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Abstract

In the first part of this work [Bleyer, J., de Buhan, P., 2013, A computational homoge-
nization approach for the yield design of periodic thin plates - Part I : Construction of the
macroscopic strength criterion], the determination of the macroscopic strength criterion of
periodic thin plates has been addressed by means of the yield design homogenization theory
and its associated numerical procedures. The present paper aims at using such numerically
computed homogenized strength criteria in order to evaluate limit load estimates of global
plate structures. The yield line method being a common kinematic approach for the yield
design of plates, which enables to obtain upper bound estimates quite efficiently, it is first
shown that its extension to the case of complex strength criteria as those calculated from
the homogenization method, necessitates the computation of a function depending on one
single parameter. A simple analytical example on a reinforced rectangular plate illustrates
the simplicity of the method. The case of numerical yield line method being also rapidly
mentioned, a more refined finite element-based upper bound approach is also proposed, tak-
ing dissipation through curvature as well as angular jumps into account. In this case, an
approximation procedure is proposed to treat the curvature term, based upon an algorithm
approximating the original macroscopic strength criterion by a convex hull of ellipsoids.
Numerical examples are presented to assess the efficiency of the different methods.
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1. Introduction

In this joint work, the yield design of periodic thin plate structures is investigated. The
first part of this work has been dedicated to the determination of the homogenized strength
properties of different periodic plates through the numerical computation of a macroscopic
strength criterion by means of finite elements and mathematical programming.
Homogenization theory in the framework of yield design (or limit analysis) of periodic struc-
tures has first been proposed in the work of Suquet [1] and de Buhan [2], where a proper
definition of the macroscopic strength criterion involving the resolution of an auxiliary yield
design problem formulated on the unit cell has been given. An analytical determination of
the macroscopic strength criterion is very rare (e.g. the case of the multilayered soil under
plane strain [2]) and often restricted to symmetric unit cell geometries and simple macro-
scopic loading [3]. Therefore, numerical methods are required, notably to conveniently
capture the anisotropy of the homogenized material when preferential reinforcing directions
are involved. The numerical resolution of the auxiliary problem can be tackled using in-
cremental elasto-plastic approaches [4] but a more natural method is to perform numerical
limit analysis computations directly. This method, in conjunction with a finite element dis-
cretization, has been widely applied to different type of structures like porous media [5, 6],
periodic plates solicited in their own plane [3, 7], masonry walls [8], stone columns reinforced
soils [9] whereas the first part of this work [10] deals with thin periodic plates in bending.
Different numerical techniques have also been used to solve the corresponding optimization
problem. In particular, linear programming (LP) associated to a piecewise linearization of
the original local strength criterion has been very attractive due to the efficiency of interior
point algorithms to solve LP problems. The extension of these algorithms to a wider class
of convex programming problems, namely second-order cone programming (SOCP) enables
today to solve limit analysis problems with their original nonlinear criterion very efficiently.
SOCP has been notably used in the first part of this work to solve the static as well as the
kinematic approach of the auxiliary problem.
Although an important amount of work has been dedicated to the numerical determination
of macroscopic strength criteria of heterogeneous media, only a few papers, to the authors’
knowledge, have been aimed at estimating the ultimate load of global structures made of
such macroscopic strength criteria derived from the homogenization procedure. One can
mention the work of Milani [11] concerning brick masonry or the following papers [9, 12]
on geotechnical problems. The small amount of work dedicated to this specific aspect is
certainly due to the absence of closed-form expressions for the homogenized yield surfaces,
which restrains their use to simple failure mechanisms for analytical applications. As regards
numerical approaches, the homogenized yield surface has to be approximated, usually by
piecewise linearization, to be dealt with. However, the number of hyperplanes describing the
surface with a sufficient accuracy can be quite important, which is not desirable for efficient
computations.
As regards the specific case of thin plates in bending, which is the scope of the present
work, the strength criterion depends on the bending moment only. The yield line method,
originally proposed by Johansen [13], is an efficient upper bound kinematic method which
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considers only rigid mechanisms separated by yield lines where angular rotation discontinu-
ities occur. Analytical upper bound estimates are, therefore, easily available and a numerical
implementation using linear triangular finite element is also possible [14], although there are
some inherent difficulties due to mesh dependency [15, 16]. However, to obtain tight upper
bound estimates of plates in bending, dissipation through curvature has also to be taken
into account. This requires to use a quadratic interpolation, at least, of the plate velocity
field. Some authors proposed to use C1-continuous high order finite elements to perform
the upper bound approach [17, 18] but better estimates have been obtained by the present
authors using only C0− continuous element [19], dissipation being produced by curvature
as well as angular rotation discontinuities. The aim of this work is, thus, to perform yield
design computations of plate structures by adapting these numerical methods to the case
of complex anisotropic strength criteria computed from homogenization. It will be shown
that the yield line method can easily be extended to these criteria without much difficulties,
whereas a specific approximation procedure will be required for a complete finite element
upper bound approach. It should be noticed that the proposed methods aim at taking ad-
vantage of the efficiency of SOCP solvers, which enable to manipulate nonlinear strength
criteria, so that a more efficient approximation procedure than piecewise linearization is
possible.

Section 2 will first be devoted to the extension of the yield line method to complex
strength criteria and an analytical example on a simply supported rectangular plate made
of a reinforced material will be presented. Section 3 will present a procedure to approximate
a numerically computed three-dimensional yield surface by a convex hull of ellipsoids so
that a finite element kinematic approach can be formulated and treated by SOCP solvers.
Finally, numerical examples making use of some macroscopic strength criteria previously
computed in Part I [10] will be investigated.

2. A first attempt at evaluating the bearing capacity of heterogeneous thin plates

by the yield line method

2.1. Yield line method for a numerically computed strength criterion

The yield line method is a simple upper bound approach for the yield design of plates
in bending which considers only rigid mechanisms separated by yield lines, where jumps of
angular velocity have to be taken into account in the expression of the maximum resisting
work. The formulation of the corresponding upper bound yield design problem reads as :

Q ∈ Λ =⇒ ∀û K.A. with q, Pext(û) ≤ Prm(û)

where Pext(û) is the work of external loads in the kinematically admissible velocity field û
and

Prm(û) =

∫

Γ

Π([[θn]];n)dl

is the maximum resisting work associated with a set of yield lines Γ of unit normal n and
angular velocity jumps [[θn]] across Γ following the normal n. Hence, Π([[θn]];n), which
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corresponds to a particular value of the support function of the strength criterion associated
with rotation discontinuities, is defined as :

Π([[θn]];n) = sup
M∈G

Mnn[[θn]] = Π(χ = [[θn]]n⊗ n)

We now consider that the local strength criterion of the plate is a macroscopic strength
criterion Ghom obtained from a homogenization procedure, as described in the first part of
this work. In particular, it is described by its support function Πhom(χ). Using the previous

remarks, we have :

Π([[θn]];n) = Πhom([[θn]]n⊗ n) = |[[θn]]|Πhom(n⊗ n)

since support functions are positively 1-homogeneous. Let (ex, ey) be the orthonormal frame
attached to the periodic unit cell, then,

Π([[θn]];n) = |[[θn]]|Πhom(cos
2 α(ex ⊗ ex) + sin2 α(ey ⊗ ey) + sin 2α(ex

s
⊗ ey)) = |[[θn]]|Π0(α)

where α is such that n = cosαex + sinαey. Therefore, the support function of rotation
discontinuities is entirely described by function Π0(α) depending on the sole normal ori-
entation angle α. This function can be determined by solving a series of auxiliary yield
design problems attached to the unit cell with a macroscopic curvature of the form :
χxx = cos2 α, χyy = sin2 α and χxy = sin 2α/2 for different values of α. Figure 1 repre-
sents such a function Π0(α) corresponding to the reinforced plate example presented in the
first part of this work is represented. The dependance of this function with respect to α is
characteristic of the reinforced plate anisotropy.

Finally, once the geometry of the yield line mechanism has been fixed, Π0(α) can be
computed for all yield line normal orientations α by interpolating the numerically computed
discrete values, deduced from the auxiliary problem.

2.2. Application to a reinforced rectangular plate under uniform loading

Consider a rectangular plate of length b in the eX direction and a in the eY direction.
The plate strength criterion corresponds to the macroscopic criterion Ghom of the reinforced
plate example considered in Part I. The reinforcements, oriented along the unit cell direction
ey, form an angle θ with the eY direction of the plate (see figure 2). The plate is simply
supported and loaded by a uniform transversal load −qeZ . The objective of this subsection
is to determine an upper bound of the ultimate load q∗ of such a reinforced plate by consid-
ering two different simple yield line mechanisms. For more details on the yield line method,
the reader may refer to [20].

Mechanism 1. The first mechanism (figure 3) consists of two triangles BFC and AED
(numbered 2 and 4, respectively) parametrized by the same angle β and two trapezes CDEF
and ABFE (numbered 1 and 3). The central yield line EF is animated by a uniform vertical
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Figure 1: Function Π0(α) for the reinforced plate example [10]. The circles correspond to numerically
computed values obtained from the resolution of auxiliary yield design problems on the unit cell. The
horizontal dotted line corresponds to the value of Π0(α) in the case of an unreinforced von Mises plate with
ultimate bending moment mp1 = 1.

velocity −f̂ eZ with f̂ > 0. The following upper bound estimate is obtained for the reinforced
plate limit load (cf. Appendix A):

q∗ ≤ q1 = min
β∈[0;arctan(b/a)]

4

sin 2β
(Π0(β − θ) + Π0(π − β − θ)) + 4(b/a− tan β)Π0(π/2− θ)

ab(1
2
− a

6b
tanβ)

Mechanism 2. The second mechanism (figure 4) is similar to the first one, but with the
triangles along the plate length and the trapezes along its width. The expression of the upper
bound is very similar to the expression obtained for the first mechanism if one exchanges
the role of a and b and replaces β by π/2 − β ′ (with a special care for the contribution of
the yield line E ′F ′ in the expression of Prm). The following upper bound is then obtained :

q∗ ≤ q2 = min
β′∈[0;arctan(a/b)]

4

sin 2β ′
(Π0(π/2− β ′ − θ) + Π0(π/2 + β ′ − θ)) + 4(a/b− tanβ ′)Π0(π − θ)

ab(1
2
− b

6a
tan β ′)

The best upper bound is given by the minimum of q1 and q2 :

q∗ ≤ qu = min(q1, q2)

Both minimization problems are numerically solved for different values of the reinforce-
ment orientation θ for a square plate a = b = 1 as well as for a rectangular plate with a = 1
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Figure 2: Homogenization procedure for a rectangular reinforced plate under uniform loading

Figure 3: Mechanism 1 for the rectangular plate under uniform loading
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Figure 4: Mechanism 2 for the rectangular plate under uniform loading

and b = 1.5. The obtained upper bounds are normalized by a numerical estimate of the
corresponding unreinforced plate problem limit load, namely q0 = 25.02 for the square plate
and q0 = 17.69 for the rectangular plate.

Results for the reinforced square plate are presented in figure 5. These results clearly
illustrate the anisotropy effect on the ultimate load, induced by the privileged direction of
the reinforcement. Contrary to a isotropic homogeneous square plate for which the optimal
mechanism correspond to yield lines along both diagonals, optimal yield line layouts and
associated upper bound estimates vary with respect to the orientation angle. For instance,
the upper bound estimate between the case θ = 0◦ and θ = 45◦ is decreased by 18%. It is
also to be noted that, for angles comprised in the range 0◦ ≤ θ ≤ 45◦, optimal mechanisms
are of type 1, whereas for 45◦ ≤ θ ≤ 90◦, optimal mechanisms are of type 2, such that the
curve of ultimate load estimates is symmetric with respect to θ = 45◦.

As regards the rectangular plate problem (figure 6), the anisotropy effect is still more
pronounced, since the upper bound estimate is decreased by 31% between θ = 0◦ and
θ = 56◦ for which the reinforcement orientation yields the minimum limit load estimate. On
this example, the competition between mechanisms 1 and 2 is more complex since optimal
mechanisms of type 2 are obtained for values in the range 56◦ ≤ θ ≤ 74◦.

2.3. Finite element formulation of the yield line method

Yield line method for complex strength criteria can be also easily implemented in a finite
element framework. Consider, indeed, a triangular mesh and a linear interpolation of the
velocity in each element. These elements are pure yield line elements since dissipation can
be only produced by rotation discontinuities through element edges. Let {U} denote the
global vector of nodal velocities and {F} the global loading vector. The normalization of
the work of external loads reads as : Pext(U) = 〈F 〉{U} = 1. Let ND denote the number
of active edges i.e. all external and internal edges except free edges and simply supported
edges (which do not contribute to the maximum resisting work). For a given active edge j,
its length lj and its normal of orientation angle αj are computed. The value Π0j = Π0(αj)
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Figure 5: Yield line upper bound for the reinforced square plate as a function of the reinforcement orientation
θ. Optimal yield line mechanisms are represented for θ = 10◦, θ = 45◦ and θ = 80◦
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Figure 6: Yield line upper bound for the reinforced rectangular plate as a function of the reinforcement
orientation θ. Optimal yield line mechanisms are represented for θ = 45◦, θ = 60◦ and θ = 90◦
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is computed for all edges and the rotation discontinuity is given by [[θnj ]] = 〈∆Θj〉{U} such
that the maximum resisting work is given by :

Prm(U) =

ND∑

j=1

ljΠ0j |〈∆Θj〉{U}|

Finally, the associated linear programming problem reads as :

qY L = min
U,tj

ND∑

j=1

ljΠ0jtj

s.t.
〈F 〉{U} = 1
|〈∆Θj〉{U}| ≤ tj j = 1, ..., ND

(1)

Although the yield line approach may be very attractive due to its simplicity of imple-
mentation, it suffers from many drawbacks. The first one is that it is highly dependent
on the mesh orientation because rotation discontinuities can occur along the element edges
only. Limit load upper bounds produced by a pure yield line finite element computation can
be, therefore, highly dependent on the mesh orientation. Different approaches have been
proposed in the literature to overcome this drawback [15, 16, 21].
Unfortunately, it has been pointed out by Braestrup [22] that, even if exact solutions can be
obtained for some problems, yield line theory fails, in general, to predict the exact limit load
even when assuming a very complex mechanism or with an infinitely refined mesh. Indeed,
for the simply supported square plate under uniform pressure with a von Mises strength
criterion, the yield line theory cannot do better than predict an upper bound which is 10%
higher than the exact limit load. This is due to the fact that the exact solution exhibits
areas where dissipation is produced by curvature instead of rotation discontinuities only.

3. Upper bound yield design approach with a complex strength criterion

3.1. Numerical challenges

In the previous section, it has been highlighted that the yield line method can be easily
extended to the case when the plate strength criterion is complex, provided that func-
tion Π0(α) can be computed for all potential yield lines orientations. However, dissipation
through curvature has also to be taken into account to obtain better upper bound estimates.
Even if a preferred orientation for the rotation discontinuities will still be present due to
the fixed positions of the finite element edges, it will be compensated by a localized zone of
curvature field so that a finite element approach combining curvature and rotation discon-
tinuities, besides being much more accurate, is also much less sensitive to the mesh layout
than a pure yield line approach.

Unfortunately, the yield design problem may become very difficult when dealing with
strength criteria of general shape such as those obtained from a homogenization procedure.
For example, if the numerical value of the support function is known only on a finite set
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of curvature directions, the maximum resisting power cannot be analytically expressed in
terms of the unknowns of the problem. The main challenge is, thus, to obtain easy to handle
semi-analytical expressions for the support function, tractable by a numerical solver.

Piecewise linear approximation of the strength criterion is one possible approach. Al-
though it was mainly used to approximate classical non-linear strength criterion in the early
developments of numerical yield design, one can imagine using this technique to approxi-
mate a complex strength criterion obtained from a homogenization procedure and solve the
associated linear programming (LP) problem. However, the number of planes required to
approximate the strength criterion with a sufficient accuracy may become rapidly large.

The approximation procedure proposed in this work is a further step in this direction,
which combines two important ingredients : first, a natural idea is to use primitives of higher
order than planes so that a smaller number of these will be required in the approximation
process; the second ingredient is to obtain an approximate criterion which can be expressed
using conic constraints, in order to take maximum advantage of the efficiency of SOCP op-
timization solvers.

Based on these two arguments, our goal is to approximate a convex strength criterion
using a convex hull of ellipsoids, since the support function of an ellipsoid Ei can, indeed, be
written as :

πEi(χ) = ‖Ji · χ‖+ µi · χ

where χ = {χxx χyy 2χxy}
T , Ji is a 3 × 3 positive semi-definite upper triangular matrix

(defined by the ellipsoid axes length and orientation) and µi is the coordinate vector of the
ellipsoid center.
It is to be recalled that the support function of the convex hull of two sets A and B is equal
to the maximum between the support function of A and that of B. Hence, the support
function of the convex hull CH(Ei) of r ellipsoids Ei for i = 1, ..., r parametrized by Ji and
µi is given by :

πCH(Ei)(χ) = max
i=1,...,r

{‖Ji · χ‖+ µi · χ}

which shows that the support function of the convex hull of r ellipsoids can be easily ex-
pressed by means of conic constraints.

3.2. Approximation procedure of the strength criterion

In a recent work, the authors proposed a relatively simple algorithm to approximate nu-
merically computed strength criteria using a convex hull of ellipsoids. The general principle
of the algorithm will be briefly recalled here, more details may be found in [? ].

Assuming that the support function of the strength criterion is known for M directions,
uniformly distributed on the unit sphere in the space of curvature, the following iterative
algorithm constructs, at each iteration, an ellipsoid which is a local approximation of the
original convex set.
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1. Let χ0 be the direction whose tangent plane is the furthest away from the current
approximation Gapp,r;

2. a second-order Taylor expansion of Π(χ) is performed around χ0;

3. the local radii of curvature of G at χ0 are computed from the Taylor expansion;

4. a series of ellipsoid with the same curvature and tangent to G at χ0 are considered;

5. the best ellipsoid is the one which minimizes the root mean squared error between the
support function of G and the one of the ellipsoid in the region around χ0;

6. the optimal ellipsoid En is added to the convex hull of the current approximation
Gapp,r+1 = CU(Gapp,r, Er);

7. go to step 1.

This approximation procedure has been applied to the macroscopic strength criterion of
the reinforced plate problem. In figure 7, the original strength criterion and approximate
strength criteria obtained with different number of ellipsoids are represented to assess the
performance of the proposed procedure. More precisely, figure 8 represents the evolution
of the root mean square (RMS) and maximal error made by the approximation procedure
as a function of the number r of ellipsoids. It can be observed that the error is rapidly
decreasing. Maximum error is of 17% for 10 ellipsoids, 5% for 30 ellipsoids and 2.8% for 50
ellipsoids. The determination of the 50 optimal ellipsoids took less than 2 minutes.

Finally, it is worth noting that, although inner approximations are initially produced by
the algorithm, it is always possible to expand them by an appropriate scaling factor so as to
obtain outer approximations of the initial convex set. This was done for the approximating
criterion involving 50 ellipsoids.

3.3. Finite element and SOCP formulation

In this subsection, the discrete upper bound kinematic approach on a plate structure,
the strength criterion of which has been previously approximated by a convex hull of r el-
lipsoids, will be presented. The plate is discretized into NE cubic Hermite triangles (H3)
which were introduced in [19] and successfully used to solve the kinematic approach of the
auxiliary problem in Part I.

The curvature at a given Gauss point g in a given element e can be expressed as {χ} =
[Be,g]{U}. The support function at this point is then :

πe,g
CH(Ei)

= max
i=1,...,r

{‖[Ji][Be,g]{U}‖ + 〈µi〉[Be,g]{U}}

The contribution of the curvature term to the maximum resisting work is then obtained
after integration over all Gauss points of the structure :

P curv
rm =

NE∑

e=1

n∑

g=1

ce,g max
i=1,...,r

{‖[Ji][Be,g]{U}‖+ 〈µi〉[Be,g]{U}}
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Figure 7: Approximation procedure of the macroscopic strength domain Ghom for the reinforced plate
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Figure 8: Evolution of the relative error with the number of ellipsoids. Errors are computed by considering
the difference between both support functions.

where ce,g are constant terms coming from the n-Gauss points quadrature.

As regards the contribution of inter-element rotation discontinuities to the maximum
resisting work, the quantities Π0j are directly evaluated as a function of the approximating
ellipsoids parameters. Indeed, introducing χdisc,j = {cos2 αj sin2 αj sin 2αj}

T :

Π0j = πCH(Ei)(χdisc,j) = max
i=1,...,r

{‖Ji · χdisc,j‖+ µi · χdisc,j}

so that

P disc
rm =

ND∑

j=1

Π0j

m∑

g′=1

c′j,g′ |〈∆Θj〉 {U}|

where c′j,g′ are constant terms coming from the m-Gauss points quadrature on edges.

Finally, introducing different auxiliary variables, the upper bound kinematic problem
can be formulated as :

qu = min

NE ·n∑

k=1

cktk,0 +

ND ·m∑

k′=1

Π0jc
′

k′sk′

s.t. 〈F 〉{U} = 1
{rk,i} = [Ji][Be,g]{U}
tk,i ≥ ‖{rk,i}‖
tk,i + 〈µi〉[Be,g]{U} ≤ tk,0
uk′ = 〈∆Θj〉 {U}
sk′ ≥ |uk′|

i = 1, ..., r
k = 1, ..., n ·NE

k′ = 1, ..., m ·ND

(2)
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(a) 128 elements mesh for the square plate
problem

(b) 192 elements mesh for the rectangular
plate problem

Figure 9: Finite element meshes for SOCP computations

which is a standard SOCP problem involving r · n ·NE conic constraints, r ·n ·NE +m ·ND

linear inequality constraints and 1 + 3r · n · NE +m · ND equality constraints. It is worth
noting that, even with a relatively simple mesh of NE = 500 elements, a n = 3 Gauss points
rule and r = 50 ellipsoids, r · n · NE = 75 000 so that (2) already constitutes a large scale
SOCP problem.

4. Numerical examples

In this section, numerical examples are presented to assess the performance of the dif-
ferent proposed methods.
In the first example, problem (2) associated to the reinforced plate problem is solved using
the Mosek software package and the influence of the number r of approximating ellipsoids
is investigated. The value of r is, indeed, the main factor which determines the difficulty of
the optimization problem. It is to be noted that approximations with r = 10 and r = 30 are
not outer approximations of the macroscopic criterion Ghom so that a global computation
with such domains will not produce an upper bound of the limit load. Therefore, problem
(2) has been solved for these values of r, then, in a second step, the so-obtained optimal
velocity field {U} has been used to evaluate the maximum resisting work with r = 50 ellip-
soids, the convex hull of which has been considered to be sufficiently close to the original
strength criterion. Such a post-processing procedure has been applied to all SOCP upper
bounds presented in this section. The numerical yield line problem (1) has also been solved
using Mosek for the reinforced plate problem.
The second example will treat the case of a perforated circular plate and compare the influ-
ence of the hole sizes and shapes on the limit load.

4.1. Reinforced plate under uniform loading

Finite element meshes used for the SOCP computations are represented in figure 9(a) for
the square plate problem and in figure 9(b) for the rectangular plate problem. As regards
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Nb. of ellipsoids Square plate Rectangular plate
r = 10 2.5s 4s
r = 30 6.5s 13s
r = 50 12s 24s

Table 1: Typical optimization times for the SOCP problems on the square and rectangular plate problem.
(performed on a Intel-P4 2.4 GHz running Linux 32-bits with Mosek v7.0)

numerical yield line computations, the same type of structured mesh has been used with
1568 elements for the square plate and 3248 elements for the rectangular plate.

In figure 10 for the square plate and in figure 11 for the rectangular plate, the SOCP
upper bounds obtained with r = 10, 30 and r = 50 ellipsoids have been compared to the
upper bound obtained with the analytical yield line method of subsection 2.2 as well as to
the upper bound obtained with a numerical implementation of the yield line method pre-
sented in subsection 2.3. It is first to be noted that numerical yield line upper bound does
not necessarily improve the analytical yield line upper bound. This is mainly due to the
considered finite element mesh which restrains the potential set of yield lines. In this case
too, the numerical yield line method also proved to be highly sensitive to the mesh layout.

Secondly, SOCP computations yield better estimates, by almost 10% in some cases. One
can also observe that upper bounds obtained with r = 30 or 50 ellipsoids are very close
to those obtained with r = 10 ellipsoids, differing by less than 2%. Therefore, despite the
fact that the original strength criterion is not particularly well approximated with r = 10
ellipsoids, it seems that, due to the post-processing procedure, it is sufficient to obtain a
good optimal velocity field and related upper bound estimate.
Besides, typical computation times for the optimization procedure have been reported in
table 1. It can be observed that the computational cost on a standard desktop computer is
very reasonable even for the highest number of ellipsoids used to describe the yield surface.

Finally, failure mechanisms of the square plate problem have also been represented in
figure 12 for the homogeneous plate and the reinforced plate with θ = 0◦ and θ = 45◦. The
anisotropy induced by the presence of the reinforcements can be clearly observed for these
two cases by comparison to the homogeneous case. For example with θ = 45◦, the optimal
mechanism seems exhibit a kind of yield line along the diagonal parallel to the reinforcement
direction and a region with a distributed curvature along the other diagonal.

4.2. Perforated circular plate under uniform loading

In this last example, the case of a simply supported circular plate of radius R subject to
a uniform loading of intensity q is considered. The plate is made of a von Mises material of
ultimate bending momentmp perforated by a series of circular or square holes arranged as de-
picted in figure 13. Different square unit cells are considered by varying the non-dimensional
hole size parameter λ which was respectively taken as λ = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.8 for
the circular hole as well as for the square hole.
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Figure 10: Comparison of the upper bound estimates for the reinforced rectangular plate obtained with
various methods : analytical yield line (YL) method, numerical yield line method, SOCP with a convex hull
of r = 10, 30 and 50 ellipsoids

Figure 11: Comparison of the upper bound estimates for the reinforced rectangular plate obtained with
various methods : analytical yield line (YL) method, numerical yield line method, SOCP with a convex hull
of r = 10, 30 and 50 ellipsoids
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(a) Homogeneous plate

(b) Reinforced plate with θ = 0◦

(c) Reinforced plate with θ = 45◦

Figure 12: Comparison of different failure mechanisms for the simply supported square plate
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Obviously, for λ = 0, the solution relative to the homogeneous circular plate problem obey-
ing a von Mises criterion is recovered. For simple supports, the limit load is known to be
q0 = 6.52mp/R

2 [20]. Besides, for λ = 1, all holes are connected and the plate bearing
capacity vanishes which gives then q = 0 as the limit load.

The macroscopic strength criterion Ghom has been determined by solving the kinematic
upper bound auxiliary problem for the 2 × 7 different unit cell geometries. For one unit
cell geometry, 10 000 values of Πhom have been computed in around 1 hour. Simultaneous
computations have been made to reduce the computational cost. Then, the approximation
procedure has been performed to approximate the strength criterion by 50 ellipsoids. This
also took around 2 minutes for each yield surface. Finally, computations on the homoge-
nized problem have been performed on a quarter of circular plate (see figure 14) with 10
ellipsoids and the previously mentioned post-processing step. Each optimization procedure
was performed by Mosek in 5-10 seconds.

In figure 15, the ratio between the upper bounds of each homogenized problems and the
solution for the homogeneous plate have been represented with respect to the plate porosity
defined by η = πλ2/4 in the case of circular holes and η = λ2 in the case of square holes.
The black dotted line represents the Voigt upper bound which is obtained by considering
that the exact macroscopic strength criterion is contained in the von Mises criterion with
a reduced moment capacity mp,red = (1 − η)mp, which leads to an upper bound equal to
qV oigt = (1− η)q0. One can observe that the Voigt upper bound gives a very poor estimate
of the limit load for all types of hole shape. Moreover, for a given value in the small porosity
range, the limit load does not seem to depend on the hole shape. Finally, considering the
evolution of the limit load estimates with respect to the hole size λ, a maximum discrepancy
of 6.3% can be observed for λ = 0.5 between the circular and the square shape.

5. Conclusions and perspectives

In the second part of this work on yield design homogenization method applied to pe-
riodic thin plates, the computation of limit load estimates of homogenized plate structure
problems derived from upper bound kinematic approaches has been addressed, and associ-
ated numerical tools have been proposed. It has been shown, in particular, that the yield line
method, which is commonly used in civil engineering computations, can be easily extended
to the case of complex strength criteria obtained from homogenization procedures. Indeed,
taking advantage of the 1−homogeneity property of support functions and provided that
the function Π0(α) depending on the sole normal orientation angle α is determined from the
homogenization procedure, the yield line method can be applied, in a straightforward man-
ner, analytically as well as numerically, as shown on the example of the simply supported
reinforced rectangular plate.
A more sophisticated and performing upper bound kinematic approach has also been pro-
posed based on the use of finite elements taking into account dissipation through curvature
as well as angular jumps. For the curvature term, the support function has no simple ex-
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Figure 13: Circular plate perforated by a series of circular or square holes

Figure 14: 413 elements mesh used for the global computation
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Figure 15: Evolution of the obtained upper bounds with respect to the plate porosity

pression and an approximation procedure is, thus, required to implement a semi-analytical
expression of the support function in the optimization solver. An approximation algorithm
based on the construction of a convex hull of ellipsoids is proposed leading to a simple de-
scription of the macroscopic strength criterion support function which is compatible with a
SOCP formulation. Despite a large number of resulting conic constraints in the global op-
timization problem, accurate solutions can be obtained in extremely reasonable computing
times on a standard desktop. Results indicate that good optimal velocity fields and accurate
upper bounds can still be found with a small number (e.g. 10) ellipsoids, a post-processing
procedure with a more accurate description of the strength criterion allowing to obtain a
more precise upper bound estimate.
Finally, the numerical results indicate that refined kinematic approaches with approximate
criteria and SOCP provide better upper bound by at most 15% compared to the yield line
method. Therefore, as regards civil engineering applications, the yield line method seems
to be a good compromise between implementation simplicity and predictability, although
mesh dependency can be an important drawback.

Possible extensions of this work are multiple. A first direction of research may consist in
applying the general idea of approximating complex strength criteria obtained from homog-
enization procedures to other mechanical models (plane strain, soils,...). The development
of more performing approximation procedures which would require even less primitives to
describe the yield surface is also possible. As regards periodic plates, a current work aims at
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treating the case of the plate thickness being of the same order as the unit cell characteristic
length, by solving the auxiliary problems defined on a three-dimensional unit cell with the
same numerical tools. Finally, further work can also deal with the case of plates having a
finite resistance to shear forces or the more complicated case of shells.
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Appendix A. Analytical yield line computations

The work of external loads developed in mechanism 1 is given by :

Pext(û) = qabf̂ (
1

2
−

a

6b
tanβ)

The angular velocity of regions 1 and 3 are given by θ01 = θ03 =
2f̂

a
, whereas the angular

velocity of regions 2 and 4 are given by θ02 = θ04 =
2f̂

a tanβ
. The hodograph of angular

velocities represented in figure A.16 is used to compute the discontinuity of angular velocity
θij between regions i and j. We have :

θ12 = θ23 = θ34 = θ41 =
2f̂

a sin β
and θ13 =

4f̂

a

The orientation angles αij of the yield line normals nij are given by :

α12 = 2π − β − θ

α23 = π + β − θ

α34 = π − β − θ

α41 = β − θ

α13 = π/2− θ

We also have |AE| = |BF | = |CF | = |DE| = a/(2 cos β) and |EF | = b−a tan β. Obviously,
all expressions are valid only if β ≤ arctan(b/a). Therefore, the maximum resisting work
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associated with this mechanism is given by :

Prm =

∫

Γ

|[[θn]]|Π0(α)dl

= 4|CF ||θ12| (Π0(π + β − θ) + Π0(π − β − θ) + Π0(β − θ) + Π0(β − θ))

+ |EF ||θ13|Π0(π/2− θ)

Finally, observing that Π0(α) is π−periodic and symmetric with respect to π/2 due to the
unit cell symmetry, the following upper bound estimate is obtained for the reinforced plate
limit load :

q∗ ≤ q1 = min
β∈[0;arctan(b/a)]

4

sin 2β
(Π0(β − θ) + Π0(π − β − θ)) + 4(b/a− tan β)Π0(π/2− θ)

ab(1
2
− a

6b
tanβ)
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