this effect could be through JNK-mediated phosphorylation of HNF4α, which reduces its 

transcriptional activity. It has also been reported that bile acids upregulate SHP transcription 

through activating JNK kinase.  Activated c-Jun can bind to its response element, activator 

protein-1 (AP1) site, on the SHP promoter and increase SHP gene transcription (68). Bile acids 

can also activate AKT (insulin signaling pathway) in hepatocytes. Activation of the AKT 

pathway allows bile acids to function in a manner identical to insulin in regulating glucose 

metabolism in the liver. Bile acids have been shown to differentially activate PKC isoforms in 

several cell types including hepatocytes, fibroblasts, colonic epithelial cells and kidney cells.  

Effects of bile acids on the translocation and activation of PKC isoforms has been well studied 

(119, 120). However, further studies are needed to identify downstream consequences of PKC 
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activation and understand whether such effects contribute to various diseases including diabetes, 

cancer and hypercholesterolemia.     

D. Bile acid signaling in lipid, glucose and energy homeostasis

Bile acids function as signaling molecules not only for the feedback inhibition of their own 

synthesis, but also to regulate lipid and TG, glucose and energy homeostasis. Bile acids activate 

FXR, which in turn increases SHP expression. SHP causes feedback regulation of hepatic fatty 

acid and TG biosynthesis as well as VLDL production. SHP interferes with SREBP-1c 

expression, which in turn leads to reduced expression of genes downstream of SREBP-1c 

including FAS, ACC, AceCS and SCD1 (66). FXR activation also leads to increased expression 

of PPARα, which promotes fatty acid oxidation, the VLDL receptor that promotes TG clearance 

and ApoCII, which coactivates lipoprotein lipase, and to decreased expression of ApoCIII, which 

inhibits lipoprotein lipase.   

Bile acids affect glucose metabolism by at least two mechanisms. First, bile acids activate 

SHP expression via FXR. SHP binds to FOXO1, C/EBPα, and HNF4α, transcription factors that 

activate the gluconeogenic genes, PEPCK and G6pase, and supresses gluconeogenesis (63, 73, 

110, 74). Therefore, overexpression of SHP or activation of FXR by its agonists leads to 

decreased hepatic PEPCK and G6Pase gene expression. In line with this, FXR-/- mice show 

impaired glucose tolerance and insulin sensitivity. Secondly, through an FXR-independent 

manner, conjugated bile acids activate the phosphoinositide 3-kinase (PI3K)-AKT pathway 

(insulin signaling pathway) via G-protein coupled receptors or superoxide ions and function 

much like insulin to activate glycogen synthase and repress gluconeogenic genes. 
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Bile acids also have effects on energy homeostasis. Administration of bile acids to mice 

increases energy expenditure in brown adipose tissue (BAT), preventing obesity and insulin 

resistance (112). This effect is mediated by increased cAMP production, which stems from the 

binding of bile acids with the G protein coupled receptor TGR5. This is supported by the 

observation that TGR5-/- female mice are predisposed to obesity when fed a high-fat diet, and 

TGR5-/- male mice show a tendency for weight gain (122). It has also been shown that the bile 

acid activated FXR target SHP inhibits PGC1α expression and energy production in BAT, as 

concluded from the resistance of SHP-/- mice to diet-induced obesity (121).   

IV. Signal-dependent regulation of SHP activity by post-translational 

modification 

A. SHP post-translational modifications

Post-translational modification (PTM) is the chemical modification of a protein after its 

translation, such as acetylation, phosphorylation, methylation, ubiquitination and SUMOylation 

(SUMO = small ubiquitin-like modifier).  PTMs of histones have been extensively studied and 

established as a major regulatory mechanism for eukaryotic gene transcriptional regulation (123, 

124). The combination of histone PTMs is known as a histone code (125). With the emergence 

of new techniques, it is becoming evident that PTMs happen at high density in a variety of 

proteins. For example, recent phosphoproteomic analyses revealed that majority of proteins are 

phosphorylated in mammalian cells at one or more sites (126).  With the awareness of the 

existence of PTMs of non-histone proteins, an increasing number of non-histone proteins have

been reported as post-translationally modified, including nuclear receptors and their coregulators, 
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such as FXR, RXR, LRH-1, and PPARγ, and coregulators such as HDAC-1 and SRC-3 (126-

134).  The functional studies of PTMs revealed that PTMs can dynamically and remarkably 

regulate stability, cellular localization and function of transcriptional factors (127, 128, 132-136).  

A single PTM may modulate protein activity or stability possibly by altering protein-

protein interactions. However, many proteins exhibit more than one form of modification (131, 

132).  The combinations formed by these modifications may either positively or negatively 

cross-talk with each other (137).  For example, SUMOylation of Mdm2 and HIF-1 at a Lys

blocks ubiquitination of the same Lys site, thereby enhancing protein stability and function (138, 

139).  In the case of Cyclin D and 4E-BP1, phosphorylation of the proteins promotes their 

ubiquitination, thus decreases their protein stability (140, 141)

            Since PTMs can profoundly affect protein activity, and bile acids can function as 

signaling molecules, the possibility that in addition to increasing SHP induction, bile acid 

signaling can also result in SHP PTMs was examined.  The differential modification of SHP after 

bile acid treatment may contribute to its altered inhibitory activity by modulating (1) interaction 

with corepressors, (2) stability, and (3) cellular localization.  It has been already reported by our 

group that bile acids increase SHP stability by activating ERK-mediated SHP phosphorylation at 

Ser-26 and inhibiting ubiquitination at Lys-122 and Lys-123 sites (142). In my study, I examined

whether bile acids regulate SHP activity through other PTMs of SHP. My data demonstrate that 

in addition to increasing stability, bile acids can also activate other PTMs of SHP, which increase

interaction with corepressors, ultimately increasing SHP functional activity.  Detailed findings 

are presented in Chapters 2 and 3.
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B. Bile acids and FGF19 activate signaling kinase pathways that activate SHP PTM

The emergence of bile acids as signaling molecules has led not only to the identification of novel

signaling networks, but also to the understanding of the mechanisms of transcriptional regulation 

of metabolic pathways. The discovery of the bile acid receptor FXR (8, 36, 106) represented an 

important milestone in the definition of the mechanism of feedback mediated by bile acids on 

CYP7A1 transcription. Activation of FXR by bile acids represses CYP7a1 transcription in two 

ways, one by increasing SHP transcription in the liver, second by increasing FGF15/19  

transcription in the intestine (114).  It has been reported that FGF15/19 significantly represses 

CYP7A mRNA levels, and the repression is dramatically impaired in SHP-null mice, indicating 

that the repression is largely dependent on SHP.  However, surprisingly, FGF15/19 did not 

increase SHP mRNA levels in mice (114).  This study clearly demonstrated that FGF15/19 

suppresses CYP7A1 transcription in a SHP-dependent manner, but without inducing SHP gene 

transcription. Therefore, the possibility that in addition to increasing SHP induction, bile acid

and/or FGF15/19 signaling can also result in SHP PTMs that affect SHP activity rather than gene 

expression was examined and recently, our group reported that bile acid and FGF19 signaling 

pathways activate ERK-mediated SHP phosphorylation at Ser-26, which inhibits ubiquitination 

at Lys-122 and Lys-123 sites (142). Phosphorylation at Ser-26 leads to increased stability of 

SHP, thereby increasing the repression of CYP7A1 by SHP. This raises the question whether bile 

acid and FGF15/19 signaling pathways could activate other PTMS of SHP that affect its activity.

Study presented in Chapters 2 and 3 address this question. 
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The bile-acid- and FGF15/19-controlled signaling pathways provide promising novel 

drug targets to develop novel therapeutic and preventative strategies that are useful in the clinical 

management of obesity, type 2 diabetes, hyperlipidaemia and atherosclerosis.

C. Naturally-occurring mutations in SHP gene associated with obesity and diabetes

There have been several reports that mutations in the gene encoding SHP are associated with 

early-onset obesity and high birth weight in Japanese, and to a lesser extent, in European 

population (85-89). Probands with SHP mutations had birth weights at least 1 standard deviation 

higher than the mean birth weight adjusted for gestational age in population-based control 

subjects and showed hyperinsulinemia and decreased insulin sensitivity, suggesting a possible 

physiological mechanism for the observed effects on birth weight and adiposity. Based on the 

study of SHP mutations in Japanese subjects, the authors speculate that SHP mutations could be 

a component of the genetic background of obesity in Japanese, although neither the significance 

of such mutations in the development of adult-onset obesity in this population nor the prevalence 

of mutations in western populations is known very well (85, 86). Also, a gender-dependent effect 

on penetrance for SHP deficiency was found in obese Chinese pedigrees (90). It was observed 

that the penetrance of male loss-of-function mutation carriers was significantly lower than that of 

female loss-of-function mutation carriers, suggesting that other genetic and/or environmental 

factors can modify the effects of SHP. Furthermore, it was demonstrated that an increased risk 

for type 2 diabetes was associated with SHP gene mutations (86).  

Nuclear receptors such as SHP and PPAR α that regulate lipid metabolism in liver are 

potential contributors to fatty liver. Further, the storage of lipids in liver can trigger inter-organ 
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crosstalk that affects insulin sensitivity in muscle. FXR-null mice, with reduced levels of SHP, 

develop severe fatty liver and elevated circulating FFAs, which is associated with elevated serum 

glucose and impaired glucose and insulin tolerance resulting from attenuated inhibition of 

hepatic glucose production by insulin and reduced peripheral glucose disposal (74). Some 

patients with SHP mutations exhibit liver dysfunction due to fatty liver (85). Accordingly, 

mutations in SHP may be associated with insulin resistance due to both later obesity and also to 

fatty liver in Japanese subjects.

Though there have been several reports that the SHP mutations cause metabolic 

disorders, the molecular mechanisms by which the SHP mutations cause these disorders are 

unknown. The precise mechanism underlying the effect of the SHP protein on metabolic 

regulation has not yet been established. Many of the reported target factors for SHP repression 

are implicated in regulating gene expression in liver and pancreatic β-cells, including hepatic 

nuclear factor-4α (HNF4α), LRH1, Foxa2 and Neuro D, resulting in increased insulin secretion. 

A loss of SHP action should lead to increased activity of HNF4α, LRH1, Neuro D and Foxa2, 

resulting in increased expression of their target genes, which might lead to metabolic diseases 

(143). In this thesis, I have examined the molecular mechanism by which one of the SHP 

mutations reported in Japanese subjects, the R57W mutation, causes metabolic disease state, 

which will be discussed in detail in Chapter 2.

D. Protein arginine methyltranferase enzymes (PRMTs) and Arginine methylation: 

Regulation of SHP activity by PRMT5
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Regulation of specific gene transcription by endocrine signals usually involves altered 

recruitment of transcriptional regulator proteins to the promoter, enhancer or silencer regions of 

target genes or alteration of the activity of proteins already associated with the gene. Frequently, 

these two mechanisms of gene regulation are accomplished by specific PTM of the proteins 

involved in transcriptional regulation. Such modifications alter protein function in specific ways. 

The roles of phosphorylation and acetylation in transcriptional regulation have been extensively 

studied, but recently the importance of other types of protein modifications, including 

methylation and sumoylation, have begun to be recognized (144).

Protein methylation is one of the most frequent protein modifications. About 2% of 

arginine residues were found to be dimethylated in total protein extracts from rat liver nuclei 

(145). Protein arginine methyl transferases (PRMTs) are enzymes that catalyze transfer of 

methyl groups from S-adenosyl methionine to the guanidino nitrogen of arginine (144, 146-148).  

Eight mammalian protein arginine methyltransferase (PRMT) family members have been 

identified. They fall into two predominant classes based on the types of methylarginine products 

they produce (148). Type I enzymes (PRMT1, PRMT3, PRMT4/CARM1, PRMT6, and PRMT8) 

form monomethylarginine and asymmetric dimethylarginine, and type II enzymes (PRMT5,

PRMT7, and FBXO11) form monomethylarginine and symmetric dimethylarginine. No activity 

has yet been demonstrated for PRMT2 and PRMT9 (144, 145). Cellular processes regulated by 

arginine methylation include RNA processing, transcriptional regulation, signal transduction and 

DNA repair (144, 149).

PRMT5 is a type II enzyme that methylates non-histone proteins as well as histones (144, 

146). PRMT5 acts as a transcriptional repressor by methylating histones H3 and H4 and 
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transcriptional elongation factor SPT5 (150, 151). Recent studies have shown that PRMT5 plays 

an essential role in Brg1-dependent chromatin remodeling and gene activation during 

myogenesis (152) and that PRMT5 is required for early-gene expression in the temporal control 

of myogenesis (153). Arg methylation of Piwi proteins also plays an important role in the small 

noncoding piRNA pathway in germ cells (154). PRMT5 was recently shown to regulate the 

function of p53 in response to DNA damage by catalyzing Arg methylation (155). However, 

functional roles of PRMT5 as an important transcriptional coregulator of metabolic pathways 

have not been reported. In Chapter 2, we show that post-translational methylation by PRMT5 is 

critical for SHP function. In response to bile acid activated kinase signaling pathways, SHP is 

post-translationally methylated by PRMT5 at Arg-57, which is a naturally-occurring mutation 

(R57W) reported among Japanese subjects with obesity. 

E. SHP as a potential therapeutic target for treating metabolic syndrome

SHP is a key metabolic regulator that regulates diverse metabolic pathways. The critical role of 

SHP in not only the feedback inhibition of bile acid synthesis, but also lipogenesis, 

gluconeogenesis and energy homeostasis has been clearly demonstrated. SHP null mice show 

increased bile acid pool size due to impaired feed back repression of bile acid biosynthesis (91, 

92). In addition, SHP-/- mice are also resistant to high-fat diet-induced obesity (93, 94). Genetic 

variations in the SHP gene are associated with mild obesity and high birth weight in humans (85-

90). Although SHP is an orphan NR, its conserved ligand-binding domain suggests the existence 

of SHP ligands. Bile acids activate SHP phosphorylation that increases its stability. Likewise,

additional SHP PTMs that may increase its activity were also examined in my studies. Targeting 

SHP PTMs may provide a useful tool for determining the therapeutic value of SHP in treating
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metabolic disease. The pharmacological manipulation of SHP function may serve as a potential 

therapeutic approach in preventing and treating diseases associated with metabolic syndrome (ex. 

diabetes, cholestasis, obesity), inflammatory processes (ex. atherogenesis, infections) and cell 

proliferation (ex. breast cancer). 
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Chapter Two

Arginine methylation by PRMT5 at a naturally-occurring mutation site is 

critical for liver metabolic regulation by Small Heterodimer Partner 

Abstract

Small Heterodimer Partner (SHP) inhibits numerous transcription factors that are involved in 

diverse biological processes, including regulation of bile acid metabolism. In response to 

increased hepatic bile acids, SHP gene expression is induced by the bile acid receptor, FXR, and 

the SHP protein is stabilized. We now show that the activity of SHP is increased by 

posttranslational methylation of SHP at Arg-57 by protein arginine methyltransferase in response 

to bile acids. Hepatic depletion of PRMT5 decreased SHP methylation and reversed the 

suppression of metabolic genes by SHP. With the exception of G9a methyltransferase, mutation 

of Arg-57 decreased the interaction of SHP with its known chromatin modifying repressive 

cofactors and decreased their recruitment to SHP target genes.  Adenovirus-mediated hepatic 

expression of SHP in mice repressed metabolic target genes and mutation of Arg-57 reversed the 

inhibition in a gene-selective manner. The importance of Arg-57 methylation for the repression 

activity of SHP provides a molecular basis for the observation that a natural mutation of Arg-57 

in humans is associated with the metabolic syndrome. Targeting post-translational modifications 

of SHP may be an effective strategy to develop new therapeutic agents to treat SHP-related 

human diseases, such as metabolic syndrome, cancer, and infertility.
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Introduction

Small Heterodimer Partner (SHP, NR0B2), was discovered as a unique member of the nuclear 

receptor superfamily that lacks a DNA binding domain but contains a putative ligand binding 

domain (32).  SHP forms non-functional heterodimers with DNA binding transcriptional factors 

including nuclear receptors and, thereby, acts as a transcriptional corepressor in diverse 

biological processes, including metabolism, cell proliferation, apoptosis, and sexual maturation 

(1, 3, 11, 35, 36, 39).  Well studied hepatic functions of SHP are the inhibition of bile acid 

biosynthesis, fatty acid synthesis, and glucose production in response to bile acid signaling (1, 3, 

4, 12, 19, 22, 37, 38).  We previously showed that SHP inhibits expression of a key bile acid 

biosynthetic gene, CYP7A1, by coordinately recruiting chromatin modifying repressive 

cofactors, mSin3A/HDAC1, NCoR1/HDAC3, methyltransferase G9a, and the Swi/Snf-Brm 

remodeling complex, to the CYP7A1 promoter (9, 16, 25).  GPS2, a subunit of the NcoR1 

corepressor complex, was recently shown to act as a SHP cofactor and participates in differential 

regulation of bile acid biosynthetic genes, CYP7A1 and CYP8B1 (31).

Consistent with its important functions in metabolic pathways, naturally-occurring 

heterozygous mutations in the SHP gene have been associated with human metabolic disorders 

(7, 8, 27).  About 30% of these reported mutations occur at arginine (Arg) residues, implying that 

functionally relevant posttranslational modification (PTM) at these sites may be important for 

SHP function.  In response to elevated hepatic bile acid levels, SHP gene induction by the 

nuclear bile acid receptor FXR has been established (12, 22).  We recently found that SHP 

undergoes a rapid degradation in hepatocytes and that SHP stability is increased by bile acid-

activated ERK-mediated phosphorylation which inhibits its ubiquitination (26).  In addition to 
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these changes in the levels of SHP, it is possible that the repression activity of SHP is also 

regulated in response to elevated hepatic bile acid levels.

Protein arginine methyl transferases (PRMTs) are enzymes that catalyze transfer of 

methyl groups from S-adenosyl methionine to the guanidino nitrogen of Arg (2, 21).  Type I or 

type II PRMTs also catalyzes asymmetric or symmetric dimethylation of Arg, respectively.  Both 

types of PRMTs also catalyze monomethylation of Arg.  PRMT5 is a type II enzyme that 

methylates non-histone proteins as well as histones (2, 21).  PRMT5 acts as a transcriptional 

repressor by methylating histone H3 and H4 and transcriptional elongation factor SPT5 (20, 28). 

Recent studies have shown that PRMT5 plays an essential role in Brg1-dependent chromatin 

remodeling and gene activation during myogenesis (6) and that PRMT5 is required for early-

gene expression in the temporal control of myogenesis (5). Arg methylation of Piwi proteins also 

plays an important role in the small noncoding piRNA pathway in germ cells (34).  PRMT5 was 

recently shown to regulate the function of p53 in response to DNA damage by catalyzing Arg 

methylation (15).  However, functional roles of PRMT5 as an important transcriptional 

coregulator of metabolic pathways have not been reported.

Using molecular, cellular and in vivo mouse studies, we demonstrate that post-

translational methylation by PRMT5 enhances SHP activity in response to bile acid signaling.  

PRMT5 methylated SHP at Arg-57, which is a sie for a naturally-occurring mutation associated 

with the metabolic syndrome in humans (7, 8, 27).  
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Materials and Methods

Materials and Reagents 

Antibodies for SHP (sc30169), lamin A (sc-20680), tubulin (sc-8035), HDAC1 (sc-7872), 

mSin3A (sc-994), Brm (sc6450), LRH1 (sc-5995 X), PolII (sc-9001) and GFP (sc-8334) were 

purchased from Santa Cruz Biotech, M2 antibody was from Sigma and antibodies for PRMT5, 

G9a, and dimethyl symmetric Arg (SYM10) were purchased from Upstate Biotech. Purified 

recombinant PRMT5 protein was purchased from Abnova.

Construction of plasmids and adenoviral vectors

The expression plasmids, pcDNA3 flag-R57W and R57K mutants were generated using 

QuikChange site-directed mutagenesis kit (Stratagene) and positive clones were identified by 

DNA sequencing. For constructing Ad-flag-human SHP wild type and R57W mutant adenoviral 

vectors, the 0.9 kb fragment from pCDNA3-flagSHP plasmid was inserted into Xba1-digested 

Ad-Track-CMV vector.  For Ad-siPRMT5 construction, siRNA sequences for PRMT5 were 

used as described previously (27).  Annealed siRNA oligonucleotides were inserted into 

BamH1/HindIII sites of the pRNATin-H1.2/Hygro vector.  A 4.5 Kb fragment with the H1 

promoter and siRNA oligos was cut from pRNATin-siPRMT5 and inserted into the 

BglII/HindIII sites of Ad-Track-vector.

Cell cultures and transfection reporter assay

HepG2 cells (ATCC HB8065) were maintained in Dulbecco’s modified Eagle’s medium 

(DMEM)/F12 (1:1) medium. Cos-1 cells were maintained in DMEM medium.  Cells were 

transfected with plasmids or infected with adenoviral vectors, incubated with serum-free media 

overnight, and treated with 50 µM CDCA for indicated times in figure legends. 
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In vivo experiments

BALB/c male mice were injected into the tail vein with Ad-flag-SHP, control Ad-empty, Ad-

siPRMT5, or control scrambled RNA (0.5-1.0x109 active viral particles in 200 μl PBS). Five to 

seven days after infection, mice were fed normal or 0.5 % CA supplemented chow for 3 h 

starting at 5 PM and tissues were collected at 8 PM for further analysis. Feeding mice with CA 

chow for 3h increased Shp mRNA levels and decreased Cyp7a1 mRNA levels (25). For in vivo 

methylation assays, flag-SHP was immunoprecipitated under stringent conditions with SDS-

containing RIPA buffer and methylated SHP at Arg was detected by western analysis using 

SYM10 antibody.  All animal use and adenoviral protocols were approved by the Institutional 

Animal Care and Use and Institutional Biosafety Committees at University of Illinois at Urbana-

Champaign and were in accordance with National Institutes of Health guidelines.

Measurement of bile acid pool and liver triglyceride levels 

The bile acid pool from the gall bladder, liver and small intestine was measured by colorimetric 

analysis (Trinity Biotech).  Liver triglyceride levels were measured using Sigma kit TR0100 

according to the manufacturer’s instruction.

Glucose and insulin tolerance tests                                                                                       

BALB/c male mice were injected into the tail vein with control Ad-empty, Ad-flag-SHP WT or 

R57W (0.5-1.0x109 active viral particles in 200 �l PBS).  Seven days after infection, mice were 

fasted for 6 h and i.p. injected with glucose solution (Sigma, Inc, 2g/kg) or insulin (Sigma, Inc, 

2units/kg) and glucose levels were measured using an Accu-chek Aviva glucometer (Roche, Inc).
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q-RTPCR 

Total RNA was isolated using Trizol reagent (Invitrogen), cDNA was synthesized using a 

reverse transcriptase kit (Promega), and q-RTPCR was performed with an icycler iQ (Biorad). 

The amount of mRNA for each gene was normalized to that of 36B4 mRNA.  Primer sequences 

are shown in Supplemental Information.

Mass spectrometry analyses 

Flag-human SHP was expressed in HepG2 cells (three 15-cm plates per group) by adenoviral 

infection and 48 h later, cells were treated with 5 μM MG132 for 4 h to inhibit degradation and 

then further treated with CDCA for 1 h.  Flag-SHP was isolated in RIPA (SDS) lysis buffer using 

M2 agarose and then incubated with purified PRMT5 (purchased from Abnova) and unlabeled 

SAM at 30oC for 1 h.  Proteins were separated by SDS-PAGE, visualized with colloidal staining 

and flag-SHP bands were excised, and subjected to liquid chromatography-tandem mass 

spectrometry (LC-MS/MS) analysis.  To identify SHP interacting proteins in vivo, mice were 

infected with Ad-flag-human SHP and 5 days later, mice were fed normal chow or CA chow for 

3 h and liver extracts were prepared. The flag-SHP complex was isolated in lysis buffer (50 mM 

Tris-HCl, pH 8.0, 150 mM NaCl, 0.5 mM EDTA and 0.1% NP40) using M2 agarose and 

interacting proteins were identified using LC-MS/MS. 

In vitro and in cell methylation assays

HepG2 cells (15-cm plate/group) infected with Ad-flag-SHP were treated with MG132 for 4 h 

and further treated with CDCA or vehicle for 1 h.  Flag-SHP was isolated using M2 agarose and 

then incubated with purified PRMT5 and radioactively labeled or unlabeled SAM in methylation

buffer (50 mM Tris-HCl, pH 8.0, 2 mM EDTA, 1 mM DTT) at 30oC for 1 h as previously 
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described (9). Proteins were separated by SDS-PAGE and methylated SHP was detected by 

autoradiography or western analysis, respectively.  For in vitro assays, GST-SHP was incubated 

with purified PRMT5 and SAM in methylation buffer at 30oC for 1 hr.

GST pull down and CoIP assays

Standard GST pull down assays and CoIP were performed as described previously (9, 10, 25).  

Briefly for CoIP assays, cells were transfected with expression plasmids or infected with 

adenoviral vectors and treated with vehicle or CDCA for 1- 3 hr. Cell extracts were prepared in 

CoIP buffer (50 mM Tris, pH. 8.0, 150 mM NaCl, 2 mM EDTA, 0.3% NP40, 10% glycerol) 

supplemented with protease inhibitors, DTT, and phosphatase inhibitors (Na orthovanadate, 

sodium fluoride, sodium pyrophosphate, sodium molybdate).  Cell pellets were briefly sonicated 

and centrifuged.  Supernatant was incubated with 1-2 �g antibodies for 30 min and 30 μl of 25% 

protein G agarose were added.  Two h later, samples were washed with the CoIP buffer for 3 

times and proteins were separated by SDS-PAGE and detected by western analysis.

In vivo chromatin IP (ChIP) and re-ChIP assays 

ChIP assays in mouse liver were carried out essentially as described (9, 10, 18, 24, 25). Re-ChIP 

assays were performed as described previously (10).  Briefly, chromatin precipitated by M2 

antibody was extensively washed, eluted by adding 50 �l of 10 mM DTT at 37 oC for 30 min 

and then, diluted (20-fold) with buffer (20 mM Tris-HCl, pH 8.0, 150 mM NaCl, 2 mM EDTA, 

1% Triton X-100), re-precipitated using antibodies to SHP and its interacting proteins. 

Occupancy of proteins at the target gene promoters was examined using semi-quantitative PCR.  

Primer sequences are shown in Supplemental Information.
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Results                                                                                                               

PRMT5 interacts with SHP in response to bile acid signaling                                               

The association of mutations in Arg residue of SHP with the metabolic syndrome in humans (7, 

8, 27) (Fig. S2.1) led us to examine whether PTMs at Arg might be important for regulating SHP 

activity. To identify enzymes that catalyze PTMs and interact with SHP, human flag-SHP was 

expressed in mouse liver by infection with an adenoviral expression vector, flag-SHP was 

affinity purified, and associated proteins were identified by mass spectrometric analysis (Fig. 

2.1A).  PRMT5 was associated with SHP in mice fed a primary bile acid, cholic acid (CA) (Fig. 

2.1B).  To confirm this result, endogenous SHP was immunoprecipitated from liver nuclear 

extracts and PRMT5 in the anti-SHP immunoprecipitates was detected by western analysis.  

Interaction of SHP with PRMT5 was dramatically increased in mice fed CA (Fig. 2.1C). Similar 

results were observed in HepG2 cells treated with a primary bile acid, chenodeoxycholic acid 

(CDCA) (Fig. S2.2).  To test whether PRMT5 directly interacts with SHP, in vitro GST pull 

down assays were performed (Fig. 2.1D-F).  PRMT5 directly interacted with N-terminal and C-

terminal fragments as well as full length SHP, indicating that two independent PRMT5 binding 

domains were present in SHP (Fig. 2.1F). Similar results were obtained with GST pull down 

assays using 35S-labeled PRMT5 (Fig. S2.3). These results show that PRMT5 interacts with SHP

in mouse liver in vivo in response to bile acid signaling.

PRMT5 augments SHP repression activity                                                      

To test whether PRMT5 interaction with SHP is functionally relevant, cell-based reporter assays 

were performed using gain- or loss-of-function experiments. In a Gal4 reporter system, 

overexpression of SHP inhibited the transactivation mediated by Gal4-HNF-4 (Fig. 2.2A, lanes 

2-3) and Gal4-LRH-1 (Fig. S2.4).  Exogenous expression of PRMT5 augmented SHP-mediated 
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inhibition of HNF-4α/PGC1α (Fig. 2.2A, lanes, 3-5) and LRH-1 (Fig. S2.4). Conversely, 

depletion of endogenous PRMT5 by siRNA or overexpression of catalytically inactive PRMT5

mutant reversed SHP inhibition of HNF-4α/PGC1α (Fig. 2.2A, B).  Importantly, the 

enhancement of SHP repression by PRMT5 was not observed when SHP was downregulated by 

siRNA (Fig. 2.2C). These results, together with CoIP studies (Fig. 2.1), suggest that PRMT5 

enhances repression of HNF-4α/PGC1α and LRH-1 transactivation probably through its 

interaction with SHP.

Effects of hepatic PRMT5 depletion on expression of SHP metabolic target genes              

To determine the functional role of PRMT5 in metabolic regulation by SHP, endogenous 

PRMT5 in HepG2 cells was down regulated and expression of known SHP metabolic target 

genes was examined. CDCA treatment resulted in decreased mRNA levels of the bile acid 

biosynthetic genes, CYP7A1 and CYP8B1, lipogenic genes, FAS and SREBP-1c, and the 

gluconeogenic genes, glucose-6-phosphatase and PEPCK (Fig. 2.2D).  Downregulation of 

PRMT5 reversed these effects on expression of the metabolic genes, except that of PEPCK (Fig. 

2.2D). These results indicate that PRMT5 plays a role in the regulation of lipid and glucose 

metabolism by SHP.

To explore the in vivo significance of PRMT5 in metabolic regulation by SHP, 

endogenous PRMT5 in mouse liver was depleted by adenoviral vector-mediated expression of 

siRNA and  expression of known SHP metabolic target genes was examined (Fig. 2.2E). Hepatic 

PRMT5 protein levels were markedly decreased, whereas control lamin levels were not changed 

(Fig. 2.2F).  Depletion of PRMT5 resulted in increased mRNA levels of the bile acid 

biosynthetic genes, Cyp7a1 and Cyp8b1, lipogenic genes, Fas and Srebp-1c, and the 

gluconeogenic gene, Glucose-6-phosphatase, but not the PEPCK gene (Fig. 2.2G). Consistent 
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with these results, bile acid pools from liver, gall bladder, and intestine, and liver triglyceride 

levels were significantly increased in these mice (Fig. 2.2H, I).  These results demonstrate that 

PRMT5 plays a role in the regulation of liver metabolism by SHP.

PRMT5 methylates SHP in vitro and in vivo                                                                 

To test if PRMT5 can methylate SHP, GST-SHP or control GST was incubated with purified 

PRMT5 and 3H-S-adenosyl methionine (SAM) in vitro.  GST-SHP was methylated by PRMT5 

in the presence of 3H-SAM (Fig. 2.3A, lane 3). Similar results were observed with unlabeled 

SAM and detection by western analysis using antisera to methylated Arg (Fig. S2.5). To directly 

test whether endogenous SHP in mouse liver is a target of post-translational methylation by 

PRMT5, endogenous PRMT5 in mouse liver was depleted using adenoviral siRNA as described 

before (Fig. 2.2D) and then, methylation of endogenous SHP was detected by 

immunoprecipitation under stringent condition with SDS-containing buffer followed by western 

analysis (Fig. 2.3B, top).  Arg-methylated SHP levels were markedly decreased in PRMT5-

depleted liver compared to control mice (Fig. 2.3B, bottom).

PRMT5 methylates SHP at Arg-57 after CDCA treatment                                  

In order to determine the functional roles of post-translational methylation of SHP, Arg residue(s) 

methylated by PRMT5 were identified using tandem mass spectrometry (MS/MS) (Fig. 2.3C).  

Methylated SHP was dramatically increased by CDCA treatment of HepG2 cells (Fig, 2.3D, lane 

4).  Only methylation at Arg-57 was detected in purified SHP after CDCA treatment (Fig. 2.3E, 

F).  Arg-57 is highly conserved in mammals (Fig. S2.6) and intriguingly, a natural mutation, 

R57W is associated with the metabolic syndrome in humans (Fig. S2.1) (7, 8, 27).  Mutation of 
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Arg-57 abolished the methylation of SHP (Fig. 2.3G, H), confirming that Arg-57 is the major 

site methylated by PRMT5.  These proteomic and biochemical studies demonstrate that PRMT5 

methylates SHP at Arg-57 and suggest that bile acid signaling increases methylation.

Arg-57 methylation augments SHP repression function                                                           

To test the functional relevance of Arg-57 methylation, the activity of the R57W SHP mutant 

was examined by cell-based reporter assays.  Enhancement of SHP repression of HNF-4 (Fig. 

2.4A) and LRH1 (Fig. 2.4B) by the R57W mutant was substantially less when compared to the 

wild type (WT) protein. Repression effects of SHP were markedly reduced, although not 

completely, by a more conservative R57K mutation (Fig. 2.4C). The continued, but markedly 

decreased, effects of the R57K mutant suggest that methylation enhances SHP activity, but is not 

absolutely required for its activity. Further these data strengthen the conclusion that decreased 

methylation of R57, rather than nonspecific conformational changes, largely contributes to 

decreased SHP activity.  Comparable expression levels of WT SHP and the mutant proteins were 

detected, although mobility of the R57K mutant was slightly altered (Fig. 2.4B, inset).

Importantly, enhancement of SHP repression by PRMT5 was not observed with the R57W and 

R57K mutants (Fig. 2.4D). These results suggest that methylation at Arg-57 by PRMT5 

augments SHP repression function.

Arg-57 SHP mutant shows impaired interaction with its known cofactors                     

To identify molecular mechanisms by which Arg-57 methylation augments SHP repression 

activity, we first tested whether methylation might stabilize SHP.  The half-life of the R57W 

mutant, however, was similar to the WT SHP and if anything, the stability of the R57W mutant 
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increased since its steady state levels were increased compared to WT protein (Fig. 2.5A).  The 

decreased SHP activity of R57W, thus, cannot be explained by reduced protein stability.

Next, we examined whether methylation of SHP increases interaction with its known 

chromatin modifying repressive cofactors, mSin3A, HDAC1,  G9a, and Brm (9, 16, 25).  

Interaction with a well known SHP interacting DNA binding factor, LRH-1 was also examined. 

Flag-SHP was isolated from untreated or CDCA-treated HepG2 cells and incubated in vitro with 

PRMT5. Treatment of cells with CDCA resulted in increased methylation of SHP and interaction 

with its cofactors (Fig. 2.5B, lane 3) and substantially increased the in vitro methylation of SHP 

by PRMT5 (Fig. 2.5B, lane 4).  The increased methylation correlated with increased interactions 

of SHP with Brm and HDAC1, but not with G9a and LRH-1 (Fig. 2.5B). These results suggest 

that increased methylation of SHP by CDCA treatment selectively increases its interaction with 

cofactors. 

To further test if R57 methylation is important for increased interaction between SHP and 

its cofactors, we performed CoIP studies using the R57K and R57W mutants. HepG2 cells were 

transfected with expression plasmids for flag-SHP and its cofactors, and the interaction between 

SHP and these cofactors was examined. CDCA treatment dramatically increased methylation of 

SHP WT and interaction with mSin3A, HDAC1, Brm, PRMT5, and G9a (Fig. 2.5C). In contrast, 

these increased interactions were not observed with R57W and largely decreased with the R57K 

mutant. Consistent with in vitro CoIP studies (Fig. 2.5B), decreased SHP interaction with G9a 

was not observed with R57K and R57W (Fig. 2.5C and Fig. S2.7), suggesting that G9a is present 

in a SHP complex in hepatic cells and this interaction is independent of methylation at Arg-57.  
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These data demonstrate that methylation of SHP is important for enhanced interaction with some, 

but not all, of its cofactors (Fig. 2.5D).

Occupancy of PRMT5 and SHP at the Cyp7a1 promoter in vivo is increased after bile acid 

treatment                              

To test whether PRMT5 occupancy at the Cyp7a1, a well known SHP target (4, 12, 22, 30), is 

increased after bile acid treatment in mouse liver and whether the Cyp7a1 promoter is co-

occupied by SHP and PRMT5, we performed re-chromatin IP (re-ChIP) assays. Chromatin was 

immunoprecipitated first with SHP antisera and then, eluted chromatin was re-precipitated with 

antisera to PRMT5 and other known SHP interacting cofactors. Occupancy of SHP, PRMT5, 

G9a, and Brm at the promoter was increased by CA feeding, while that of the transcriptional 

activity marker RNA polymerase II was decreased (Fig. 2.6A). Occupancy of PRMT5 at the 

human CYP7A1 gene promoter was also increased after CDCA treatment of HepG2 cells (Fig. 

2.6B). These results suggest that PRMT5 as well as G9a, Brm, and SHP are recruited to the 

Cyp7a1 promoter after bile acid treatment in vivo, resulting in gene repression.

    

Methylation-defective R57W mutant shows impaired recruitment of its cofactors to 

metabolic target genes                                                                    

Using re-ChIP assays in mouse livers expressing flag-SHP WT or the R57W mutant, we next 

examined the effect of the R57W mutation on recruitment of SHP cofactors to the promoters of 

three well known metabolic target genes, Cyp7a1, Cyp8b1, and Srebp-1c (9, 16, 25, 31, 38).  At 

each promoter, similar occupancy of flag-SHP or R57W was detected, which is consistent with 

similar interaction of both to the DNA binding protein LRH-1 (Fig. 2.5B).  Occupancy of 
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PRMT5 and Brm was markedly decreased with the R57W mutant for all three genes (Fig. 2.6C).  

Consistent with the CoIP studies (Fig. 2.5C), occupancy of G9a at these promoters was not 

decreased in mice expressing the R57W mutant (Fig. 2.6C), suggesting that Arg-57 methylation 

is not required for G9a recruitment. These in vivo re-ChIP studies, together with CoIP studies

(Fig. 2.5C), suggest that methylation of Arg-57 is important for interaction of SHP with HDAC1 

and Brm, but not with G9a, and recruitment of these cofactors to SHP target gene promoters.

Hepatic overexpression of the R57W mutant reverses repression of SHP metabolic targets 

in a gene-selective manner                                                                                 

To determine the physiological significance of Arg-57 methylation in metabolic regulation, the 

effects of the methylation-defective R57W mutant on expression of SHP target metabolic genes 

was examined in vivo (Fig. 2.7A).  As in the cell culture studies (Fig. 2.3H), methylation of SHP 

was severely impaired in mice expressing the R57W mutant compared to WT (Fig. 2.7B, C).  

Hepatic expression of SHP WT led to decreased expression of bile acid biosynthetic genes, 

Cyp7a1 and Cyp8b1, lipogeneic genes, Fas and Srebp-1c, and bile acid transporter genes, Bsep 

and Ntcp (Fig. 2.7D) as previously reported (1, 3).  Exogenous expression of SHP WT also 

decreased expression of the gluconeogenic genes, Pepck and G-6-pase, but effects were not 

statistically significant.  Interestingly, mutation of Arg-57 reversed the effects in some target 

genes but not others like Cyp7a1 (Fig. 2.7D, Fig. S2.8), suggesting that Arg-57 methylation 

affects SHP function in a gene-specific manner. Consistent with gene expression studies, liver 

triglyceride levels and total bile acid pool were decreased in mice exogenously expressing WT 

protein, but substantially elevated in mice expressing the R57W mutant (Fig. 2.7E, F). In 

contrast, glucose and insulin tolerance were similarly increased in mice overexpressing either 
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SHP WT or the R57W mutant (Fig. 2.7G and Fig. S2.9). These in vivo studies demonstrate a 

novel function of PRMT5 as a critical regulator of SHP in metabolic function and further suggest 

that R57 methylation by PRMT5 may contribute to gene-specific and perhaps metabolic 

pathway-specific repression, possibly by differential interaction with and recruitment of known 

SHP’s chromatin modifying repressive cofactors (Fig.s 2.5 and 2.6).

Discussion       

Our studies have identified PRMT5 as an important in vivo regulator of SHP in metabolic 

function.  First, proteomic and CoIP studies revealed that the interaction of PRMT5 with SHP 

was dramatically increased in liver in response to bile acid signaling.  Second, tandem mass 

spectrometry and biochemical studies have shown that methylation of SHP at Arg-57 by PRMT5 

was substantially increased after bile acid treatment.  Third, re-ChIP and CoIP studies have 

revealed that mutation of Arg-57 led to selectively decreased interaction of SHP with Brm, 

mSin3A, and HDAC1, but not with G9a, and subsequent recruitment of these cofactors to SHP’s 

target genes.  Finally, functional in vivo experiments have shown that hepatic overexpression of 

methylation-defective R57W or depletion of PRMT5 both reversed the repression of SHP 

metabolic target genes in a gene-selective manner. Consistent with gene expression studies, the 

inhibitory effects of SHP WT on bile acid pool and liver triglyceride levels were impaired with 

the mutation of Arg-57, but interestingly, the effects on glucose and insulin tolerance were not 

altered.  

Naturally-occurring heterozygous mutations, including R57W, in the SHP gene have 

been reported in humans with type II diabetes, obesity, and fatty liver (7, 8, 27) confirming the 

important metabolic functions of SHP. The effects of the R57W mutation on gene expression 

and triglyceride and bile acid levels in mice are consistent with its association with human 
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metabolic disease.  Hepatic expression of the R57W mutant markedly increased lipogenic and 

bile acid synthetic gene expression in comparison to expression of wild type SHP.  These 

changes in gene expression resulted in elevated hepatic triglyceride levels and the total bile acid 

pool.  Similar effects were observed with the depletion of PRMT5, which further strengthens the 

conclusion that PRMT5 enhances SHP repression function by methylation of Arg-57.  In 

addition, conformational changes in R57W may contribute to the reduced activity of SHP since 

the more conservative R57K mutation resulted in smaller effects on SHP activity. Taken together, 

these results provide a possible explanation of why the R57W mutation is associated with 

metabolic syndrome in humans.    

Understanding how transcription factors regulate their target genes in a gene-specific 

manner has been a long-standing question.  PTMs, including methylation, may provide distinct 

protein interacting interfaces that allow differential interaction with transcriptional cofactors and 

may contribute to gene-specific regulation (15, 17, 21).  Previous studies have shown that post-

translational methylation of p53 by PRMT5 is important for determining whether cells enter cell 

cycle arrest or apoptosis by repressing different sets of target genes (15). In this study, we have 

found that mutation of Arg-57 reversed the suppression of some, but not all, metabolic genes by 

SHP in mouse liver.  Such gene-specific effects may be partly due to differential interaction of 

methylated SHP with its cofactors as observed from CoIP and re-ChIP studies.  For example, 

regulation of genes specifically dependent on the cofactor G9a, such as Cyp7a1 (9), might be 

independent of Arg-57 methylation since the mutation does not reduce levels of G9a in the SHP 

complex.  In contrast, regulation of genes more dependent on the cofactors, Brm and HDAC1, 

such as Cyp8b1 and Srebp1-c genes, would be affected by methylation since mutation of Arg-57 

reduces the interaction of SHP with these cofactors.  Similar effects were observed with both the 
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R57W mutant of SHP (Fig. 2.7D) and the downregulation of PRMT5 (Fig. 2.2F), which provides 

strong evidence that PRMT5-catalyzed Arg methylation enhances SHP repression of metabolic 

genes.  An exception was the effects on Cyp7a1 for which the R57W was similar to wild type 

SHP (Fig. 2.7D), while downregulation of PRMT5 increased Cyp7a1 expression (Fig. 2.2F).  

PRMT5 may regulate Cyp7a1 by other indirect mechanisms in addition to methylation of Arg-57 

in SHP, such as histone methylation at the target genes.    

The activity of most nuclear receptors is regulated by ligand binding (23), but SHP was 

discovered as an orphan receptor (32) and its endogenous ligand is not known.  In this regard, 

modulation of SHP activity by PTMs in response to physiological stimuli would be an effective 

alternative way to control its activity and/or stability.  SHP is a well known component of 

cellular sensor systems for bile acid signaling (1, 3).  Bile acids serve not only dietary roles in the 

absorption of fat-soluble nutrients but also function as endocrine signaling molecules that trigger 

genomic and non-genomic signaling pathways (4, 13, 30, 33).  We recently reported that bile 

acid signaling activates ERK, which phosphorylates SHP at Ser-26, which increases SHP 

stability in hepatocytes (26). Thus, in addition to SHP gene induction by the bile acid-activated 

nuclear receptor FXR (12, 22), modulation of SHP stability and repression activity by PTMs are 

likely to be important in the mediation of bile acid signaling by SHP. To our knowledge, this 

study is the first demonstration that SHP repression activity is increased by posttranslational 

modification in response to bile acid signaling.  

Since this study demonstrates increased methylation of SHP in response to elevated bile 

acid levels, it will be important to determine whether specific kinase(s) in bile acid signaling 

pathways are involved in Arg methylation by PRMT5 and whether methylation of SHP affects or 

is affected by other PTMs.  FGF15/19 signaling is activated in response to elevated bile acid 
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levels in the enterohepatic system in vivo (14), so  it will be also important to determine whether 

FGF15/19 signaling enhances SHP activity by Arg methylation by PRMT5.  Furthermore, it will 

be interesting to determine whether decreased methylation of SHP is associated with metabolic 

disease, which is analogous to our recent findings that acetylation of FXR is normally 

dynamically regulated by p300 acetylase and SIRT1 deacetylase but highly elevated in metabolic 

disease states (17, 18).    

SHP plays an important role in controlling lipid and glucose levels by inhibiting 

metabolic target genes in the liver and other metabolic tissues and is also involved in cell 

proliferation, apoptosis, and reproduction (1, 3, 11, 35, 36, 39). Given that SHP plays important 

roles in such diverse mammalian physiology, PTMs may provide a mechanism of selective 

regulation of genes in biological processes.  Further, targeting post-translational modifications of 

SHP may be an effective therapeutic strategy by controlling selected groups of genes to treat 

SHP-related human diseases, such as metabolic syndrome, cancer, and infertility.
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Fig. 2.2. PRMT5 augments repression activity by SHP.
transfected with a Gal4-TATA-luc reporter and expression plasmids as indicated 
and 36 hr later, cells were treated with CDCA overnight and reporter assays were 
performed. The values for firefly luciferase activities were normalized by dividing by the b
galactosidase activities. The mean and SEM, n=3, are plotted. (D) HepG2 cells were 
infected with Ad-siPRMT5 or control Ad-siRNA and then 2 days later, cells were treated 
with vehicle or 50 mM CDCA overnight and mRNA levels of bile acid synthetic, lipogenic, 
and gluconeogenic genes were measured by q-
depletion on expression of known SHP target genes and metabolic outcomes.
Experimental outline for in vivo PRMT5 depletion experiments. (F) Endogenous PRMT5 
levels were detected by western analysis. (G) Expression of SHP target genes was 
examined.  (H, I) Bile acid pool and hepatic triglyceride levels were measured.  (G
mean and SEM (n=3) are plotted. Statistical significance was determined using the 
Student’s t test.  *, **, and NS indicate p<0.05, p<0.01, and statistically not significant, 
respectively. 
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Fig. 2.2. PRMT5 augments repression activity by SHP. (A-C) HepG2 cells were 
luc reporter and expression plasmids as indicated 

and 36 hr later, cells were treated with CDCA overnight and reporter assays were 
performed. The values for firefly luciferase activities were normalized by dividing by the b-
galactosidase activities. The mean and SEM, n=3, are plotted. (D) HepG2 cells were 

siRNA and then 2 days later, cells were treated 
with vehicle or 50 mM CDCA overnight and mRNA levels of bile acid synthetic, lipogenic, 

-RTPCR.  (E-I) Effects of hepatic PRMT5 
depletion on expression of known SHP target genes and metabolic outcomes. (E) 
Experimental outline for in vivo PRMT5 depletion experiments. (F) Endogenous PRMT5 
levels were detected by western analysis. (G) Expression of SHP target genes was 
examined.  (H, I) Bile acid pool and hepatic triglyceride levels were measured.  (G-I) The 
mean and SEM (n=3) are plotted. Statistical significance was determined using the 
Student’s t test.  *, **, and NS indicate p<0.05, p<0.01, and statistically not significant, 
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Fig. 2.3. PRMT5 methylates SHP at Arg-57 after bile acid treatment.
GST was incubated with purified PRMT5 and 3H
SHP was detected by autoradiography (top).  Similar GST
reaction (bottom). (B) Experimental outline for in vivo SHP methylation assays (top).  
Hepatic PRMT5 was down regulated by adenovirally expressed siRNA for PRMT5, and 
endogenous SHP was immunoprecipitated under stringent condition using SDS
buffers.  Arg-methylated SHP was detected by western analysis (bottom).  (C) Experimental 
outline for MS/MS analysis. Flag-human SHP was isolated from HepG2 cells treated with 
vehicle or CDCA for 1 h and incubated with PRMT5 and SAM.  (D) Methylated SHP was 
detected by western analysis.  The membrane was stripped and flag
were detected. (E) After in vitro methylation, proteins were separated by PAGE and 
visualized by colloidal staining.  Flag-SHP bands (arrow) were excised for LC
analysis. (F) The MS/MS spectrum of the SHP peptide containing methylated Arg
Experimental outline: HepG2 cells infected with Ad
were treated with CDCA for 1 h, and flag-SHP was isolated for 
methylated SHP was detected by autoradiography (top) and PRMT5 (middle) and f
levels (bottom) by western analysis and colloidal staining, respectively. 
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57 after bile acid treatment. (A) GST-SHP or 
GST was incubated with purified PRMT5 and 3H-S-adenosyl methionine and methylated 
SHP was detected by autoradiography (top).  Similar GST-SHP amounts were used in the 
reaction (bottom). (B) Experimental outline for in vivo SHP methylation assays (top).  
Hepatic PRMT5 was down regulated by adenovirally expressed siRNA for PRMT5, and 
endogenous SHP was immunoprecipitated under stringent condition using SDS-containing 

methylated SHP was detected by western analysis (bottom).  (C) Experimental 
human SHP was isolated from HepG2 cells treated with 

vehicle or CDCA for 1 h and incubated with PRMT5 and SAM.  (D) Methylated SHP was 
detected by western analysis.  The membrane was stripped and flag-SHP and PRMT5 levels 

methylation, proteins were separated by PAGE and 
SHP bands (arrow) were excised for LC-MS/MS 

analysis. (F) The MS/MS spectrum of the SHP peptide containing methylated Arg-57. (G) 
Experimental outline: HepG2 cells infected with Ad-flag-SHP WT or the Ad-flag-R57W 

SHP was isolated for in vitro assays. (H) 3H-
methylated SHP was detected by autoradiography (top) and PRMT5 (middle) and f-SHP 
levels (bottom) by western analysis and colloidal staining, respectively. 
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Fig. 2.4. Arg-57 methylation is important for SHP repression activity.  
D) HepG2 cells transfected with plasmids as indicated (for plasmid amounts, 
see Materials and Methods) were treated with CDCA overnight and reporter 
assays were performed.  The triangles represent increasing amounts of the 
flag-SHP vectors. The values for firefly luciferase activities were normalized 
by dividing with the b-galactosidase activities.  The mean and SEM is plotted 
(n=3). In B, expression levels of flag-SHP wild type (WT), R57W, and R57K 
from duplicate samples are shown at the top. 
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Fig. 2.5. Mutation of R57 in SHP does not affect stability but selectively 
impairs interaction with its known chromatin modifying cofactors. 
HepG2 cells infected with Ad-flag-SHP WT or R57W were treated with 
cycloheximide (CHX) (10 mg/ml) and flag
western analysis. Band intensities were measured by densitometry and the 
intensities relative to the 0 min time point were plotted (right panel). (B) 
Experimental outline (left). Flag-SHP was isolated by affinity binding to M2 
agarose and incubated with the indicated proteins synthesized from the 
transcription and translation (TNT) system.  Flag
immunoprecipitated and SHP-interacting proteins and methylated SHP were 
detected by western analysis (right). (C) HepG2 cells were cotransfected with 
expression plasmids for flag-SHP WT or mutants as indicated.  Proteins were 
immunoprecipated with M2 antibody for Flag or IgG control and proteins in 
the immunoprecipitates were detected by western analysis using each of the 
indicated antibodies or SYM10 for methylated SHP. (D) A schematic diagram 
of transcription regulators interacting with flag
mutant (bottom) is shown. 
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Fig. 2.5. Mutation of R57 in SHP does not affect stability but selectively 
impairs interaction with its known chromatin modifying cofactors. (A)

SHP WT or R57W were treated with 
cycloheximide (CHX) (10 mg/ml) and flag-SHP levels were detected by 
western analysis. Band intensities were measured by densitometry and the 
intensities relative to the 0 min time point were plotted (right panel). (B) 

SHP was isolated by affinity binding to M2 
agarose and incubated with the indicated proteins synthesized from the 
transcription and translation (TNT) system.  Flag-SHP was 

interacting proteins and methylated SHP were 
detected by western analysis (right). (C) HepG2 cells were cotransfected with 

SHP WT or mutants as indicated.  Proteins were 
immunoprecipated with M2 antibody for Flag or IgG control and proteins in 
the immunoprecipitates were detected by western analysis using each of the 
indicated antibodies or SYM10 for methylated SHP. (D) A schematic diagram 
of transcription regulators interacting with flag-SHP WT (top) or the R57W 
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Fig. 2.6. Mutation of R57 in SHP impairs recruitment of Brm and PRMT5, but not 
G9a, to metabolic target genes. (A) Mice were fed normal or CA chow and re
assays were performed. Chromatin was immunoprecipitated with SHP antibody first, 
eluted, and then re-precipitated with a second antibody as indicated.  Semi
PCR was performed to detect occupancy at the Cyp7a1 promoter (top) and the control 
Gapdh coding region (bottom).  Band intensities were determined using Image J and with 
the values for control samples from mice fed normal chow set to 1 (below the panel).  
Consistent results were observed from two re
with 50 mM of CDCA for 3 h and ChIP assays were performed.  Band intensities were 
measured and the intensities relative to untreated samples were plotted with the SEM, 
n=3, indicated (right panel).  (C) Mice were injected via tail veins with Ad
or the R57W mutant and 5 days later, were fed CA chow for 3 h.  Livers were then 
collected for re-ChIP assays. Chromatin was immunoprecipitated with M2 antibody first, 
eluted, and then re-precipitated with the indicated antibody (left side), NS = normal 
serum.  Semi-quantitative PCR was performed to detect occupancy of the proteins at the 
Cyp7a1, Cyp8b1, Srebp-1c promoters, and the Gapdh coding region as a control.  Band 
intensities were determined using Image J and with values for samples from mice 
infected with Ad-SHP WT were set to 1 (below the panels). 
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Fig. 2.6. Mutation of R57 in SHP impairs recruitment of Brm and PRMT5, but not 
(A) Mice were fed normal or CA chow and re-ChIP 

assays were performed. Chromatin was immunoprecipitated with SHP antibody first, 
precipitated with a second antibody as indicated.  Semi-quantitative 

PCR was performed to detect occupancy at the Cyp7a1 promoter (top) and the control 
Gapdh coding region (bottom).  Band intensities were determined using Image J and with 
the values for control samples from mice fed normal chow set to 1 (below the panel).  
Consistent results were observed from two re-ChIP assays. (B) HepG2 cells were treated 
with 50 mM of CDCA for 3 h and ChIP assays were performed.  Band intensities were 
measured and the intensities relative to untreated samples were plotted with the SEM, 
n=3, indicated (right panel).  (C) Mice were injected via tail veins with Ad-flag-SHP WT 
or the R57W mutant and 5 days later, were fed CA chow for 3 h.  Livers were then 

ChIP assays. Chromatin was immunoprecipitated with M2 antibody first, 
precipitated with the indicated antibody (left side), NS = normal 

quantitative PCR was performed to detect occupancy of the proteins at the 
1c promoters, and the Gapdh coding region as a control.  Band 

intensities were determined using Image J and with values for samples from mice 
SHP WT were set to 1 (below the panels). 
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Fig. 2.7. Hepatic overexpression of the methylation
mutant reverses repression of known SHP metabolic targets in a gene
selective manner.  (A) Experimental outline. (B) Protein levels in liver 
extracts were detected by western analysis. (C) Flag
immunoprecipitated and methylated SHP was detected by western analysis 
using SYM10 antibody in duplicate samples. (D) Expression of SHP target 
genes in different metabolic pathways was detected by q
and SEM (n=5) are shown. (E, F) Total bile acid pool levels in liver, gall 
bladder, and intestines and liver triglyceride levels were measured (n=5). (G) 
Glucose tolerance tests in mice infected with control Ad
or Ad-R57W (n=3-4).  The mean and SEM is plotted. Statistical significance 
was measured using the Student’s t test.  *, **, ***, and NS indicate p<0.05, 
p<0.01, p<0.001, and statistically not significant, respectively. 
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Fig. 2.7. Hepatic overexpression of the methylation-defective R57W 
mutant reverses repression of known SHP metabolic targets in a gene-

Experimental outline. (B) Protein levels in liver 
extracts were detected by western analysis. (C) Flag-SHP was 
immunoprecipitated and methylated SHP was detected by western analysis 
using SYM10 antibody in duplicate samples. (D) Expression of SHP target 
genes in different metabolic pathways was detected by q-RTPCR.  The mean 
and SEM (n=5) are shown. (E, F) Total bile acid pool levels in liver, gall 
bladder, and intestines and liver triglyceride levels were measured (n=5). (G) 
Glucose tolerance tests in mice infected with control Ad-empty, Ad-SHP WT, 

4).  The mean and SEM is plotted. Statistical significance 
was measured using the Student’s t test.  *, **, ***, and NS indicate p<0.05, 
p<0.01, p<0.001, and statistically not significant, respectively. 
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Supplemental Figure legends 

Fig. S2.1. Mutation identified in human SHP gene with metabolic disorders. 
summary of human SHP mutations identified in Japanese and European subjects is 
shown. Metabolic diseases associated with them are also shown. Mutations occurring at 
Arg residues are indicated in bold character. 
Fig. S2.2.  Interaction between endogenous PRMT5 and SHP in HepG2 cells was 
increased after CDCA treatment. HepG2 cells were treated with CDCA or vehicle for 1 
h. Cell lysates were prepared and immunoprecipitated with IgG or PRMT5 antibody and 
western blotted with anti-SHP. 
Fig. S2.3.  Direct interaction between SHP and PRMT5 in vitro. 
diagrams of the receptor interacting domain (RID) and intrinsic repression domain (RID) 
in SHP are shown. (B) GST-SHP full length, deletion mutants, or control GST was 
incubated with 35S-labeled PRMT5 and in vitro GST pull down assays were performed. 
(C) Amounts of GST-SHP proteins or control GST used in the reaction were visualized by 
colloidal staining. 
Fig. S2.4. Ectopic expression of PRMT5 augments SHP repression of LRH
transactivation of the Gal4 reporter activity. 
reporter plasmids, 200 ng of G4-TATA-luc reporter along with CMV b
an internal control, and expression plasmids, 25
10 ng or 200 ng of PGC-1a respectively, 5 ng of pcDNA3
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10 ng or 200 ng of PGC-1a respectively, 5 ng of pcDNA3
PRMT5.  Twenty-four h after transfection, cells were treated with CDCA overnight and 
reporter assays were performed. The values for firefly luciferase activities were 
normalized by dividing with the b-galactosidase activities, SEM (n=3). 
Fig. S2.5. PRMT5 methylates GST-SHP in vitro. 
incubated with purified PRMT5 and unlabelled SAM, and methylated SHP was detected 
using SYM10 methyl Arg antibody. SHP and PRMT5 levels were detected by western 
analysis.
Fig. S2.6. Arg 57, the arginine methylation site, is highly conversed in mammals. 
Alignment of the SHP region containing R57 from various species is shown.
Fig. S2.7. Interaction between endogenous SHP and G9a in HepG2 cells was 
increased after CDCA treatment. HepG2 cells were infected with Ad
hr later, cells treated with CDCA or vehicle for 1 h.  Total cell lysates were prepared and 
immunoprecipitated with IgG or G9a antibody and western blotted with M2 antibody. 

Fig. S2.1. Mutation identified in human SHP gene with metabolic disorders. A 
summary of human SHP mutations identified in Japanese and European subjects is 
shown. Metabolic diseases associated with them are also shown. Mutations occurring at 

Fig. S2.2.  Interaction between endogenous PRMT5 and SHP in HepG2 cells was 
HepG2 cells were treated with CDCA or vehicle for 1 

h. Cell lysates were prepared and immunoprecipitated with IgG or PRMT5 antibody and 

Fig. S2.3.  Direct interaction between SHP and PRMT5 in vitro. (A) Schematic 
diagrams of the receptor interacting domain (RID) and intrinsic repression domain (RID) 

SHP full length, deletion mutants, or control GST was 
labeled PRMT5 and in vitro GST pull down assays were performed. 
SHP proteins or control GST used in the reaction were visualized by 

Fig. S2.4. Ectopic expression of PRMT5 augments SHP repression of LRH-1 
transactivation of the Gal4 reporter activity. HepG2 cells were cotransfected with 

luc reporter along with CMV b-galactosidase as 
an internal control, and expression plasmids, 25 ng of G4HNF-4 or 100 ng of G4-LRH1, 

1a respectively, 5 ng of pcDNA3-flag-SHP, 100 ng or 300 ng of 
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1a respectively, 5 ng of pcDNA3-flag-SHP, 100 ng or 300 ng of 
four h after transfection, cells were treated with CDCA overnight and 

reporter assays were performed. The values for firefly luciferase activities were 
galactosidase activities, SEM (n=3). 
SHP in vitro. GST-SHP or control GST was 

incubated with purified PRMT5 and unlabelled SAM, and methylated SHP was detected 
using SYM10 methyl Arg antibody. SHP and PRMT5 levels were detected by western 

Fig. S2.6. Arg 57, the arginine methylation site, is highly conversed in mammals. 
Alignment of the SHP region containing R57 from various species is shown.
Fig. S2.7. Interaction between endogenous SHP and G9a in HepG2 cells was 

HepG2 cells were infected with Ad-flag-SHP and 24 
hr later, cells treated with CDCA or vehicle for 1 h.  Total cell lysates were prepared and 
immunoprecipitated with IgG or G9a antibody and western blotted with M2 antibody. 



Supplemental Figure legends (cont.)

Fig. S2.8. Effects of hepatic overexpression of SHP wild type (WT) or 
R57W on expression of metabolic genes, CPT, ECI, or MCAD.  
tail vein injected with Ad-empty, Ad-flag-SHP WT, or Ad
days later, mice were fed 0.5% cholic acid supplemented chow for 3 h and 
livers were collected for performing q-RTPCR to measure mRNA levels of 
potential SHP target genes in liver. The mean and SEM (n=5) are shown.  NS 
indicates statistically not significant. 
Fig. S2.9. Mutation of Arg-57 does not change insulin tolerance in mice.
Insulin tolerance tests in mice infected with control Ad
or Ad-R57W (n=3-4).  The mean and SEM is plotted. Statistical significance 
was measured using the Student’s t test and * and NS indicate p<0.05 and 
statistically not significant, respectively. 
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Fig. S2.8. Effects of hepatic overexpression of SHP wild type (WT) or 
R57W on expression of metabolic genes, CPT, ECI, or MCAD.  Mice were 

SHP WT, or Ad-flag-R57W and 6 
days later, mice were fed 0.5% cholic acid supplemented chow for 3 h and 

RTPCR to measure mRNA levels of 
potential SHP target genes in liver. The mean and SEM (n=5) are shown.  NS 

57 does not change insulin tolerance in mice.
Insulin tolerance tests in mice infected with control Ad-empty, Ad-SHP WT, 

4).  The mean and SEM is plotted. Statistical significance 
was measured using the Student’s t test and * and NS indicate p<0.05 and 
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Chapter Three

Delineating the upstream signaling pathway controlling SHP methylation in 

health and disease

Abstract

Cellular signaling cascades regulate the activity of transcription factors in order to convert 

extracellular information into gene regulation. Small Heterodimer Partner (SHP) is a 

transcriptional repressor of several nuclear receptors involved in diverse cellular processes. We 

previously reported that in response to bile acids, SHP is post-translationally methylated by 

PRMT5 at Arg-57, which is critical for interaction with corepressors and repression of target 

genes. Consistently, a naturally-occurring R57W mutant associated with obesity in human 

subjects showed impaired repression of target genes. We now show that SHP is post-

translationally phosphorylated at Thr-55 in response to bile acids. Assays using pharmacological

inhibitors showed that a phosphoinositide-3-kinase (PI3K) and protein kinase C zeta (PKC zeta) 

signaling cascade is likely involved. Phosphorylation of SHP at Thr-55 is upstream of Arg-57 

methylation, and thereby couples the PI3K-PKCζ signaling to arginine methylation. The 

phosphorylation-deficient mutant, T55A, as well as methylation-deficient mutant, R57K, showed

reduced phosphorylation and methylation, suggesting that phosphorylation and methylation of 

SHP are interdependent. In addition, a phosphorylation-mimic mutant, T55D, showed increased 

methylation and activity compared to wild type. Targeting post-translational modifications of 

SHP may be an effective strategy to treat SHP-related human diseases, such as metabolic 

syndrome, cancer, infertility and inflammatory processes.  
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Introduction

SHP is an atypical orphan nuclear receptor since it lacks the conserved DNA-binding domain but 

contains a putative ligand-binding domain. Since its discovery, SHP has been identified as a key 

transcriptional repressor of genes involved in diverse biological processes, including metabolic 

pathways, cell proliferation, apoptosis and sexual maturation (1-9). SHP plays a major role in the 

negative feedback repression of bile acid biosynthesis in the liver through inhibition of the 

transcription of the key bile acid biosynthetic gene, CYP7A1. The role of SHP in the regulation 

of bile acid synthesis, fatty acid synthesis, and glucose production in response to bile acid 

signaling are well-established. 

As signaling molecules, bile acids are known to activate nuclear receptors such as FXR

(10-12), PXR, and VDR, G protein coupled receptors (GPCRs) such as TGR5 (12-15), as well as 

cell signaling pathways including the three mitogen-activated protein kinase (MAPK) signaling 

pathways (ERK, JNK and p38 MAPK), AKT/PKB and PKC (16-18). In response to elevated bile 

acids, induction of SHP gene expression by bile acid activated FXR is well established. The bile 

acid activated ERK pathway in the liver regulates genes controlling cell proliferation, survival 

and apoptosis, such as MYC, MYCN, STAT or ETS. Bile acids have been reported to induce 

energy expenditure by promoting thyroid hormone activation through the activation of the 

TGR5-signaling pathway (15). Recent studies have also linked bile acid signaling to cell 

proliferation and apoptosis through TGR5-mediated activation of the receptor tyrosine kinase 

EGFR (19) and JNK (20) signaling pathways. Bile acids also directly activate EGFR, which in 

turn activates the phosphoinositide-3-kinase (PI3K)-AKT pathway involved in regulation of 

gluconeogenesis (21, 22). Bile acids have also been shown to modulate cellular activity by 

increasing PKC phosphorylation and translocation (23, 24). However the role of bile acid 
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activated signaling pathways in direct modulation of the activity of nuclear receptors and 

transcription factors have not been reported.    

We recently reported that bile acid signaling activates post-translational modifications 

(PTMs) of SHP, which play an important role in regulation of its activity and stability. Bile acid 

signaling activates ERK, which phosphorylates SHP at Ser-26, which increases SHP stability by 

inhibiting ubiquitination at Lys-122 and Lys-123 (25).  Bile acid signaling also activates

methylation of SHP by PRMT5 at Arg-57, which is critical for SHP repression activity. However, 

the upstream signaling pathway that controls methylation of SHP at Arg-57 in response to bile 

acids is not known.

By using pharmacological inhibitors and siRNA silencing, we demonstrate that a 

signaling pathway involving phosphoinositide 3 kinase (PI3K) and its downstream target PKC ζ, 

is involved in regulating arginine methylation of SHP. In response to bile acid signaling, PKC ζ

phosphorylates SHP, which regulates the methylation of SHP by PRMT5. We show that both 

phosphorylation of SHP by PKC ζ and methylation by PRMT5 are critical for SHP repression 

activity.    

Materials and Methods

Materials and Reagents 

M2 antibody was purchased from Sigma, dimethyl symmetric Arg (SYM10) antibody from 

Upstate Biotech, phospho-Threonine antibody from Cell Signaling technology and mouse IgG 

antibody from Santa Cruz Biotech. Pharmacological kinase inhibitors were purchased from 

Calbiochem.
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Construction of plasmids and adenoviral vectors

The expression plasmids, pcDNA3 flag-R57W, R57K, T55A and T55D mutants were generated 

using QuikChange site-directed mutagenesis kit (Stratagene) and positive clones were identified 

by DNA sequencing. For constructing Ad-flag-human SHP wild type and R57W mutant 

adenoviral vectors, the 0.9 kb Xba1 fragment from pCDNA3-flagSHP plasmid was inserted into 

Xba1-digested Ad-Track-CMV vector.  

Cell cultures and transfection reporter assay

HepG2 cells (ATCC HB8065) were maintained in Dulbecco’s modified Eagle’s medium 

(DMEM)/F12 (1:1) medium. Cos-1 cells were maintained in DMEM medium.  Cells were 

transfected with plasmids or infected with adenoviral vectors, incubated with serum-free media 

overnight, and treated with 50 µM CDCA for times indicated in the figure legends. 

Mass spectrometry analyses 

Flag-human SHP was expressed in HepG2 cells (three 15-cm plates per group) by adenoviral

infection and 48 h later, cells were treated with 5 µM MG132 for 4 h to inhibit degradation and 

then further treated with CDCA for 1 h.  Flag-SHP was isolated in RIPA (SDS) lysis buffer using 

M2 agarose. Proteins were separated by SDS-PAGE, visualized with colloidal staining and flag-

SHP bands were excised, and subjected to liquid chromatography-tandem mass spectrometry 

(LC-MS/MS) analysis.  
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Results     

SHP is phosphorylated at Thr 55 in response to bile acid signaling                            

In order to determine the functional roles of post-translational modifications of SHP in response 

to bile acid signaling, modified sites were identified using tandem mass spectrometry (MS/MS) 

(Fig. 3.1A, B). We previously reported the identification of a SHP methylation site, Arg-57, in 

response to bile acid signaling. Now we report the identification of Thr-55 as a site of 

phosphorylation in SHP after CDCA treatment in HepG2 cells by tandem mass spectrometry 

(Fig, 3.1A, B, Fig. S3.1). Thr-55 is highly conserved in mammals (Fig. 3.1C). Phosphorylation 

of wildtype SHP was dramatically increased by CDCA treatment of HepG2 cells, whereas

mutation of Thr-55 to alanine abolished the phosphorylation of SHP (Fig. 3.1D), confirming that 

Thr-55 is the major site of phosphorylation. In addition to bile acids, FGF19 and insulin 

signaling pathways also dramatically increased the Thr-phosphorylation of SHP, but a selective 

agonist for FXR, GW4064, had no effect on SHP phosphorylation in either HepG2 cells (Fig. 

3.1E) or primary human hepatocytes (Fig. S3.2). These proteomic and biochemical studies 

demonstrate that SHP is phosphorylated at Thr-55 and suggest that bile acid signaling pathways 

substantially increase SHP phosphorylation. 

An atypical PKC, PKCζ, is involved in SHP phosphorylation

In order to identify the kinase involved in phosphorylation of SHP at Thr-55, we used 

pharmacological inhibitors of specific kinases. Inhibition of the MAP kinases, ERK1/2, JNK or 

p38 MAPK, or AKT/PKB had no effect on Thr-phosphorylation of SHP (data not shown).

Inhibition of the PKC isoforms showed that none of the classical or novel PKCs was involved. A
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myristoylated pseudosubstrate inhibitor of PKC ζ and a pseudosubstrate inhibitor of PKC ζ/ι 

substantially decreased the phosphorylation of SHP, suggesting that the atypical PKC, PKC ζ, is 

involved in SHP Thr-phosphorylation (Fig. 3.1F). Abolished phosphorylation of SHP by 

inhibition of phosphoinositide-3-kinase (PI3K) by wortmannin suggested that PI3K is also 

present in the signaling pathway of SHP phosphorylation (Fig. 3.1F). Decreased methylation 

levels of SHP by inhibitors of PKC ζ and PI3K (Fig. 3.1F, bottom panel) suggested that the 

PI3K-PKC ζ signaling pathway also regulates methylation of SHP. 

Thr-55 phosphorylation augments SHP repression function

To test the functional relevance of Thr-55 phosphorylation, the activity of the phosphorylation-

deficient SHP mutant, T55A, was examined by cell-based reporter assays. Repression of the 

transactivation activity of HNF-4 (Fig. 3.2A) and LRH1 (Fig. 3.2B) by SHP was substantially 

abrogated by the T55A mutant when compared to wild type (WT) SHP. The repression effects 

of SHP were also markedly reduced by the methylation-deficient R57K mutant (Fig. 3.2A, B). A 

phosphorylation-mimic mutant of SHP, T55D, showed enhanced repression of HNF4 activity,

supporting the conclusion that phosphorylation of SHP at Thr-55 is critical for SHP repression 

activity (Fig. 3.2C).  

Phosphorylation of SHP enhances SHP arginine methylation

The close proximity of the phosphorylation and methylation sites (T55 and R57), and the 

abolished activation of phosphorylation and methylation of SHP by inhibition of PI3K and PKC 

ζ (Fig. 3.1F), suggested the possibility of cross-talk between SHP phosphorylation and 

methylation. To test this, the phosphorylation and methylation levels of T55A and R57K mutants 

were examined. Both mutants showed significantly reduced phosphorylation and methylation 
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levels compared to WT (Fig. 3.3A). In addition, the phosphorylation-mimic T55D mutant 

showed increased methylation levels compared to WT (Fig. 3.3B). These results strongly 

suggested that phosphorylation and methylation of SHP are interdependent. Time-dependent 

CDCA or FGF19 treatment showed that SHP is phosphorylated within 15 min of ligand 

treatment (Fig. 3.3C, D), suggesting that the phosphorylation of SHP is a rapid response to bile 

acid signaling.     

Discussion

Our studies demonstrate that phosphorylation and methylation of SHP cooperatively modulate 

SHP activity, and that decreased levels of methylated and phosphorylated SHP are present in a 

mouse model of metabolic disease. First, tandem mass spectrometry and proteomic studies 

showed that phosphorylation of SHP at Thr-55 is substantially increased after bile acid treatment. 

Secondly, assays with pharmacological kinase inhibitors revealed that a signaling pathway 

involving PI3K and PKC ζ is involved in SHP phosphorylation, and phosphorylation also 

regulates arginine methylation of SHP. Thirdly, studies with the phosphorylation-defective and 

methylation-defective mutants showed that there is interplay between phosphorylation and 

methylation of SHP, and that they are interdependent. 

The function of bile acids as signaling molecules in activation of cellular signaling 

pathways has recently been demonstrated (16-18). Bile acids have been shown to activate 

nuclear receptors such as FXR (10-12), PXR and VDR, G protein coupled receptors (GPCRs) 

such as TGR5 (12-15), as well as cell signaling pathways including that of mitogen-activated 
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protein kinases (MAPKs) (ERK, JNK and p38 MAPK), AKT/PKB and PKC (16-18). However 

the role of bile acids in directly modulating the activity and/or stability of nuclear receptors or 

transcriptional factors is not very clear. We recently reported that bile acid signaling activates 

ERK, which phosphorylates SHP at Ser-26, which increases SHP stability in hepatocytes (25).

We also showed that bile acid signaling activates methylation of SHP, which increases SHP 

activity. This is the first study to demonstrate that SHP repression activity is increased by 

posttranslational modifications mediated by a bile acid activated kinase signaling pathway. The 

role of PKC ζ in phosphorylation and enhanced transactivation ability of FXR was reported by 

Schneider et al. (26). However, whether bile acids increase the PKC ζ effect on FXR activity is 

not known.    

PTMs, such as methylation, ubiquitination, and phosphorylation, subtly or sometimes 

dramatically, regulate the activity and/or stability of cellular regulatory proteins.  Because these 

modifications are reversible processes, activity and/or stability of regulatory proteins can be 

modulated dynamically in response to cellular signals. Given that SHP plays important roles in 

such diverse mammalian physiology, PTMs may provide a mechanism of selective regulation of 

genes in biological processes.  Further, targeting post-translational modifications of SHP may be 

an effective therapeutic strategy by controlling selected groups of genes to treat SHP-related 

human diseases, such as metabolic syndrome, cancer, and infertility. Also, it will be important to 

determine whether decreased PTMs of SHP, which results in decreased SHP activity are

associated with metabolic disease, if components of the pathways involved in the regulation of 

SHP activity may be attractive targets for the development of therapeutic agents that modulate 

SHP activity to treat metabolic disorders.
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Fig. 3.1. SHP is phosphorylated at Thr-55 in response to bile acid signaling, 
and an atypical PKC, PKC ζ, is likely involved in SHP phosphorylation
(A, B) The MS/MS spectrum of the SHP peptide containing phosphorylated 
Thr-55 and methylated Arg-57. The MS2 scan in A was followed by the MS
scan in B, which added confirmation to phosphorylation at Thr
Alignment of the SHP region containing Thr-
(D) HepG2 cells were transfected with pCDNA3
treated with vehicle or CDCA for 1 h, and flag
by M2 antibody, and phosphorylated SHP was detected by western analysis using p
antibody. (E) HepG2 cells were infected with Ad
ligands for 1 h, and flag-SHP was immunoprecipitated by M2 antibody, and 
phosphorylated SHP was detected by p-Thr antibody. (F) HepG2 cells were infected with 
Ad-flag-SHP WT, treated with the indicated kinase inhibitors for 1 h, followed by 
treatment with FGF19 for 1 h. Flag-SHP was immunoprecipitated by M2 antibody, and 
phosphorylated SHP was detected by p-Thr antibody, and methylated SHP by SYM10 
antibody. 
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55 in response to bile acid signaling, 
, is likely involved in SHP phosphorylation

The MS/MS spectrum of the SHP peptide containing phosphorylated 
scan in A was followed by the MS3

scan in B, which added confirmation to phosphorylation at Thr-55. (C) 
-55 from various species is shown. 

HepG2 cells were transfected with pCDNA3-flag-SHP WT or T55A,  
treated with vehicle or CDCA for 1 h, and flag-SHP was immunoprecipitated 
by M2 antibody, and phosphorylated SHP was detected by western analysis using p-Thr 
antibody. (E) HepG2 cells were infected with Ad-flag-SHP WT, treated with the indicated 

SHP was immunoprecipitated by M2 antibody, and 
Thr antibody. (F) HepG2 cells were infected with 

SHP WT, treated with the indicated kinase inhibitors for 1 h, followed by 
SHP was immunoprecipitated by M2 antibody, and 

Thr antibody, and methylated SHP by SYM10 
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Fig. 3.2. Thr-55 phosphorylation augments SHP repression function
HepG2 cells transfected with plasmids as indicated (for plasmid amounts, see 
Materials and Methods) were treated with CDCA overnight and reporter assays 
were performed.  The triangles represent increasing amounts of the flag
vectors. The values for firefly luciferase activities were normalized by dividing by 
the β-galactosidase activities.  The mean and SEM is plotted (n=3). 
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Fig. 3.3. Crosstalk between phosphorylation and arginine methylation of SHP 
HepG2 cells transfected with pCDNA3-flag-
pCDNA3-flag-SHP T55A were treated with the indicated ligands for 1 h, flag
was immunoprecipitated by M2 antibody, and phosphorylated SHP was detected by p
Thr antibody, and methylated SHP by SYM10 antibody. (B) HepG2 cells transfected 
with pCDNA3-flag-SHP WT, pCDNA3-flag
were treated with FGF19 for 1 h, flag-SHP was immunoprecipitated by M2 antibody, 
and methylated SHP by SYM10 antibody. (C, D) HepG2 cells infected with Ad
SHP WT were treated with CDCA (C) or FGF19 (D) for the indicated time points, 
flag-SHP was immunoprecipitated by M2 antibody, and phosphorylated SHP was 
detected by p-Thr antibody.
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Fig. 3.3. Crosstalk between phosphorylation and arginine methylation of SHP (A) 
-SHP WT, pCDNA3-flag-SHP R57K or 

SHP T55A were treated with the indicated ligands for 1 h, flag-SHP 
was immunoprecipitated by M2 antibody, and phosphorylated SHP was detected by p-
Thr antibody, and methylated SHP by SYM10 antibody. (B) HepG2 cells transfected 

flag-SHP T55A or pCDNA3-flag-SHP T55D 
SHP was immunoprecipitated by M2 antibody, 

and methylated SHP by SYM10 antibody. (C, D) HepG2 cells infected with Ad-flag-
SHP WT were treated with CDCA (C) or FGF19 (D) for the indicated time points, 

SHP was immunoprecipitated by M2 antibody, and phosphorylated SHP was 
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Chapter Four

Discussion and conclusions

The main purpose of this study is to understand the molecular mechanisms by which the 

activity of SHP is regulated by post-translational modifications, and whether the activity of SHP 

is abnormally regulated in metabolic disease state. We demonstrate in these studies that 

methylation and phosphorylation of SHP modulate its activity and that decreased levels of 

phosphorylated and methylated SHP are present in a mouse model of metabolic disease. In 

response to bile acid signaling, the interaction of SHP with PRMT5 is increased and SHP is 

methylated by PRMT5 at Arg-57. Mutation of Arg-57 resulted in reduced repression activity and 

decreased interaction with cofactors of SHP, Brm, mSin3A, and HDAC1, but not with G9a, and 

their subsequent recruitment to SHP target genes. Overexpression of the methylation-defective 

R57W mutant or downregulation of PRMT5 in mouse liver led to reduced repression of SHP 

metabolic target genes in a gene-selective manner. Consistent with gene expression patterns, the 

overexpression of Arg-57 mutant of SHP led to elevated bile acid pool size and liver triglyceride 

levels, but interestingly, the effects on glucose and insulin tolerance were not altered from WT 

SHP.  

  

Naturally-occurring heterozygous mutations, including R57W, in the SHP gene have 

been reported in human subjects with obesity, type II diabetes, and fatty liver (1-5), which

indicates the critical role of SHP in metabolic regulation. The effects of the R57W mutation on 

gene expression, and triglyceride and bile acid levels in mice are consistent with its association 

with human metabolic disease. Hepatic expression of the R57W mutant markedly increased the 



91

transcription of lipogenic and bile acid synthetic genes in comparison to that of wild type SHP.  

These changes in gene expression patterns were consistent with elevated hepatic triglyceride 

levels and total bile acid pool.  In addition, conformational changes in R57W contributed to more 

severe effects on the reduced repression activity of SHP since the more conservative R57K 

mutation resulted in milder effects on SHP activity. Taken together, these results provide a 

possible explanation of why the R57W mutation is associated with metabolic syndrome in 

humans.

In this study, we identified the upstream signaling pathway that regulates SHP 

methylation. In response to bile acid signaling, SHP is phosphorylated at Thr 55. A signaling 

pathway involving PI3K and PKC ζ is involved in this SHP phosphorylation that also regulates 

the downstream methylation of SHP. The role of PKC ζ in phosphorylation and enhanced 

transactivation activity of FXR has been reported (6). However, whether bile acids increase the 

PKC effect on FXR activity is not known. FGF15/19 signaling, which is activated in response to 

elevated bile acids, and insulin signaling also increased the Thr-phosphorylated levels of SHP. 

Mutation of Thr-55 resulted in reduced SHP repression activity, indicating that Thr-55 

phosphorylation of SHP is critical for its activity. Both T55A and R57K mutants showed reduced 

phosphorylated and methylated levels, suggesting that phosphorylation at T55 and methylation at 

R57 are interdependent. SHP was rapidly phosphorylated in response to bile acid and FGF19 

signaling pathways. 

Based on our studies, we propose a model for the regulation of SHP activity in response 

to bile acid and FGF19 signaling pathways (Fig. 4.1). Bile acids and FGF19 activate kinase 
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signaling pathways, which activate PI3K and subsequently, its downstream target PKC ζ. PKC ζ

in turn activates the phosphorylation of SHP, which increases its interaction with PRMT5 and 

methylation at Arg-57. PTMs alter SHP structure to favour binding of corepressors, which leads 

to SHP-mediated repression of target genes in a gene-specific manner.      

SHP is emerging as a critical regulator for multiple metabolic pathways, including 

cholesterol/bile acid, fatty acid/triglyceride, and glucose metabolism (7-9). Dysregulation of 

these metabolic pathways underlies major metabolic diseases in humans, such as liver steatosis, 

obesity, diabetes, and cardiovascular disease.  Our studies show that regulation of SHP activity is 

important both in physiological regulation of metabolic homeostasis and in pathophysiological 

conditions. Given that SHP plays an important role in diverse biological programs, modulating 

activity of SHP may provide new pharmacological options for the treatment of human metabolic 

diseases.  SHP was discovered as an orphan receptor (10) and an endogenous ligand of SHP has 

not been identified. In this regard, modulation of SHP activity by PTM in response to 

physiological stimuli would be an alternative effective way to control its activity and/or stability.  

SHP is a well known component of cellular sensors for bile acid signaling (7, 11).  We recently 

reported that SHP undergoes rapid degradation with a half-life of about 30 min and bile acid 

signaling activates ERK, which phosphorylates SHP at Ser-26 and increases SHP stability (12). 

Thus, in addition to SHP gene induction by the bile acid-activated nuclear receptor FXR, 

modulation of SHP stability and activity by PTMs is likely to be important in the mediation of 

bile acid signaling by SHP. It will also be important to determine whether decreased PTMs of 

SHP, which results in decreased SHP activity are associated with metabolic disease. If so,
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components of the pathways involved in the regulation of SHP activity may be attractive targets 

for the development of therapeutic agents that modulate SHP activity to treat metabolic disorders. 
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Fig. 4.1 Proposed model for the regulation of SHP activity by posttranslational 
modifications in response to bile acid signaling pathways Bile acids, FGF19 and insulin 
activate a common downstream target, PI3K, which in turn activates its downstream target 
PKC ζ. PKC ζ in turn activates the phosphorylation of SHP at Thr-55, which increases its 
interaction with PRMT5 and methylation at Arg-57. PTMs provide distinct protein 
interaction interfaces that facilitate recruitment of cofactors, which leads to SHP-mediated 
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