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Abstract—Complex-valued data play a prominent role in a signals depending on a real-valued parameter is employed.
number of signal and image processing applications. The aim Another contribution of this work is to propose a proximal
of this paper is to establish some theoretical results concerning method which yields a performance close to the CRB by

the Cramer-Rao bound for estimating a sparse complex-valued . . . . t function includi It
vector. Instead of considering a countable dictionary of vectors MiNIMIzZing a nonconvex cost function including &npenalty

we address the more challenging case of an uncountable sett€rm.

of vectors parameterized by a real variable. We also present The rest of the paper is organized as follows: in Section II,

a proximal forward-backward algorithm to minimize an ¢ we introduce the complex-valued statistical model which is

penalized cost, which allows us to approach the derived bounds. ;. estigated in this work. We then provide a general expres-

These results are illustrated on a spectrum analysis problem in . . . .

the case of irregularly sampled observations. sion of the Fl_sher_ Information Matr_lx (FIM) for the related
Keyvvords - Sparsity; estimaﬂon; Cramer-Rao bound; Comp|ex parameter estimation problem. Section Il deSC”beS adudw

signals; proximal methods; nonconvex optimization; spectrum backward optimization algorithm to estimate sparse coraple

estimation valued signals in an uncountable dictionary. Simulaticults

are then given in Section IV to validate our results from

irregularly sampled observations for the estimation obicis

in the presence of Gaussian circular noise. The performance
Many efforts have been dedicated over the past few yeafsour algorithm is shown to be close to the CRB. Some

to the development of methods for estimating sparse signatsnclusions are drawn in Section V.

based on a linear observation model. The problem of finding a

sparse solution to an undetermined system of linear equsatio

is NP-complete [1] so that it requires an exhaustive search. In

practice, the problem can be relaxed because it is sufficiéht Statistical model

to obtain an approximately optimal solution. Theoretigall A classical problem in statistical signal processing cetssi
finding such a sparse solution requires establishing dondit of recovering a signat: from a vector ofQ) observations
under which it is possible to determine consistent and efiici

estimators as well as evaluating their quality. As a general y=x+w (1)

characteristic, to evaluate the performance of an estimato

. . v.\{nerew is a noise vector. Here, we assume that C¥ is a
one has to compare the mean square estimation error wi

) o : . : realization of a circular Gaussian random noise vetitowith
theoretical bounds. From a statistical viewpoint, thisoals

means that it is useful to determine an estimator who&g o Hoal and covariance matiix = E[WW*] ¢ C?x@
dispersion is close to these bounds [2]. Although sevevatto %E) denotes the transconjugate operation). We assume that

. 0 ) L .
limits for the dispersion exist in the literature, the CrasRao the signalz € C* admits a sparse representation in a finite

- . 0 whi
bound (CRB) is often preferred because it is easier to Ca&julglcuonaryg = {ev | v € R} of vectors of C¥ which are

and, under some conditions, it can be asymptotically aithinpa;rimee;iesrt'ﬁdeb%*a S(?I?r varlablze]eT Hi ((EA*O)SS grnedmseiy,
by using the maximum likelihood method [3]. This motivatejr' T e RM’ scuc_h fﬁét oM v
the study of the CRB under constraints [4], in particular, fo” "> "M

I. INTRODUCTION

Il. THEORETICAL RESULTS

the estimation of real-valued sparse signals [5]. M
A large number of application areas of signal and image pro- T = Z Cney, = €y, .. €y )c = Ec. (2
cessing (e.g. digital communications, spectroscopy, Magn n=1

Resonance Imaging) involve complex-valued data. HOwWeVgie yector, e C€ is thus a realization of a random vector
in this context, statistical estimator bounds have not begp, probability density function

as extensively studied as for real-valued data, espedaily

sparse signals. The main contribution of th!s work is to lmgllc Py ew (y) = 5 exp (_(y_EC)HF 1(y—Ec)).
late the CRB for sparse complex-valued signals. In addition (w)M(det(F))
while most of existing works in the sparse and compressive 3)

sensing literature [6] focus on countable dictionaries,wile In the following, it is assumed that — e, is a twice
be interested in the case when an uncountable dictionarydifferentiable function.



B. Calculation of the CRB

where f,, = c,e,, . Hence, we end up with the following

v

Up to an additive constant, the negative-log-likelihood iBroPerty:

equal to
L(y|c,v)=wT" w.

!n thg following wgr anq wr denotg the .real part and the]_-p —2 |Im{EAT ' E}
imaginary part ofw, a similar notation being used for other

complex-valued vectors and matrices.

Proposition 1. The FIM is equal to
Re{EAT-'E} —Im{EHAT-'E} Re{EHT'F}
Re{EHT-1E} Im{EUT'F}
Re{FIAT-'E} —Im{FAT-'E} Re{FHT-'F}
(16)

Let us first look at the expression of the Wirtinger’'s derivayhere F = i€l ...cael, ] € COXM,

tive [7] of the neg-log-likehood with respect to the conjtega

of ¢:
OL(y | c,v) 1(6£(y | c,v) H&C(y lc,v)

oc* ) Ocr Jdcy

®)

We have then

PLylcv)  OwhT T E)g+w] (TE))
50330; N aCR
= 2Re{EAT'E} (6)
and, by similar calculations,
Ly | c,v) Hel
— 20— _oIm{EAT'E 7
acRac,T m{ } @)
Ly | c,v) Hel
—— =2 EVT ™ E}. 8
80]({90; Re{ } ( )

On the other hand, the neg-log-likelihood can be reexpdasse(ii)

as

M I M
L(y]|ecv)= (y - Z cnel,n) -t (y - Z cnel,”). 9)
n=1 n=1

For everyn € {1,..., M}, this leads to

PULEY) _ oRefes(e), )T w)  (10)
ayn n
where ¢], is the gradient ofv — e, at v,. For the

second-order derivatives, we deduce that, for eeryn) €
{1,...,M}?

% = 2(Re{cflcm(e;”)HF_le;”}
— Re{c;‘l(e;’")HF_lw}(Sn_m> (11)
LYy |ev) 1(8£(y | c,v) Zaﬁ(y | ¢, 1/))
ovpocs, 2\ Ov,0cr.m Ov,0cr m
=cpell T e, — (e}, V' T 'wéy_m (12)

whereey; is the second-order derivative of— e, atv,,. Let

p=lck c] v']T € R®M pe the vector of parameters to be

estimated. The Fisher Information Matrix is defined as
525(}/ | c, V)} c R3M*3M
dpdp " '

SincelV is zero-mean, (11) and (12) yield, for every, m) €
{1,...,M}?,

F, = E[ (13)

LY |e,v)] .
E[W] =2Re{f,/ T fu} (14)
LY | ¢,v) "ol
E[W} =, fn (15)

) =-E"Tw.

Remarkl.
(i) When a sum of distinct cisoids is considered, i.e., for
everyv € R,

ey = (eXp(qu))1gqgQ a7)

wherery, ..., 7o are distinct sampling times, we have

F =1TEC (18)

with T' = Diag(ry, ..., 7g) andC = Diag(ci, ..., cum).

The resulting expression of, was already obtained in
[8] for the irregular sampling case whewW = 1, but

the authors consider a more general polynomial phase
complex-valued signal and they adopt a different param-
eterization by considering the estimation of the modulus
and phase of; instead of its real and imaginary parts.
When a sum of distinct cisoids is considered as pre-
viously, a regular sampling is performed by choosing
(Vg € {1,...,Q}) 7y = ¢—1, and the noise components
are uncorrelated with varianeé€, (16) can be simplified

by performing approximations of the involved matrices.
As a consequence, for any unbiased estimatesd v,

we have, for everyr € {1,..., M},
2
Var[e,] > ;’—Q (19)
602
Var[o,] > —— . 20
"2 Q@ e 20

This means that the performance is then similar to that
resulting from the estimations @f single cisoids at an-
gular frequenciesv,,)i1<,<a. Such an approximation
is valid when@ > 1 [9].

(i) In the above derivations, the parametief must be set
to the exact model order, otherwigg, is singular.

Ill. PROPOSED ESTIMATION ALGORITHM

We now propose an efficient algorithm to estimate the pa-
rameterg v, )1<n<nm and(c,)1<n<ar in Model (2). Imposing
that the values of the complex amplitudes ), <,<as are all
nonzero is however equivalent to assuming that the support
of the coefficients is known. In a more realistic manner, we
consider here a larger set of parametérs, ¢, )1<n<n, but
we assume that the so-defined representation is sparse in the
sense that only a small subset of coefficiefis)i<,<n Of
unknown sizeM < N is nonzero.

A main difficulty in this context is to appropriately choose
the parametergv,,)1<,<n. TO do so, we consider that the



parametery v, )1<n<ny are known in an imprecise mannera forward-backward algorithm [11]:

i.e. they are such that, for everye {1,..., N}, (cl9),d0)) e (CN)?
0<y<7<|TIEE" + B'(E)H||!
Up =0, + 0y 1) Fork=0,1,...

- (k

k) _ p-1 ")

where §,, € R is some given value and,, € R is an D" =T ([E £l {dw)} _y)

unknown error on the parametey to be estimated. Typ|c:_':1lly, E’(nk))lgnSN — k) _ ) BHDE) - (k) ¢ (1,7)
(0n)1<n<n may correspond to values on a search grid and FO) _ 4By _ ) (EYH DR

(6,)1<n<n are possible shifts with respect to these values. (dn J1cn<y = —TOUE)

. ) (k41) (k+1) _ ~(k) F(k)
Such an approach was followed in [10] but it was howeverl (¢n dn" ) 1<n<n = (Prox, oy, (6n”, dn )>1§n§N'
restricted to real-valued signals, which makes it much gmp (27)
Under the considered differentiability assumptionsfor> In order to implement the above algorithm, the expressions

e.,, if we suppose that the perturbatiofis, ), <<y are small, of the involved proximity operatorgprox. )y, Ji<n<y are

we can perform the following first-order Taylor expansion: Needed at each iteratidn € N (see [12] for more technical
details). Note that this algorithm can be viewed as an

(Vn e {1,...,N}) ey~ o +Onch . (22) extension of an itera_lt_ive har_d thresholding algorithm_ [183
" convergence to a critical point of (24) can be established.

For this approximation to be valid and also for avoiding some V. NUMERICAL ILLUSTRATION
possible aml?lgumes in the estimation process, we cantrai 14 jjustrate the validity of our approach, we consider
the perturbation parameter vect®r= (4,)1<n<n t0 belong o _ 50 opservations of a complex-valued signal corre-
to an N-dimensional box3 :]L_Al’_AﬂX”'X[__AJY’AN]' sponding to the sum of/ = 6 cisoids which have been
where(A,)1<n<n € [0,4+00)" . Using Approximation (_22)’ irregularly sampled in a random manner ovier Q] (see
the model under consideration takes the bilinear form: (17)), the associated phases being uniformly distributest o

N [0,27]. The discrete-time observations are corrupted with a

hite circular Gaussian noise with zero-mean and variance
r = Cneo. + Cnoneh ). 23) W - .
7;( o ) (23) o> (' = o%Ip). The employed dictionary consists of

N = 500 cisoids, the angular frequencies of which are
(0n)1<n<n = (2n(n—1)/N), . _5- The frequencies of the
parse components do not belong to the search grid. It must
e emphasized that, for many spectrum estimation methods,
the choice of an appropriate search frequency grid cotesitu
the main difficulty [14] . We have tested various values of the
N ) signal-to-noise ratio (expressed in dB), which is defined as
minimize H nz::l (cnegn + cnénegn) — yHIL1 + Mo(c) SNR = 201og, (CI;HI) (28)

c=(cn)1<n<n€ECN
d=(6n)1<n<NEB

In order to estimate the paramete(,)i<,<y and
(cn)1<n<n, While taking into account the underlying sparsit
assumptions, we propose to solve the following optimizati
problem:

24y Where ¢y, is the minimum modulus value of the nonzero
complex amplitudes of the original cisoids.
In a first experiment, 500 noise realizations have been

X € (0, +o0) is a regularization constant used to impose tHiEN€rated by changing the sampling times and phase values
sparsity of the representation. (One procedure was demsedan?omly for e?crr: run. F'g'dl allows ‘:13 lo assess tr:je good
order to automatically set the regularization parametéaje performance of the proposed approach. In a second exper-

that the first data-fidelity term in the expression of the col€Nt: 400 noise realizations have been generated for each
SNR value, while keeping the same sampling time and phase

function corresponds to the neg-log-likelihood of the mois _ o
corrupting the observations. va_\lues, S0 as to compare the variance of the estlmat|0_nserror
Let us introduce the variablég,, )1<n<x = (cndn)1<nen with CRBs. The CRBs have been computed from thg_dlagonal
let B = [en., ..., e0,] and E/ :”[e,—".—” o ]nanrlld_lgt_th'e terms of the inverse FIM as expressed by Proposmon_ 1. In
function (1/;1)71< ’<NVNbe defined asw TTeN D Fig. 2, we show the results obtained for the worst estimated
MISNS cisoid. There is however a good fit with the derived lower

) bounds over a wide range of SNR values. The fact that the

(V(endn) € C7) Pnlen, dn) = Mo(en) +ts,(cnsdn);  CRB s actually valid for perfectly unbiased estimators may

_ L ) (25)  account for some of the observed differences, especially at
where.g, is the indicator function of the closed nonconveX,igh SNR.

cone:

where/y(c) denotes the number of nonzero coefficients:;,in
|-][2-, is the weighted squared norm equaltg’I"!(-), and

V. CONCLUSION

Sp = {(cn,dy) € C* | 36, € [-An, Av),dp = 6pcn}. In this paper, we have provided the expression of the Fisher
(26) Information Matrix for the estimation of a sparse complex-
The form of the objective function in (24) suggests the use whlued vector. An important feature of our approach is that t
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Figure 1. Estimation results in the casesafisoids (SNR =23.27 dB): values

dictionary elements are parametrized by a scalar realhlaria
the value of which is allowed to vary continuously. The,
estimation problem has been formulated as a nonconvex and

Var[c,]

10 15 20 25 30 35
SNR

Var[D,]

-100

~105 L L L L L L

SNR

Figure 2. Variance of the estimation error on the complex anmgiit(top) and

of (Jen|)1<n<n (top); frequency perturbation®,); <, <~ as a function of the frequency (bottom) for one of the cisoid®/ (= 6) vs SNR. The estimates
(6n)1<n<n (bottom). The exact values are depicted with blue circles arfptained with Algorithm (27) are indicated with x symbols atashed lines

the confidence intervals on the estimates in red (the mean isaitedi by a and CRBs are indicated with o symbols and continuous lines.

Cross).

(6]

nonsmooth minimization problem which can be efficiently

solved with a proximal forward-backward algorithm. Simula 8

tion examples have illustrated the good practical perfoicea
of the proposed method and its ability to generate estimatid® J.M. Francos and B. Friedlander, “Bounds for estimatiércomplex
errors with variances close to the predicted lower bounds.
Finally, it is important to note that our approach is apdiea [10]
to dictionaries including other functions than cisoids.
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