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Abstract. We study online prediction of bounded stationary ergodic
processes. To do so, we consider the setting of prediction of individual
sequences and build a deterministic regression tree that performs asymp-
totically as well as the best L-Lipschitz constant predictors. Then, we
show why the obtained regret bound entails the asymptotical optimality
with respect to the class of bounded stationary ergodic processes.

1 Introduction

We suppose that at each time step t = 1, 2, . . . , the learner is asked to form a
prediction Ŷt of the next outcome Yt ∈ [0, 1] of a bounded stationary ergodic
process (Yt)t=−∞,...,∞ with knowledge of the past observations Y1, . . . , Yt−1. To
evaluate the performance, a convex and M -lipschitz loss function ℓ : [0, 1]2 →
[0, 1] is considered. The following fundamental limit has been proven by [Alg94].
For any prediction strategy, almost surely

lim inf
T→∞

(
1

T

T∑

t=1

ℓ(Ŷt, Yt)

)
≥ L⋆ , where L⋆ = E

[
inf

f∈B∞

E

[
ℓ
(
f(Y −1

−∞), Y0

)∣∣Y −1
−∞

]]

(1)
is the expected minimal loss over all possible Borel estimations of the outcome
Y0 based on the infinite past (B∞ denotes the set of Borel functions from [0, 1]∞

to [0, 1]). One may thus try to design consistent strategies that achieve the lower

bound, that is, lim supT
{
(1/T )

∑
t ℓ(Ŷt, Yt)

}
≤ L⋆.

Litterature review. Many forecasting strategies have been designed to this
purpose. The vast majority of these strategies are based on statistical tech-
niques used for time-series prediction, going from parametric models like au-
toregressive models (see [BD91]) to non-parametric methods (see the reviews
of [GHSV89,Bos96,MF98]). In recent years, another collection of algorithms re-
solving related problems have been designed in [GLF01,GO07,BBGO10,BP11].
At their cores, all these algorithms use some machine learning non-parametric
prediction scheme (like histogram, kernel, or nearest neighbor estimation) with



2 Pierre Gaillard and Paul Baudin

parameters by given both a window, and the length of the past to consider.
Then, they output predictions by mixing the countably infinite set of experts
corresponding to strategies with fixed values of these two parameters.

Our approach. We adopt the point of view of individual sequences, see the
monograph of [CBL06]. In the process, we divide into two separate layers the
setting of stochastic time series and the one of individual sequences. Our main
result is Theorem 3 and it states that any strategy that satisfies some deter-
ministic regret bound is consistent. Section 2 and 3 design such a strategy and
consider the following framework of sequential prediction of individual sequences.
We suppose that a sequence (xt, yt) ∈ X × Y is observed step by step, where
X ⊂ [0, 1]d is the covariable space and Y ⊂ [0, 1] a convex observation space (in
Section 3, xt will be replaced by yt−1

t−d = yt−d, . . . , yt−1, then, yt will be replaced
by Yt in Section 4). The learner is asked at each time step t to predict the next
observation yt with knowledge of the past observations y1, . . . , yt−1 and of the
past and present exogenous variables x1, . . . ,xt. The goal of the forecaster is
to minimize its cumulative regret against the class Ld

L of L-Lipschitz functions
from [0, 1]d to [0, 1],

R̂L,T =

T∑

t=1

ℓ(ŷt, yt)− inf
f∈Ld

L

T∑

t=1

ℓ
(
f(xt), yt

)
,

that is, to ensure R̂L,T = o(T ). In Section 2, we describe the nested EG strategy
(Algorithm 2), which follows the spirit of binary regression trees like Cart (see
[BFSO84]). We provide in Theorem 1 a finite-time regret bound with respect to
the class of L-Lipschitz functions. We recall below the considered setting.

At each time step t = 1, . . . , T ,
1. Forecaster observes xt ∈ X ⊂ [0, 1]d

2. Forecaster predicts ŷt ∈ [0, 1]
3. Environment chooses yt ∈ Y
4. Forecaster suffers loss ℓ̂t = ℓ(ŷt, yt) ∈ [0, 1].

Contributions. First, we clean up the standard analysis of prediction of er-
godic processes by carrying out the aforementioned separation in two layers.
The second advantage is the computational efficiency as we will discuss later in
remarks. A third benefit of our approach is to be valid for a general class of loss
functions when previous papers to our knowledge only treat particular cases like
the square loss or the pinball loss.

2 The nested EG strategy

The nested EG strategy (Algorithm 2) incrementally builds an estimate of the
best Lipschitz function f⋆. The core idea is to estimate f⋆ precisely in areas of
the covariable space X with many occurrences of covariables xt, while estimat-
ing it loosely in other parts of the space. To implement this idea, Algorithm 2
maintains a deterministic binary tree whose nodes are associated with regions of
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Parameter: M > 0

For time step t = 1, 2, . . .
1. Define the learning parameter ηt = M−1

√
(log 2)/t

2. Predict

ŷt =
exp

(
−ηt

∑t−1
s=1 ℓ

′(ŷs, ys)
)

1 + exp
(
−ηt

∑t−1
s=1 ℓ

′(ŷs, ys)
) ∈ [0, 1] ,

where ℓ′ denotes the (sub)gradient of ℓ with respect to its first argument
3. Observe yt

Algorithm 1: The gradient-based exponentially weighted average fore-
caster (EG) with two constant experts that predict respectively 0 and 1.

the covariable space, such that the regions with nodes deeper in the tree (further
away from the root) represent increasingly smaller subsets of X (see Figure 1).

In the later, we assume for simplicity that X = [0, 1]d and Y = [0, 1] and
that the loss function ℓ is from [0, 1]2 to [0, 1]. The case of unknown bounded
sets X ⊂ R

d and Y ⊂ R will be treated later in remarks.

2.1 The best constant oracle

If the number of observations such that xt belong to a subset X node ⊂ X is
small enough, one does not need to estimate f⋆ precisely over X node. Lemma 1
formalizes this idea by controlling the approximation error suffered by approxi-
mating f⋆ by the best constant in [0, 1]. The control is expressed in terms of the
number of observations T node and of the size of the set X node, which is measured
by its diameter defined as diam

(
X node

)
= max

x,x′∈X node ‖x− x
′‖2 .

Lemma 1 (Approximation of f⋆ by a constant). Let T node ≥ 1 and sup-
pose that ℓ is M -Lipschitz in its first argument. Then,

inf
y∈[0,1]

Tnode∑

t=1

ℓ(y, yt) ≤ inf
f∈Ld

L

Tnode∑

t=1

ℓ
(
f(xt), yt

)
+MLT node diam

(
X node

)
,

where X node ⊂ [0, 1]d is such that xt ∈ X node for all t = 1, . . . , T node.

Proof. Let t ≥ 1. Using that ℓ is M -Lipschitz and f is L-Lipschitz, we get

ℓ
(
f(x1), yt

)
− ℓ
(
f(xt), yt

)
≤ M

∣∣f(x1)− f(xt)
∣∣ ≤ ML

∥∥x1 − xt

∥∥
2
≤ MLδ .

Summing over t and noting that infy
∑

t ℓ(y, yt) ≤
∑

t ℓ
(
f(x1), yt

)
concludes. ⊓⊔

2.2 Performing as well as the best constant: the EG strategy

Lemma 1 implies that considering constant predictions is not bad when either
the covariable region is small, or the number of observations is small. The next
step consists thus of estimating online the best constant prediction in [0, 1].
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To do so, among many existing methods, we consider the well-known gradient-
based exponentially weighted average forecaster (EG), introduced by [KW97]. In
the setting of prediction of individual sequences with expert advice—see the
monograph by [CBL06], EG competes with the best fixed convex combination
of experts. In the case where two experts predict constant predictions respec-
tively 0 and 1 at all time steps, EG ensures vanishing average regret with respect
to any constant prediction in [0, 1]. We describe in Algorithm 1 this particular
case of EG and we provide the associated regret bound in Lemma 2, whose proof
follows from the standard proof of EG, available for instance in [CBL06].

Lemma 2 (EG). Let T node ≥ 1. We assume that the loss function ℓ is convex
and M -Lipschitz in its first argument. Then, the cumulative loss of Algorithm 1
is upper bounded as follows:

Tnode∑

t=1

ℓ(ŷt, yt) ≤ inf
y∈[0,1]

Tnode∑

t=1

ℓ(y, yt) + 2M
√
T node log 2 .

Unknown value of M . Note that Algorithm 1 needs to know in advance a
uniform bound M on ℓ′. This is the case, if one considers as we do a bounded
observation space [0, 1] with the absolute loss function, defined for all y, y′ ∈ [0, 1]
by ℓ(y′, y) = |y−y′|; the pinball loss, defined by ℓα(y

′, y) = (α−1{y≥x})(y−y′);
or the square loss, defined by ℓ(y′, y) = (y − y′)2. However, in the case of an
unknown observation space Y the bound on the gradient of the square loss is
unknown and needs to be calibrated online at the small cost of the additional
term 2M(2 + 4(log 2)/3) in the regret bound, see [dRvEGK14].

2.3 The nested EG strategy

The nested EG strategy presented in Algorithm 2 implements the idea of Lemma 1
and Lemma 2. It maintains a binary tree whose nodes are associated with re-
gions of the covariable space [0, 1]d. The nodes in the tree are indexed by pairs of
integers (h, i); where the first index h ≥ 0 denotes the distance of the node to the
root (also referred to as the depth of the node) and the second index i belongs

(0, 1)

(1, 1)

(2, 1) (2, 2)

(1, 2)

(2, 3) (2, 4)

Fig. 1. Representation of the binary tree in dimension d = 2.
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to {1, . . . , 2h}. The root is thus denoted by (0, 1). By convention, (h+ 1, 2i− 1)
and (h+ 1, 2i) are used to refer to the two children of node (h, i). Let X (h,i) be
the region associated with node (h, i). By assumption, these regions are hyper-
rectangle and must satisfy the constraints

X (0,1) = [0, 1]d and X (h,i) = X (h+1,2i−1) ⊔ X (h+1,2i) ,

where ⊔ denotes the disjoint union. The set of regions associated with terminal
nodes (or leaves) forms thus a partition of [0, 1]d.

At time step t, when a new covariable xt is observed, Algorithm 2 first
selects the associated leaf (ht, it) such that xt ∈ X (ht,it) (step 2). The leaf
(ht, it) then predicts the next observation yt by updating a local version E(ht,it)

of Algorithm 1 (step 3). Namely, E(ht,it) runs Algorithm 1 on the sub-sequence
of observations (xs, ys) such that the associated leaf is (ht, it), that is, (hs, is) =
(ht, it). When the number of observations T (ht,it) received and predicted by leaf
(ht, it) becomes too large compared to the size of the region X (ht,it) (step 6),
the tree is updated. To do so, the region X (ht,it) is divided in two sub-regions of
equal volume by cutting along one given coordinate.

The coordinate rt + 1 to be split is chosen in a deterministic order, where
rt = (ht mod d) and mod denotes the modulo operation. Thus, at the root
node (0, 1) the first coordinate is split, then by going down in the tree we split
the second one, then the third one and so on until we reach the depth d, in
which case we split the first coordinate for the second time. Each sub-region is
associated with a child of node (ht, it). Consequently, (ht, it) becomes an inner
node and is thus no longer used to form predictions.

To facilitate the formal study of the algorithm, we will need some additional
notation. In particular, we will introduce time-indexed versions of several quan-
tities. Tt denotes the tree stored by Algorithm 2 at the beginning of time step
t. The initial tree is thus the root T0 = {(0, 1)} and it is expanded when the
splitting condition (step 6) holds, as

Tt+1 = Tt ∪
{
(ht + 1, 2it − 1), (ht + 1, 2it)

}

(step 6.3) and remains unchanged otherwise. We denote by Nt the number of
nodes of Tt and by Ht the height of Tt, that is, the maximal depth of the leaves
of Tt. A performance bound for Algorithm 2 is provided below.

Theorem 1. Let T ≥ 1 and d ≥ 1. Then, the cumulative regret R̂L,T of Algo-
rithm 2 is upper bounded as

T∑

t=1

ℓ(ŷt, yt)− inf
f∈Ld

L

T∑

t=1

ℓ
(
f(xt), yt

)
≤ M (3 + L)

√
NTT

≤ M(3 + L)
(√

T + 2(3d)
d

2(d+2)T
d+1
d+2

)
.

Time and storage complexity. The following lemma provides time and stor-
age complexity guarantees for Algorithm 2. It upper bounds the maximal size of
TT , that is, its number of nodes NT and its depth HT , which yields in particular
the regret bound of order O

(
T (d+1)/(d+2)

)
stated in Theorem 1.
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Initialization:

- T =
{
(0, 1)

}
a tree (for now reduced at a root node)

- Define the bin X (0,1) = [0, 1]d

- Start E (0,1) a replicate of Algorithm 1

For t = 1, . . . , T
1. Observe xt ∈ [0, 1]d

2. Select the leaf (ht, it) such that xt ∈ X
(ht,it)

3. Predict according to E (ht,it)

4. Observe yt and feed E (ht,it) with it
5. Update the number of observations predicted by E (ht,it)

T (ht,it) ← #
{
1 ≤ s ≤ t, (hs, is) = (ht, it)

}

6. If the splitting condition T (ht,it) + 1 ≥
(
diam

(
X (ht,it)

))−2

holds then

extend the binary tree T as follows:
6.1. Compute the decomposition ht = ktd+ rt with rt ∈ {0, . . . , d− 1}
6.2. Split coordinate rt + 1 for node (ht, it)

6.2.1. Define the splitting threshold τ =
(
x− + x+

)
/2 , where

x− = inf
x∈X (ht,it){xrt+1} and x+ = sup

x∈X (ht,it){xrt+1}.
6.2.2. Define two children leaves for node (ht, it):

- the left leaf (ht + 1, 2it − 1) with corresponding bin
X (ht+1,2it−1) = {x ∈ X (ht,it) : xrt+1 ∈ [x−, τ [}

- the right leaf (ht + 1, 2it) with corresponding bin

X (ht+1,2it−1) =

{
x ∈ X (ht,it) :

xrt+1 ∈ [τ, x+[ if x+ < 1
xrt+1 ∈ [τ, 1] if x+ = 1

}

6.2.3. Update T ← T ∪
{
(ht + 1, 2it − 1), (ht + 1, 2it)

}

Algorithm 2: Sequential prediction of function via Nested EG

Lemma 3. Let T ≥ 1 and d ≥ 1. Then the depth HT and the number of nodes
NT of the binary tree TT stored by Algorithm 2 after T time steps are upper
bounded as follows:

HT ≤ 1 +
d

2
log2(4dT ) and NT ≤ 1 + 8 (dT )

d
d+2 .

Indeed, Algorithm 2 needs to store a constant number of parameters at each node
of the tree. Thus the space complexity is of order O(NT ) = O

(
T d/(d+2)

)
. Besides

at each time step t, Algorithm 2 needs to perform O(Ht) = O(log t) binary test
operations in order to select the leaf (ht, it). It then only needs constant time to
update both E(ht,it) and T . Thus the per-round time complexity of Algorithm 2 is
of orderO(log t) and the global time complexity is of orderO(T logT ). Therefore,
we can summarize:

Storage complexity: O
(
T d/(d+2)

)
, Time complexity: O

(
T log T

)
.

Unknown bounded sets X ⊂ R
d and Y ⊂ R. As we mentioned in the end

of Section 2.2, the generalization of Algorithm 1 and thus of Algorithm 2 to
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an unknown set Y ⊂ R can be obtained by using standard tools of individual
sequences—see for instance [dRvEGK14]. To adapt Algorithm 2 to any unknown
compact set X ⊂ R

d, one can first divide the covariable space R
d in hyper-

rectangle subregions of the form [n1, n1 + 1] × · · · × [nd, nd + 1] and then run
independent versions of Algorithm 2 on all of these subregions. If diam(X ) ≤√
dB with an unknown value of B > 0, then the number of initial subregions is

upper-bounded by ⌈B⌉d and by Jensen’s inequality, this adaptation would lead
to a multiplicative cost of ⌈B⌉d/(d+2) in the upper-bound of Theorem 1.

Comparison with other methods. One may want to obtain similar guaran-
tees by considering other strategies like uniform histograms, kernel regression,
or nearest neighbors, which were studied in the context of stationary ergodic
processes by [GLF01,GO07,BBGO10,BP11]. We were unfortunately unable to
provide any finite-time and deterministic analysis neither for kernel regression
nor for nearest neighbors estimation. The regret bound of Theorem 1 can how-
ever be obtained in an easier manner with uniform histograms. To do so, one
can consider the class of uniform histograms HN . We divide the covariable space
[0, 1]d in a partition (Ij)j=1,...,N of N subregions of equal size. We define HN

as the class of 2N prediction strategies that predict the constant values 0 or 1
in each bin of the partition. Competing with this class HN of 2N functions by
resorting for instance to EG gives the regret bound

T∑

t=1

ℓ
(
ŷt, yt

)
≤ min

z∈[0,1]N

T∑

t=1

ℓ

( N∑

j=1

zj1Ij (xt), yt

)
+ 2M

√
TN .

Now, optimizing the number N of bins in hindsight (or by resorting to the
doubling trick) provides a regret bound of order O

(
T (d+1)/(d+2)

)
against any

Lipschitz function. The size of the class HN is however exponential in N =
O
(
T d/(d+2)

)
, which makes the method computationally inefficient.

However, in the worst case the nested EG strategy has no better guarantee.
Such worst case occurs for large number NT of nodes, which happens in par-
ticular when the trees are height-balanced, that is, when the covariables xt are
uniformly distributed in [0, 1]d. But the nested EG strategy adapts better to
data. If the covariables xt are non-uniformly allocated (with regions of the space
[0, 1]d associated with much more observations than in other regions of similar
size), the resulting tree TT will be un-balanced, leading to a smaller number of
nodes. In the best case,NT = O(HT ), which yields a regret of orderO(

√
T log T ).

By improving the definition of Algorithm 2, one can even obtain the optimal and
expected O(

√
T ) regret if (xt) is constant. To do so, it only needs to compute

online the effective range of the data that belongs to each node (h, i),

δ
(h,i)
t = diam {xs, 0 ≤ s ≤ t and (hs, is) = (h, i)}

and substitute the diameter diamX (h,i) by δ
(h,i)
t+1 in the splitting condition of the

algorithm (step 6).

Proofs. The proofs of Theorem 1 and Lemma 3 are based on the following
lemma, which controls the size of the regions associated with nodes located at
depth h in the tree TT .
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Lemma 4. Let h ≥ 0. Then, for all indices i = 1, . . . , 2h, the diameter of the
region X (h,i) associated with node (h, i) in Algorithm 2 is upper bounded as

p diam
(
X (h,i)

)
≤

√
2d2−h/d .

Basically, the proof of Lemma 4 consists of an induction on the depth h. It is
postponed to Appendix A.

Proof (of Lemma 3). Upper bound for NT . For each node (h, i), we recall that

T (h,i) =
∑T

t=1 1{(ht,it)=(h,t)} denotes the number of observations predicted by

using algorithm E(h,i). The total number of observations T is the sum of T (h,i)

over all nodes (h, i). That is,

T =

HT∑

h=0

2h∑

i=1

T (h,i)
1{(h,i)∈TT } ≥

HT∑

h=0

2h∑

i=1

T (h,i)
1{(h,i) is an inner node in TT} .

Now we use the fact that each inner node (h, i) has reached its splitting condition

(step 6 of Algorithm 2), that is, T (h,i) + 1 ≥
(
diam

(
X (h,i)

))−2
. Using that

diam
(
X (h,i)

)
≤

√
2d2−h/d by Lemma 4, we get

T ≥
HT∑

h=0

2h∑

i=1

[
−1 +

(
diam

(
X (h,i)

))−2
]
1{(h,i) is an inner node }

≥
HT∑

h=0

(
−1 +

22h/d

2d

)

︸ ︷︷ ︸
g(h)

2h∑

i=1

1{(h,i) is an inner node }
︸ ︷︷ ︸

nh

. (2)

Because g : R+ → R is convex in h, by Jensen’s inequality

T ≥ N in
T g

(
1

N in
T

HT∑

h=0

hnh

)
,

where N in
T =

∑
h nh is the total number of inner nodes. Now, by Lemma 8 in

Appendix B, because TT is a binary tree with NT nodes in total, it has exactly
N in

T = (NT − 1)/2 inner nodes and the average depth of its inner nodes is lower-
bounded as

1

N in
T

HT∑

h=0

hnh ≥ log2

(
NT − 1

8

)
.

Substituting in the previous bound, it implies

T ≥ NT − 1

2
g

(
log2

(NT − 1

8

))
=

NT − 1

2

(
−1 +

1

2d
2

2
d
log2

(
(NT−1)/8

))

= −NT − 1

2
+

NT − 1

4d

(
NT − 1

8

)2/d

≥ −NT − 1

2︸ ︷︷ ︸
≥−T/2

+
2

d

(
NT − 1

8

)1+2/d

.
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By reorganizing the terms, it entails dT ≥ (3/4)dT ≥
(
(NT − 1)/8

)1+2/d
. Thus,

(NT − 1)/8 ≤ (dT )d/(d+2), which yields the desired bound for NT .

Upper bound for HT . We start from (2) and we use the fact that for all
h = 0, . . . , HT − 1, there exists at least one inner node of depth h in T . Thus,

T ≥
HT−1∑

h=0

(
−1 +

22h/d

2d

)
= −HT +

1

2d

22HT /d − 1

22/d − 1
≥ −HT +

22(HT−1)/d

2d

where the last inequality is because (a − 1)/(b − 1) ≥ a/b for all numbers a ≥
b > 1. Therefore, by upper-bounding T ≥ HT , we get 4T ≥ 22(HT−1)/d/d and
thus 2(HT − 1)/d ≤ log2(4dT ) which concludes the proof. ⊓⊔

Proof (of Theorem 1). The cumulative regret suffered by Algorithm 2 is con-
trolled by the sum of all cumulative regrets incurred by algorithms E(h,i). That
is,

R̂L,T ≤
∑

(h,i)∈TT


 ∑

t∈S(h,i)

ℓ
(
ŷt, yt

)
− inf

f∈Ld
L

∑

t∈S(h,i)

ℓ
(
f(xt), yt

)

 ,

where S(h,i) =
{
1 ≤ t ≤ T : (ht, it) = (h, i)

}
is the set of time steps assigned

to node (h, i). Now, by Lemma 2, the cumulative loss incurred by E(h,i) satisfies

∑

t∈S(h,i)

ℓ
(
ŷt, yt

)
≤ inf

y∈[0,1]

∑

t∈S(h,i)

ℓ
(
y, yt

)
+ 2M

√
T (h,i) log 2

≤ inf
f∈Ld

L

∑

t∈S(h,i)

ℓ
(
f(xt), yt

)
+ML diam

(
X (h,i)

)

︸ ︷︷ ︸
≤1/

√
T (h,i) by step 6 of Algorithm 2

T (h,i) + 2M
√
T (h,i) log 2

where the second inequality is by Lemma 1. Thus,

R̂L,T ≤ M
(
L+ 2

√
log 2︸ ︷︷ ︸
≤3

) ∑

(h,i)∈TT

√
T (h,i) .

Then, by Jensen’s inequality,

1

NT

∑

(h,i)∈TT

√
T (h,i) ≤

√√√√ 1

NT

∑

(h,i)

T (h,i) =

√
T

NT
,

which concludes the first statement of the theorem. The second statement follows
from Lemma 3 and because for all a, b ≥ 0,

√
a+ b ≤ √

a+
√
b,

M(3 + L)
√
NTT ≤ M(3 + L)

√(
1 + 4(3dT )d/(d+2)

)
T

≤ M(3 + L)
(√

T +
√
4(3dT )d/(d+2)T

)
= M(3 + L)

(√
T + 2(3d)

d
2(d+2)T

d+1
d+2

)
.

⊓⊔
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3 Autoregressive framework

We present in this section a technical result that will be useful for later purposes.
Here, the forecaster still sequentially observes from time t = 1 an arbitrary
bounded sequence (yt)t=−∞,...,+∞. However, at time step t, it is asked to forecast
the next outcome yt ∈ [0, 1] with knowledge of the past observations yt−1

1 =
y1, . . . , yt−1 only. We are interested in a strategy that performs asymptotically
as well as the best model that considers the last d observations to form the
predictions, and this simultaneously for all values of d ≥ 1. More formally, we
denote

R̂d
L,T ,

T∑

t=1

ℓ(ŷt, yt)− inf
f∈Ld

L

T∑

t=1

ℓ
(
f(yt−1

t−d), yt
)
,

and we want that for all d, the average regrets R̂d
L,T/T vanish as T → ∞. We

show how it can be obtained via a meta-algorithm (Algorithm 4) that combines
an increasing sequence of nested EG forecasters described in Algorithm 3. The
sequence is denoted by A1,A2, . . . and is such that for each d ≥ 1, Ad

† forms
predictions for t ≥ td for some starting time td ≥ 1 and satisfies the regret bound
stated in Lemma 5.

Parameter: d ≥ 1 and td, a starting time

For t ≤ td − 1

Form no prediction† and observe yt

For t = td, . . . , T
1. define xt = yt−1

t−d and feed Algorithm 2 with xt ∈ [0, 1]d

2. predict fd,t according to Algorithm 2 and feed Algorithm 2 with yt

Algorithm 3: Forecaster Ad for fixed past d.

Lemma 5 (Fixed past d). Let T ≥ 1, d ≥ 1, L > 0, and td ≥ d + 1. Then,
Algorithm 3 has a regret upper-bounded as

T∑

t=td

ℓ(fd,t, yt)− inf
f∈Ld

L

T∑

t=td

ℓ(f(yt−1
t−d), yt) ≤ M(3 + L)

(√
T + 2(3d)

d
2(d+2)T

d+1
d+2

)
.

Proof. The regret bound is a straightforward corollary of Theorem 1. ⊓⊔

Now we show how to obtain the regret bound of Lemma 5 simultaneously
for all d ≥ 1. To do so, we consider an increasing sequence of integers (td) such
that t1 = 2. Namely, td states at which time step algorithm Ad starts to form

† Algorithm Ad will only be used by a meta-algorithm for time steps t ≥ td
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Parameter:

– (td) an increasing sequence of starting times
– (Fd)d≥1 a sequence of forecasters such that Fd forms predictions for time

steps t ≥ td
– (ηt) a sequence of learning rates

Initialization:

– For t = 1, . . . t1 − 1, predict ŷt = 1/2
– set Dt1 = 1 and p̂1,t1 = 1

For t = t1, . . . , T
1. For each d = 1, . . . , Dt, denote by fd,t the prediction formed by Fd

2. predict ŷt =
∑Dt

d=1 p̂d,tfd,t
3. update the number of active forecasters

3.1 if the next starting time occurs in t+ 1, i.e., tDt+1 = t+ 1 then
- increase the number of forecasters by 1: Dt+1 = Dt + 1
- initialize the weight of the new forecaster: pDt+1,t+1 = 1/Dt+1

3.2 otherwise if no expert starts in t+ 1, make no change: Dt+1 = Dt

4. observe Yt and perform exponential weight update component-wise for
d = 1, . . . , Dt as

p̂d,t+1 =
Dt

Dt+1

p̂
ηt+1/ηt
d,t e−ηt+1ℓ(fd,t,yt)

∑Dt

k=1 p̂
ηt+1/ηt
k,t e−ηt+1ℓ(fk,t,yt)

.

Algorithm 4: Extension of the Algorithm 2 to unknown past d.

predictions and thus to be combined in Algorithm 4. We define at each time
step s ≥ 1 the number of active algorithms Ds = sup{d ≥ 1 : td ≤ s}. Basically,
Algorithm 4 is a meta-algorithm that combines via EG the predictions formed by
all forecasters Ad for d ≥ 1. Note that at time step t, only the Dt first forecasters
A1, . . . ,ADt

suggest predictions.

Lemma 6 controls the cumulative loss of Algorithm 4 by the cumulative loss
of the best strategy Fd. The comparison is performed only on the time steps
where Fd is active (i.e., forms a prediction).

Lemma 6. Let T ≥ 1 and (ηt)t≥1 be a decreasing sequence of non-negative
learning rates. Then, Algorithm 4 satisfies for all d ∈ 1, . . . , DT , sup{d, td ≤
T }

T∑

t=td

ℓ(ŷt, yt)− ℓ(fd,t, yt) ≤
1

ηT+1
log(DT+1) +

1

8

T∑

t=td

ηt ,

which implies with learning rates ηt = 2/
√
t for t ≥ 1 the following regret bound

T∑

t=td

ℓ(ŷt, yt)− ℓ(fd,t, yt) ≤
√
T + 1 logDT+1 .
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Note that the choice ηt = mins≤t

√
logDt/t for t ≥ 1 may yield the right

dependency
√
logDT in the number of experts. Similarly, the term

√
T can

be replaced by
√
T − td + 1 by considering for instance the aggregation rule

of [GSvE14] with one learning rate sequence for each expert. The proof of
Lemma 6 follows the standard one of the exponentially weighted average fore-
caster. It is postponed to Appendix C. It could also be recovered by noting that
our setting with starting experts is almost a particular case of the setting of
sleeping experts introduced in [FSSW97]. We could thus obtain similar results
by following algorithms and proofs designed for this setting. We write “almost”
because here we do not know in advance the final number of active experts,
which explains the non-optimal term in Dt.

Theorem 2. Let T ≥ 1, L > 0. Let (td) be an increasing sequence of integers
such that t1 = 2. Then, for all d ≤ DT , sup{d, td ≤ T }, Algorithm 4 run with
an increasing sequence (td) of starting times, sequence of forecasters (Ad) and
sequence of learning rates ηt = 2/

√
t satisfies

R̂d
L,T =

T∑

t=1

ℓ(ŷt, yt)− inf
f∈Ld

L

T∑

t=1

ℓ(f(yt−1
t−d), yt)

≤ td +
√
T + 1 logDT+1 +M(3 + L)

(√
T + 2(3d)

d
2(d+2)T

d+1
d+2

)
.

Consequently, for all d ≥ 1, lim supT→∞

(
R̂d

L,T/T
)
≤ 0.

Proof. The regret bound is by combining Lemma 5 and Lemma 6, together with
ℓ(ŷt, yt) ≤ 1 for t < td. The second part is obtained by dividing by T and making
T grows to infinity. The last part is then a consequence of Theorem 2. ⊓⊔

4 Convergence to L
⋆

In this section, we present our main result by deriving from Theorem 2 similar
results obtained in a stochastic setting by [GLF01,GO07,BBGO10,BP11].

We leave here the setting of individual sequences of the previous sections
and we assume that the sequence of observations y1, . . . , yT is now generated
by some stationary ergodic process. More formally, we assume that a stationary
bounded ergodic process (Yt)t=−∞,...,∞ is sequentially observed. At time step

t, the learner is asked to form a prediction Ŷt of the next outcome Yt ∈ [0, 1]
of the sequence with knowledge of the past observations Y t−1

1 = Y1, . . . , Yt−1.
The nested EG strategy, as a consequence of the deterministic regret bound of
Theorem 1, will be shown to be consistent. We recall that [Alg94] proved that all

prediction strategies verify almost surely lim infT→∞
{

1
T

∑T
t=1 ℓ(Ŷt, Yt)

}
≥ L⋆,

where L⋆, defined in (1), is the expected minimal loss over all possible Borel
estimations of the outcome Y0 based on the infinite past. To put it another way:
we cannot hope to design strategies outperforming L⋆. It is thus usual to require
that

∑T
t=1 ℓ(Ŷt, Yt)/T tends to L⋆ as T → ∞.
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From individual sequences to ergodic processes

Theorem 3 shows that any strategy that achieves a deterministic regret bound
for individual sequences as in Theorem 2 predicts asymptotically as well as the
best strategy defined by a Borel function.

Theorem 3 will make two main assumptions on the ergodic sequence to be
predicted. First, the sequence is supposed to lie in [0, 1]. As earlier, this assump-
tion can be easily relaxed to any bounded subset of R—see remarks of Sections
2.2 and 2.3. The generalization to unbounded sequence is left to future work and
should follow from [GO07]. Second, Theorem 3 assumes that for all d ≥ 1 the
law of Y −1

−d is regular, that is, for any Borel set S ⊂ [0, 1]d and for any ε > 0,
one can find a compact set K and an open set V such that

K ⊂ S ⊂ V, and PY −1
−d

(V \K) ≤ ε .

This second assumption is considerably weaker than the assumptions required
by [BP11] on the law of (Y −1

−d ) obtained for quantile prediction. The authors

indeed imposed that the random variables ‖Y −1
−d −s‖ have continuous distribution

functions for all s ∈ R
d and the conditional distribution function FY0|Y −1

−∞

to

be increasing. One can however argue that their assumptions are thus hardly
comparable with ours because they consider unbounded ergodic processes. We
aim at obtaining in the future minimal assumptions for any generic convex loss
function ℓ in the case of unbounded ergodic process, see [MW11].

Theorem 3. Let (Yt)t=−∞,...,∞ be a stationary bounded ergodic process. We
assume that for all t, Yt ∈ [0, 1] almost surely and that for all d ≥ 1 the law
of Y −1

−d = (Y−d, . . . , Y−1) is regular. Let ℓ : [0, 1]2 → [0, 1] be a loss function
M -Lipschitz in its first argument. Assume that a prediction strategy satisfies for
all d ≥ 1,

∀L ≥ 0 lim sup
T→∞

(
1

T

T∑

t=1

ℓ
(
Ŷt, Yt

))
≤ lim sup

T→∞

(
inf

f∈Ld
L

1

T

T∑

t=1

ℓ
(
f(Y t−1

t−d ), Yt

))
,

then, almost surely,

lim sup
T→∞

(
1

T

T∑

t=1

ℓ
(
Ŷt, Yt

))
≤ L⋆ .

By Theorem 2, Algorithm 4 satisfies the assumption of Theorem 3. Our
deterministic strategy is thus asymptotically optimal for any stationary bounded
ergodic process satisfying the assumptions of Theorem 3. Here we only give
the main ideas in the proof of Theorem 3. The complete argument is given in
Appendix E.

Proof (sketch for Theorem 3). The proof follows from the one of Theorem 1 in
[GLF01]. The new ingredient of our proof is mainly Lemma 7, which states that
the best constant Lipschitz strategy performs as well as the best constant Borel
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strategy. First, because of Breiman’s generalized ergodic theorem (see [Bre57])
the right-term converges, and by making L → ∞, we get

lim sup
T→∞

(
1

T

T∑

t=1

ℓ
(
Ŷt, Yt

)
)

≤ inf
f∈Ld

E
[
ℓ
(
f(Y −1

−d ), Y0

)]
,

where Ld is the set of Lipschitz functions from R
d to R. Then, by Lemma 7

the infimum over all Lipschitz functions equals the infimum over the set Bd

of Borel functions. Therefore, by exhibiting a well-chosen Borel function (see
[Alg94, Theorem 8]), this yields

lim sup
T→∞

1

T

T∑

t=1

ℓ
(
Ŷt, Yt

)
≤ inf

f∈Bd
E

[
ℓ
(
f(Y −1

−d ), Y0

)]

= E

[
inf

f∈Bd
E

[
ℓ
(
f(Y −1

−d ), Y0

)∣∣∣Y −1
−d

]]
.

The proof is then concluded by making d → ∞ thanks to the martingale con-
vergence theorem. ⊓⊔

Lemma 7. Let X be a convex and compact subset of a normed space. Let ℓ :
[0, 1]2 → [0, 1] be a loss function M -Lipschitz in its first argument. Let X be a
random variable on X with a regular law PX and let Y be a random variable on
[0, 1]. Then,

inf
f∈LX

E
[
ℓ
(
f(X), Y

)]
= inf

f∈BX

E
[
ℓ
(
f(X), Y

)]
,

where LX denotes the set of Lipschitz functions from X to R and BX the one of
Borel functions from X to R.

The proof of Lemma 7 postponed to Appendix D as well. It follows from the
Stone-Weierstrass theorem, used to approximate continuous functions, and from
Lusin’s theorem, to approximate Borel functions.

Computational efficiency. The space complexity of Algorithm 4 depends on
the chosen sequence of starting times (td). It can be arbitrary close to the space
complexity of the nested EG strategy, which is O

(
T d/(d+2)

)
. Previous algorithms

of [GLF01,GO07,BBGO10,BP11] exhibit consistent strategies as well. However,
in practice, these algorithms involve choices of parameters somewhere in their
design (by choosing the a priori weight of the infinite set of experts). Then, the
consideration of an infinite set of experts makes the exact algorithm computa-
tionally inefficient. For practical purpose, it needs to be approximated. This can
be obtained by MCMC or for instance by restricting the set of experts to some
finite subset at the cost, however, of loosing theoretical guarantees, see [BP11].

Generic loss function. Theorem 3 assumes ℓ to be bounded, convex, and M -
Lipschitz in its first argument. In contrast, the results of [GLF01,GO07,BBGO10]
only hold for the square loss (while [BP11] extend them to the pinball-loss).
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CBL06. Nicolò Cesa-Bianchi and Gábor Lugosi. Prediction, learning, and games.

Cambridge University Press, 2006.

Cho65. Yuan Shih Chow. Local convergence of martingales and the law of large
numbers. Annals of Mathematical Statistics, 36:552–558, 1965.

dRvEGK14. Steven de Rooij, Tim van Erven, Peter D. Grünwald, and Wouter M.
Koolen. Follow the leader if you can, hedge if you must. Journal of

Machine Learning Research, 15:1281–1316, 2014.

FSSW97. Yoav Freund, Robert E. Schapire, Yoram Singer, and Manfred K. War-
muth. Using and combining predictors that specialize. In Proceedings of

STOC, pages 334–343, 1997.

Geo67. Georges Georganopoulos. Sur l’approximation des fonctions continues
par des fonctions lipschitziennes. Comptes Rendus de l’Académie des

sciences, 264(7):319–321, 1967.
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Additional Material for
“A consistent deterministic regression tree for

non-parametric prediction of time series”

We gather in this appendix the proofs, which were omitted from the main body
of the paper

A Proof of Lemma 4

It suffices to prove that for all h ≥ 0, for all indexes i ∈ {1, . . . , 2h} and all

coordinates j ∈ {1, . . . , d}, the ranges δ
(h,i)
j , max

x,x′∈X (h,i)

∣∣xj − x′
j

∣∣ satisfies

δ
(h,i)
j =

{
2−(k+1) if j ≤ r
2−k otherwise

, (3)

where h = kd+ r is the decomposition with r ∈ {0, . . . , d− 1}. Indeed, we then
have

diam
(
X (h,i)

)
= max

x,x′∈X (h,i)
‖x− x

′‖2 ≤

√√√√
d∑

j=1

(
δ
(h,i)
j

)2
.

But by (3), for r coordinates j ∈ {1, . . . , r} among the d coordinates δ
(h,i)
j

equals 2−(k+1) while the d − r remaining coordinates j ∈ {r + 1, . . . , d} satisfy

δ
(h,i)
j = 2−k. Thus, by routine calculations

diam
(
X (h,i)

)
≤
√
r
(
2−(k+1)

)2
+ (d− r) (2−k)

2

= 2−k

√
r

4
+ d− r

=
√
d2−k

√
1− 3r

4d

=
√
d
(
21/d

)−(dk+r)

2r/d
√
1− 3r

4d

But,

2r/d
√
1− 3r

4d
≤ max

0≤u≤1

{
2u
√
1− 3u

4

}
≈ 1.12 ≤

√
2 .

The proof is concluded by substituting in the previous bound.

Now, we prove (3) by induction on the depth h. This is true for h = 0 as the
bin of the root node X (0,1) equals [0, 1]d by definition. Besides, let h ≥ 0 and
i ∈ {1, . . . , 2h}. We compute the decomposition h = kd+r with r ∈ {0, . . . , d−1}.
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We have by step 5.4 of Algorithm 2 that the range of each coordinate j 6= r + 1
of the bin of the child node (h+ 1, 2i) remains the same

δ
(h+1,2i)
j = δ

(h,i)
j =

{
2−(k+1) if j ≤ r
2−k if j ≥ r + 2

, (4)

and the range of coordinate r + 1 is divided by 2,

δ
(h+1,2i)
r+1 = δ

(h,i)
r+1 /2 = 2−(k+1) . (5)

Equations (4) and (5) are also true for the second child (h+ 1, 2i− 1), and this
concludes the induction.

B Lemma 8 and its proof

Lemma 8. Let N ≥ 1 be an odd integer. Let T be a binary tree with N nodes.
Then,
– its number of inner-nodes equals N in = (N − 1)/2.
– the average depth (i.e., distance to the root) of its inner nodes is lower-

bounded as

1

N in

∞∑

h=0

h #{inner nodes in T of depth h} ≥ log2

(
N − 1

8

)
.

Proof. First statement. We proceed by induction. If N = 1, there is only one
binary tree with one node, the lone leaf, so that N in = 0. Now, if T is a binary
tree with N ≥ 3 nodes, select an inner node n which is parent of two leaf nodes.
Then, replaces the subtree rooted at n by a leaf node. The resulting subtree T ′

of T has N − 2 nodes, so that by induction hypothesis T ′ has (N − 3)/2 inner
nodes. But, T ′ has also N in − 1 inner nodes. Therefore N in = (N − 1)/2.

Second statement. We note that the average depth is minimized for the equili-
brated binary trees, that are such that
– all depths h ∈ {0, . . . , ⌊log2 N in⌋} have exactly 2h inner nodes;
– no inner nodes has depth h > ⌈log2 N in⌉.

Therefore,

1

N in

∞∑

h=0

h #{inner nodes in T of depth h} ≥ 1

N in

⌊log2N in⌋∑

h=0

h2h

Now, we use that
∑n−1

i=0 i2i = 2n(n− 2) + 2 for all n ≥ 1, which implies because
⌊log2 N in⌋ ≥ log2 N

in − 1 and by substituting in the previous bound,

1

N in

∞∑

h=0

h #{inner nodes in T of depth h} ≥ 2log2 N in

N in︸ ︷︷ ︸
=1

(
log2 N

in − 2
)
+

2

N in︸︷︷︸
≥0

.

This concludes the proof by substituting N in = (N − 1)/2. ⊓⊔
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C Proof of Lemma 6

The proof follows from a simple adaptation of the proof of the regret bound
of the exponentially weighted average forecaster—see for instance [CBL06]. By
convexity of ℓ and by Hoeffding’s inequality, we have at each time step t

ℓ(ŷt, yt) ≤
Dt∑

d=1

p̂d,tℓ(fd,t, yt) ≤ − 1

ηt
log

Dt∑

d=1

p̂d,te
−ηtℓ(fd,t,yt) +

ηt
8

By Jensen’s inequality, since ηt+1 ≤ ηt and thus x 7→ xηt/ηt+1 is convex

1

DT

Dt∑

d=1

p̂d,te
−ηtℓ(fd,t,yt) =

1

DT

Dt∑

d=1

(
p̂

ηt+1
ηt

d,t e−ηt+1ℓ(fd,t,yt)

) ηt
ηt+1

≥
(

1

Dt

Dt∑

d=1

p̂
ηt+1
ηt

d,t e−ηt+1ℓ(fd,t,yt)

) ηt
ηt+1

Substituting in Hoeffding’s bound we get

ℓ(ŷt, yt) ≤
(

1

ηt+1
− 1

ηt

)
logDt −

1

ηt+1
log

(
Dt∑

d=1

p̂
ηt+1
ηt

d,t e−ηt+1ℓ(fd,t,yt)

)
+

ηt
8

Now, by definition of the loss update in step 3 of Algorithm 4, for all d = 1, . . . , Dt

Dt∑

k=1

p̂
ηt+1
ηt

k,t e−ηt+1ℓ(fk,t,yt) =
Dt

Dt+1

p̂
ηt+1
ηt

d,t e−ηt+1ℓ(fd,t,yt)

p̂d,t+1

which after substitution in the previous bound leads to the inequality

ℓ(ŷt, yt) ≤ ℓ(fd,t, yt) +
1

ηt+1
log(Dt+1p̂d,t+1)−

1

ηt
log(Dtp̂d,t) +

ηt
8
.

By summing over t = td, . . . , T , the sum telescopes; using that p̂d,td = 1/Dtd by
step 3.1.

T∑

t=td

ℓ(ŷt, yt) ≤
T∑

t=td

ℓ(fd,t, yt)+
1

ηT+1
log(DT+1 p̂d,T+1︸ ︷︷ ︸

≤1

)− 1

ηt
log(Dtd p̂d,td︸ ︷︷ ︸

=1

)+
1

8

T∑

t=td

ηt ,

which concludes the proof of the first statement. The second statement of the
theorem is because

1

2

T∑

t=1

ηt =
T∑

t=1

1√
t
= 1 +

T∑

t=2

1√
t
≤ 1 +

∫ T

1

1√
t
dt ≤ 2

√
T .
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D Proof of Lemma 7

The proof is performed in two steps.

Step 1: Lipschitz → Continuous. First, the Stone-Weierstrass theorem entails
that any continuous function f : X → R from a compact metric space X to R is
the uniform limit of Lipschitz functions, see e.g., [Geo67]. Thus, the dominated
convergence theorem yields

inf
f∈L

E

[
ℓ
(
f(X), Y

)]
= inf

f∈C
E

[
ℓ
(
f(X), Y

)]
,

where L denotes the set of Lipschitz functions from X to R and C is the set of
continuous functions from X to R.

Step 2: Continuous → Borel. Second, by the version of Lusin’s theorem
stated in Theorem 4, we can approximate any mesurable function by continuous
functions (this is where regularity is used).

Let δ, ε > 0 and f : X → [0, 1] be a Borel function. By Theorem 4, there
exists a continuous function g : X → [0, 1] such that

PX

{
|f − g| ≥ δ

}
≤ ε .

Then by Jensen’s inequality, and since

∆ ,

∣∣∣∣E
[
ℓ
(
f(X), Y

)]
− E

[
ℓ
(
g(X), Y

)]∣∣∣∣ ≤ E

[∣∣∣ℓ
(
f(X), Y

)
− ℓ
(
g(X), Y

)∣∣∣
]

≤ PX

{
|f − g| ≥ δ

}

︸ ︷︷ ︸
≤ε

+ E

[
M
∣∣f(X)− g(X)

∣∣ 1{|f(X)−g(X)|≤δ}
]

︸ ︷︷ ︸
≤Mδ

,

where the second inequality is because ℓ takes values in [0, 1] and is M -Lipschitz
in its first argument. Thus ∆ ≤ ε+Mδ, which concludes the proof since this is
true for arbitrary small values of ε and δ.

Theorem 4 (Lusin). If X is a convex and compact subset of a normed space,
equipped with a regular probability mesure µ, then for every measurable function
f : X → [0, 1] and for every δ, ε > 0, there exists a continuous function g : X →
[0, 1] such that

µ
{∣∣f − g

∣∣ ≥ δ
}
≤ ε .

The proof of Theorem 4 can be easily derived from the proof of [SL07, Propo-
sition 25].
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E Proof of Theorem 3

In this proof, apart from the use of Breiman’s generalized ergodic theorem in
the beginning and the martingale convergence theorem in the end (as exhibited
in [GLF01,GO07,BBGO10,BP11]), we resort to new arguments.

Let d ≥ 1 and L ≥ 0. Then, by assumption and by exchanging lim sup and
inf,

lim sup
T→∞

1

T

(
T∑

t=1

ℓ
(
Ŷt, Yt

)
)

≤ inf
f∈Ld

L

lim sup
T→∞

(
1

T

T∑

t=1

ℓ
(
f(Y t−1

t−d ), Yt

)
)

.

Because ℓ is bounded over [0, 1]2 and thus integrable, Breiman’s generalized
ergodic theorem (see [Bre57]) entails that the right-term converges: almost surely,

lim
T→∞

(
1

T

T∑

t=1

ℓ
(
f(Y t−1

t−d ), Yt

)
)

= E
[
ℓ
(
f(Y −1

−d ), Y0

)]

and thus,

lim sup
T→∞

(
1

T

T∑

t=1

ℓ
(
Ŷt, Yt

)
)

≤ inf
f∈Ld

L

E

[
ℓ
(
f(Y −1

−d ), Y0

)]
.

By letting L → ∞ in the inequality above, we get

lim sup
T→∞

(
1

T

T∑

t=1

ℓ
(
Ŷt, Yt

)
)

≤ inf
f∈Ld

E

[
ℓ
(
f(Y −1

−d ), Y0

)]
.

By Lemma 7 the infimum over all continuous functions equals the infimum over
the set Bd of Borel functions. Therefore,

lim sup
T→∞

(
1

T

T∑

t=1

ℓ
(
Ŷt, Yt

)
)

≤ inf
f∈Bd

E

[
ℓ
(
f(Y −1

−d ), Y0

)]

≤ E

[
inf

f∈Bd
E

[
ℓ
(
f(Y −1

−d ), Y0

)∣∣∣Y −1
−d

]

︸ ︷︷ ︸
,Zd

]
,

where the second inequality is by the measurable selection theorem—see Theo-
rem 8 in Appendix I of [Alg94]. Now, we remark that

(
Zd

)
is a bounded super-

martingale with respect to the family of sigma algebras
(
σ(Y −1

−d )
)
d≥1

. Indeed,

the function inff∈Bd+1(.) is concave, thus conditional Jensen’s inequality

E
[
Zd+1

∣∣Y −1
−d

]
≤ inf

f∈Bd+1
E

[
E

[
ℓ
(
f
(
Y −1
−(d+1)

)
, Y0

)∣∣∣Y −1
−(d+1)

]∣∣∣∣Y
−1
−d

]

= inf
f∈Bd+1

E

[
ℓ
(
f
(
Y −1
−(d+1)

)
, Y0

)∣∣∣∣Y
−1
−d

]
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Now, we note that

inf
f∈Bd+1

E

[
ℓ
(
f
(
Y −1
−(d+1)

)
, Y0

)∣∣∣Y −1
−d

]
≤ inf

f ′∈Bd
E

[
ℓ
(
f ′(Y −1

−d

)
, Y0

)∣∣∣Y −1
−d

]
= Zd ,

which yields E
[
Zd+1

∣∣Y −1
−d

]
≤ Zd. Thus, the martingale convergence theorem (see

e.g. [Cho65]) implies that Zd converges almost surely and in L1. Thus,

lim
d→∞

E
[
Zd

]
= E

[
inf

f∈B∞

E

[
ℓ
(
f(Y −1

−∞), Y0

)∣∣∣Y −1
−∞

]]
= L⋆ ,

which yields the stated result lim supT
∑T

t=1 ℓ
(
Ŷt, Yt

)
/T = L⋆.
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