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ABSTRACT 
 

A critical step during Bacillus anthracis infection is the outgrowth of 

germinated spores into vegetative bacilli that proliferate and disseminate rapidly 

within the host. An important challenge exists for developing chemotherapeutic 

agents that act upon and kill B. anthracis immediately after germination initiation 

when antibiotic resistance is lost, but prior to the outgrowth into vegetative bacilli, 

which is accompanied by toxin production.  Chemical agents must also function 

in a manner refractive to the development of antimicrobial resistance. In this 

thesis we have identified the lantibiotics as a class of chemotherapeutics that are 

predicted to satisfy these two criteria. The objective of this thesis was to evaluate 

the efficacy of nisin, a prototypical lantibiotic, in prevention of outgrowth of 

germinated B. anthracis spores. Like all lantibiotics, nisin is a ribosomally 

translated peptide that undergoes post-translational modification to form 

(methyl)lanthionine rings that are critical for antimicrobial activity. Our studies 

indicate that nisin rapidly inhibits the in vitro outgrowth of germinated B. anthracis 

Sterne 7702 spores. Although germination initiation was shown to be essential 

for nisin-dependent antimicrobial activity, nisin did not inhibit or promote 

germination initiation. Nisin irreversibly killed germinated spores by blocking the 

establishment of a membrane potential and oxidative metabolism, while not 

affecting the dissolution of the outer spore structures. The membrane 

permeability of the spore was increased by nisin, but germinated spores did not 

undergo full lysis. Nisin was demonstrated to localize to lipid II, which is the 

penultimate precursor for cell wall biogenesis. This localization suggests two 
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possible independent mechanisms of action, membrane pore formation and 

inhibition of peptidoglycan synthesis. Structure-activity studies with a truncated 

form of nisin lacking the two C-terminal (methyl)lanthionine rings and with non-

pore forming mutants indicated that membrane disruption is essential for nisin-

dependent inhibition of spore outgrowth to prevent membrane potential 

establishment. Finally, utilizing an in vitro infection model, it was shown that nisin 

reduced the viability of B. anthracis spores within an infection resulting in 

increased survival of immune cells while reducing infection-mediated cytokine 

expression. Fluorescence microscopy indicated that nisin localizes with spores 

within phagosomes of peritioneal macrophages in germinating conditions. These 

data demonstrate the effectiveness of nisin, as a model lantibiotic, for preventing 

spore outgrowth. It is speculated that nisin targeting of lipid II, resulting in 

membrane perturbations, may be effective at inhibiting the outgrowth of spores 

prepared from bacteria across a number of species. 
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CHAPTER 1: THE PATHOGEN BACILLUS ANTHRACIS AND THE 
LANTIBIOTIC NISIN  
 
1.1 Bacillus anthracis endospore  

B. anthracis is a Gram-positive, endospore forming rod-shaped bacterium 

and the causative agent of the zoonotic disease anthrax that affects mammals.  

B. anthracis exists both as actively replicating bacilli and as dormant endospores 

(30, 85). The endospore structure provides resistance to a wide range of 

chemical and physical assaults, which include but are not limited to chemical 

treatment, radiation, desiccation, heat, and extremes in pH (83, 99, 112).  The 

endospore is formed in nutrient-deprived conditions allowing survival over 

extended periods of time, which otherwise would not be possible as bacilli (30).   

Despite the ability of B. anthracis to germinate and exist in soil (108), B. anthracis 

prefers to germinate and grow within a mammalian host gaining access to 

nutrient rich environments within the host via inhalation, ingestion, or skin 

abrasions (45).  As an endospore, B. anthracis has the potential for long-term 

storage and mass dispersal as a bio-terrorist agent.  

Bacterial endospores are formed during nutrient deprivation, and the 

molecular composition and structure of the endospore is vastly different when 

compared to the vegetative cell (95).  Since B. anthracis is a Gram-positive 

bacterium, the external structure of the bacilli consists of a cell membrane and a 

peptidoglycan cell wall (109).  B. anthracis bacilli are also surrounded by a 

proteinaceous S-layer followed by a poly-D-glutamic acid capsule in virulent 

strains such as Ames and New Hampshire (Figure 1.1A).  These structures 

provide protection from environmental insults, and in the case of the poly-D-
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glutamic acid capsule, it provides anti-phagocytic properties (64).   The 

endospore external structure consists of a dual membrane that is separated by a 

thick peptidoglycan cell wall consisting of two distinct layers collectively known as 

the cortex (Figure 1.1B &C) (20, 76, 98, 121).  The first layer of the cortex 

originates from the same repeating sugar subunits, N-acetylglucosamine and N-

acetylmuramic acid, and protein cross linkers, L-Ala - D-Glu - Dap -D-Ala - D-Ala, 

as the bacilli cell wall.  The second thicker and outer portion of the cortex 

includes additional sugars, muramic acid σ-lactam or muramic acid-alanine, 

within the sugar repeat of the glycan layers (Figure 1.1D) (20, 31, 40, 56, 70, 76, 

98).  The outer structure of the spore continues with two proteinaceous layers, 

the inner and outer spore coats, consisting of over 60 proteins, and all of the 

outer spore structures encapsulate the inner core containing the DNA (41).  The 

core of the spore is a highly dehydrated environment and is crystalline in nature 

due to the high concentration of dipicolinic acid (DPA) chelated to Ca2+, which 

ultimately renders the spore metabolically inactive (62, 121).  In addition, the 

DNA is wrapped within small acid soluble proteins (SASP) to protect the DNA 

from damage and mutagenesis from chemical agents or radiation (86, 119, 121, 

122).  In pathogenic Bacillus strains such as B. anthracis and B. cereus, the 

outer most layer is the glycopeptide-composed exosporium, which is loosely 

anchored to the outer spore coat (30, 121).  These dramatic morphological 

differences between endospores and bacilli confer upon the former resistance to 

chemical, enzymatic, and mechanical assaults (86, 122).  Endospores also 

contain membrane bound protein receptors to identify the presence of a 
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favorable growth environment by identifying the presence of L-Ala, which alone 

can induce germination, or by detecting a combination of amino acids, 

nucleotides, and sugars for germination induction.  Inactive lytic enzymes, which 

are required for spore coat and cortex hydrolysis, are activated during 

germination (86, 87, 121).  In the case of cortex hydrolysis, the lytic enzymes 

recognize the σ-lactam within the repeating sugar units (Figure 1.1D), so that 

only the outer portion of the cortex is degraded leaving the innermost primordial 

cell wall. This selective degradation of the cortex provides the germinated  and 

outgrowing spore shape and resistance to osmotic stress (31, 40, 56, 70).   

 Spores are metabolically dormant, lack any detectable enzymatic activity, 

and are devoid of any high energy molecules such as ATP and NADH (24, 116, 

120). As a consequence of the lack of enzymatic activity, the structure of the 

spore, as discussed above, is designed to protect the DNA that can only be 

repaired once the spore has returned to life (114, 117-119, 134).  Consequently, 

the particularly formidable structure of the spore and the lack of enzymatic 

activity renders the spore exceptionally difficult to kill or permanently inhibit (86, 

117, 118, 121). 
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A              B 

       

 
C              D  

   
 Figure 1.1. Bacillus anthracis endospore structure. A. Illustration of B. anthracis cells 

structure. B. Illustration of B. anthracis endospore structure.  C. TEM image of dormant B. 

anthracis endospore. Image were taken by Dr. Angela Prouty at 60,000x magnification.   B&C. A 

dormant endospore consists of a core surrounded by a dual membrane, which are separated by a 

peptidoglycan cortex.  The endospore coat is comprised of an inner coat and outer coat, which 

anchors the outer most layer, the exosporium.  The exosporium loosely encapsulates the spore 

providing significant space between it and the inner structure of the spore (B: light blue). D. 

Structure of modified hexose sugars utilized within the cell wall (cells and spores) and the cortex 

(spores) of B. anthracis. 
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1.2 Bacillus anthracis spore germination 

The series of morphological and biochemical changes that allow for the 

transition from an endospore to a replicating bacilli are known as germination 

(Figure 1.2).  Germination can be divided into two phases: (1) the loss of 

dormancy and resistance and (2) reactivation of metabolism (85, 121).  This 

process initiates with binding of germinant to a germination receptor in the 

membrane of an endospore, and once germination has been initiated, there is an 

irreversible commitment to progress through the series of events leading to the 

production of replicative bacilli (86, 121).  Germinant binding will initiate a 

cascade of events beginning with the release of H+, monovalent cations Na+ and 

K+, and Zn2+, followed by the release of dipicolinic acid (DPA) in complex with 

Ca2+, the establishment of a membrane potential, and the influx of water to 

hydrate the core.  As a consequence of these initial events, endospores become 

sensitive to heat, desiccation, and chemical treatment and display a loss in 

refractility within seconds to minutes.  Subsequent to core hydration, endospores 

undergo enzyme-catalyzed cortex hydrolysis and enzymatic degradation of the 

spore coats thereby providing the germinating endospore with amino acids and 

sugars for growth. Endospores then establish metabolic processes, break free 

from the cortex and spore coats, and outgrow into replicating bacilli in 

approximately 3 hours after germinant binding (86, 87, 98, 121).  Furthermore, 

the spore outgrow is believed to be  directionally from one pole shedding the 

unhydrolyzed cortex, spore coat, and particularly exosporium in the "bottle cap 

model" (97, 129).  It is the act of germination that is essential for spore forming 
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bacteria to establish an infection within a host since the universal infectious 

particle is the spore (45, 46). 

 
 
 Figure 1.2. Events of germination.  The phase bright dormant endospore is resistant to a 

variety of chemical and physical assaults.  Upon binding of a germinant (red), endospores will 

undergo a series of morphological and chemical changes that allow for the transformation into a 

metabolically active and replicating vegetative cell.  Key events are permanent commitment to 

germination, establishment of a membrane potential, release of Ca
2+

 and DPA, hydration, cortex 

hydrolysis, and outgrowth.  The result of germination initiation is the loss of heat resistance and 

refractility.   

 

1.3 B. anthracis spore infection of immune cells 

 Host immune cells play an important role in inhalational anthrax, which is a 

complex, multistep disease that begins with the deposition of inhaled Bacillus 

anthracis spores within the alveolar space of the lungs. Histopathological studies 

using several animal infection models revealed that subsequent to spore 
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inhalation, B. anthracis breaches the alveolar epithelial barrier without any clinical 

evidence of lung injury (131, 135, 137). Interaction between immune cells and B. 

anthracis spores is essential for infection and dissemination of disease within a 

host especially within an inhalation infection, which is contingent upon spore-

immune cell interaction that results in phagocytosis of inhaled spores by alveolar 

macrophages or dendritic cells sampling the alveolar space. In several animal 

models, dissemination of infection into the spleen and liver begins with trafficking 

of spore-containing immune cells to regional lymph nodes followed by the 

release of B. anthracis spores or bacilli into the bloodstream (45, 48, 135). 

Recent studies have also pointed to the use of alveolar epithelial cells as a 

potential route of entry into the bloodstream (106). Without medical intervention, 

the establishment of a systemic infection will result in bacteremia, toxemia, and 

ultimately death of the host  (30, 135).   

 In addition to the inhalation route of infection, which is the most likely to 

result in a systemic infection and death of the host, B. anthracis can also gain 

entry into a host via abrasions or open wounds on the skin or through the 

gastrointestinal tract (30).  Infections through either of these portals of entry are 

significantly less deadly and will manifest themselves through a black escher or 

necrotic sore and through hemolytic diarrhea, respectively (6, 30).  Furthermore, 

an untreated cutaneous infection will result in localized swelling followed by 

regional edema that may affect for example an entire limb (30, 110).  In both 

cases, replicating bacilli will invade the local epithelium resulting in access to the 

blood stream, and infected host immune cells will also shuttle spores to the 
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regional lymph nodes providing an additional mechanism by which B. anthracis 

can establish a systemic infection once the blood stream is reached (6, 30, 110).  

A systemic infection leading to death can be prevented with antibiotic therapy 

(110).   

 

1.4 Virulence factors of B. anthracis 

 Upon germination and outgrowth, B. anthracis utilizes 3 primary virulence 

factors to establish an infection within a host, which are lethal toxin (LT), edema 

toxin, and capsule.   The two anthrax toxins comprise 3 different proteins: (i) 2 

enzymatic proteins - lethal factor (LF) and edema factor (EF) and (ii) a protective 

moiety - protective antigen (PA) - that allows for interaction and adhesion to 

target cells for intoxication.  This toxin is a classical representation of a 

multimeric AB toxin, illustrated as A3B7. Several enzymatic (A) subunits will utilize  

the binding proteins (B) as a platform for host cell interaction and entry into the 

cytosol. LF is a zinc-dependent metalloprotease that cleaves mitogen-activated 

protein (MAP) kinase kinases, which are cytoplasmic.  EF is a calmodulin 

dependent adenylate cyclase that requires entry into the cytoplasm for activity 

(Figure 1.3) (3, 147).  The results of cellular intoxication by EF and LF are very 

distinct, which in some cases work in opposite fashion to each other. First, LF 

intoxication results in reduced antibody production, cytokine expression, and cell 

proliferation while inducing cell death.  In addition to inducing fluid accumulation 

in tissues as a consequence of the production of cyclic AMP, EF actually 

activates cell rescue mechanisms such as activating protein kinase A (PKA) and 
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the CREB transcription factor while inhibiting cytokine expression (135, 136).  

Lastly, lethal and edema toxins are responsible for receptor mediated toxin killing 

of immune cells (4, 45-47). 

 EF and LF reach the cytoplasm of target cells through their interaction with 

PA, which interestingly induces a controlled and rapid internalization of the toxin 

oligomer. PA binds specifically to two anthrax toxin receptors, tumor endothelial 

marker 8 (TEM8, also called ANTXR1) and capillary morphogenesis gene 2 

(CMG2, or ANTXR2).  These two proteins are type I membrane proteins, which 

share extensive sequence similarity in both their extracellular and intracellular 

domains (111, 142). PA, which is produced by B. anthracis as an 83 kDa protein 

(PA83), is cleaved into an 63 kDa form (PA63) by host enzymes such as the furin 

endoprotease (147). PA63 will subsequently heptamerize into a ring-like 

structure, which serves as a platform for the binding of any combination of 3 EF 

and LF subunits (Figure 1.3) (84). The hetero-oligomeric complex, PA-EF/LF and 

receptors, is phagocytized by the cell and delivered to early endosomes, where 

the PA oligomer undergoes a conformational change due to the acidification of 

the endosome that leads to PA loop insertion into the endosomal membrane and 

pore-formation (147). EF and LF are also sensitive to the acidic pH of 

endosomes that  leads to partial unfolding allowing them to translocate through 

the lumen of the PA channel entering the host cytoplasm on the other side of the 

endosomal membrane (23).  The processing and oligomerization of PA is 

required for anthrax toxin internalization, which requires the use of host kinases 

and ubiquitin ligase.  This control of endocytosis is performed by inducing Tyr 
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phosphorylation of the PA receptors, TEM8 and CMG2, via the eukaryotic src-

like kinases, src and fyn.  Phosphorylation of the target protein is followed by 

ubiquitination via the E3 ubiquitin ligase resulting in clathrin-mediated 

endocytosis (Figure 1.3) (1, 2). Once released from B. anthracis, LT and ET exert 

their cellular effects independent of the bacterium, indicating that inhibition of 

bacterial growth alone is not sufficient when treating an anthrax infection. In the 

absence of bacterial growth, toxigenic effects will still lead to toxemia and death, 

and treatment must prevent toxin expression or inhibit toxin activity (30, 110).   

  The second major virulence factor of B. anthracis is the γ-linked poly-D-

glutamic acid capsule.  This negatively charged D-amino acid layer surrounds the 

cell, which can be easily visualized with acid or methylene blue staining, and is 

directly anchored to the cell wall as linear polymers providing resistance to 

phagocytosis (72, 110).  Moreover, this polymer is weakly immunogenic (42, 

104).  In addition, B. anthracis also has a proteinaceous S-layer to prevent 

antibody interaction with the bacilli (35, 82), and the cell wall is modified with 

teichoic or teichuronic acid, in phosphate limiting conditions, to alter the overall 

charge of the cell wall to a net neutral charge to prevent the attraction of cell 

membrane disrupting non-specific cationic peptides of the host immune system 

(38).  Consequently, these morphological features more than any other are 

implicated in bacteremia in conjunction with high growth rates in a nutrient rich 

environment such as mammalian host sera and blood (30, 110). 

 The genes for the toxins and the capsule reside on two independent 

plasmids, pX01 and pX02, respectively.  AtxA, a pXO1-encoded protein, is a 
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global regulator of transcription in B. anthracis (65) that strongly activates the 

expression of the toxin genes, pagA, cya, and lef, and the capsule biosynthetic 

operon, capBCADE, while altering the expression of many other genes contained 

on the plasmids and in the chromosome (11, 33, 49, 58, 128). The expression of 

virulence factors requires the presence of CO2 or bicarbonate, as an in vitro 

surrogate, in conjunction with either elevated temperatures (37 ºC) or production 

of cytochrome C within a host (27, 66, 146).  This virulence gene expression is 

repressed during exponential growth by the growth phase regulator AbrB (107). 

The presence of both an activator and suppressor allows for tight control of toxin 

and capsule expression specifically when B. anthracis is within a mammalian 

host (65). 

 Additional virulence factors and the unique spore structures are utilized to 

evade or inactivate host reactive oxygen (26, 52, 92) and nitrogen species (101, 

144), host phospholipases (96, 102, 127), and other innate immune cell 

responses particularly within the phagolysosome (61).  Upon spore germination 

within an endosome, superoxide dismutases are utilized in the protection against 

reactive oxygen species (26, 92).  Interestingly, B. anthracis synthesizes its own 

reactive nitrogen species in conjunction with the neutralizing properties of the 

exosporium to protect itself against host-derived reactive nitrogen species, which 

disable the Fenton reaction within B. anthracis (50, 125). Furthermore, B. 

anthracis utilizes membrane disrupting proteins and enzymes, such as 

anthrolysin O (54, 123) and phospholipases (54, 55),  to facilitate host invasion, 

disruption of the endosome, and killing of host cells.  Lastly, it has been 
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demonstrated that edema factor also inhibits the activity of host phospholipases, 

particularly phospholipase A2 (96, 102, 127).    

 

 

 Figure 1.3. Model of cellular toxin effects (135, 136). PA83 interacts with two cellular 

receptors (ANTXR1/2) and is cleaved by a furin-like protein to form PA63. PA63 assembles into a 

heptameric oligomer that allows the binding of EF and LF and facilitates endocytosis via 

sequential phosphorylation and ubiquitination of the protein receptors and the entry of the 

catalytic subunits of the toxin into the cytosol. LF is a zinc-dependent metalloprotease that 

cleaves MAP kinase kinases. EF is a calcium- and calmodulin-dependent adenylate cyclase that 

increases intracellular cAMP concentration. P: phosphorylation.  U: Ubiquitination. ↓: down 

regulation of  expression. ↑: up regulation of expression. 
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1.5 Antibiotic resistance and current treatments of B. anthracis  

The inherent resistance of B. anthracis to several antibiotics and the 

capacity to acquire resistance to currently used antibiotics underscores the 

importance of identifying new antimicrobials and therapies that can be utilized 

against anthrax. B. anthracis demonstrates resistance to bacitracin, 

cephalosporin, streptomycin, and sulfomethoxazole (unpublished results)(14, 

15), compounds that target undecaprenol pyrophosphate recycling, cell wall 

biogenesis, the 16S ribosome, and folic acid metabolism, respectively (143). 

Currently employed antibiotic treatments, primarily ciprofloxacin and doxycycline, 

cause adverse side effects such as severe gastrointestinal symptoms including 

diarrhea, pain, and vomiting.  Additional and more severe side effects have also 

been reported: seizures, syncope, myalgia, hallucinations, and anaphylaxis. All of 

these symptoms were observed during 60 day post-exposure prophylaxis after 

exposure to aerosolized B. anthracis endospores (77, 126). Furthermore, the 

misuse of antibiotics during post exposure treatment has been linked to the 

increase of antibiotic resistant strains.  B. anthracis demonstrated reduced 

susceptibility to the quinolones when incubated in the presence of sub-inhibitory 

concentrations of orofloxacin or ciprofloxacin (138).  Current treatments of 

endemic anthrax outbreaks in developing countries have resulted in penicillin 

resistant B. anthracis by activating the dormant β-lactamase present in all tested 

isolates (21). The acquisition of antibiotic resistance gene(s) through horizontal 

gene transfer is of great concern, originating in part from the ability of B. 

anthracis to become competent for transformation when experiencing nutrient 
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limited conditions (90).  Moreover, B. anthracis has the ability to germinate and 

transfer resistance genes in soil (108).   

Current antibiotic treatments require that the endospore be fully 

germinated into a vegetative cell with a functional metabolism as current 

antibiotics target protein synthesis, cell wall biosynthesis, specific metabolic 

pathways, or DNA replication.  Cell wall biosynthesis and DNA replication 

inhibition will prevent bacteremia by preventing growth. It is notable that these 

drugs will not eliminate the effects of bacterial produced toxins on the host. 

Therefore, ribosomal inhibitors are required in conjunction with growth inhibiting 

antimicrobials to prevent toxin synthesis to eliminate toxemia (77, 126).  In 

summary, the adverse side effects associated with the treatment of anthrax 

infections and the ability of B. anthracis to acquire antibiotic resistance 

underscores the critical need for the development of alternative treatments.   

 

1.6 Inhibition of bacterial spores 

When considering the options for killing or inhibiting proliferation of spore 

forming bacteria, one can attempt to kill the organism either as a dormant spore, 

germinating spore, or replicating vegetative cell.  As discussed above, there are 

several antibiotics that can be utilized to inhibit replicating bacteria, which have 

become more limited with the onset of antibiotic resistance (22, 37).  These 

methods can be utilized simultaneously with toxin neutralizing antibodies, toxin 

inhibitors, and supportive care to allow clearance of the spore mediated infection 

while counteracting toxigenic effects (22).  Moreover, the Centers of Disease 
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Control and Prevention (CDC) suggested antibiotic treatment with 

pharmacological agents such as ciprofloxacin and vancomycin do not inhibit 

outgrowth of spores or toxin production (51).   

 The killing or permanent inhibition of spores is significantly more difficult 

because spores are extremely resistant to acids, bases, oxidizing agents, and 

organic solvents (122).  Spore germination can be inhibited by changing the pH 

of the spore environment to either acidic (below pH 6) or alkaline (above pH 8) 

conditions (9, 100).  In addition, L-amino interaction with germination receptors is 

inhibited in the presence of D-amino acids.  The presence of both D-Ala and D-

His will prevent germination even in rich media (36, 51).  However, inhibition of 

germination with D-amino acids and pH extremes are both reversible (86, 121) 

and difficult to achieve within the host. In cases of strong acid treatment, spores 

can be killed permanently due to the rupturing of the inner membrane (113).  

Other permanent methods of spore inhibition ex vivo include treatment with 

formaldehyde, nitrous acids, and alkylating agents which induce DNA damage to 

kill spores (73, 115, 134).    Glutaraldehyde and ortho-phthalaldehyde also utilize 

a DNA damage mechanism to kill spores (134).  The spore coat provides 

significant resistance to most oxidizing agents including chlorine dioxide, 

hypochlorite, ozone and peroxynitrite, however spores can be killed by these 

agents when sufficient concentrations are used (39, 81, 148-150).  Most oxidizing 

agents kill spores by altering the spore inner membrane, which induces 

membrane fragility, and rupture during germination (39, 74, 81, 124, 148-150).  

Furthermore,  a combination of pressure to mechanically germinated spores 
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followed by heat to kill the heat sensitive germinated spores can be utilized to 

sterilize liquids and waste as performed by an autoclave (28, 44).  In the food 

industry pasteurization is used to sterilize food, but this is only effective when 

spores are in a nutrient rich environment conducive for germination. Obviously, 

when treating a mammalian host, none of these methods are viable.  Identifying 

pharmacological agents that inhibit germinated spores and understanding the 

mechanisms by which these agents inhibit organisms such as B. anthracis has 

become particularly pertinent since spore forming organisms are at their weakest 

during germination. Since spores no longer have antibiotic resistance associated 

with spore dormancy and have not begun virulence factor expression, 

germination is an ideal point in the spore forming bacterial life cycle for antibiotic 

intervention to eliminate or prevent infection.   

 

1.7 Lantibiotics  

 Lantibiotics are a unique class of bacteriocins that are predominantly 

produced by Gram positive bacteria (8). Recent studies have also identified the 

production of lantibiotics in cyanobacteria (71) and proposed production by 

Gram-negative bacteria due to presence of the necessary genes in their 

genomes (43).  Lantibiotics display a wide diversity with regards to structure, 

size, biological activity, and posttranslational modifications (Figures 1.4 & 1.5).  

The three unifying aspects for all lantibiotics to date are: (i) all lantibiotics are 

ribosomally synthesized (8), (ii) all lantibiotics contain (methyl)lanthionine rings in 

addition to a variety of other posttranslational modifications (Figures 1.4 & 1.5) 
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(8, 18), and (iii) all lantibiotic are translated as a precursor peptide with a leader 

sequence that is utilized by the tailoring enzyme(s) for substrate recognition 

(Figure 1.7) (8, 18, 91).  The vast majority of these posttranslational modifications 

are enzymatically installed (8, 18), however, some reports have documented 

non-enzymatic modifications (7, 13, 34, 139, 140).    

 Lantibiotics have been divided into two groups according to the 

biosynthetic enzymes.  Class I lantibiotics utilizes two enzymes, LanBC, to 

catalyze the dehydration of Ser and Thr, and subsequent thioether ring formation 

between a dehydrated residue and Cys (Figure 1.6) (93).  On the other hand, 

class II lantibiotics use a single multi-functional enzyme, LanM, to catalyze both 

of these posttranslational events (Figure 1.6) (18).  For both classes, the 

biosynthetic genes are arranged in a gene cluster, which contains the structural 

gene, biosynthetic tailoring enzymes, immunity genes, and a two-component 

regulatory system (18, 93).  The biosynthetic enzymes (cyclase, dehydratase, 

transporter, and protease) are predominately integral membrane or membrane 

associated proteins. In some instances, the expression and synthesis of the 

lantibiotic is activated by the presence of the lantibiotic itself (8, 18, 93), and in 

the case of nisin the presence of the N-terminal portion containing the A and B 

rings is sufficient to induce production of nisin (68). 



 18 

N
H

NHO

OHN

(L) (L)(CH2)3

H
N

HO

(2S,9S)-lysinoalanine

-hydroxyaspartic acid

OH

O

S

NHO

OHN

(D) (L)

meso-lanthionine
(Lan)

(2S,3S,6R)-3-methyllanthionine
(MeLan)

H
N

O H
N

O

H3C

2,3-didehydroalanine
(Dha)

(Z)-2,3-didehydrobutyrine
(Dhb)

O

aminovinyl cysteine
2-hydroxypropionyl

(Hop)
2-oxopropionyl

(Opr)

HO

O

S NHHN

CH3O

(D)

H

S

NH

HN

CH3O

O

(D) (L)

O

O

CH3

Asp OH
DhbDha

Ala Ala

S

Abu Ala

S

Ala Lys

N

 

 Figure 1.4. Common non-canonical amino acids found in lantibiotics.  The short hand 

notation for each residue that will be used in this thesis is shown in color below the chemical 

structure.  
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 Figure 1.5. Representative lantibiotic structures.  See Figure 1.4 for short hand notation 

of the structural motifs. 

 

1.8 Nisin biosynthesis 

 Nisin is a 34 amino acid cationic peptide that becomes active after post 

translational modification and removal of a 23 amino acid leader peptide.  Nisin, 

like all lantibiotics, is ribosomally translated and is post-translationally modified by 

membrane bound proteins.  The dehydratase, NisB, eliminates the hydroxyl 

group from Ser and Thr residues, resulting in the formation of 2,3-

didehydroalanine (Dha) and (Z)-2,3-didehydrobutyrine (Dhb), respectively. The 

cyclase, NisC, catalyzes the reaction of the dehydrated residues with Cys to 

make thioether rings called lanthionine (Lan) and methyllanthionine (MeLan), 

Leu

S SO

H2N
NH

O

Ala
Trp

Ala

Ile
AsnTyr

Arg

Leu

Ala
Abu Abu

Tyr

Ala

Gly

Gly
Lys

Asn

Val

Glu

Ala Met

Pro

Ser

Ala
AsnS

S

S

C

A

B

Nisin Subtilin 

Lacticin 481 Cinnamycin Mersacidin 

Haloduracin α Haloduracin β 



 20 

respectively (Figures 1.6 & 1.7). The cyclization occurs in a regio- and 

stereospecific manner resulting in a D-configuration at the α-carbon originating 

from Ser/Thr.  After NisT, an ATP binding (ABC) transporter, exports the modified 

peptide from Lactococcus lactis ATCC 11454, NisP proteolytically removes the 

leader peptide creating the active form of nisin (Figure 1.7).  The two most 

studied natural variants of nisin, nisin A and Z, are identical accept that Asn is 

present at position 27 in the latter instead of His (18).  The tertiary structure of 

nisin and its amino acid composition creates an amphipathic peptide where all 

the side chains of the hydrophilic amino acids are positioned to one side of the 

molecule with the hydrophobic side chains positioned to the opposite side.  This 

orientation is a characteristic of a pore forming antibiotic.  The five thioether rings 

of nisin are separated into three N-terminal rings (1 Lan and 2 MeLan) and two 

C-terminal rings (2 MeLan) by a flexible linker at positions 20, 21, and 22 of the 

peptide.  This flexible linker is essential for the formation of pores (141).  The Lan 

and MeLan rings present in nisin provide structure and resistance to proteolytic 

cleavage and are essential for target recognition and binding (60, 103). 

Furthermore, nisin is resistant to trypsin cleavage despite possessing three Lys 

residues, which are usually targets for trypsin cleavage (17). 
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 Figure 1.6. Formation of (methyl)lanthionine rings.  Water is eliminated from Ser/Thr by 

the catalytic activity of the dehydratase.  Ring formation is completed by a Michael-like addition 

via Cys thiol attack on the unsaturated amino acid. 

Figure 1.7 

 

 Figure 1.7. Biosynthesis of nisin (18).  The colored Ser and Thr within the core peptide of 

the NisA precursor peptide are targets for NisB-catalyzed dehydration forming Dha (green) and 

Dhb (purple), respectively.  The attack of the Cys thiols onto the unsaturated amino acids to form  
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Figure 1.7 (continued) 

the lanthionine (red) and methyllanthionine (blue) rings, respectively, is catalyzed by NisC.  After 

secretion from the cell, the unmodified leader peptide is proteolytically removed by NisP to form 

mature nisin.   

 

1.9 Nisin target and mode of action 

Nisin has the potential to function as a relevant treatment option for spore 

infections (19).  Nisin has been used as a food preservative worldwide since the 

1970s, and it is recognized by the World Health Organization and the United 

States Food and Drug Administration as a safe food additive that prevents 

spoilage in products such as milk, cheese, meats, and beer (18). Nisin is most 

effective against Gram-positive bacteria, and few strains have developed 

resistance in spite of unregulated worldwide use in the food industry, probably as 

a consequence of its three distinct modes of action (29). Nisin exerts its 

bactericidal effects through pore formation (105) and/or disruption of cell wall 

synthesis by functioning as a transglycosylase inhibitor that binds to lipid II 

(Figure 1.8A) (53, 145), a precursor for cell wall biogenesis. The third unique 

activity of nisin is the prevention of spore outgrowth (16, 51).  

The target for nisin in vegetative cells is lipid II (12, 59).  Through the use 

of fluorescein-labeled nisin, it has been demonstrated that nisin relocalizes lipid II 

such that it is no longer available for cell wall biosynthesis (53).  Competitive 

assays performed with nisin and vancomycin, which also binds to lipid II, showed 

that vancomycin blocks the interaction between nisin and lipid II preventing pore 

formation.  The inability of nisin to bind in the presence of vancomycin confirmed 
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that lipid II is the target of nisin.  In addition, nisin was able to kill vancomycin 

resistant Enterococcus via lipid II binding, which suggested different binding 

locations on lipid II for vancomycin and nisin (12).  NMR studies subsequently 

demonstrated that the A and B rings of nisin interact with the pyrophosphate of 

lipid II via hydrogen bonding while the C-terminal portion inserts into the 

membrane for pore formation (10, 60). Vancomycin binds to the D-Ala-D-Ala 

region of lipid II (Figure 1.8A).  Utilizing fluorescently labeled lipid II, the 

stoichiometry of pore formation by nisin was determined to be 4 lipid II molecules 

and 8 nisin molecules.  In the case of cell wall biogenesis inhibition, radio-labeled 

lipid II substrates were used to monitor in vitro peptidoglycan formation, and in 

the presence of nisin, production of peptidoglycan was not detected (145).  Using 

fluorescent microscopy, fluorescein-labeled nisin induced the re-localization of 

lipid II away from the septum of dividing bacteria where it is essential for cell wall 

formation, thus providing a mechanism for cell wall biosynthesis inhibition.  This 

mechanism was confirmed as a distinct nisin activity with the use of non-pore 

forming variants of nisin (53).   

The third activity of nisin, inhibition of spore outgrowth, was demonstrated 

first for B. cereus endospores utilizing phase contrast microscopy, which 

exhibited the presence of phase-dark germinated endospores instead of 

elongated vegetative cells in 5 µg/mL nisin after 180 min incubation (16).  Clues 

into the possible mechanism underlying nisin-mediated outgrowth inhibition came 

from observations of iodoacetate and nitrosothiol treatment against endospores, 

which modified sulfhydryl groups associated with the plasma membrane also 
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resulting in endospore outgrowth inhibition (88). Notably, pre-incubation with 

nisin resulted in a dramatic reduction in the incorporation of the radioactive 

iodoacetate in the endospores along with outgrowth inhibition, suggesting that 

nisin also interacts with sulfhydryl groups to inhibit endospore outgrowth (89).  

Additional experiments demonstrated that the presence of Dha5 (one of the three 

uncyclized dehydro amino acids) in nisin is essential for inhibiting endospore 

outgrowth.  A Dha5Ala mutation resulted in the loss of outgrowth inhibition (16). 

The sulfhydryl-containing target was not identified.   However, a recent report 

demonstrated that Dha5 was not essential for outgrowth inhibition when the 

same mutation was made and the inhibitory activity was tested against B. 

subtilis.  Rather, it was reported that the A and B rings of nisin were both 

necessary for outgrowth inhibition, which suggests lipid II as the target for 

inhibiting outgrowth (103). With the accurate identification of the target and the 

required motifs for outgrowth inhibition, an antibiotic and/or a mechanism may be 

identified that would allow B. anthracis germination but inhibit outgrowth prior to 

or during the endospore-macrophage interaction, which would potentially allow 

the host an opportunity to efficiently control and eliminate the infection.   
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Figure 1.8 
  A 

 
  B 

 
C 

 
 

 Figure 1.8. Modes of action for nisin. A. Lipid II is the penultimate precursor for cell wall 

biogenesis.  Lipid II consists of an undecaprenyl membrane anchor attached to a disaccharide of 

N-acetylglucosamine-β-1,4-N-acetylmuramic acid.  A pentapeptide is linked to the muramic acid,  
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Figure 1.8 (continued) 

and in B. anthracis L-Lys is replaced by a diaminopimelic acid (DAP).  The nisin binding site is 

highlighted in blue with the vancomycin binding site in red.  B. Nisin pore formation.  Hydrogen 

bonding interactions between the pyrophosphates of lipid II and nisin facilitates nisin-mediated 

pore formation.  The N-terminus of nisin interacts with lipid II with the C-terminus of nisin inserting 

into the membrane of the bacterial cell.  The pores that are formed are comprised of eight nisin 

and 4 lipid II molecules.  The actual orientation of the lipid II and nisin molecules is unknown.  The 

NMR structures illustrate that the binding of the A and B rings of nisin (cyan) interact with the to 

the pyrophosphate of lipid II (prenyl chain, orange; muramic acid, red; N-acetylglucosamine, 

magenta; pentapeptide, yellow; pyrophosphates, white).  Cartoon of lipid II (phosphate, blue;  

muramic acid, red; N-acetylglucosamine, magenta; pentapeptide, brown). C.  Nisin inhibits cell 

wall biogenesis by binding lipid II, which resides at the septum of dividing bacilli, and re-localizing 

lipid II away from the septum.  This nisin-mediated relocalization sequesters lipid II to prevent its 

utilization as substrate for cell wall synthesis.  As a consequence of nisin-lipid II interaction, nisin 

directly functions as a transglycosylation inhibitor preventing substrate interaction with cell wall 

synthetic enzymes, which reside at the septum.  B and C. Nisin is represented in cartoon form as 

a dark green back bone with yellow squares indicating the 5 rings. 

 

1.10 Nisin and subtilin immunity and regulation of biosynthesis 

 Immunity to nisin by the native producer is derived from a two-pronged 

approach, which includes the use of NisI and an ATP- dependent transporter 

complex, NisFEG.  These two systems work together in a synergistic fashion to 

provide immunity (Figure 1.9).  NisI is a constitutively expressed 25.9 kDa protein 

in its fully modified form.  Native NisI contains a twin Arg consensus sequence 

allowing for export via the Sec system.  Upon export, NisI undergoes a 19-amino 

acid N-terminal cleavage followed by lipidation of the new N-terminal Cys for 
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membrane anchoring (75).  NisI has been shown to bind nisin specifically with a 

reported KD of 0.6 – 2 µM based on surface plasmon resonance experiments 

(67), and this complex has been shown to be unstable in solution and to become 

insoluble (75).  In terms of immunity, NisI reduces the concentration or amount of 

soluble nisin that is allowed to interact with the membrane thus preventing pore 

formation (18).  Furthermore, NisI that is not lipidated is secreted into the 

environment to bind nisin and reduce the concentration of free nisin in solution 

(32, 75). Deletion studies have demonstrated that NisI provides the majority of 

the immunity towards nisin mediated cell death (75).  In addition to NisI, L. lactis 

11454 also utilizes an ATP-dependent complex to remove or pump nisin from the 

membrane, and this complex is organized with two NisF proteins, which contain 

the ATP binding motifs, interacting with the cytosolic portions of the trans-

membrane proteins NisEG.  The expression of these proteins is controlled by the 

two-component regulatory system nisRK (Figure 1.9) (18).  Through the use of 

these two systems L. lactis acquires the essential immunity for the production of 

its deadly secondary metabolite.   

 Subtilin, like nisin, is a linear lantibiotic that contains 5 rings derived from 

the cyclization of Dha or Dhb with Cys. Nisin and subtilin display 63% sequence 

identity with the first set of rings in the exact same locations.  Similarities 

between nisin and subtilin continue in the fact that both producer strains utilize an 

ATP dependent pump (SpaFEG for subtilin) as well as a stoichiometric binding 

protein (SpaI for subtilin) to reduce the concentration of the secondary metabolite 

in close association with the producing cell (18).  However, this is where the 
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similarities end, since the subtilin producer, B. subtilis 6633, also has a 

mechanism to succinylate subtilin, drastically reducing its activity to 10% of the 

unsuccinylated variant (57).  Also, SpaI has very little sequence similarity to NisI, 

and comprises only 143 amino acids compared to 226 for NisI.  The presence of 

SpaI does not afford immunity to nisin with the converse being true as well (133).   

 When considering the regulation of immunity gene expression in addition 

to the clusters as a whole, both nisin and subtilin synthetic and immunity genes 

are controlled by a two-component regulatory system, LanRK, which activates 

expression (Figure 1.9).  In the case of subtilin, SpaR will bind to Spa boxes 

located in front of spaS (structural gene), spaB (synthetic gene), and spaI 

(immunity gene) to induce preferential expression in the listed order (130).  

SpaRK also induced the expression of their own two-gene operon, but their 

expression is also controlled by σH, which is the first σ factor involved in 

sporulation.  As a consequence of σH controlled gene expression, subtilin is 

expressed at very late logarithmic and stationary phase of growth prior to spore 

formation while nisin is expressed in logarithmic phase with lactic acid 

production.  The activity of σH is inhibited by AbrB, and AbrB is inhibited by 

Spo0A, which is the master sporulation regulator.  Thus, Spo0A  activates σH and 

in turn, subtilin expression (63).  Deletion of AbrB increases the amount of 

subtilin, all succinylated, with expression starting in logarithmic growth (57).   
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 Figure 1.9. Schematic representation illustrating nisin biosynthesis, regulation, and 

immunity within a bacterial cell.  Fully modified nisin functions as an activator for further nisin 

biosynthesis through the interaction with NisK inducing autophosphorylation.  The phosphoryl 

group is transferred to an Asp residue of NisR, which activates the expression of the nisin 

biosynthetic operon (nisABTCIP) and the immunity operon (nisFEG).  The expression of the 

regulatory genes and nisI are under the control of independent promoters.  The gene product of 

nisA is dehydrated (NisB) and cyclized (NisC) installing 5 thioether rings.  Inactive nisin is 

transported from the cell in an ATP dependent manner (NisT) where it is proteolytically activated 

(NisP).  NisI provides immunity by binding nisin to lower the concentration around the membrane.  

NisFEG functions as an ATP dependent pump to remove nisin present within the membrane.   
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1.11 Antimicrobial resistance to nisin 

 In addition to the required natural resistance within the producing 

organism, a few studies of nisin resistance within other non-nisin producing 

bacteria have been reported.  As a whole, Gram-negative bacteria generally 

demonstrate little growth inhibition in the presence of nisin because of the 

lipopolysaccharide outer membrane, which prevents nisin interaction with lipid II 

and the inner membrane (18, 75).  Nisin has only demonstrated moderate 

efficacy against E.coli in high salt conditions (69).  For Gram-positive bacteria, 

modifications of the cell membrane and cell wall or expression of proteases have 

provided resistance to nisin (18).  For non-nisin producing L. lactis, a proteolytic 

enzyme, NSR, has been identified, and this enzyme cleaves nisin after the fifth 

ring removing the highly flexible C-terminal tail diminishing the pore forming 

activity of nisin (132).  In Clostridium botulinum and Listeria monocytogenes, fatty 

acids have been modified to eliminate unsaturated and branched fatty acids 

within the cell membrane.  This change allows for the tighter packing of the 

phospholipids within the membrane increasing membrane rigidity to prevent or 

decrease the efficiency of nisin membrane insertion for pore formation (25, 78-

80).  Furthermore, several Bacillus strains have used the association of divalent 

cations, Ca2+, Co2+, and Mg2+ in close proximity to the membrane and cell wall, to 

neutralize the overall negative charge of the cell membrane and cell wall and 

eliminate the attractive force towards cationic peptides, which prevents nisin 

interaction with the cell (25). Another method by which Bacillus and 

Staphylococcus sp. neutralize the net charge of the cell wall and membrane is 
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via cell wall modification with teichoic and techuronic acids.  Deletion of the 

dltABCD operon, which codes for the cell wall modifying proteins, rendered the 

resistant strain sensitive to nisin and cationic peptide inhibition (38, 94).  

Recently, it is has been reported that decreased production of glutamate as a 

consequence of a mutation in glutamate decarboxylase increased sensitivity to 

nisin in L. monocytogenes, however the exact mechanism of resistance 

associated with the presence of glutamate has not been elucidated (5).   

Interestingly, many of the reported resistance mechanisms demonstrated by 

Gram-positive bacteria can easily be lost rendering the once resistant strain 

sensitive to nisin treatment after incubation in nisin free media.  This observation 

demonstrates that these cell wall and membrane modifications are not 

permanent and are selectively disadvantageous in the absence of nisin.     

 

1.12 Studies described in this thesis 

 As previously discussed, nisin has a unique third activity, which is the 

inhibition of spore outgrowth.  At the start of my studies, the mechanism and 

target utilized for spore outgrowth inhibition had not been identified.  Chapters 2 

through 4 will present the identification of a mechanism as wells as a target for 

outgrowth inhibition.  As shown by these studies, outgrowth inhibition is not a 

unique activity but rather a phenotype of nisin-mediated pore formation.  Chapter 

5 will provide a brief discussion of the efforts to establish a representative in vitro 

B. anthracis infection model utilizing cultured mammalian immune cells that are a 

better reflection of non-germinating conditions during in vivo infections within the 
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lung than previous models.  Utilizing this infection model, the investigation of how 

nisin alters the B. anthracis spore-immune cell interaction in the favor of the 

immune cell is presented in chapter 6.  Chapter 7 will highlight initial studies into 

lantibiotic immunity gene localization and interaction with antimicrobial peptide. In 

chapter 8, a summary of the results in this thesis are presented with a discussion 

of the results as well as highlighting areas for potential future research.  
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CHAPTER 2: INHIBITION OF BACILLUS ANTHRACIS SPORE OUTGROWTH 
BY NISIN1  
 
2.1 Introduction 

 Nisin is a 34 amino acid peptide produced by Lactococcus lactis sbsp. 

lactis (ATCC 11454) (11), which has emerged as an important prototype for 

studying the novel antibacterial properties and structure-activity relationships 

characteristic of the lantibiotics (5, 34). Like all lantibiotics, nisin is ribosomally 

translated and then post-translationally modified to generate the 3 noncyclic, 

non-proteogenic amino acids, dehydroalanine and dehydrobutyrine, and 5 

lanthionine or methyllanthionine thioether rings (11). 

 The utility of nisin derives from its capacity to act upon Gram-positive 

bacteria by two entirely different mechanisms (15, 48). Nisin forms pores in lipid 

membranes (48), but also functions as a transglycosylase inhibitor to disrupt cell 

wall biosynthesis via binding and mislocalization of lipid II (21, 57). By functioning 

as a “two-edged” sword, nisin has been relatively refractory to the emergence of 

microbial resistance, despite widespread and persistent use in the food industry 

as a preservative (15, 48).  

 An additional and poorly understood activity of nisin is the capacity to 

prevent the outgrowth of spores from several Gram-positive bacteria, including 

several Bacillus species (9, 10, 42, 44). To date, nisin inhibition of Bacillus spore 

outgrowth has been documented by various methods, including the 

spectrophotometric measurement of liquid culture turbidity (3), enumeration of 

                                                 
1
 Reproduced in part with permission from: " Inhibition of Bacillus anthracis spore outgrowth by 

nisin." Antimicrob Agents Chemother. 2008 Dec;52(12):4281-8.  Copyright 2008 by the American 
Society for Microbiology. 
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colony forming units (CFU) (4, 14, 33, 36, 45), well-diffusion assays on solid agar 

(14, 41), and microscopic observations (43). Although useful, these approaches 

have provided few details about nisin’s mode of action against Bacillus spores. At 

the onset of this work, it was not experimentally established whether nisin inhibits 

spore outgrowth by preventing germination initiation or, alternatively, at a step 

downstream of germination initiation. Additionally, the requirement for 

germination for nisin action had not been addressed. Finally, it was not clear 

whether or not nisin action requires actively growing organisms, analogous to 

many other antibiotics.  

 To address these issues, the effects of nisin on Bacillus spores and their 

development into replicating bacilli were evaluated using spores from B. 

anthracis Sterne 7702 as a model. The results from these studies indicate that 

nisin does not inhibit germination initiation; instead, germination is required for 

irreversible inhibition. Nisin acted rapidly upon germinating spores to prevent the 

establishment of oxidative metabolism or a membrane potential, possibly by a 

mechanism involving the disruption of membrane integrity. Nisin did not inhibit 

the removal of the outer spore structures (e.g. exosporium, cortex, and spore 

coat). Collectively, these data suggest that nisin acts upon spores immediately 

after the initiation of germination, and effectively blocks the capacity of B. 

anthracis to proliferate or produce virulence factors. 
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2.2 Results 

2.2.1 Purification of nisin. 

 Nisin was purified from the food grade and commercial version of nisin 

known as Nisaplin®.  Purification was performed via high performance liquid 

chromatography (HPLC) utilizing a Waters C4 column.  A 0.1% trifluoroacetic 

acid and acetonitrile gradient from 0-100% over 45 min yielded a retention time 

of 27 min for nisin.  Fortunately, the gradient was able to resolve wild-type (wt) 

nisin and a version of nisin missing a dehydration (Figure 2.1), and with purified 

nisin in hand, investigation into the mechanisms of nisin inhibition of spore 

outgrowth was made possible.   
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 Figure 2.1.  Nisin Purification. Nisin (wt, black) and nisin missing one dehydration (red) 

were purified from Nisaplin using high preformance liquid chromatography with a C4 preparative 

column.   
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2.2.2 Growth inhibition by nisin. 

  Previous studies reported that nisin prevented the growth of Bacillus 

spores derived from several different species (4, 14, 33, 36, 45). To evaluate the 

action of nisin, spores were prepared from B. anthracis Sterne 7702, which is a 

strain commonly employed as a model for investigating the early stages of 

anthrax disease (24, 49). To validate earlier results, B. anthracis spores were 

incubated in BHI medium, which has been used to induce germination of B. 

anthracis spores (17), supplemented with either nisin (0.05 µM to 100 µM) or a 

buffer control (0.1 M MOPS pH 6.8). Pilot experiments confirmed that 0.1 M 

MOPS (pH 6.8) alone did not induce spore germination (data not shown).  In BHI 

medium inoculated with 4.4 x 106 spores/mL, nisin inhibited B. anthracis growth, 

with IC50 and IC90 values of 0.57 µM and 0.90 µM, respectively (Table 2.1). The 

inhibitory activity of nisin against spores was not strictly dependent on BHI 

medium, as nisin inhibited B. anthracis spore outgrowth to the same degree in LB 

medium, or, MEM, DMEM, or RPMI cell culture media each supplemented with 

10% FBS (data not shown). Relative to cultures at the initial time point, 

approximately 10,000-fold more colony forming units (CFUs) were recovered at 

10 h from cultures supplemented with either 0.1 µM nisin or 0.1 M MOPS pH 6.8. 

In contrast, no detectable CFUs were recovered from 10 h cultures that had been 

supplemented with 1, 10, or 100 µM nisin (Figure 2.2A).   Furthermore, no 

detectable CFUs were recovered from 3 or 8 h cultures when supplemented with 

1 µM nisin (Figure 2.2B).  In addition, when bacilli were incubated in the 
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presence of 1 µM nisin, inhibition of bacterial growth was also observed with 

differential interference contrast microscopy (DIC) (Figure 2.3). 

 Based on the results of these experiments, subsequent studies were 

conducted using 4.0 x 106 spores/mL because this concentration of spores was 

sufficient to generate detectable readouts for each assay, and yielded similar IC50 

and IC90 values to those calculated at a higher spore concentration (4.4 x 107 

spores/mL; Table 2.1) while at the same time allowing for several full sets of 

experiments to be conducted from each spore preparation. 

 

No. of 
spores/mL

a
 

IC50 (µM)
b
 IC90 (µM)

c
 

4.4 x 10
4
 0.17+ 0.01 0.41+ 0.02 

4.4 x 10
5
 0.19+ 0.01 0.44+ 0.01 

4.4 x 10
6
 0.57+ 0.03 0.90+ 0.01 

4.4 x 10
7
 0.63+ 0.06 0.98+ 0.01 

 

 Table 2.1. IC50 and IC90 values of nisin against B. anthracis spores. Three independent 

experiments were performed in triplicate with different spore preparations and nisin purifications. 

The values are reported as the averages of three experiments. a Spores were freshly prepared 

from B. anthracis Sterne 7702. b Defined as the nisin concentration that inhibits the growth of 

cultures of B. anthracis spores by 50% at 16 h. c Defined as the nisin concentration that inhibits 

the growth of cultures of B. anthracis spores by 90% at 16 h. 
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 Figure 2.2. Nisin inhibition of B. anthracis growth.  A. Spores. B. Bacilli.  A & B. B. 

anthracis was incubated in BHI at 37 ºC with shaking in the absence and presence of nisin (0.01-

100 µM, as indicated).  At indicated time point, samples were taken and CFU plated to determine 

the number of viable cells. The dashed line indicates the threshold of sensitivity.   

 

 

 Figure 2.3. DIC microscopy of nisin inhibition of B. anthracis bacilli. Spores were 

incubated in BHI with indicated concentrations of nisin.  The effects of nisin were monitored via 

DIC microscopy.  White bar indicates 6.5 µm. 
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2.2.3 Nisin does not inhibit germination initiation.  

 The inability to recover CFUs from cultures of B. anthracis spores 

supplemented with nisin could be due to the irreversible inhibition of germination 

initiation. To evaluate this possibility, germination initiation was first monitored by 

measuring the characteristic loss of spore refractility that accompanies hydration 

of the spore structure, as indicated by a decrease in O.D.600 nm (31, 55). These 

experiments revealed a loss in refractility of >65% by 10 min in either the 

presence or absence of nisin (Figure 2.4A), indicating that nisin did not 

detectably alter hydration of the spores following germination initiation.  Similarly, 

the loss of spore refractility was not altered in the presence of ciprofloxacin (0.01, 

0.1, 1, and 10 µM), an antibiotic commonly used to treat anthrax infections (data 

not shown).  Incubation of spores with nisin alone (in the absence of known 

germinants) did not result in a loss of spore refractility (Figure 2.4B).  

 A second hallmark of germination initiation is the rapid loss of spore 

resistance to heat (31, 55). In both the presence and absence of nisin, spores 

demonstrated >80% loss in heat resistance by 5 min (Figure 2.5A), providing 

additional evidence that germination initiation was not altered in the presence of 

nisin. When spores were incubated in 0.1 M MOPS pH 6.8 supplemented with 

nisin, no loss in heat resistance was observed (Figure 2.5B), again confirming 

that nisin does not induce germination. Taken together, these results indicate 

that the loss of recoverable CFUs from cultures of spores supplemented with 

nisin was not due to the inhibition of germination initiation, thereby ruling out such 

a mechanism underlying the inhibitory action of nisin against spores. Instead, 
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these data seem to indicate that the loss of recoverable CFU from cultures of 

spores supplemented with nisin may be due to nisin-mediated killing of the 

germinated spores. 
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 Figure 2.4. Effect of nisin on the loss of optical density.  A. Effect of nisin in the presence 

of the germinant BHI. In all cases, the differences between spore refractility at 10 min relative to 

that at 0 min were statistically significant (P < 0.05).  B. Effect of nisin in the absence of a 

germinant.  A & B. The data are expressed as the percentage of the OD600 at time zero and 10 

min relative to that of each culture at time zero. Shown is the mean of a single experiment 

conducted in triplicate as a representative of three independent experiments. Error bars indicate 

standard deviations.   
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 Figure 2.5. Effect of nisin on the loss of heat resistance.  A. Effect of nisin in the 

presence of the germinant BHI.  In all cases, the differences between the percentage of heat-

resistant spores at 5 min relative to that at 0 min were statistically significant (P <0.05). B. Effect 

of nisin in the absence of a germinant.  A & B. At 0 and 5 min, samples were analyzed for heat 

resistance, as described under Materials and Methods. The data are expressed as the means of 

three experiments. Error bars indicate standard deviations. 

 

2.2.4 Germination initiation is required for the inhibitory action of nisin. 

 Whether germination initiation is necessary for nisin to act against spores 

was investigated next. Spores were incubated in BHI medium, in BHI medium 

supplemented with 10 µM nisin, or in 0.1 M MOPS supplemented with 10 µM 

nisin. After 1 h, the spores were washed to lower the concentration of nisin in 

solution to approximately 1 nM, which is well below the IC50. After washing, the 

spores were introduced into fresh BHI medium. As expected, spores that had 

been pre-incubated with nisin under germinating conditions did not grow when 

introduced into fresh BHI medium (Figure 2.6). In contrast, spores pre-incubated 

with nisin in the absence of germinant demonstrated robust growth in fresh BHI 

medium. These data indicate that germination initiation is a requisite for the 

inhibitory activity of nisin against spores. 
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 To establish at which point during the germination process nisin-mediated 

inhibition becomes irreversible, spores were pre-incubated in BHI medium (to 

induce germination) supplemented with either nisin (10 µM) or 0.1 M MOPS. At 

various times, samples from each culture were washed extensively to lower the 

concentration of nisin in the spore suspensions to levels well below the IC90, and 

introduced into fresh BHI medium. These experiments revealed that exposure of 

B. anthracis spores to nisin for as little as 5 min under germinating conditions 

completely blocked growth of the germinated spores in fresh medium lacking 

nisin (Figure 2.7). These results suggest that the inhibitory action of nisin against 

spores becomes irreversible soon (<5 min) after germination is initiated. 

 
 Figure 2.6. Germination is required for the inhibitory action of nisin. The data are 

expressed as the mean of a single experiment conducted in triplicate and are representative of 

those from two independent experiments. Error bars indicate standard deviations. In all cases, 

the differences between the OD600 at 18 h relative to that at 0 h were statistically significant (P < 

0.05).  
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 Figure 2.7. The inhibitory action of nisin is irreversible. The data are expressed as the 

mean of a single experiment conducted in triplicate and are representative of those from two 

independent experiments. Error bars indicate standard deviations. In each case in which the 

spores were exposed to nisin, the increase in the OD600 at 18 h relative to that at 0 h was not 

statistically significant (P < 0.05). 

 

2.2.5 Nisin prevents spore development into vegetative bacilli.  

 To obtain additional insights into the stage of germination during which 

nisin arrests the development of spores into replicating, vegetative bacilli, the 

extended growth of cultures were monitored in the presence or absence of nisin. 

As expected, the O.D.600 of each of the samples decreased initially, reflecting the 

rapid hydration of spores that characteristically follows germination initiation (Fig. 

4A). After approximately 50 min, cultures supplemented with 0.1 µM nisin 

demonstrated clear bacterial growth, albeit at a slower rate than cultures lacking 

nisin (Figure 2.8A). In contrast, there was no evidence of growth in cultures 

supplemented with higher concentrations of nisin, neither at 180 min (Fig, 4A), 

nor at extended time points (12 h; data not shown). Examination of samples 
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removed from these cultures at 5 and 10 h by DIC microscopy revealed 

characteristic chains of vegetative bacilli from cultures supplemented with either 

0.1 µM nisin or the buffer control (Figure 2.8B), whereas no bacilli were present 

within cultures supplemented with 1, 10, or 100 µM nisin (Figure 2.8B). These 

results indicated that at concentrations greater than IC90, nisin prevents the 

development of germinated spores into vegetative bacilli.  In contrast to the 

action of nisin, ciprofloxacin did not prevent the development of germinated 

spores into vegetative bacilli, even at concentrations (0.1 and 1 µM) that inhibit 

the growth of vegetative B. anthracis (Figure 2.8C).  At 10 µM ciprofloxacin, a 

significant increase in both length and width was observed (Figure 2.8C, Table 

2.2), which suggests that ciprofloxacin cannot directly inhibit outgrowth; however, 

due to the irreparable double stranded breaks in the DNA induced by 

ciprofloxacin, complete outgrowth into a vegetative cell was prevent as a 

consequence of improper protein expression.    

Figure 2.8 
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Figure 2.8 (Continued)  
    B 

 
    C 

 
 Figure 2.8. B. anthracis spores do not develop into vegetative bacilli in the presence of 

nisin. A. The data are expressed as the percentage of OD600 at each time point relative to the 

OD600 of each culture at time zero, which was the control in these experiments. The data are 

expressed as the means of a single experiment conducted in triplicate and are representative of 

those from three independent experiments. Error bars indicate standard deviations. B. Nisin effect 

on spore outgrowth. C. Ciprofloxacin effect on spore outgrowth.  B & C. At time 0, 5, and 10 h, 

samples were removed and visualized by DIC microscopy. For each panel, a single spore is 

shown for clarity but is representative of all other B. anthracis spores within that sample. Bars, 6.5 

µm. The data are representative of those from three independent experiments. 
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 Table 2.2. Comparison of nisin and ciprofloxacin on the outgrowth of spores.  The 

lengths and widths of the endospores and elongated endospores were measured using 

SoftWoRX Explorer Suite. (*) Using the Student t-test, a statistical difference was determined in 

size when 5 h and 10 h time points were compared to the 0 h time point for each inhibitor, P < 

0.0005. 

 

2.2.6 Spores incubated with nisin do not produce lethal toxin.  

 Although nisin prevents the development of spores into vegetative bacilli, 

it was not clear to what extent the action of nisin impairs additional events 

associated with spore germination. For B. anthracis, an important consideration 

is whether or not virulence factors, such as lethal toxin (LT) (53), are released 

prior to nisin-mediated killing of germinated spores. Spores were incubated under 

conditions that are known to induce LT production (23). In the absence of nisin, 

the two components of the bipartite LT, lethal factor (LF) and protective antigen 

(PA), were both readily detected by immunoblot analysis (Figure 2.9A). In 

contrast, neither LF nor PA was detected within culture supernatants prepared 

from B. anthracis cultures supplemented with 10 µM nisin. By comparing the 

intensity of the cross-reacting material in 2-fold serially diluted cultured 

supernatants, the amounts of PA and LF were determined to be reduced at least 

32- and 16-fold, respectively, in cultures supplemented with nisin compared to 

those supplemented with the buffer control (0.1 M MOPS pH 6.8; Figure 2.9B). 

Additional experiments showed that neither LF nor PA was detected within 
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homogenates of B. anthracis spores incubated for 1 h in BHI supplemented with 

nisin (Figure 2.10A), ruling out the possibility that LF or PA was present, but 

spore-associated. Finally, additional experiments indicated that nisin did not 

cause PA to precipitate out of solution (Figure 2.10B), ruling out another possible 

explanation for the absence of these proteins in B. anthracis cultures 

supplemented with nisin. 

 A 

 
 B 

 
 Figure 2.9. Effect of nisin on toxin expression.  A. At 0, 7, and 10 h, culture supernatants 

were evaluated for the presence of LF and PA by immunoblot analysis. B. At 0, 7, and 10 h, 

culture supernatants were evaluated for the presence of LF and PA by immunoblot analysis.  The 

0 µM nisin 10 h culture supernatants were evaluated for the magnitude by which toxin expression 

was reduced via a series of 2-fold dilutions of culture supernatants.  A & B. The samples in each 

lane were normalized for the volumes of the culture supernatants. The data are from a single 

experiment and are representative of data collected in three independent experiments. 
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A            B 

       

 Figure 2.10. Toxin association with organism and nisin induced precipitation of toxin.  A. 

LF and PA were assayed within homogenates of B. anthracis bacilli or spores after incubation for 

1 h in BHI supplemented with 10 µM nisin.  B.  Nisin induced precipitation of PA was assayed by 

immunoblot after incubation for 1 h in 0.1 M MOPS pH 6.8 supplemented with the indicated 

concentrations of nisin. 

 

2.2.7 The action of nisin prevents spores from becoming metabolically 

active.  

 Dormant B. anthracis spores are metabolically inactive (50). One potential 

explanation for the lack of detectable LF or PA in B. anthracis cultures 

supplemented with nisin is the inability of germinating spores to establish an 

active metabolism. To evaluate this hypothesis, the cellular production of 

NAD(P)H was monitored as a measure of oxidative metabolism by determining 

the reduction of tetrazolium to formazan in a NAD(P)H-dependent manner (12). 

In the absence of nisin, a robust production of formazan was detected, beginning 

at 5-10 min after the initiation of germination, and the levels of formazan 

generated continued to increase during the course of the experiment (3 h) 

(Figure 2.11A). In the presence of 1, 10, or 100 µM nisin, small but detectable 

levels of formazan production were detected within 5-10 min after the initiation of 

germination, but formazan production did not continue to increase after this time. 
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Formazan production was detected in the presence of 0.1 µM nisin, albeit at a 

slower rate than in the absence of nisin.  Formazan production was inhibited in 

the presence of 1 and 10 µM ciprofloxacin, but occurred in the presence of 0.01 

and 0.1 µM ciprofloxacin, although to a lesser extent than in the absence of 

antibiotics (Figure 2.11B).  

 Because oxidative metabolism is linked to the establishment of an 

electrochemical gradient across the cytoplasmic membrane, the effects of nisin 

action on the establishment of a membrane potential within germinating spores 

were evaluated. In the presence of germinant, B. anthracis demonstrated 

significantly stronger staining with the membrane potential sensitive dye, 3-

3’diethyloxacarbocyanine iodide (DiOC2) (30) than in the absence of germinant, 

indicating the establishment of membrane potential by 30 min subsequent to 

germination initiation (Figure 2.12A). In contrast, spores incubated in the 

presence of nisin demonstrated significantly less DiOC2 staining at 30 min 

(Figure 2.12A), which indicated that at this early time point, nisin interfered with 

the establishment of membrane potential in germinating spores. By 5 and 10 h 

after germination initiation, spores incubated in the presence of 0.1 µM nisin 

demonstrated DiOC2 staining similar to that of spores in the absence of nisin 

(94.9% MFI of spores in the absence of nisin; Figure 2.12C), indicating that these 

spores recovered and ultimately developed a membrane potential, although at a 

slower rate. Spores incubated in the presence of higher concentrations of nisin 

(1, 10, and 100 µM) did not demonstrate increased DiOC2 staining at later time 

points (5 or 10 h; data not shown). Notably, in the presence of ciprofloxacin 
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(0.01, 0.1, 1, and 10 µM), germinating spores displayed DiOC2 staining 

comparable to that measured in the absence of ciprofloxacin (approximately 80-

100%; Figure 2.12B), indicating that, in contrast to nisin, ciprofloxacin did not 

prevent the establishment of membrane potential in germinating spores.  Taken 

together, these studies suggest that nisin acts upon spores immediately after the 

initiation of germination, and that at concentrations non permissive for spore 

outgrowth (as demonstrated in Figure 2.8A & B), nisin prevents B. anthracis from 

becoming metabolically active. 
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 Figure 2.11. Effect of nisin and ciprofloxacin on oxidative metabolism establishment.  A. 

Nisin.  B. Ciprofloxacin.  A & B. At the indicated times, aliquots were removed from the cultures 

and were evaluated for oxidative metabolism by measuring spectrophotometrically the production 

of formazan at 570 nm, as described under Materials and Methods. 
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Figure 2.12 
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 Figure 2.12. Effect of nisin and ciprofloxacin on membrane potential establishment.  A.  

Nisin.  The difference between the membrane potential at 30 min in the presence and the 

absence of nisin was statistically significant (P < 0.05).  B. Ciprofloxacin. C. Nisin long term 

inhibition. At time zero (i.e., prior to the addition of nisin), 5 and 10 h, aliquots were removed from 

the cultures and evaluated for the membrane potential by measuring the DiOC2-associated B. 

anthracis fluorescence by flow cytometry. The data are plotted as the MFI. The difference 

between the membrane potential at 5 and 10 h in the presence and the absence of nisin was 

statistically significant (P < 0.05) except for 0.1 µM at 10 h.  A & B.  At time zero (i.e., prior to the 

addition of nisin or ciprofloxacin) and 30 min, aliquots were removed from the cultures and 

evaluated for the membrane potential by measuring the DiOC2-associated B. anthracis  
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Figure 2.12 (continued) 

fluorescence by flow cytometry. The data are plotted as the MFI. A-C. Means of the data from a 

single experiment conducted in triplicate. The data are representative of those from three 

independent experiments. Error bars indicate standard deviations. 

 

2.2.8 The effects of nisin action on membrane integrity.  

 The absence of oxidative metabolism in germinating spores in the 

presence of nisin could be due to a loss of membrane integrity (19, 52). To 

explore this possibility, germinating spores were evaluated for increases in 

membrane permeability by measuring the uptake of propidium iodide (PI) using 

flow cytometry. These experiments revealed that by 30 min, nisin induced 2-, 6-, 

13-, or 56-fold increases in PI-uptake in spores incubated with 0.1, 1, 10, or 100 

µM nisin, respectively, relative to spores incubated in the absence of nisin 

(Figure 2.13A). These experiments suggest that within germinating B. anthracis 

spores, nisin induces a dose-dependent disruption of membrane integrity.  In 

contrast, in the presence of ciprofloxacin (0.01, 0.1, 1, or 10 µM) germinating 

spores exhibited only a modest (less than 2-fold) increase in PI-uptake (Figure 

2.13B), further supporting the idea that nisin and ciprofloxacin affect the 

outgrowth of B. anthracis spores by fundamentally different mechanisms.  
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 Figure 2.13. Effect of nisin and ciprofloxacin on membrane integrity.  A. Nisin.  In all 

cases, the differences in PI uptake in samples containing nisin at 30 and 60 min relative to that at 

0 min were statistically significant (P < 0.05). B. Ciprofloxacin.  A & B.  At the indicated times, 

aliquots were removed from the cultures and evaluated for PI uptake, as described under 

Materials and Methods. The data were plotted as the geometric MFI. The means of the data from 

a single experiment conducted in triplicate are presented. The data are representative of those 

from three independent experiments. Error bars indicate standard deviations. 
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2.2.9 Nisin does not prevent spore remodeling during germination.   

 The inhibition of spore outgrowth could be due to disruption of the 

extensive remodeling of the spore structure that accompanies germination. To 

evaluate this possibility, the characteristic release of dipicolinic acid (DPA) from 

the spore structure, which occurs shortly after germination initiation (25, 56), was 

monitored. Both the magnitude and rate of DPA release were similar in the 

presence or absence of nisin (Figure 2.14A). 

 Nisin may inhibit “downstream” remodeling of the spore structure, which 

includes hydrolysis of the cortex and release from the spore coat and 

exosporium. In the absence of nisin, transmission electron microscopy (TEM) 

revealed that the core, cortex, spore coat and exosporium were readily evident in 

dormant spores (e.g. spores incubated in 0.1 M MOPS pH 6.8), but only the core 

remained in germinated spores (Figure 2.14B). Nisin did not inhibit the loss of 

cortex, spore coat, or exosporium in spores that had been incubated in BHI 

medium (Figure 2.14B). Taken together, these results indicate that nisin 

mediated action against spores does not involve the inhibition of the extensive 

remodeling of the spore structure. 
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 Figure 2.14. Effects of nisin on spore remodeling during germination. A.  At the indicated 

times, cultures were evaluated for the release of DPA, as described under Materials and 

Methods. The means of the data from a single experiment conducted in triplicate are presented. 

The data are representative of those from three independent experiments. Error bars indicate 

standard deviations. B.  After 90 min, the indicated samples were removed, fixed, and imaged by 

TEM, as described under Materials and Methods. RLU, relative light units. 

 

2.2.10  Structural evaluation of nisin inhibition of bacilli and protoplasts. 

 In an effort to determine the overall structural effects nisin has on bacilli, 

nisin was incubated with bacilli and B. anthracis protoplasts, which were made by 
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incubating cells with 50 µg/mL lysozyme.  Cells and protoplasts were then fixed 

and processed for TEM and scanning electron microscopy (SEM) imaging.  The 

SEM showed bacilli and protoplasts with a large pore-like structure that is located 

proximal to the pole or end of the rod shaped cell (Figure 2.15A).  This pore-like 

structure could be an exceptionally large pore resulting from the disruption of the 

membrane by nisin. On the other hand and more likely, this structure may be an 

improperly formed septum due to early and asymmetrical cell division induced by 

the presence of nisin.  This latter conclusion was previously drawn based on 

TEM data from the Benov laboratory (26).  The authors concluded that nisin 

induced apremature and improper asymmetrical septum formation during cell 

division.  The SEM images in Figure 2.15A support this conclusion monitoring the 

surface of the bacilli rather than a section in TEM.  In addition, the location of the 

improper septum is also congruent with lipid II mis-localization that is induced by 

nisin (21).  Furthermore, our TEM images of bacilli and protoplasts are congruent 

with the findings of Benov and coworkers (26).  In the presence of nisin, ruffling 

of the membrane is observed in both protoplast and bacilli due to membrane 

disruption (Figure 2.15B).  Moreover, the membrane separates from the cell wall 

in the TEM image of a cell (Figure 2.15B).   
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 Figure 2.15.  Structural evaluation of nisin inhibition of bacilli and protoplasts.  A. SEM 

images of bacilli and protoplasts in the presence and absence of 1 µM nisin.  B.  TEM images of 

bacilli and protoplast in the presence of 1 µM nisin.  A & B.  Cells and protoplasts were incubated  

with nisin for 30 min, fixed, prepared for SEM and TEM imaging, and pictures were taken as 

described in "Materials and Methods".   
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2.2.11 Structural evaluation of nisin inhibition of spores. 

In an effort to gain additional insights into the overall structural effect of 

nisin, SEM images were obtained of spores germinated in the presence of nisin.  

Dormant endospores, which were incubated in 0.1M MOPS at 37 °C as a control, 

displayed the typical ridge pattern of a dormant endospore (17).  Previous 

research performed in the Driks laboratory using atomic force microscopy 

demonstrated that the observed ridges are typical for Bacillus endospores 

morphology (17).  The endospores that were allowed to germinate had a 

smoothing of the ridges and increased in size presumably due to hydration of the 

endospore.  The endospore that was incubated in BHI with nisin had a 

morphology distinct from the previous two conditions.  The ridges of the dormant 

spore had disappeared, but the surface of the germinated endospore was very 

rough and had pockets or dimples present over the entire structure.   

 

 

 Figure 2.16. Structural evaluation of nisin inhibition of spores.  Spores were incubated in 

the presence of 0.1 M MOPS pH 6.8 (non-germinating), BHI (germinating), and BHI with 100 µM 

nisin for 1.5 h.  Spores were fixed, underwent SEM sample preparation, and were imaged via 

SEM. 
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2.2.12 Effect of delayed addition of nisin on growth. 

 In an effort to identify a point within the growth cycle of B. anthracis where 

nisin is no longer effective, nisin was added to B. anthracis cultures at different 

points along a growth curve that started with dormant spores and culminated with 

stationary phase bacilli.  B. anthracis endospores at an initial concentration of 

8x107 spores/mL were incubated in BHI at 37 °C.  At every hour from 0-12 h, 

nisin was added to a series of 12 cultures and the subsequent growth curves 

were monitored (final concentration 10 µM nisin). The effects of nisin were 

monitored by changes in optical density as a measure of growth at 600 nm 

throughout the 12 h. First, the results demonstrate that germination occurred in 

the presence of 10 µM nisin within 1 h indicated by the decrease in O.D. (Figure 

2.17).    While germination was not inhibited, nisin had the ability to inhibit the 

growth of B. anthracis through logarithmic growth, as shown by the large 

reduction in optical density post nisin addition due to cell lysis (Figure 2.17).  

Nisin also has an initial inhibitory effect on cells treated in late logarithmic and 

stationary phase, but if enough time is allotted for recovery, B. anthracis growth 

returns (Figure 2.17). 
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 Figure 2.17. Effect of delayed addition of nisin on growth. At every hour from 0-12 h, 

nisin was added to a series of 12 parallel growth curves performed in triplicate. The effects of 

nisin were then monitored by the change in optical density at 600 nm as a measure of growth. 

 

2.2.13 pH effects on B. anthracis spore germination. 

 A preliminary investigation was performed to determine the effect of pH on 

germination.  Spores were germinated with BHI at pH 4 - 8, and reduction of 

optical density was monitored.  As depicted in Figure 2.18, the change in pH had 

a dramatic effect on the ability of the endospore to germinate.  At a pH ≤ 6, 

endospores were not able to germinate. At a pH of 6, the rate of germination was 

reduced with very similar germination kinetics observed at pH 7 and 8.  These 

data demonstrate that the pH of the cultures is an important parameter for 

assays that involve the germination of endospores. 
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 Figure 2.18. pH effects on B. anthracis spore germination. The data are expressed as 

the percentage of the OD600 at time zero and 10 min relative to that of each culture at time zero. 

Shown is the mean of a single experiment conducted in triplicate as a representative of three 

independent experiments.  No error bars are shown for clarity. 

 

2.3 Discussion   

 The inhibitory action of nisin against spores of Clostridium and Bacillus 

pathogens has been recognized for well over 50 years (7, 39). However, the 

mode of action responsible for preventing spore outgrowth had not been 

characterized in detail previously. Using B. anthracis Sterne 7702 as a model, 

the data presented here demonstrate that spores lose heat resistance and 

become hydrated in the presence of nisin, thereby ruling out a possible 

mechanism of inhibition where nisin blocks germination initiation. Rather, 

germination initiation is a requisite for nisin action.  These observations are 

consistent with a previous report on the lantibiotic subtilin, a close analog of nisin 
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that also inhibits spore outgrowth without disrupting spore hydration (32).  The 

current study revealed for the first time that nisin rapidly and irreversibly inhibits 

growth by preventing the establishment of oxidative metabolism and membrane 

potential in germinating spores, possibly revealing an underlying explanation for 

the absence of B. anthracis proliferation. On the other hand, we observed no 

detectable effects of nisin on the typical changes associated with the dissolution 

of the outer spore structures (e.g. spore coats, cortex, and exosporium). Thus, 

the action of nisin reveals insights into germination by uncoupling two critical 

sequences of events necessary for the outgrowth of spores – establishment of 

metabolism and shedding of the external spore structures. 

The capacity of nisin to prevent germinating B. anthracis spores from 

establishing a full membrane potential or oxidative metabolism is likely linked to 

the disruption of membrane integrity. Although nisin at 1 µM induced only a 6-fold 

increase in PI uptake above background as compared to a 56-fold increase at 

100 µM nisin (Fig 8), spore outgrowth and metabolic activity were still inhibited, 

and spores were unable to establish a full membrane potential through 10 h.  In 

contrast, ciprofloxacin, which is recommended for treatment of anthrax infections 

(8), did not prevent the establishment of a membrane potential in germinating 

spores, and had an almost negligible effect on membrane integrity, consistent 

with the notion that these two antibiotics inhibit the outgrowth of germinating 

spores by fundamentally different mechanisms. 

 Two distinct mechanisms, membrane pore formation and the prevention of 

cell wall biosynthesis, contribute to the bactericidal activity of nisin against 
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vegetative Gram-positive bacteria (6, 21, 48). The studies in this chapter do not 

directly reveal which, if either, of these two mechanisms is primarily responsible 

for preventing the outgrowth of B. anthracis spores. However, nisin’s capacity to 

disrupt membrane integrity within germinating spores suggests that the 

membrane pore-forming activity may be important for inhibiting spore outgrowth. 

In black lipid systems, nisin pores allow the efflux of ATP (48), and it is 

conceivable that in germinating spores, the efflux of ATP through nisin pores 

could deprive B. anthracis of the energy required for macromolecular synthesis 

and oxidative metabolism. Moreover, formation of nisin pores (20) can counteract 

proton efflux required for membrane potential establishment and ATP formation 

(40, 50). Because nisin-mediated inhibition of outgrowth requires germination 

initiation, its target of action likely becomes accessible only subsequent to 

germination initiation. The data in this chapter cannot rule out that nisin inhibition 

of cell wall biogenesis, especially at lower nisin concentrations where disruption 

of membrane integrity is more modest, may also contribute to the prevention of 

spore outgrowth. Moreover, considering the structural differences between 

spores and vegetative bacilli, one also cannot dismiss the possibility that nisin 

may act upon germinating spores by a fundamentally different mechanism than 

those employed against bacilli. One study with B. cereus implicated accessible 

thiol groups within B. cereus spores as potential targets for nisin resulting in 

outgrowth inhibition (43), although a specific molecular target was not identified 

in that report.  Prior structure-activity studies suggested that the dehydroalanine 

in position 5 of nisin is important for inhibition of Bacillus spore outgrowth (9, 43), 
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but this dehydrated residue is not essential for bioactivity in vegetative cells. In 

contrast, a more recent study reported that this dehydroalanine was not essential 

for nisin’s inhibitory activity against Bacillus subtilis spores (46). Thus, structure-

activity relationships to identify structural features important for the various 

consequences of nisin against spores remained an important focus and such 

studies are described in chapter 3. 

 Nisin is an FDA–approved natural product that has been used for 40 years 

in food-preservation, due in part to the selective toxicity of this lantibiotic towards 

Gram-positive bacteria (13, 15, 54). In this study, B. anthracis was used as a 

model, but previous work indicated that nisin was also inhibitory against spores 

from other Bacillus species (3, 7, 31), (33, 36, 45) as well as from Clostridia (37) 

species suggesting that the new information from this study regarding the 

inhibitory activity of nisin will be applicable to the action of nisin against spores 

from these other organisms as well. Here, nisin was demonstrated to act upon 

and kill germinated spores of B. anthracis prior to development into elongated 

and dividing bacilli and before lethal toxin was generated. Notably, this mode of 

activity is in contrast to several other widely used classes of antibiotics including 

ciprofloxacin, whose mechanism of action require ongoing cell activity and/or 

proliferation (2, 16, 18, 22), and are thus not as likely to be effective against 

germinating spores. Collectively, these properties potentially make nisin an 

attractive chemotherapeutic agent for prophylaxis or post-exposure treatment of 

spore-forming Bacillus or Clostridia pathogens. 
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2.4 Materials and Methods 

2.4.1 Spore preparations.  

 An aliquot (100 µl) of an overnight culture of B. anthracis Sterne 7702 

grown in brain heart infusion broth (3.7% Bacto Brain Heart Infusion [BD 

Diagnostics, Franklin Lakes, NJ], Millipore deionized water, 0.5% glycerol) at 

37°C was plated onto Difco sporulation medium agar plates (8 g/liter Difco 

nutrient broth (BD Diagnostics), 1 g/liter KCl, 250 mg/liter MgSO4·7H2O, 15 g/liter 

agar) and incubated at 30°C under ambient CO2.
 After 3 days, each plate was 

washed with deionized water (10 ml), and the washes were pooled and filtered 

sequentially through 3.1- and 1.2-µm glass filters from National 

Scientific Company (through VWR, Rochester, NY) to remove vegetative 

cells and clumped spores (38). The spore suspensions were incubated at 65°C 

for 30 min to inactivate any remaining heat-sensitive organisms. The spores were 

washed three times with deionized water (centrifugation at 3,270 x g for 30 min), 

and stored indeionized water (10 ml) at 4°C. Spores were prepared on a weekly 

basis and used within 7 days. (51).  Enumeration of spores or bacilli was 

performed using a Petroff-Hauser hemocytometer under a light microscope at 

400x magnification (Nikon Alphaphot YS, Mellville, NY). A typical spore 

preparation yielded 10 mL of spores at a concentration of 2.0 x 109 spores/mL. 

 

2.4.2 Nisin purification.  

 A sample of 500 mg Nisaplin (50% denatured milk proteins, 2.5% nisin, 

and 47.5% sodium chloride; Danisco, Copenhagen, Denmark) was suspended in 
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30% acetonitrile (Sigma, St. Louis, MO) with 0.1% trifluoroacetic acid (TFA, 10 

mL; Sigma).  The suspension was sonicated for 20 min followed by centrifugation 

at 1500 xg for 10 min to remove all insoluble material. Reverse Phase-High 

Performance Liquid Chromatography (RP-HPLC, Waters, Milford, MS) was 

performed with a PrePack C4 semi-preparative column (Waters, Milford, MS, 

diameter 25 mm, length 100 mm) with a gradient of 0-100% acetonitrile at 8 

mL/min. Under these conditions, nisin had a retention time of 28 min. Acetonitrile 

and TFA were removed from fractions containing nisin by rotary evaporation 

followed by lyophilization to remove water. Prior to use, lyophilized nisin was 

weighed on an analytical balance and dissolved in 0.1 M MOPS pH 6.8 to yield 

the desired concentration. The identity of purified nisin was confirmed by Matrix 

Assisted Laser Desorption/Ionization – Time Of Flight (MALDI-TOF) mass 

spectrometry (General Electric, NY). As an additional quality control measure, 

purified nisin was evaluated for inhibitory activity against Lactococcus lactis 117 

(ATTC 15577) cells grown in GM17 broth (3.7% M17 Media, 0.5% dextrose; BD 

Biosciences) at 30 °C.  Purified nisin inhibited L. lactis 117 with an IC50 value of 

0.0021 µM, in excellent agreement with previous studies (6, 28, 29), indicating 

that the purification protocol yielded nisin with the expected biological activity. 

 

2.4.3 Culturing B. anthracis spores.  

 B. anthracis Sterne 7702 spores at a concentration of 4.0 x 106 

spores/mL, unless otherwise indicated, were incubated in BHI medium 

supplemented with nisin (0.1, 1, 10, and 100 µM), ciprofloxacin (0.01, 0.1, 1 and 
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10 µM), or with 0.1 M 3-(N-morpholino)propanesulfonic acid (MOPS; Sigma) pH 

6.8 as a mock control. In these studies, changes in germinating spores caused 

by nisin were compared to those induced by ciprofloxacin, which is an antibiotic 

recommended for the treatment of anthrax. The published MIC of ciprofloxacin 

against B. anthracis is 0.193 µM (35), which provided the basis for the 

concentrations of ciprofloxacin used in these studies. For non-germinating 

conditions, 0.1 M MOPS pH 6.8 was substituted for BHI medium. All incubations 

were performed at 37 °C under aeration (180 rpm on a rotary shaker; Thermo 

Fisher Scientific Inc., Waltham, MA, or otherwise indicated) and ambient CO2 

(e.g. 0.03% CO2). In pilot experiments, spores were incubated in alternative 

media, which were Luria-Bertani (LB; B10 g/L Lacto Tryptone, 5 g/L NaCl, 5 g/L 

Bacto Yeast Extract; BD Diagnostics), RPMI-1640 medium (ATCC) containing 

FBS (10%; JRH Biosciences, Lenexa, KA), MEM JRH Biosciences) containing 

FBS (10%), or DMEM (JRH Biosciences) containing FBS (10%).  B. anthracis 

protoplasts were made by incubating cells with 50 µg/mL lysozyme in 1x PBS pH 

7.2 for 30 min at 37 ºC and washed 2x to remove lysozyme with 1x PBS pH 7.2. 

 

2.4.4 Determination of IC50 and IC90 values of nisin against endospores.  

 B. anthracis endospores at a final concentration of 4.4x104, 4.4x105, 

4.4x106, or 4.4x107 spores/mL were incubated in BHI medium supplemented with 

varying concentrations of nisin (0.05 µM to 100 µM) or with 0.1 M MOPS pH 6.8 

(as a negative control). The IC50 and IC90 values were derived from plots of 
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O.D.600 nm at 16 h versus nisin concentration and are the concentrations of nisin 

that inhibited B. anthracis growth in BHI medium by 50% or 90%, respectively. 

 

2.4.5 CFU quantification.  

 Spores were serially diluted and plated on Luria-Bertani (LB; B10 g/L 

Bacto Tryptone, 5 g/L NaCl, 5 g/L Bacto Yeast Extract, 15 g/L Bacto Agar; BD 

Biosciences) agar plates. After 12-18 h at 37 °C B. anthracis colonies were 

counted, from which CFU/mL were calculated. 

 

2.4.6 Spore hydration.  

 The hydration of spores was determined by measuring the loss of spore 

refractility at 600 nm, using a Synergy 2 plate reader (BioTek Instruments, Inc 

Winooski, VT). B. anthracis spores were incubated, as described under 

“Culturing B. anthracis spores,” except that a 96-well plate was used shaking for 

15 s prior to each read.  Data is represented as a percentage of O.D.600 nm at 

each time point relative to the O.D.600 nm of the spore suspensions at the 

beginning of the experiment (t=0 min). 

 

2.4.7 Heat resistance.  

 Spores were diluted into 0.1 M MOPS pH 6.8 containing D-alanine and D-

histidine (both at 10 mM; Sigma), to prevent further germination initiation of 

dormant spores, and identical aliquots were incubated at either 65 °C or on ice 

for 30 min. Viable B. anthracis were quantified by plating serial dilutions and 
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enumerating CFU. The percentage of heat resistant spores was calculated by 

dividing CFU recovered from samples heated at 65 °C by CFU recovered from 

samples incubated on ice. 

 

2.4.8. Differential interference contrast microscopy.  

 At indicated times, samples were removed from B. anthracis cultures and 

fixed during incubation in 3% formaldehyde (Sigma) for 30 min at 37 °C followed 

by mounting on glass slides in 20% glycerol (Sigma). DIC microscopy images 

were collected using an Applied Precision assembled DeltaVision 

EpiFluorescence microscope containing an Olympus Plan Apo 100x oil objective 

with NA 1.42 and a working distance of 0.15 mm, and images were processed 

using SoftWoRX Explorer Suite (Issaquah, WA). 

 

2.4.9 Immunoblot analysis.  

 At the indicated times, samples removed from B. anthracis cultures grown 

in the presence of 0.2 % bicarbonate (w/v), at 37 ºC under 5 % CO2, were 

centrifuged for 10 min at 21,000 xg. Culture supernatants were denatured by the 

addition of an equal volume of 2x SDS sample buffer (4% SDS, 100 mM TRIS, 

0.4 mg bromophenol blue/mL, 0.2 M DTT, 20% glycerol). The samples were 

boiled for 5 min, and resolved by SDS-PAGE (10% acrylamide). The contents of 

the gels were electrotransferred to nitrocellulose membranes (Pierce, Rockford, 

IL). The PA and LF were probed utilizing anti-PA (QED Bioscience Inc, San 

Diego, CA) and anti-LF (QED Bioscience Inc, San Diego, CA) mouse monoclonal 
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antibodies, respectively. Goat HRP-conjugated anti-mouse IgG (Abcam Inc.; 

Cambridge, MA) were used as secondary antibodies, and cross-reacting material 

was visualized after exposing the blots to X-ray film (Denville Scientific Inc.; 

Metuchen, NJ) in the presence of the Enhanced Chemiluminescence 

Immunoblotting reagent (Pierce, Rockford, IL). For experiments to investigate PA 

or LF association with spores, spore homogenates were prepared by vortexing 

spore suspensions 10 times with 0.1 mm glass beads for 30 s. 

 

2.4.10 Oxidative metabolism.  

 Samples from each culture were diluted into 0.1 M MOPS pH 6.8 

containing D-alanine and D-histidine (both at 10 mM; Sigma), to prevent further 

germination initiation of dormant spores. Each sample was then incubated with 3-

(4,5-di-methylthiazol-2-yl) 2,5-diphenyltetrazolium bromide (tetrazolium; 5 

mg/mL) for 30 min at 37 °C. The conversion of tetrazolium to formazan was 

measured at 570 nm using a Synergy 2 plate reader (12). 

 

2.4.11 Membrane potential.  

 B. anthracis spores were incubated, as described under “Culturing B. 

anthracis spores,” except for the presence of a fluorescent membrane potential-

sensitive dye, 3-3’diethyloxacarbocyanine iodide (DiOC2; Invitrogen, Carlsbad, 

CA; 300 nM) (30). At the indicated times, membrane potential was assessed by 

measuring an increase in B. anthracis-associated DiOC2 fluorescence using flow 

cytometry (Beckman Coulter EPICS XL-MCL™ flow cytometer, Fullerton, CA), 
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exciting at 488 nm with an argon laser and measuring the fluorescence emission 

through a bandpass filter at 525/20 nm. At least 10,000 events were detected for 

each sample, and the data were analyzed using FCS Express 3.00.0311 V Lite 

Standalone. The data were plotted as the geometric mean of the fluorescence 

intensity (MFI). 

 

2.4.12 Membrane integrity.  

 Membrane integrity was evaluated by measuring the uptake of propidium 

iodide (PI) (19, 52). Samples from each culture were incubated with PI (60 µM; 

Molecular Probes Inc., Leiden, NL) in an ice bath for 10 min (1). B. anthracis-

associated fluorescence was measured using flow cytometry as described above 

under “Membrane Integrity,” except that fluorescence emission was measured 

using a bandpass filter at 675/20 nm.  

 

2.4.13 Quantification of dipicolinic acid (DPA; 2,6-pyridinedicarboxylic 

acid).  

 DPA release was monitored by measuring fluorescence resonance energy 

transfer between DPA and terbium (25, 47). B. anthracis spores were incubated, 

similar to that described above under “Culturing B. anthracis spore,” except for in 

the presence of TbCl3 (200 µM; Sigma, St. Louis, MO). The DPA-terbium 

complex was excited at 280 nm, and emission was monitored at 546 nm, using a 

Synergy 2 plate reader. 
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2.4.14 Transmission electron microscopy (TEM).  

 B. anthracis spores from each culture were concentrated by centrifugation 

(21,000 xg for 30 min), the pellets were resuspended in Karnovsky’s Fixative 

(27), and samples were prepared for TEM analysis, as previously described (58). 

Images were collected using a CMI Hitachi H600 TEM (Tokyo, Japan) in the 

University of Illinois College of Veterinary Medicine Microscopy Facility. 

 

2.4.15 Scanning electron microscopy (SEM).  

 Bacilli were incubated in absence or in the presence of 1 µM nisin with 

growth media for 1.5 h. Cells were fixed with paraformaldehyde and 

gluteraldehyde. Cells were then removed from the fixative by 0.2 µm filtration, 

dehydrated, and gold sputtered. All the processing of the samples was done in 

the University of Illinois Veterinary Medicine Microscopy Facility. Pictures were 

taken using the ESEM (Philips XL30 ESEM-FEG, FEI Company; Hillsboro, OR) 

at Beckman Institute. 

 

2.4.16 Statistics.  

 Error bars represent standard deviations. P-values were calculated with 

the Student’s t-test using paired, one-tailed distribution. P < 0.05 indicates 

statistical significance. 
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CHAPTER 3: MECHANISM OF NISIN INHIBITION OF BACILLUS ANTHRACIS 
SPORE OUTGROWTH 
 
3.1 Introduction 

 Nisin A is a 34-amino acid polycyclic peptide produced by Lactococcus 

lactis sbsp. lactis ATCC 11454 (Figure 3.1A). As described in chapter 1, nisin 

acts upon Gram-positive bacteria by two distinct mechanisms (3). The compound 

forms pores in cell membranes (24), and inhibits cell wall biosynthesis by 

disruption of transglycosylation via lipid II binding and mislocalization (13, 31). 

With two mechanisms of action, nisin has been relatively unaffected by the 

emergence of microbial resistance, despite widespread and persistent use as a 

food preservative (9, 17). 

 Nisin also inhibits the outgrowth of germinated bacterial spores (6, 12, 19, 

20, 25). The studies in chapter 2 suggested that membrane disruption prevents 

the establishment of a membrane potential and oxidative metabolism (12). 

Whether these processes are mediated by nisin binding to lipid II was not 

evaluated. Indeed, it is not clear whether or not lipid II is accessible on the 

surface of spores. Moreover, several studies have suggested that a protein target 

mediates nisin’s inhibitory action on spore outgrowth (6, 15, 20), potentially ruling 

out a role for lipid II binding in nisin-dependent inhibition of spore outgrowth. 

To better understand the mechanism of inhibition of spore outgrowth, the 

effects of nisin, vancomycin, and truncated nisin analogs (Figure 3.1A & B) on 

germination and outgrowth of Bacillus anthracis Sterne 7702 spores were 

compared in this study. The studies presented in this chapter suggest that nisin 
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does bind lipid II on spores, and that lipid II binding is essential, but not sufficient 

for outgrowth inhibition, whereas membrane disruption is essential. 

Figure 3.1 

 

Figure 3.1.  Structures of nisin, vancomycin, and lipid II.  A. The structure of nisin A. 

Dehydrated amino acids dehydroalanine (Dha) and dehydrobutyrine (Dhb) are indicated in green 

and magenta, respectively.  Amino acids involved in the formation of lanthionine and methyl-

lanthionine rings are indicated in red and blue, respectively. The numbers indicated the locations 

of the amino acids that were mutated in the following nisin variants: S5A (Dha5A), N20P/M21P, 

and M21P/K22P.  The N-terminal fragment resulting from chymotrypsin cleavage (c-nisin) is  
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Figure 3.1 (continued) 

highlighted in maroon.  B. The structure of vancomycin. C. The structure of lipid II in B. anthracis.  

The vancomycin binding site is indicated in red and the nisin binding site is indicated in blue. 

 

3.2 Results 

3.2.1 Fluorescently-labeled nisin analogs bind to lipid II and have similar 

properties as wild type nisin.  

To further evaluate the mechanism by which nisin inhibits the outgrowth of 

germinated B. anthracis spores, it was first determined whether or not nisin binds 

to spore-associated lipid II. For this purpose, bodipy-633-labeled nisin (b-nisin) 

and fluorescein-labeled nisin (f-nisin) were synthesized to probe their localization 

on spores using fluorescence microscopy. The fluorescein label, which is located 

predominantly at the C-terminal lysine residue of nisin, or the bodipy label, which 

is located predominantly at the N-terminus, did not have major deleterious effects 

on nisin activity, as fluorescently-labeled nisin inhibited B. anthracis growth with 

IC90 values of 5.4 µM and 6.5 µM for b-nisin and f-nisin, respectively, which 

correspond to a 6- and 7-fold loss in activity, respectively, compared to 

unmodified nisin (12). These findings are consistent with observations in previous 

reports using nisin labeled with 5-(aminoacetamido)fluorescein at the C-terminal 

carboxylate, which also resulted in an active analog (13). Additional experiments 

that confirm very similar activities of fluorescently labeled nisin analogs and wild 

type nisin are presented in later sections in this chapter. Importantly, control 

studies revealed that these labeled nisin analogs neither induced nor inhibited 

germination initiation, as monitored by the loss of optical density associated with 
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spore hydration during germination (not shown), analogous to findings 

unmodified nisin reported in chapter 2 (6, 12). 

The localization of b-nisin was compared with a known lipid II binding 

probe, fluorescein-vancomycin, (f-vancomycin) (29). Vancomycin interacts with 

the D-Ala-D-Ala part of lipid II (3, 18, 26), which is distinct from the binding site of 

nisin that features the pyrophosphate group (Figure 3.1C) (14). Fluorescently 

labeled vancomycin has been used previously to investigate lipid II localization 

on vegetative bacilli (8, 29). Like nisin, vancomycin (at concentrations up to 100 

µM) neither induced (not shown) nor inhibited spore germination (Figure 3.2). To 

verify that fluorescently labeled nisin can be used to detect the localization of lipid 

II, vegetative B. anthracis cells were incubated with f-nisin or b-nisin (Figure 3.3). 

Previous studies have demonstrated that nisin relocalizes lipid II to patches in 

bacilli (13). In our experiments, f-nisin and b-nisin also localized in patches on B. 

anthracis (Figure 3.3). Collectively, these experiments provide support that the 

fluorescently labeled nisin analogs bind to lipid II. 

 

 Figure 3.2.  Effect of vancomycin on germination.  The data are expressed as the 

percentage of the OD600 relative to that of each culture at time zero.  Error bars indicate standard 

deviation.  
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Figure 3.3. Localization of labeled nisin and vancomycin on B. anthracis vegetative cells.  

Vegetative cells were incubated in BHI with 0.1 µM fluorescein-nisin (f-nisin) and rhodamine-

vancomycin (r-vancomycin) or 0.1 µM b-nisin and f-vancomycin. At time 30 min, samples were 

removed and visualized by epi-fluorescence microscopy.  For each panel, a single vegetative cell 

is shown for clarity but is representative of all other B. anthracis vegetative cells within that 

sample. 

3.2.2 Nisin binds to lipid II of germinated spores.  

In the presence of both b-nisin and f-vancomycin (both at 1 µM), the 

outgrowth of germinated spores was inhibited, and b-nisin and f-vancomycin 

were associated with spores (Figure 3.4A), although with distinct binding 

patterns. Vancomycin bound diffusely over the entire surface of germinated 

spores, whereas nisin was localized in a more punctate fashion, and 

predominantly near the poles of the germinated spores, where co-localization 

with vancomycin was observed (Figure 3.4 B, C, Figure 3.5). It is possible that 

the clustering of b-nisin near the poles reflects the localization of lipid II that is 

required for the biosynthesis of new cell wall during the outgrowth process. 

However, when spores were germinated in the presence of non-inhibiting 

concentrations of b-nisin (0.4 µM), the localization of nisin occurred both at the 
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pole and along the long axis of the germinating (30 and 60 min) as well as 

outgrowing (120 min) spore (Figure 3.6). Therefore, although we do not consider 

it likely, it cannot be ruled out that the observed strong localization at the poles at 

concentrations of b-nisin that inhibit spore outgrowth may be the result of nisin-

induced re-localization of lipid II to the pole. 

In an effort to determine whether cortex and cell well degradation and 

processing alter lipid II localization as well as the co-localization of nisin and 

vancomycin, a series of cortex hydrolase mutants evaluated for their ability to 

alter nisin-vancomycin co-localization.  These B. anthracis constructs were 

gracious provide by Dr. David Popham, and his laboratory has demonstrated that 

single knockouts of either ∆selB or ∆cwlJ1 slowed the rate of cortex hydrolysis 

while the double mutant, ∆selB∆cwlJ1, eliminated cortex hydrolysis in a B. 

anthracis 34F2 background (17, 18).  In the presence of both b-nisin and f-

vancomycin (both at 1 µM), the outgrowth of variants of germinated spores were 

inhibited, and b-nisin and f-vancomycin were associated with spores 

(Supplementary Figure S6A), with a similar binding among all the 34F2 spore 

variants as well as B. anthracis 7702 (Figure 2).  As previously demonstrated 

Pearson's coefficient confirmed that nisin and vancomycin were high co-localized 

at all time points for all hydrolase variants (n=30; Supplementary Figure S6B).  

Furthermore, hydrolase knockout spores incubated with f-vancomycin (1 µM) in 

the absence of nisin showed relatively uniform labeling at 30 min, with more 

punctuate labeling at 60 min (Supplementary Figure S6C). Outgrowth of spores 

into bacilli altered the localization of vancomycin to bands that cross the long axis 



 98 

of the bacilli at 120 min at a site congruent with cell division (Supplementary 

Figure S6C) (27). Direct disruption of lipid II co-localization by nisin-vancomycin 

was not possible since B. anthracis is highly resistant to bacitracin and 

fosfomycin, which would deplete the spore of lipid II (28-30).  Also, genetically 

altering lipid II or cell wall synthesis prevents the formation of a viable and heat 

resistant spore (31-33).   

Figure 3.4 

 

 

Figure 3.4. Nisin and vancomycin localization on spores. At time 30, 60, and 120 min, 

samples were removed and visualized by epi-fluorescence microscopy.  A.  Dual antibiotic 

incubations of germinated spores were performed with bodipy-nisin (b-nisin, red) and fluorescein- 
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Figure 3.4 (continued) 

vancomycin (f-vancomycin, green) at 1 µM.  Co-localization is indicated by yellow in merged 

images B.  Single antibiotic incubation of germinated spores with b-nisin (red) at 1 µM.  C. Single 

antibiotic incubation of germinated spores with f-vancomycin (green) at 1 µM.  A-C. For each 

panel, a single spore is shown for clarity, but the image is representative of all other B. 

anthracis spores within that sample. 

 

 

 Figure 3.5. Quantification of nisin and vancomycin co-localization by Pearson's 

coefficient.  At time 30, 60, and 120 min, samples were removed and visualized by epi-

fluorescence microscopy. Images were processed and Pearson's coefficient co-localization 

analysis of 50 spores per condition was performed using SoftWoRX Explorer Suite.  Analysis of 

the co-localization with Pearson's coefficient identified that nisin and vancomycin were highly co-

localized throughout the spore in addition to the punctate formations with a coefficient of 0.81 for 

all time points.  



 100 

 

Figure 3.6  Localization of Lipid II in sub-inhibitory concentration of nisin.  At time 30, 60, 

and 120 min, samples were removed and visualized by epi-fluorescence microscopy. Single 

antibiotic incubation of germinated spores with b-nisin (red) at 0.4 µM.  For each panel, a single 

spore is shown for clarity, but the image is representative of all other B. anthracis spores within 

that sample. 

The distinct binding patterns of b-nisin and f-vancomycin were not caused 

by intrinsic differences between bodipy and fluorescein, because switching the 

labels (e.g. using fluorescein-labeled nisin and rhodamine-labeled vancomycin) 

resulted in very similar binding patterns (Figure 3.7A-C). Furthermore, the 

patterns of nisin and vancomycin binding were independent of the order that the 

compounds were introduced (Figure 3.8A). Finally, in the absence of 

vancomycin, the incubation of spores with b-nisin under germinating conditions 

also resulted in punctate localization at the pole of the spore with some diffuse 

fluorescence associated with the spore membrane (Figure 3.4B). Taken together, 

these results validate the notion that the distinct binding pattern of nisin on the 

surface of germinated spores is neither dependent on nor affected by either the 

conjugated fluor or vancomycin.  
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Figure 3.7. Effect of fluorescent label on antibiotic localization.  A and B. At time 30, 60, 

and 120 min, samples were removed and visualized by epi-fluorescence microscopy.  A.  

Incubation of germinated spores with f-nisin (green) and b-vancomycin (red) at 1 µM.  Co-

localization is indicated by yellow in merged images B.  Single antibiotic incubation of germinated 

spores with f-nisin (green) or b-vancomycin (red) at 1 µM. A and B. For each panel, a single 

spore is shown for clarity but is representative of all other B. anthracis spores within that sample. 
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Figure 3.8. Conditional effects on antibiotic localization.  Spores were germinated for 30 

min followed by the addition of labeled antibiotic A at 1 µM for 5 min and then subsequent 

addition of labeled antibiotic B for 5 min at 1 µM.  Samples were removed and visualized by epi-

fluorescence microscopy.  Dual antibiotic incubations of germinated spores were performed with 

b-nisin (red) and f-vancomycin (green). B.  Spores were incubated with a germinant (BHI) or 

without a germinant (0.1 M MOPS pH 6.8) in the presence of both labeled antibiotics. At 30 min, 

samples were removed and visualized by epi-fluorescence microscopy. A and B. For each panel, 

a single spore is shown for clarity but is representative of all other B. anthracis spores within that 

sample. 

Complete co-localization of nisin and vancomycin was not expected since 

vancomycin binds the D-Ala-D-Ala structure present in both the pentapeptide of 

the non-crosslinked cell wall and cortex in addition to the pentapeptide of lipid II 

(4), whereas nisin will bind to the pyrophosphate that is only present in lipid II 

(Figure 3.1C) (14). Reflective of these differences in binding specificities, nisin 

did not detectably associate with dormant spores (Figure 3.8B), indicating that 
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lipid II was not accessible prior to germination initiation. In contrast, vancomycin 

was visibly associated with dormant spores (Figure 3.8B), which we speculate is 

due to the accessibility of non-crosslinked peptidoglycan within the spore cortex.  

Incubation of spores with f-vancomycin (1 µM) in the absence of nisin 

showed relatively uniform labeling at 30 min, with more punctuate labeling at 60 

min (Figure 3.4C). Outgrowth of spores into bacilli altered the localization of 

vancomycin to bands that cross the long axis of the bacilli at 120 min (Figure 

3.4C). This localization of vancomycin in outgrown spores is similar to lipid II 

localization observed previously in vegetative bacilli of Bacillus subtilis and 

illustrates the helical localization of lipid II along the long axis of the rod-shaped 

cell (8, 29). 

To further confirm that b-nisin binds to lipid II associated with germinated 

spores, competition-binding experiments were performed. These studies 

revealed that a 100-fold molar excess of unlabeled vancomycin significantly 

reduced binding of b-nisin to the surface of germinated spores (Figure 3.9A). 

Likewise, a 100-fold molar excess of unmodified nisin significantly inhibited the 

binding of f-vancomycin to the surface of spores under germinating conditions 

(Figure 3.9B). As mentioned above, complete competition is not expected since 

these two compounds, in addition to sharing lipid II as target, also have non-

overlapping binding sites (non-crosslinked cell wall for vancomycin and the 

membrane for nisin). Importantly, 100-fold molar excess of unmodified nisin also 

significantly reduced the binding of b-nisin to germinated spores (Figure 3.9C), 
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providing additional evidence that b-nisin and wild type nisin bind to the same 

targeted. 

In an effort to determine whether cortex and cell well degradation and 

processing alter lipid II localization as well as the co-localization of nisin and 

vancomycin, a series of cortex hydrolase mutants evaluated for their ability to 

alter nisin-vancomycin co-localization.  These B. anthracis constructs were 

gracious provide by Dr. David Popham, and his laboratory has demonstrated that 

single knockouts of either ∆selB or ∆cwlJ1 slowed the rate of cortex hydrolysis 

while the double mutant, ∆selB∆cwlJ1, eliminated cortex hydrolysis in a B. 

anthracis 34F2 background (17, 18).  In the presence of both b-nisin and f-

vancomycin (both at 1 µM), the outgrowth of variants of germinated spores were 

inhibited, and b-nisin and f-vancomycin were associated with spores 

(Supplementary Figure S6A), with a similar binding among all the 34F2 spore 

variants as well as B. anthracis 7702 (Figure 2).  As previously demonstrated 

Pearson's coefficient confirmed that nisin and vancomycin were high co-localized 

at all time points for all hydrolase variants (n=30; Supplementary Figure S6B).  

Furthermore, hydrolase knockout spores incubated with f-vancomycin (1 µM) in 

the absence of nisin showed relatively uniform labeling at 30 min, with more 

punctuate labeling at 60 min (Supplementary Figure S6C). Outgrowth of spores 

into bacilli altered the localization of vancomycin to bands that cross the long axis 

of the bacilli at 120 min at a site congruent with cell division (Supplementary 

Figure S6C) (27). Direct disruption of lipid II co-localization by nisin-vancomycin 

was not possible since B. anthracis is highly resistant to bacitracin and 
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fosfomycin, which would deplete the spore of lipid II (28-30).  Also, genetically 

altering lipid II or cell wall synthesis prevents the formation of a viable and heat 

resistant spore (31-33). 

Although these results indicate that nisin binds to lipid II, the microscopy 

data do not reveal whether lipid II is the only nisin target in germinated spores. 

Previous studies suggested that nisin may bind covalently to a protein target 

during outgrowth inhibition through a Michael-like addition of a Cys of a spore 

protein to Dha5 of nisin (6, 15, 20). However, extensive efforts did not identify a 

cognate protein receptor when using fluorescent or biotin labeled nisin as a 

probe since a nisin-mediated band shift or the appearance of a nisin-labeled 

protein band did not occur (Figure 3.10), which is consistent with earlier results 

emerging from mutagenesis of Dha5 (23). 

 

Figure 3.9 
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Figure 3.9 (continued) 

 

Figure 3.9. Competition assays with nisin and vancomycin.   A. Competition assay of 

spore binding of unlabeled vancomycin and b-nisin.  * indicates a P < 0.05 between b-nisin (1 

µM) only treated spores and spores pretreated with unlabeled vancomycin (100 µM) prior to b-

nisin addition (1 µM).  ** indicates a P < 0.05 between b-nisin-treated (1 µM) spores and spores 

treated with unlabeled vancomycin (100 µM).  B. Binding competition assay of unlabeled nisin in 

competition with b-vancomycin.  * indicates a P < 0.05 between b-vancomycin (1 µM) only treated 

spores and spores pretreated with unlabeled nisin (100 µM) prior to b-vancomycin addition (1 

µM).  ** indicates a P < 0.05 between b-vancomycin (1 µM) only treated spores and spores 

treated with unlabeled nisin (100 µM) only. C. Competition assay of unlabeled chymotrypsin 

cleaved nisin (c-nisin) in competition with b-nisin.  * indicates a P < 0.05 between b-nisin (1 µM) 

only treated spores and spores pretreated with unlabeled c-nisin (100 µM) prior to b-nisin addition  

(1 µM).   * indicates a P < 0.05 between control (0 µM nisin) spores and spores pretreated with  

unlabeled nisin or unlabeled c-nisin (100 µM) prior to b-vancomycin addition (1 µM). In  A-C the 

data are plotted as the mean fluorescent intensity (MFI) associated with the binding of the labeled 

antibiotic.  D.  At time 0, 5, and 10 h, samples were removed and visualized by DIC microscopy. 

For each panel, a single spore is shown for clarity, but the image is representative of all other B. 

anthracis spores within that sample. Bars, 5 µm. The data are representative of those from three 

independent experiments. 
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Figure 3.10  

 

Figure 3.10. Cortex hydrolase mutants do not alter nisin and vancomycin co-localization 

at lipid II.  At time 30, 60, and 120 min, samples were removed and visualized by epi-

fluorescence microscopy.  A.  Dual antibiotic incubation of germinated spores were performed 

with bodipy-nisin (b-nisin, red) and fluorescein-vancomycin (f-vancomycin, green) at 1 µM.  Co-

localization is indicated by yellow in merged images.  B.  Images were processed and Pearson's 

coefficient co-localization analysis of 30 spores per condition was performed using SoftWoRX 

Explorer Suite.  Analysis of the co-localization with Pearson's coefficient, identified that nisin and  
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Figure 3.10 (continued) 

vancomycin where highly co-localized throughout the spore.  C. Single antibiotic incubation of 

germinated spores with b-nisin (red) or f-vancomycin (green) at 1 µM.   A,C. For each panel, a 

single spore is shown for clarity but is the image is representative of all other B. anthracis spores 

within that sample. 

 

Figure 3.11. Utilizing biotin or fluorescently labeled nisin to identify or isolate a covalent 

protein target.  A.  Fluorescence gel analysis for rhodamine-nisin (r-nisin) conjugates to a spore 

protein utilizing SDS page separation of proteins and imaging with a GE Typhoon fluorescence 

gel scanner.  Only a r-nisin band is observed.  B.  Immunoblot analysis of biotin-nisin conjugates 

to a spore protein probing with streptavidin conjugated to horseradish peroxidase.  A,B. Spores 

were germinated for 30 min in BHI in the presence or absence of labeled nisin, boiled for 20 min 

in the presence of 1 mM tris(2-carboxyethyl)phosphine (TCEP), 4.8 M urea, 3% sodium dodecyl 

sulfate  (SDS), homogenated by vortexing with glass beads (30 sec x 10).  

 

3.2.3 Lipid II binding is not sufficient to inhibit outgrowth.  

Nisin binds spore-associated lipid II and inhibits spore outgrowth, but 

whether lipid II binding alone is sufficient for nisin-dependent outgrowth inhibition 

was not evident from the studies described thus far. To evaluate this possibility, 
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we studied the action of a purified amino-terminal chymotryptic fragment of nisin 

(c-nisin) that retained the A, B, and C rings of the full-length parent compound. C-

nisin contains the necessary N-terminal portion of nisin required for lipid II 

binding (14) but is unable to form pores (11). Competition assays between c-nisin 

and b-nisin revealed that the binding of b-nisin to germinated spores was 

significantly reduced in the presence of 100-fold molar excess of c-nisin (Figure 

3.9C), once more providing evidence that b-nisin recognizes and binds lipid II. 

When incubated with germinated spores, c-nisin did not demonstrate significant 

inhibition of spore outgrowth (Figure 3.9D, Table 3.1), although a slight delay in 

the elongation of vegetative bacilli was observed. These data indicate that while 

the chymotrypsin-derived amino terminal nisin fragment binds lipid II, this 

fragment alone does not inhibit the outgrowth of germinated spores. Interestingly, 

truncated nisin A mutants lacking rings D and E were unable to permeabilize the 

membranes or cause a disruption of membrane potential within L. lactis, but 

these mutants retained the capacity to inhibit the outgrowth of B. subtilis spores 

(46), which is contradictory to the results presented here.  However, the 

previously reported outgrowth results were obtained by measuring optical density 

at 600 nm to indicate outgrowth, which is an indirect measurement of outgrowth, 

while results reported here utilized microscopy to provide direct visual 

observations of the lack of outgrowth inhibition. Futhermore, the spore and cell 

well structural differences between B. subtilis and B. anthracis could potentially 

afford the differing results.  Consistent with above result, vancomycin, which also 

binds lipid II, albeit at a different recognition site, was also incapable of inhibiting 
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the outgrowth of germinated spores (Figure 3.4, Figure 3.11, Figure 3.12, Table 

3.2). Together, these results support the model that lipid II binding alone is not 

sufficient to inhibit the outgrowth of germinated spores.  

 

Comparison of nisin and c-nisin outgrowth inhibition 

Antibiotic
a
 Length of B. anthracis

b
 

 0 h 5 h  10 h  

nisin 1.59 ± 0.07 1.50 ± 0.06 1.59 ± 0.06 

c-nisin 1.56 ± 0.07  8.72 ± 2.88*  7.95 ± 1.18* 

 

 Table 3.1.  Comparison of nisin and c-nisin outgrowth inhibition. 
a 
Spores were incubated 

in BHI with 10 µM of the indicated antibiotic.  
b 
At indicated time points samples were taken and 

visualized utilizing DIC microscopy.  Size analysis, reported in µm, was performed with 

SoftWoRX Explorer Suite. n = 30. *Indicates significantly longer spores in the listed condition than 

spores at 0 h and spores at the identical time incubated in the presence of nisin, P < 0.001. 

 

 Figure 3.12.  Lipid II binding is not sufficient for outgrowth inhibition - growth curves.  The 

data are expressed as the percentage of OD600 at each time point relative to the OD600 of each 

culture at time zero, which was the control in these experiments.  Error bars indicate standard 

deviations.  The concentrations of vancomycin (µM) for each condition are indicated within the 

graph.   
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 Figure 3.13.  Lipid II binding is not sufficient for outgrowth inhibition - microscopy.  At 

time 0,  5, and 10 h, samples were removed and visualized by DIC microscopy. For each panel, a 

single spore is shown for clarity but is representative of all other B. anthracis spores within that 

sample. 

Comparison of outgrowth inhibition by nisin and vancomycin 

Antibiotic
a
 Length of B. anthracis

b
 

 0 h 5 h  10 h  

nisin 1.48 ± 0.14 1.50 ± 0.12 1.46 ± 0.09 

vancomycin 1.56 ± 0.18  2.46 ± 0.18*  2.47 ± 0.33* 

  

Table 3.2.  Comparison of outgrowth inhibition by nisin and vancomycin. 
a
Spores were 

incubated in BHI with 10 µM of the indicated antibiotic.  
b 
At indicated time points samples were 

taken and visualized utilizing DIC microscopy.  Size analysis, reported in µm, was performed with 

SoftWoRX Explorer Suite. n = 30. *Indicates significantly longer spores in the listed condition than 

spores at 0 h and spores at the identical time incubated in the presence of nisin, P < 0.001. 
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3.2.4 Lipid II binding is associated with nisin-dependent loss of membrane 

potential.  

 As described in chapter 2, nisin prevents the establishment of the 

membrane potential in germinated spores (12). Although the results presented in 

this chapter support the binding of nisin to lipid II, they do not establish whether 

nisin binding to lipid II is important for nisin-dependent membrane potential 

dissipation. To evaluate this possibility, the membrane potential was first 

measured in germinated spores in the presence of vancomycin. Importantly, 

vancomycin alone did not cause a decrease in membrane potential (Figure 

3.13A, B). However, nisin was able to prevent the establishment of a membrane 

potential (Figure 3.13A-C). Furthermore, a significant decrease of nisin-

dependent reduction of the trans-membrane potential of spores was observed in 

the presence of a 100-fold molar excess of vancomycin (Figure 3.13A).  

Moreover, germination of spores in the presence of c-nisin resulted in 

significantly less reduction of spore trans-membrane potential (Figure 3.13C). 

Because these studies were carried out under conditions where vancomycin or c-

nisin reduced the binding of b-nisin to spores (Figures 3.9C and 3.13A), these 

results suggest that nisin-dependent reduction of the trans-membrane potential 

requires binding to lipid II in newly germinated spores.   
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Figure 3.14. Lipid II binding is not sufficient to inhibit membrane potential establishment 

via membrane disruption.  A.  Functional competition assay using nisin-induced dissipation of the 

membrane potential as a read-out. The data is plotted as the population of spores exhibiting a 

native membrane potential per 10,000 spores as observed by flow cytometry. Pre-incubation with 

vancomycin blocks nisin-mediated membrane potential dissipation.  * indicates a p-value < 0.05 

between nisin (1 µM) only treated spores and spores pretreated with vancomycin (100 µM) prior 

to nisin addition (1 µM).  ** indicates a p-value < 0.05 between non-treated spores and spores 

treated with vancomycin (100 µM) only.  B, C. At time 0 (prior to the addition of nisin) and 30 min 

aliquots were removed from the cultures and evaluated for membrane potential by measuring the 

DiOC2-associated B. anthracis fluorescence by flow cytometry.   .Data are rendered as the fold 

change in membrane potential relative to spores in the presence of 0.1 M MOPS pH 6.8 at the 

indicated time point.  +: presence of BHI (germinant), 10 µM nisin, 10 µM c-nisin, or 10 µM 

vancomycin.  -: absence of BHI (germinant), nisin, c-nisin, or vancomycin. 



 114 

3.2.5 Lipid II binding is associated with nisin-dependent alterations in 

membrane integrity.  

 As described in chapter 2, nisin disrupts the membrane integrity of 

germinated spores (12), but the data thus far do not determine whether nisin-lipid 

II interactions are required for this activity. Therefore, experiments were 

conducted to examine the effect on membrane integrity. Nisin induced 

significantly more PI uptake than c-nisin in over 92% of the population of spores 

(Figure 3.14A and B). Vancomycin was not able to induce an increase in PI 

uptake (Figure 3.14B). In addition, only nisin was able to render the germinated 

spore metabolically inactive prior to outgrowth (Figure 3.15). Collectively, these 

results suggest that an association between nisin and lipid II is important for the 

disruption of membrane integrity. 

 

Figure 3.15 
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Figure 3.15 (continued) 

 
Figure 3.15. C-terminal region of nisin is essential for preventing a membrane potential, 

spore outgrowth, and membrane disruption.  At time 0 (prior to the addition of nisin) and 30 min, 

aliquots were removed from the cultures and evaluated for the following:,  A, C. Membrane 

disruption by measuring PI uptake by B. anthracis using flow cytometry,    B. Population of spores 

exhibiting an increase in fluorescence associated with PI uptake.  The data are plotted as the 

percent of PI positive spores.  A, C. Data are rendered as the fold change PI uptake relative to 

spores in the presence of 0.1 M MOPS pH 6.8 at the indicated time point.  A-C. +: presence of 

BHI (germinant), 10 µM nisin, 10 µM c-nisin, or 10 µM vancomycin.  -: absence of BHI 

(germinant), nisin, c-nisin, or vancomycin. 

 

 
 Figure 3.16.  Lipid II binding is not sufficient to disrupt metabolic function during 

germination.  At the indicated times, aliquots were removed from the cultures and were evaluated 

for oxidative metabolism by spectrophotometrically measuring the production of formazan at 570 

nm. 
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3.2.6 Modification of the nisin hinge region, but not Dha5, results in the 

loss of outgrowth inhibition.   

 Previous studies have reported conflicting results as to whether Dha5 is 

essential for outgrowth inhibition (6, 15, 20, 23). Therefore, experiments were 

conducted to determine the necessity of Dha5 for membrane disruption resulting 

in outgrowth inhibition.  Nisin and nisin-Dha5-Ala were heterologously produced 

in E. coli (h-nisin and h-nisin S5A) (27), purified, and assessed for their ability to 

disrupt the membrane, inhibit establishment of a membrane potential, and 

prevent outgrowth of germinated spores.  Both lantibiotics inhibited membrane 

potential establishment and spore outgrowth and increased PI uptake (Figure 

3.16, Table 3.3) to the same extent.  These results show that Dha5 is not 

essential for spore outgrowth inhibition, as also reported previously by Moll and 

coworkers (23), and that the mutation does not change the mechanism of 

inhibition.  

A second region of interest for mutation is the hinge region between the 

three N-terminal rings and the two C-terminal rings. The double mutants 

N20P/M21P and M21P/K22P have been shown previously to retain lipid II 

binding affinity but not pore-forming activity (10, 13, 31). These mutants were 

prepared in this study by heterologous expression in E. coli and were analyzed 

for their ability to disrupt the spore membrane and inhibit membrane potential 

establishment and spore outgrowth.  The inhibitory activity of the nisin variants 

tested against  Micrococcus flavus, which is a highly sensitive indicator strain.  

The data demonstrated high antimicrobial activity for the hinge mutants were 
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consistent with previously published results as shown in Table 3.3 (10, 13, 31).  

However, as depicted in Figure 3.16, both mutants lost the ability to inhibit spore 

outgrowth, disrupt the membrane, and inhibit establishment of a membrane 

potential (see also Table 3.4).  These data corroborate the findings with the 

truncated analog c-nisin and demonstrate that the ability to disrupt the spore 

membrane is essential for outgrowth inhibition.  

 IC50 and IC99 of nisin variants against Micrococcus flavus
a
 

nisin variant IC50
b
 IC99

c
 

nisin 1.74 ± 0.05 3.20 ± 0.31 

h-nisin 1.79 ± 0.09  3.74 ± 0.50 

h-nisin S5A 1.76 ± 0.07 3.21 ± 0.42 

h-nisin N20PM21P 2.03 ± 0.01 5.56 ± 0.01 

h-nisin M21PK22P 1.90 ± 0.03 4.58 ± 0.18 
 

 Table 3.3. IC50 and IC99 of nisin variants against Micrococcus flavus.  Three independent 

experiments were performed in triplicate. The values are reported as the averages of three 

experiments.  
b
Defined as the nisin concentration that inhibits the growth of cultures of 

Micrococcus flavus by 50% at 8 h. 
c
Defined as the nisin concentration that inhibits the growth of 

cultures of Micrococcus flavus by 99% at 8 h. 
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 Figure 3.17. A flexible hinge region, not Dha5, is essential for preventing a membrane 

potential, spore outgrowth, and membrane disruption. At time 0 (prior to the addition of nisin) and 

30 min, aliquots were removed from the cultures and evaluated for the following: A. Membrane 

potential by measuring the fluorescence of DiOC2-associated B. anthracis using flow cytometry.  

B. Membrane disruption by measuring PI uptake by B. anthracis using flow cytometry.  C. 

Population of spores exhibiting an increase in fluorescence associated with PI uptake.  The data 

are plotted as the percent of PI positive spores.  A, B. Data are rendered as the fold change in 

membrane potential (A) or PI uptake (B) relative to spores in the presence of 0.1 M MOPS pH 6.8 

at the indicated time point.  A-C. +: presence of BHI (germinant) or nisin variant (10 µM).  -: 

absence of BHI (germinant) or nisin variant.  D.  At time 0, 5, and 10 h, samples were removed 

from cultures containing 10 µM of the indicated nisin variant and visualized by DIC microscopy. 

For each panel, a single spore is shown for clarity, but the image is representative of all other B. 

anthracis spores within that sample. Bars, 5 µm. The data are representative of those from three 

independent experiments. 
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Comparison of outgrowth inhibition by nisin variants 

Antibiotic
a
 Length of B. anthracis

b
 

 0 h 5 h  10 h  

nisin 1.65 ± 0.12 1.68 ± 0.10 1.67 ± 0.13 

h-nisin 1.67 ± 0.12 1.67 ± 0.14 1.70 ± 0.13 

h-nisin S5A 1.68 ± 0.12 1.69 ± 0.12 1.70 ± 0.12 

h-nisin N20P/M21P 1.67 ± 0.12  7.04 ± 1.12*  5.91 ± 1.67* 

h-nisin M21P/K22P 1.65 ± 0.15  7.76 ± 1.60*  5.45 ± 1.68* 

 

 Table 3.4.  Comparison of outgrowth inhibition by nisin variants. 
a
Spores were incubated 

in BHI with 10 µM of the indicated antibiotic.  
b
At indicated time points samples were taken and 

visualized utilizing DIC microscopy.  Size analysis, reported in µm, was performed with 

SoftWoRX Explorer Suite. n = 30. *Indicates significantly longer spores in the listed condition than 

spores at 0 h and spores at the identical time incubated in the presence of nisin, P < 0.001. 

 

3.2.7 Membrane depolarization inhibits spore outgrowth.   

 Previous studies have identified that the nisin pores allow the efflux of 

ions, Rb+ and Cl-, as well as small molecules such as Glu and Pro (24).  To 

determine whether membrane depolarization alone is sufficient for outgrowth 

inhibition, the activity of nisin was compared to a non-specific membrane 

depolarizer, carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone (FCCP).    As 

compared to the outgrowth inhibitin of 1 µM nisin, 10 µM FCCP was required to 

inhibit outgrowth through 10 h (Figure 3.17, Table 3.5).  Additionally, 1 µM FCCP 

was able to visually slow the kinetics of outgrowth when compared to BHI only 

conditions (Figure 3.17, Supplemental Table 3.5).  These findings suggest that 

dissipation of membrane potential alone, at sufficient concentration of a 

depolarizer, will inhibit outgrowth. However, nisin's interaction with a specific 

target to prevent membrane potential establishment as well as the potential flow 
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of additional ions and small molecules aids in nisin-mediated outgrowth inhibition 

and killing of germinated spore. 

 

 Figure 3.18. Outgrowth inhibition results from membrane depolarization. At time 0, 5, and 

10 h, samples were removed and visualized by DIC microscopy. For each panel, a single spore is 

shown for clarity, but the image is representative of all other B. anthracis spores within that 

sample. Bars, 5 µm. The data are representative of those from three independent experiments. 

 

Comparison of nisin and FCCP outgrowth inhibition 

Antibiotic
a
 Length of B. anthracis

b
 

 0 h 5 h  10 h  

nisin (1 µM) 1.65 ± 0.12 1.68 ± 0.10 1.67 ± 0.13 

FCCP (1 µM) 1.68 ± 0.12  2.27 ± 0.58*  5.80 ± 0.93* 

FCCP (10 µM) 1.69 ± 0.11 1.80 ± 0.26 1.93 ± 0.43 

 

 Table 3.5.  Comparison of nisin and FCCP outgrowth inhibition.  
a
Spores were incubated 

in BHI with 10 µM of the indicated antibiotic.  
b
At indicated time points samples were taken and 

visualized utilizing DIC microscopy.  Size analysis, reported in µm, was performed with 

SoftWoRX Explorer Suite. n = 30. *Indicates significantly longer spores in the listed condition than 

spores at 0 h and spores at the identical time incubated in the presence of nisin, P < 0.001. 
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3.3 Discussion 

The studies presented in chapter 2 and elsewhere (4, 6, 12, 20) implicated 

nisin-mediated alterations in the membrane integrity and prevention of the 

establishment of a membrane potential as the mechanism by which nisin inhibits 

spore outgrowth. Whether or not interactions with lipid II were important for these 

activities was not determined. Utilizing fluorescently labeled nisin and 

vancomycin, competition experiments, and nisin analogs, lipid II was identified in 

this study as the target for nisin binding to induce inhibition of spore outgrowth. 

Lipid II binding alone is not sufficient for outgrowth inhibition, however, which 

requires membrane disruption. Modification of Dha5 to Ala does not result in the 

loss of outgrowth inhibition and membrane disruption.  We anticipate that 

lantibiotics such as subtilin (16, 22), epidermin (5), and haloduracin (21) also 

inhibit spore outgrowth via membran disruption and that lipid II binding may also 

be involved in nisin inhibition of other spore-forming bacteria from the genera 

Bacillus and Clostridium, including those of medical relevance such as C. 

botulinum  and C. difficile. 

 

3.4 Materials and Methods 

3.4.1 Spore preparations.  

 Spores were prepared from B. anthracis Sterne 7702, as described 

previously (28).  Enumeration of spores was performed using a Petroff-Hauser 

hemacytometer under a light microscope at 400x magnification (Nikon Alphaphot 
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YS, Mellville, NY). A typical spore preparation yielded 10 mL of spores at a 

concentration of 2.0 x 109 spores/mL. 

 

3.4.2 Nisin purification.  

 Nisin was purified and characterized as described previously (12).   

 

3.4.3 Labeling of nisin and vancomycin.  

 Nisin was reacted with NHS-fluorescein (Pierce, Rockford, IL), NHS-

rhodamine (Pierce), or with NHS-BODIPY-633 (Invitrogen, Carlsbad, CA) to 

generate an analog with a single fluorescein group (f-nisin), a single rhodamine 

group (r-nisin), or a single BODIPY group (b-nisin) after purification. The 

reactions were carried out according to the manufacturer’s protocols except that 

a 0.75:1 molar ratio of NHS-fluorophore and nisin was used.  Proteolytic digest of 

the fluorescently labeled compounds and subsequent analysis by LC-MS showed 

that the label was located at the N-terminal portion of nisin for BODIPY 633 and 

the C-terminal portion of nisin for fluorescein. Labeling reactions were stopped 

with the addition of 100-fold molar excess of Tris (Sigma, St. Louis, MO) after a 3 

h reaction time at room temperature (25 ºC). Reactions were analyzed via matrix 

assisted laser desorption ionization - time of flight (MALDI-TOF) and electrospray 

ionization (ESI) mass spectrometry (MS) (Applied Biosystems, Carlsbad, CA). 

Vancomycin was labeled with NHS-rhodamine to obtain r-vancomycin,  with 

NHS-fluorescein to generate f-vancomycin, or with NHS-BODIPY-633 to produce 

b-vancomycin as previously described (29) and MALDI-TOF mass spectrometry. 
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Vancomycin labeling occurs on the amino group of the vancosamine sugar 

(Figure 3.1B) (29). All labeled compounds were purified by reverse phase-high 

performance liquid chromatography (RP-HPLC, Waters, Milford, MS) utilizing a 

C4 semi-preparative column (Waters, Milford, MS) with a linear gradient of 0-

100% acetonitrile (Fisher Chemical, Fairlawn, NJ) with 0.1% trifluoroacetic acid 

(Sigma) over 40 min.  Acetonitrile, TFA, and water were removed from fractions 

containing nisin or vancomycin by rotary evaporation followed by lyophilization. 

The identity of purified nisin (Figure 3.18 A-C) and vancomycin (Figure 3.18 D-F) 

was confirmed by MALDI-TOF and ESI MS. Prior to use, lyophilized nisin and 

vancomycin were weighed on an micro-analytical balance and dissolved in 0.1 M 

MOPS pH 6.8 to yield the desired concentration.   

Figure 3.19 
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Figure 3.19 (continued)  
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 Figure 3.19. Fluorescent labeling of nisin and vancomycin.  Both nisin (A-C) and 

vancomycin (D-F) were independently labeled with NHS-fluorescein, rhodamine, and BODIPY-

633.  Reactions were purified by HPLC and analyzed via MALDI-TOF mass spectrometry.    

 

3.4.4 Truncation of nisin with chymotrypsin.  

 Proteolysis of nisin with chymotrypsin was performed as previously 

described (7). Reactions were analyzed by MALDI-TOF MS. The N-terminal 

chymotryptic segment (c-nisin, Figure 1A) was purified from full length nisin and 

the C-terminal fragment by RP-HPLC utilizing a C4 semi-preparative column 

(Waters, Milford, MA) with a linear gradient of 0-100% acetonitrile over 40 min.  
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Acetonitrile, TFA, and water were removed from fractions containing c-nisin by 

rotary evaporation followed by lyophilization. The identity of purified c-nisin was 

confirmed by MALDI-TOF and ESI mass spectrometry. Prior to use, lyophilized c-

nisin was weighed on an analytical balance and dissolved in 0.1 M MOPS pH 6.8 

to yield the desired concentration. 
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 Figure 3.20. Chymotypsin cleavage nisin and purification of c-nisin.    Purified nisin (red) 

was cleaved after Asn20 with chymotrypsin rendering an N-terminal fragment containing the first 

3 rings of nisin (Figure 3.1).  The c-nisin (black) was purified by HPLC and analyzed via MALDI-

TOF mass spectrometry. 

 

3.4.5 Culturing B. anthracis spores.  

 B. anthracis Sterne 7702 spores at a concentration of 4.0 x 106 spores/mL 

were incubated in brain heart infusion medium (BHI; BD Bioscience San Jose, 

CA) supplemented with nisin (at 1 or 10 µM), c-nisin (10 µM), nisin variants (S5A, 

N20PM21P, or M21PK22P at 10 µM) vancomycin (at 0.1, 1, 10 or 100 µM), 

carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone (FCCP at 1 or 10 µM), or 

with 0.1 M 3-(N-morpholino)propanesulfonic acid (MOPS; Sigma) at pH 6.8 as a 

control.  For non-germinating conditions, 0.1 M MOPS (pH 6.8) was substituted 
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for BHI medium. All incubations were performed at 37 °C under aeration at 180 

rpm on a rotary shaker (Thermo Fisher Scientific Inc., Waltham, MA) and under 

ambient CO2. 

 

3.4.6 Characterization of antibiotic effects on germination and outgrowth.   

 Experiments investigating spore hydration, oxidative metabolism, 

membrane potential, and membrane integrity were performed as previously 

described (12).   

 

3.4.7 Differential interference contrast (DIC) and epi-fluorescence 

microscopy.  

 At indicated times, samples were removed from B. anthracis cultures and 

fixed by incubation in 4% formaldehyde (Sigma) for 30 min at 37 °C followed by 

mounting on glass slides in 20% glycerol (Sigma) or Slow-Fade® antifade 

reagent (Invitrogen) under glass cover slips for epi-fluorescence microscopy. Live 

epi-fluorescence microscopy was also performed by mounting samples on glass 

slides in 0.5% agarose under cover slips. Images were collected using an 

Applied Precision assembled DeltaVision EpiFluorescence microscope 

containing an Olympus Plan Apo 100x oil objective with NA 1.42 and a working 

distance of 0.15 mm.  Images were processed and Pearson's coefficient co-

localization analysis of 50 spores per condition was performed using SoftWoRX 

Explorer Suite (Issaquah, WA). Acquisition of epi-fluorescence images utilized 

FITC (Ex: 490/20 Em: 528/28), rhodamine (Ex: 555/28 Em: 617/73), and Cy5 
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(Ex: 640/20 Em: 685/40) to visualize fluorescein, rhodamine, and BODIPY-633 

fluorescence, respectively. 

 

3.4.8 Functional competition assay.  

 Competitive binding of nisin and vancomycin was evaluated utilizing a 

functional assay in which vancomycin prevented nisin-mediated loss of 

membrane potential via lipid II binding (4).  Spores were incubated in BHI 

medium (germinating conditions), in the presence of 10 mM L-Ala and inosine 

(germinating conditions), or in 0.1 M MOPS pH 6.8 (non-germinating conditions) 

with DIOC2 for 60 min at 37 ºC followed by incubation with 0 or 100 µM 

vancomycin for 2 min.  Nisin was added to cultures at a final concentration of 1.0 

µM, and the effect on membrane potential disruption was immediately assayed 

with flow cytometry through 10,000 counts to observe the population of spores 

that exhibited reduced membrane potential in the presence of nisin.  The MIC of 

vancomycin against B. anthracis is 0.5-3.5 µM (1, 2, 30), but the antimicrobial 

effects of vancomycin under the conditions used here are not manifested until 

spores have been germinated and incubated in the presence of vancomycin for 

90 min, which is well after the timeframe of interest in this investigation. 

   

3.4.9 Competition binding assay.  

 Competitive binding of nisin and vancomycin was evaluated by 

determining the interaction of the fluorescently labeled antibiotic (nisin or 

vancomycin) with lipid II in the presence of the other unlabeled antibiotic (in 100-
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fold molar excess) as a competitor. Spores were incubated in either BHI 

(germinating) or 0.1 M MOPS pH 6.8 (non-germinating) for 60 min at 37 ºC 

followed by incubation with 0 or 100 µM of the unlabeled antibiotic for 5 min at 37 

ºC.  The labeled antibiotic was then added to cultures at a final concentration of 

1.0 µM.  The binding of the labeled antibiotic to the spores was assayed by flow 

cytometry to observe the reduction in antibiotic-associated increase in 

fluorescence in the presence of the competing unlabeled antibiotic.  Analytical 

flow cytometry-based assays were carried out using a Beckman Coulter Epics 

XL-MCL flow cytometer equipped with a 70-µm nozzle, a 633-nm HeNe laser, 

and a 17-mV output. The band pass filter used for detecting labeled antibiotic 

binding was 660/20. Spore analysis was standardized for side/forward scatter 

and fluorescence by using a suspension of fluorescent beads (Beckman Coulter 

Inc., Fullerton, CA). At least 10,000 events were detected for each experiment 

(>2,000 events per min). Events were recorded on a log fluorescence scale. 

Density plots and fluorescence intensity histograms were generated using FCS 

Express 3.00.0311 V Lite Standalone. Sample debris (as indicated by lower 

forward and side scatter and a lack of PI staining) represented a small fraction (1 

to 2%) of the detected events and was excluded from analysis. 

 

3.4.10 Site-directed mutagenesis.  

 Mutagenesis of nisA was performed using the QuikChange mutagenesis 

kit from Stratagene (La Jolla, CA). First, complementary mutagenic primers 

(Table 3.6) were designed containing the desired mutation(s) in the center of the 
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primer and 20 to 25 bases of a perfectly complementary sequence on either side. 

Reaction mixtures were prepared as described in the QuikChange protocol with 

pRSFDuet-1nisAB as the plasmid template (27) for the generation of NisA S5A 

and M21P mutants. After cycling of the reaction mixture 18 times in a thermal 

cycler (MJ Research, Waltham, MA), the resulting mixture was digested with 

DpnI (New England Biolabs, Ipswich, MA), and the resulting DNA was 

transformed into supercompetent E. coli DH5α cells. The resulting mutant 

plasmids were isolated, and the entire gene was sequenced to ensure that only 

the appropriate mutations were introduced.  For double mutations, a second 

round of site directed mutagenesis was performed utilizing pRSFDuet-1nisAB-

M21P as the plasmid template for the generation of NisA N20PM21P and 

M21PK22P mutants. 

 

 Table 3.6.  Primer sequences used for mutagenesis. 
a 
Primers were designed in 

accordance with the QuikChange site-directed mutagenesis protocol by Stratagene (La Jolla, CA) 

and were synthesized by Integrated DNA Technologies (Coralville, IA).  
b 
Underlined sequences 

indicate engineered codon mutations. 

Primer sequences used for mutagenesis 

Gene 
Desired 
Mutation 

Primer
a
 Primer Sequence (5'→3')

b
 

nisA  S5A nisA-S5AFor 
5'-GGTGCATCACCACGCATTACAAGTATTGCGCTATG 
TACACCCGGTTGTAAAACAAG-3' 

  nisA-S5ARev 
5'-CCACGTAGTGGTGCGTAATGTTCATAACGCGATACA 
TGTGGGCCAACATTTTGTTC-3' 

nisA  M21P nisA-M21PFor 
5'-ACAGGAGCTCTGATGGGTTGTAACCCCAAAACAGC 
AACTTGTCATTGTAGT-3' 

  nisA-M21PRev 
5'-TGTCCTCGAGACTACCCAACATTGGGGTTTTGTCG 
TTGAACAGTAACATCA-3' 

nisA N20PM21P nisA-N20PM21PFor 
5'-AAAACAGGAGCTCTGATGGGTTGTCCCCCCAAAAC 
AGCAACTTGTCATTGTAGT-3' 

  nisA-N20PM21PRev 
5'-TTTTGTCCTCGAGACTACCCAACAGGGGGGTTTTG 
TCGTTGAACAGTAACATCA-3' 

nisA M21PK22P nisA-M21PK22PFor 
5'-GGAGCTCTGATGGGTTGTAACCCCCCCACAGCAACT 
TGTCATTGTAGTAATCAC-3' 

    nisA-M21PK22PRev 
5'-CCTCGAGACTACCCAACATTGGGGGGGTGTCGTTGA 
ACAGTAACATCATTAGTG-3' 
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3.4.11 Over expression of nisA and mutants with in vivo posttranslational 

modifications.  

 Electro-competent E. coli BL21(DE3) cells were co-transformed with 

pRSFDuet-1 containing nisA variants and nisB genes and pACYCDuet-1 

containing the nisC gene (27) (Table 3.7). Overnight culture grown from a single 

colony transformant was used as inoculum to grow 2 L of terrific broth medium 

(0.12 % Pancreatic Digest of Casein, BD Biosciences, San Jose, CA; 0.24 % 

Yeast Extract, BD Biosciences; 0.094 % K2HPO4, Fisher Chemical; 0.022 % 

KH2PO4, Fisher Chemical) containing 50 µg/L kanamycin (Sigma) and 25 µg/L 

chloramphenicol (Sigma) at 37 °C until the OD600nm reached about 0.6. The 

incubation temperature was then changed to 18 °C and the culture was induced 

with 0.5 mM IPTG (Sigma). The induced cells were shaken continually at 18 °C 

for an additional 18 h. The cells were harvested by centrifugation (10,000×g for 

10 min, Beckman JA-10 rotor, Brea, CA). The cell pellet was resuspended in 45 

mL of start buffer (20 mM Tris, pH 8.0; 500 mM NaCl, Fisher Chemical), 10% 

glycerol (Fisher Chemical), and lysed by sonication (35 % amplitude, 4.4 s pulse, 

9.9 s pause for total 25 min; Sonics & Materials, Inc., Newtown, CT). The sample 

was centrifuged at 23,700xg for 30 min at 4 °C. The supernatant was loaded onto 

Talon® cobalt affinity resin (Clontech, Mountain View, CA) pre-equilibrated with 

start buffer. After 1 hour of gentle agitation at 4 °C, the resin was washed twice 

with 10 mL of start buffer and once with 10 mL of wash buffer (start buffer + 30 

mM  imidazole, Sigma). The peptide was eluted from the resin with 8 mL of 

elution buffer (start buffer + 1 M imidazole).  
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 The pellet from the first sonication and centrifugation was homogenized 

via sonication (35 % amplitude, 4.4 s pulse, 9.9 s pause for total 25 min) in start 

buffer. The cell homogenates were centrifuged at 23,700xg for 30 min at 4 °C. 

The supernatant was loaded onto Talon® cobalt affinity resin for a second round 

of affinity protein purification as previously described.  The pellet was 

resuspended in 30 mL of denaturing buffer (6 M guanidine hydrochloride, Sigma; 

20 mM NaH2PO4, Sigma; 500 mM NaCl, pH 7.5) utilizing sonication (35 % 

amplitude, 4.4 s pulse, 9.9 s pause for total 25 min). The insoluble portion was 

removed by centrifugation at 23,700xg for 30 min at 4 °C, and the supernatant 

was loaded onto Talon® cobalt affinity resin. The resin was washed with 

denaturing buffer containing 30 mM imidazole and eluted with 8 mL of denaturing 

buffer containing 1 M imidazole. The eluents from all three cobalt affinity 

purifications were desalted via RP-HPLC utilizing a C4 semi-preparative column  

with a linear gradient of 0-100% acetonitrile with 0.1% TFA over 40 min.  The 

fractions containing modified prenisin were lyophilized and analyzed by MALDI-

TOF MS. 
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E.coli BL21(DE3) expression plasmids 

Plasmid Relevant Characteristics
a
 Reference 

 pRSFDuet-1nisAB  MCS1contains polyHis-nisA, MCS2 containsnisB, Kan
r
   Shi, X., et al. (29) 

 pACYCDuet-1nisC  nisC, Cam
r
   Shi, X., et al. (29) 

 pRSFDuet-1nisAB-S5A  polyHis-nisAS5A   This study 

 pRSFDuet-1nisAB-M21P  polyHis-nisAM21P   This study 

 pRSFDuet-1nisAB-N20PM21P  polyHis-nisAN20PM21P   This study 

 pRSFDuet-1nisAB-M21PK22P  polyHis-nisAM21PK22P   This study 

 

 Table 3.7. E.coli BL21(DE3) expression plasmids. 
a
All plasmids contain two multiple 

cloning sites (MCS) with gene expression under the control of an IPTG T7 inducible promoter.  

MCS1 pRSF-Duet-1nisAB installs an N-terminal poly-His6-tag on the product of nisA expression.  

Neither nisB nor nisC are tagged allowing for cobalt affinity purification of the modified prenisin.  

The amino acid changes of the nisin variants are indicated.   

 

3.4.12 Cleavage of modified prenisin with trypsin and purification of nisin 

variants.  

 Modified prenisin (500 µM) and trypsin (30 µM, Worthington Biochemicals, 

Lakewood, NJ) were incubated in a 100:3 ratio at room temperature for 3 h with 

150 rpm mixing on a platform shaker (New Brunswick Scientific, Edison NJ). The 

resulting mixture was checked by MALDI-TOF MS and the desired proteolytic 

fragment corresponding to mature nisin or its variants were observed - 

calculated: 3352.5152 m/z – M+H (heterologously expressed nisin, h-nisin), 

3354.5608 m/z - M+H (h-nisin S5A), 3301.5673 m/z - M+H (h-nisin N20PM21P), 

and 3287.9826 m/z - M+H (h-nisin M21PK22P) - observed: 3352.5005 m/z – 

M+H (heterologously expressed nisin, h-nisin), 3354.4946 m/z - M+H (h-nisin 

S5A), 3301.7642 m/z - M+H (h-nisin N20PM21P), and 3287.8738 m/z - M+H (h-

nisin M21PK22P).  Nisin and variants were purified from the cleavage reaction 
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via RP-HPLC utilizing a C4 semi-preparative column with a linear gradient of 0-

100% acetonitrile with 0.1% TFA over 40 min.  The fractions containing nisin 

variants were lyophilized and analyzed by spectrometry MALDI-TOF and ESI 

MS. 
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 Figure 3.21. Cleavage of modified nisin and purification of h-nisin variants. The leader of 

heterologously expressed and purified modified prenisin variants (red) was removed by 

proteolytic cleavage with trypsin rendering fully modified nisin containing all posttranslational 

(Figure 3.1).  The h-nisin variants (black) were purified by HPLC and analyzed via MALDI-TOF 

mass spectrometry. 
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CHAPTER 4: CHARACTERIZATION OF NISIN-MEDIATED MEMBRANE 
DISRUPTION UTILIZING BACILLUS ANTHRACIS SPORES 

 
4.1 Introduction 

The ability of nisin to kill both bacterial spores and vegetative cells via 

membrane disruption or inhibition of cell wall biogenesis mediated through the 

interaction with lipid II (4, 7, 8) (chapters 2, 3) encouraged further mechanistic 

studies to characterize the interaction of nisin with the membrane of living 

organisms, specifically the membrane of germinated Bacillus anthracis spores.  

Previous studies utilizing Bacillus vegetative cells and artificial black lipids have 

identified that a nisin-mediated pore is generated measuring approximately 2 nm 

in diameter (18), that is slightly anion specific (9, 11), allows the flow of amino 

acids as well as ions through the pore (11), and eventually leads to lysis of the 

vegetative cell (2).  However, similar studies have not been undertaken with 

bacterial spores, which structurally are quite different than vegetative cells with 

regards to membrane and extracellular structures such as the cell wall and the 

presence of a spore coat (5).   

The data presented in this chapter demonstrates that nisin induced the 

flow of both ions and small molecules across the spore membrane.  This flow can 

be blocked with either a blocker (DIDS) of protein channels or polyethylene glycol 

(PEG) units of appropriate size (3350 Da).  These data indicate that within nisin-

treated spores, known blockers of membrane channels of approximately 2 nm in 

diameter inhibit the movement of small molecules from the intracellular to 

extracellular environment.  Furthermore, nisin-treated spores do not exhibit 

detectable membrane lysis. The lack of nisin induced lysis of spores would be 
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beneficial in the treatment of spore-mediated bacterial infections since the 

release of bacterial immuno-modulators such as peptidoglycan would not occur.  

Overall, these results support a model where, in contrast to previous reports of 

nisin-mediated cell lysis of vegetative bacilli, nisin kills germinated B. anthracis 

spores by membrane disruption, resulting in depolarization of the membrane and 

thereby preventing the establishment of productive metabolism that normally 

occurs during spore outgrowth. Ian Gut was primarily responsible for the design 

of these studies, data analysis and rendering, and writing this chapter. Paul E. 

Dilfer and Stephanie Czeschin, two undergraduate research associates 

supervised by Ian Gut, performed the experiments. 

 

4.2 Results  

4.2.1 Nisin induces the flow of ions across the spore membrane. 

Previous studies have demonstrated that nisin treatment of spores 

resulted in the efflux of protons preventing the establishment of a membrane 

potential during spore germination (5, chapter 2).  In studies utilizing B. subtilis 

bacilli, nisin induced the efflux of Rb+ and Cl- from vegetative bacteria (11). 

However, it was not clear whether larger molecular weight ions were also 

released from nisin-treated spores. To evaluate this possibility, B. anthracis 

Sterne 7702 spores were germinated in the presence of nisin. The release of K+ 

or Cl- were measured using the membrane impermeable dye indicators 

potassium binding fluorescent indicator tetraammonium salt, (PBFI), or 6-

methoxy-N-(3-sulfopropyl)quinolinium (SPQ), respectively.  Preliminary studies 
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confirmed that neither PBFI nor SPQ inhibited spore germination, or reduced B. 

anthracis viability (Table 4.1). In addition, nisin did not alter the fluorescent 

properties of PBFI or SPQ (Table 4.2). A significant increase in PBFI 

fluorescence was detected when spores were incubated with 10 µM nisin 

suggesting that nisin induced a detectable efflux of K+ (Figure 4.1A). Likewise, a 

significant decrease in SPQ fluorescence was detected when spores were 

incubated with 10 µM nisin, suggesting that nisin induced a detectable efflux of 

Cl- (Figure 4.1B).  As a positive control, 1% Triton X-100 induced efflux of both K+ 

and Cl- (data not shown). These data demonstrate that nisin-induced spore 

membrane disruption mediated the efflux of both cations and anions, which 

suggests the absence of ion selectivity.   

 

Effect of indicator dyes on B. anthracis spore 
germination and viability 

 
Spore germination

a
 Organism viability

a
 

DiSBAC2(3) + + 

PBFI
b
 + + 

PicoGreen
TM,b

 + + 

PrestoBlue
TM,b

 + + 

SPQ
b
 + + 

Vybrant
TM

 Cytotoxicity Assay Kit
b
 + + 

 

 Table 4.1. Effect of indicator dyes on B. anthracis spore germination and viability.   

a 
Spores (4.0 x10

6
) were cultured with brain heart infusion broth in the absence and presence of 

the phenotypic indicator.  Germination initiation was scored as (+) if a significant loss in optical 

density at 600 nm was observed. Organism viability was scored as (+) if there was not a 

significant loss of recoverable CFU, quantified by dilution spot plating.  +: germination occurred or 

organisms remained viable. -: germination was inhibited or organisms were no longer viable.  
b
 

Concentration of the phenotypic indicators are listed in "Materials and Methods.  
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Effects of channel blockers, polyethylene                                                          

glycols, and nisin on phenotypic indicator fluorescence
a
 

 PBFI PicoGreenTM PrestoBlueTM SPQ 

DIDS
b
 - - - ↓ 

DPC
b
 - - - - 

TEA
b
 - - - - 

PEG-92
b
 - ↑ - - 

PEG-600
b
 - - - - 

PEG-3350
b
 - - - - 

PEG-6000
b
 - - - - 

PEG-20000
b
 - ↑ - - 

nisin
b
 - - - - 

   

 Table 4.2. Effects of channel blockers, polyethylene glycols, and nisin on phenotypic 

indicator fluorescence.  
a
 Phenotypic indicators were used at the concentration listed in "Materials 

and Methods" and were incubated with the channel blockers, polyethylene glycols, and nisin in 

the absence of spores for 30 min, and the fluorescence intensity was monitored 

spectrofluorometrically using a Biotek Synergy 2 fluorescence plate reader utilizing the 

appropriate excitation and emission filter sets.  
b
 Channel blockers, polyethylene glycols, and 

nisin at concentrations as described in "Culturing B. anthracis spores" were evaluated for their 

ability to alter phenotypic indicator fluorescence. ↑: increased fluorescence. -:did not alter 

fluorescence. ↓: decreased fluorescence. 
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Figure 4.1. Nisin induced ion efflux from germinating spores. K
+
 efflux (A) or Cl

-
 efflux (B) 

from spores in the absence or presence of nisin monitored as described in "Materials and 

Methods".  The data are expressed as the fold fluorescence change at 20 min after the addition 

of nisin (0.1-10 µM) relative to spores germinated in the absence of nisin.    * indicates a P < 0.05 

between control (0 µM nisin, black) and experimental condition (0.1 - 10 µM nisin, white).  Error 

bars indicate standard deviations. 

 

4.2.2 Nisin mediates small molecule movement across the spore 

membrane.   

Previous studies with germinating spores or vegetative cells of Bacillus 

species have identified the influx of propidium iodide or efflux of amino acids 

(Lys, Glu, and Pro) upon the addition of nisin (5, 11). To further evaluate the 

movement of small molecules, PicoGreenTM influx was monitored.  As a result of 

the absence of high-energy small molecules, ATP and NAD(P)H, and free amino 

acids within a dormant spore, the fluorescent DNA binding agent PicoGreenTM 

was used as a surrogate for small molecule movement. Initial experiments 

determined that PicoGreenTM did not inhibit spore germination or reduce viability 

(Table 4.1), and nisin did not alter the fluorescent properties of PicoGreenTM 
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(Table 4.2).  When spores were germinated in the presence of nisin, a dose 

dependent PicoGreenTM staining of the spore DNA was observed with increasing 

concentrations of nisin (Figure 4.2). As a positive control, 1% Triton X-100 

induced robust staining of spore DNA (data not shown).  These data further 

supported the model that small molecules pass freely through the nisin perturbed 

spore membranes.   
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Figure 4.2.  Nisin induced PicoGreen
TM

 uptake. PicoGreen
TM

 uptake as a function of 

nisin concentration was monitored as described under "Materials and Methods". The data are 

expressed as the fold fluorescence change at 20 min after the addition of nisin (0.1-10 µM) 

relative to dormant spores in the absence of nisin.  * indicates a P < 0.05 between control (0 µM 

nisin, black) and experimental condition (0.1 - 10 µM nisin, white).  Error bars indicate standard 

deviations. 

 

4.2.3 Nisin does not induce spore lysis.   

Previous studies reported that vegetative B. subtilis were lysed in the 

presence of nisin (2), resulting in the loss of optical density of actively replicating 

cultured bacteria with nisin treatment. However, our studies to evaluate whether 

nisin induces membrane lysis of germinated B. anthracis spores revealed that 
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nisin-dependent membrane perturbation did not result in the release of glucose-

6-phosphate dehydrogenase (G6PD) (Figure 4.3) or DNA (Figure 4.4). In 

contrast, extracellular G6PD was detected in samples incubated with Triton X-

100 (Figure 4.3). Preliminary experiments indicated that the reagents in the 

VybrantTM cytotoxicity assay kit (i.e. G6PD release) did not inhibit germination, or 

reduce B. anthracis viability (Table 4.1). Likewise, extracellular DNA from B. 

anthracis spores was detected in the presence of TritonX-100, but not nisin 

(Figure 4.4). These data support a model that spores undergo membrane 

perturbation resulting in the release of small molecular compounds, but not high 

molecular weight macromolecules, consistent with the formation of a pore.  
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 Figure 4.3. Nisin does not induce G6PD release.  The effect of nisin on G6PD release as 

a function of membrane disruption was monitored as described in "Materials and Methods".  The 

data are expressed as the fold fluorescence change at 8 h after the addition of nisin (10 µM, 

white) or 1% Triton X-100 at indicated time points relative to spore germinated in the absence of 

nisin.  * indicates a P < 0.05 between control (0 µM nisin and 0% Triton X-100, black) and 

experimental condition (1% Triton X-100, gray).  Error bars indicate standard deviations. 
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Figure 4.4. Nisin does not induce DNA release. Agarose gel of spores germinated in the 

absence and presence of 10 µM nisin and processed as described in "Materials and Methods”. 

Only those samples that were treated with the lysis cocktail (see Materials and Methods) and 

boiled produced an EcoRI banding pattern indicating DNA release.  The presence of a genomic 

band indicates the lack of DNA release from the spore.  +:  10 µM nisin or lysed samples.  -: 0 µM 

nisin or non-lysed samples. 

 

4.2.4 Nisin renders the germinating spore metabolically inactive. 

Results presented in chapter 2 indicated that the development of oxidative 

metabolism in germinated spores is inhibited in the presence of nisin.  However, 

monitoring the conversion of a tetrazolium substrate to formazan is explicitly an 

endpoint assay that possesses limited sensitivity while being highly hazardous as 

a result of formazan production.  The use of PrestoBlueTM as a fluorescence 

indicator of oxidative metabolism facilitates both endpoint and kinetic assays that 

are highly sensitive without the production of a toxic product.  B. anthracis spores 

were germinated in the presence of PrestoBlueTM with increasing concentrations 

of nisin (0-10 µM), and a dose-dependent reduction of oxidative metabolism was 

observed (Figure 4.5).  This result confirmed previous results (chapter 2) and 

provided an additional highly sensitive assay to evaluate the effectiveness of 

channel blockers to alleviate nisin inhibition of oxidative metabolism 

establishment.   
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Figure 4.5. Nisin prevents the establishment of an oxidative metabolism.  The effect of 

nisin on metabolism establishment as a function of membrane disruption was monitored as 

described in "Materials and Methods".  The data are expressed as the fold fluorescence change 

at 90 min after the addition of nisin (0.1-10 µM) relative to spores germinated in the absence of 

nisin.  * indicates a p-value < 0.05 between control (0 µM nisin, black) and experimental condition 

(0.1 - 10 µM nisin, white).  Error bars indicate standard deviations. 

 

4.2.5 Blocking nisin-mediated membrane disruption with ionic channel 

inhibitors. 

The finding that, in the presence of nisin, small molecules, but not 

macromolecules, are released from spores into the extracellular environment 

suggests that nisin alters the membrane barrier in a limited fashion. Notably, 

nisin was previously reported to form ion-conducting channels (approximately 2 

nm diameter) in artificial membranes (18), but it is not clear whether or not nisin 

forms similar channels within the membrane of spores.  

To evaluate the requirements for nisin-dependent efflux of ions from 

germinated spores, it was investigated whether known protein ion channel 

blockers might alter nisin-mediated ion movement out of germinated spores. The 

cationic blocker, tetraethylammonium (TEA), and, the anionic blockers, 
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isothiocyanatostilbene-2,2'-disulfonate (DIDS), and diphenylamine-2-carboxylic 

acid (DPC), were evaluated for their ability to alter the movement of ions and 

small molecules in the presence of nisin.  In eukaryotic cell biology, these 

channel blockers have been demonstrated to block transmembrane ion 

channels.  Specifically, TEA is used to block K+ channels (6) while DIDS and 

DPC have been used as nonspecific and voltage gated Cl- channel blockers (3, 

14, 15).  These blockers were chosen to determine ion selectivity as well as size 

(Table 4.3). It must be pointed out that these blockers are not validated channel 

inhibitors for a nisin-induced pore, and there was no expectation that any of 

these compounds would cause a complete block of nisin-mediated ion efflux. In 

initial experiments, it was determined that none of the channel blockers inhibited 

germination or reduced B. anthracis viability (Table 4.3).  DIDS displayed a 

quenching effect of SPQ; however, this effect did not affect accurate 

interpretation of results (Table 4.2).  When evaluating the blocker effects on K+ 

release upon nisin addition, both TEA and DIDS exhibited a significant reduction 

in K+ release (Figure 4.6A, Table 4.3).  However, only DIDS blocked Cl- release 

(Figure 4.6C, Table 4.3) and PicoGreenTM influx (Figure 4.6E, Table 4.3) and a 

very small but statistically significant increase in oxidative metabolism (Figure 

4.7A).  Utilizing a concentration of DIDS just below its cytotoxic level (1000 µM) 

increased the inhibition of small molecule and ion movement across the 

membrane (Figure 4.6 B, D, F) while further enhancing the establishment of 

oxidative metabolism (Figure 4.7B).  With an assumed stoichiometry of 1:1 of 

DIDS per nisin-induced membrane disruption, these data suggest that nisin 
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perturbation of the spore created a potential pore that was greater than 1 nm in 

diameter and was slightly anion selective since only DIDS, with a linear length of 

1.3 nm, was able to alter the transmembrane flow of K+, Cl-, and PicoGreenTM.     

     
Channel blocker inhibition of the phenotypic event                

as a  function of nisin pore formation
a
 

 
Ion 

selec- 
tivity 

Linear 
length 
(nm)

b
 

Spore 
germin- 
ation

c
 

Organism 
viability

c
 

Meta- 
bolism 

establish
-ment

d
 

Cl
-
 

efflux
d
 

K
+
 

efflux
d
 

Pico-
Green 
influx

d
 

Out-
growth

d
 

Spore 
killing

d
 

DIDS anion 1.3 + + + + + + - - 

DPC anion 1.0 + + - - - - - - 

TEA cation 0.7 + + - - + - - - 

 

Table 4.3. Channel blocker inhibition of the listed phenotypic event as a function of nisin 

pore formation.  
a
 Nisin inhibits spore outgrowth and survival through pore formation that 

mediates the efflux and influx of small molecules and ions.  These phenotypic events of spore 

germination were monitored in the presence of channel blockers (concentration indicated in 

"Culturing B. anthracis spores").  
b
 An energy minimized structure was created and maximal 

lengths were determined utilizing ChemDraw Ultra (CambridgeSoft, Chambridge, MA).  
c
 Spores 

were cultured with brain heart infusion broth in the absence and presence of the channel 

blockers.  Germination initiation was observed as a loss in optical density at 600 nm as a result of 

spore hydration. Effects on B. anthracis were determined by monitoring viable organisms 

quantified by dilution spot plating.  +: germination occurred or organisms remained viable. -

:germination was inhibited or organisms were no longer viable.  
d
 Nisin prevented membrane 

potential and metabolism establishment and growth while facilitating the flow of small molecules 

and ions across the membrane .  Channel blockers were evaluated for their ability to prevent the 

events associated with nisin inhibition.  +: blocked nisin associated phenotype.  -: retained nisin 

associated phenotype. 
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Figure 4.6  

 A      B 

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

10 10 10 10

100 100 100 -

-

-

DIDS DPC TEA nisin spores

* *
P

B
F

I 
fl
u
o
re

s
c
e
n
ce

(f
o
ld

  
ch

a
n
g
e
)

[nisin] (µM)

[blocker] (µM)

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5

10 10

1000 -

-

-

DIDS

*

nisin spores

P
B

F
I 

fl
u
o
re

sc
e
n
ce

(f
o
ld

  
ch

a
n
g
e
)

[nisin] (µM)

[blocker] (µM)

 

 C      D 

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2

[nisin] (µM) 10 10 10 10

[blocker] (µM) 100 100 100 -

-

-

DIDS DPC TEA nisin spores

*

*

S
P

Q
 f

lu
o
re

s
c
e
n
ce

(f
o
ld

  
c
h
a
n
g
e
)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2

10 10

1000 -

-

-

*

DIDS nisin spores

*

S
P

Q
 f

lu
o
re

s
c
e
n
c
e

(f
o
ld

  
ch

a
n
g
e
)

[nisin] (µM)

[blocker] (µM)

 
 E      F 

0

1

2

3

4

5

6

7
DIDS DPC TEA nisin spores

[nisin] (µM)

*P
ic

o
G

re
e
n

T
M

 u
p
ta

ke

(f
o
ld

 c
h
a
n
g
e
)

10 10 10 10

[blocker] (µM) 100 100 100 -

-

-

 

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3

DIDS nisin spores

*

10 10

1000 -

-

-

P
ic

o
G

re
e
n

T
M

 u
p
ta

k
e

(f
o
ld

 c
h
a
n
g
e
)

[nisin] (µM)

[blocker] (µM)

 
Figure 4.6.  DIDS blocks nisin-mediated ion and small molecule movement across the 

spore membrane. The effect of ionic channel blockers on nisin induced K
+
 efflux (A, B), Cl

-
 efflux 

(C, D), and PicoGreen
TM

 influx (E) was monitored as described in "Materials and Methods".  The 

data are expressed as the fold fluorescence change at 20 min after the addition of nisin (10 µM) 

relative to spores germinated in the absence of nisin and with the indicated ionic blocker.  *  
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Figure 4.6 (continued)  

indicates a P < 0.05 between nisin treated (10 µM nisin, gray) and experimental condition (100 

µM ionic blocker and 10 µM nisin, black).  Error bars indicate standard deviations. 
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Figure 4.7.  DIDS reduced nisin inhibition of oxidative metabolism.  The effect of ionic 

channel blockers on nisin inhibition of metabolism establishment was monitored as described in 

"Materials and Methods".  A. Comparison of channel blockers at 100 µM. B. DIDS activity against 

nisin at highest non-cytotoxic concentration, 1000 µM. The data are expressed as the fold 

fluorescence change at 90 min after the addition of nisin (10 µM) relative to spore germinated in 

the absence of both nisin and with the indicated ionic blocker.  * indicates a P < 0.05 between 

nisin treated (10 µM nisin, gray) and experimental condition (100 µM ionic blocker and 10 µM 

nisin, black).  Error bars indicate standard deviations.   

 

4.2.6 Blocking nisin-mediated membrane disruption with PEGs.  

 The above results provide insight into ion selectivity for nisin-induced 

membrane disruption.  Experiments were then conducted to determine a more 

accurate measure of a presumed nisin-induced pore within the spore membrane 

utilizing polyethylene glycol chains (PEGs) of increasing size to measure the 

diameter of the pore.  Previous studies have identified the intrinsic hydrodynamic 

radii for PEG-92, 600, 3350, 6000, and 20000 m.w (Table 4.4), and PEGs have 
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been used in biophysics to measure the diameter of  transmembrane protein ion 

channels (1).  PEGs that are either too large or too small will not appropriately fill 

the nisin pore allowing the flow of ions or small molecules while PEGs of the 

approximate size of the disruption will fill the membrane perturbation and block 

ion and small molecule movement. It must be pointed out that PEGs are not 

validated channel inhibitors for nisin-induced pores and are general pore sizing 

agents (1), which may result in incomplete or partial blocking of nisin activity. 

However, they will provide insights into the characteristics of nisin-mediated 

membrane disruption. PEG-600, 3350, and 6000 displayed the most significant 

reduction of K+ efflux (Figure 4.8A, Table 4.4) while only PEG-3350 reduced the 

efflux of Cl- (Figure 4.8B, Table 4.4).  Additionally, PEG-3350 and 6000 were 

able to prevent the uptake of PicoGreenTM (Figure 4.8C, Table 4.4).  PEG-92 and 

20000 could not be used with the PicoGreenTM uptake assay because these 

PEGs altered PicoGreenTM fluorescence preventing accurate results (Table 2.2).  

It is presumed that the inability of PEG-600 and 6000 to block nisin-induced Cl- 

efflux is a function of inappropriate size.  However, charge potentially aided PEG-

600 and 6000 in the blocking of K+ efflux through the interaction of K+ with 

oxygen's lone pairs of electrons present in the repeating glycol unit of PEGs. This 

would potentially create an artificial blocking of K+ efflux.  PEG-6000 can 

effectively prevent PicoGreenTM uptake despite an improper size of PEG-6000 for 

appropriate disruption blockage.  The substantially increased size of the small 

molecule PicoGreenTM as compared to an ion facilitates a disruption blocking 

phenotype.  None of the PEGs were able to enhance oxidative metabolism 
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establishment, which may be a function of their lack of specificity or ion selectivity 

(Figure 4.9).  These results  with the ion channel blocker suggest that the nisin-

induced membrane disruption has a diameter of 1.0 - 2.5 nm, which is congruent 

with previous electrophysiology results of nisin-mediated interactions with black 

lipids (18).     

Table 4.4 

    
PEG inhibition of the phenotypic event                                   
as a function of nisin pore formation

a
 

 

Hydrody-
namic 
radius 
(nm)

b
 

Spore  
germin- 
ation

c
 

Organism 
viability

c
 

Meta- 
bolism  

establish- 
ment

d
 

Cl
-
 

efflux
d
 

K
+
 

efflux
d
 

Pico- 
Green 
influx

d,e
 

Out- 
growth

d
 

Spore 
killing

d
 

PEG-
92 

0.31 + + - - - N/A - - 

PEG-
600 

0.78 + + - - + - - - 

PEG-
3350 

1.63 + + - + + + - - 

PEG-
6000 

2.50 + + - - + + - - 

PEG-
20000 

3.21 + + - - - N/A - - 

 
 Table 4.4. PEG inhibition of the several phenotypic events as a function of nisin 

membrane disruption.  
a
 Nisin inhibits spore outgrowth and survival through membrane disruption 

that mediates the efflux and influx of small molecules and ions.  These phenotypic events were 

monitored in the presence of 1% PEGs with increasing lengths.  
b
 Hydrodynamic radius of PEGs 

were previously reported by V.F. Antonov, et al. (1).  
c
 Spores were cultured with brain heart 

infusion broth in the absence and presence of the PEGs.  Germination initiation was observed as 

a loss in optical density at 600 nm as a result of spore hydration. Effects on B. anthracis were 

determined by monitoring viable organisms quantified by dilution spot plating.  +: germination 

occurred or organisms remained viable. -: germination was inhibited or organisms were no longer 

viable.  
d
 Nisin prevented membrane potential and metabolism establishment and growth while 

facilitating the flow of small molecules and ions across the membrane .  PEGs were evaluated for 

their ability to prevent the events associated with nisin inhibition.  +: blocked nisin associated 

phenotype.  -:retained nisin associated phenotype.  
e
 PicoGreen

TM
 fluorescence was affected by  
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Table 4.4 (continued) 

the addition of PEG-92 and 20000 to the extent that the date was no longer accurate.  PEG 

effects on PicoGreen
TM

 have been documented previously, 

http://probes.invitrogen.com/media/pis/mp07581.pdf. 
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 Figure 4.8.  PEGs block nisin-mediated ion and small molecule movement across the 

spore membrane. The effect of PEGs on nisin induced K
+
 efflux (A), Cl

-
 efflux (B), and 

PicoGreen
TM

 influx was monitored as described in "Materials and Methods".  A,B.  The data are 

expressed as the fold fluorescence change at 20 min after the addition of nisin (10 µM) relative to 

spore germinated in the absence of nisin and with the indicated PEG.  C. The data are expressed 

as the fold fluorescent change at 20 min after the addition of nisin (10 µM) relative to dormant 

spores in the absence of nisin and with the indicated PEG. * indicates a P < 0.05 between nisin 

treated (10 µM nisin, gray) and experimental condition (1% µM PEG and 10 µM nisin, black).  

Error bars indicate standard deviations. 
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 Figure 4.9.  PEGs did not reduce nisin inhibition of oxidative metabolism.  The effect 

PEGs on nisin inhibition of metabolism establishment was monitored as described in "Materials 

and Methods".  The data are expressed as the fold fluorescence change at 90 min after the 

addition of nisin (10 µM) relative to spore germinated in the absence of nisin and with the 

indicated PEG.    * indicates a P < 0.05 between nisin treated (10 µM nisin, gray) and 

experimental condition (1% µM PEG and 10 µM nisin, black).  Error bars indicate standard 

deviations.  

 

4.2.7 Blocking the nisin pore does not alter spore viability or outgrowth. 

 As result of the minimal increase in metabolic activity afforded to 

germinating spores by charged channel blockers and PEGs in the presence of 

nisin (Figure 4.7, 4.9), these molecules were evaluated for their ability to promote 

spore outgrowth and viability.  The addition of ionic channel blockers and PEGs 

to spores germinated in the presence of nisin neither promoted spore outgrowth 

(Table 4.3, 4.4) nor increased spore viability (Figure 4.10, Table 4.3, 4.4).  The 

blocking effects of either molecule type were not sufficient to aid B. anthracis 

spores against the membrane disrupting effects of nisin that result in outgrowth 

inhibition.    
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 Figure 4.10.  Channel blockers and PEGs do not increase B. anthracis viability in the 

presence of nisin.  The effect PEGs and ionic blockers on nisin inhibition B. anthracis viability was 

monitored as described in "CFU quantification". Spores were germinated for 30 min in the 

presence of nisin, PEGs, ionic blockers, and Triton X-100 (control) at indicated concentrations 

followed by spot blot quantification of viable B. anthracis.  +: indicates the presence of 10 µM 

nisin within cultures.  -: indicates the absence of 10 µM nisin within cultures. 

 

4.3. Discussion 

 The studies described in previous chapters identified membrane disruption 

and lipid II binding as the mechanism and target, respectively, for the inhibition of 

B. anthracis spore outgrowth.  However, few insights into the characteristics of 

membrane disruption were determined.  Previous research identified that the 

nisin-induced pore in vegetative cells was slightly anion selective and allowed the 

efflux of amino acid and ions across the membrane of B. subtilis vegetative cells 

(9, 11).  Moreover, electrophysiology measurements of nisin pores in artificial 
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membranes demonstrated a 2 nm nisin-induced pore (18).  The research present 

in this chapter builds on these studies by suggesting that nisin membrane 

disruption induces pore formation that is slightly anion selective and 

approximately 1.0 - 2.5 nm diameter within a spore membrane, which is 

congruent with previous studies (9, 11, 18).   

 Of particular interest is that nisin inhibition does not mediate spore lysis 

(Figure 4.3, 4.4), which is different from the lysis observed with nisin treatment of 

vegetative cells (2).  This phenotype is beneficial when treating B. anthracis 

spore infections preventing the release of spore derived immuno-modulatory 

agents such as microbial membrane components, toxins, and peptidoglycan.  

This phenotype would limit the chances of septicemia or toxemia as well as a 

potential detrimental inflammatory response (5, 16, 17).   

 Spores are devoid of high energy compounds such as ATP and NAD(P)H 

(12).  However, spores contain significant ADP stores in addition to free amino 

acids in the later stages of germination as a result of protein degradation (10).  

Unfortunately, spores are highly intractable particles, which necessitate the use 

of surrogate indicators to characterize what molecules flow across the spore 

membrane upon nisin treatment.  Several assays were developed utilizing tools 

from eukaryotic cell biology to monitor ion and small molecule flux as well as 

metabolism establishment that are both sensitive and non-hazardous.  These 

assays helped to identify that nisin mediates the efflux of anions and cations as 

well as small molecules across the membrane to collapse ion gradients across 

the microbial membrane.  The uptake of propidium iodide (chapter 2) and 
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PicoGreenTM in the presence of nisin strongly suggests small molecules such 

ADP and amino acids will freely flow from the germinating spore further 

preventing spore viability.  The use of channel blockers and PEGs, which was 

borrowed from membrane channel cell biology, provided an approach to 

characterize the selectivity and diameter of the nisin membrane and suggest 

pore formation within a spore membrane.  Despite the increase in metabolic 

activity in addition to reducing the flow of small molecules and ions particularly 

afforded by DIDS, none these blockers were able to increase viability and 

outgrowth of the spore.  These results speak to the robust microbial killing 

properties of nisin and provide impetus for studying how nisin alters spore 

infections both in vitro and in vivo as well as investigating the properties of other 

pore-forming antimicrobials similar to nisin, particularly linear and two component 

lantibiotics.  

 

4.4 Materials and Methods 

4.4.1 Spore preparations.  

 Spores were prepared from B. anthracis Sterne 7702, as described 

previously (13).  Enumeration of spores was performed using a Petroff-Hauser 

hemocytometer under a light microscope at 400x magnification (Nikon Alphaphot 

YS, Mellville, NY). A typical spore preparation yielded 10 mL of spores at a 

concentration of 2.0 x 109 spores/mL. 

 

 



 157 

4.4.2 Nisin purification.  

 Nisin was purified and characterized as described previously (5). 

 

4.4.3 Culturing B. anthracis spores. 

  B. anthracis Sterne 7702 spores at a concentration of 4.0 x 106 spores/mL 

were incubated in brain heart infusion medium (BHI; BD Bioscience San Jose, 

CA) or 10 mM L-Alanine (Sigma) and L-Inosine (Sigma) supplemented with nisin 

(1 or 10 µM), 4,4'-di-isothiocyanatostilbene-2,2'-disulfonate (DIDS; 1, 10, 100, or 

1000 µM; Sigma), diphenylamine-2-carboxylic acid (DPC; 1, 10, or 100 µM; 

Sigma), tetraethylammonium (TEA; 1, 10, or 100 µM; Sigma), polyethylene glycol 

(PEG; 1 % 600, 3350, 6000, or 20000 MW, Sigma), 1 % Triton X-100 (Lysis 

buffer; Fisher Chemical, Fairlawn, NJ), or with 0.1 M 3-(N-

morpholino)propanesulfonic acid (MOPS; Sigma) at pH 6.8 as a control.  For 

non-germinating conditions, 0.1 M MOPS (pH 6.8) was substituted for BHI 

medium. All incubations were performed at 37 °C under aeration at 180 rpm on a 

rotary shaker (Thermo Fisher Scientific Inc., Waltham, MA) and under ambient 

CO2. 

 

4.4.4 CFU quantification.  

 Spores were serially diluted and spread plated or spot blotted on Luria-

Bertani (LB; B10 g/L Bacto Tryptone, 5 g/L NaCl, 5 g/L Bacto Yeast Extract, 15 

g/L Bacto Agar; BD Biosciences) agar plates. After 12-18 h at 37 °C B. anthracis 

colonies were counted, from which CFU/mL were calculated.  
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4.4.5 Spore hydration.  

 The hydration of spores was determined by measuring the loss of spore 

refractility at 600 nm by using a Synergy 2 plate reader (BioTek Instruments, Inc., 

Winooski, VT). B. anthracis spores were incubated, as described under "Culture 

of B. anthracis spores," except that a 96-well plate was used and the plate was 

shaken for 15 s prior to each read. The data are presented as a percentage of 

the OD600 at each time point relative to the OD600 of the spore suspensions at the 

beginning of the experiment (time zero). 

 

4.4.6 Heat resistance.  

 Spores were diluted into 0.1 M MOPS pH 6.8 containing D-alanine and D-

histidine (both at 10 mM; Sigma, St. Louis, MO), to prevent further germination 

initiation of dormant spores, and identical aliquots were incubated at either 65 °C 

or on ice for 30 min. Viable B. anthracis were quantified by plating serial dilutions 

and enumerating CFU. The percentage of heat resistant spores was calculated 

by dividing CFU recovered from samples heated at 65 °C by CFU recovered from 

samples incubated on ice.  

 

4.4.7 Oxidative metabolism.   

 B. anthracis spores were incubated, as described under “Culturing B. 

anthracis spores,” except for the presence of a oxidative metabolism indicator, 

PrestoBlueTM (PB; 1 x; Invitrogen).  PB fluorescence occurs upon the 

establishment of an oxidative metabolism, specifically an active TCA cycle.  
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Spore suspension fluorescence was monitored spectrofluorometrically using a 

Biotek Synergy 2 fluorescence plate reader exciting via a Tungsten Halogen SQ 

Xenon Flashbulb utilizing a bandpass filter at  540/25 nm and measuring the 

fluorescence emission through a bandpass filter at 590/20 nm. 

 

4.4.8 Membrane integrity.  

 B. anthracis spores were incubated, as described under “Culturing B. 

anthracis spores,” except for the presence of a fluorescent membrane 

impermeable dye PicoGreen® (PG; 1 x; Invitrogen). PG fluorescence occurs 

upon DNA binding resulting from membrane disruption.  B. anthracis-associated 

fluorescence was monitored spectrofluorometrically using a Biotek Synergy 2 

fluorescence plate reader (Winooski, VT) exciting via a Tungsten Halogen SQ 

Xenon Flashbulb utilizing a bandpass filter at  485/20 nm and measuring the 

fluorescence emission through a bandpass filter at 528/20 nm. 

 

4.4.9 Potassium release.   

 B. anthracis spores were incubated, as described under “Culturing B. 

anthracis spores,” except for the presence of a membrane impermeable 

potassium binding fluorescent indicator tetraammonium salt (PBFI; 1 µM; 

Invitrogen).  PBFI fluorescence occurs upon K+ binding within the extracellular 

medium resulting from membrane disruption.  Medium fluorescence was 

monitored spectrofluorometrically using a Biotek Synergy 2 fluorescence plate 

reader exciting via a Tungsten Halogen SQ Xenon Flashbulb utilizing a bandpass 
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filter at  360/40 nm and measuring the fluorescence emission through a 

bandpass filter at 508/20 nm. 

  

4.4.10 Chloride release.   

 B. anthracis spores were incubated, as described under “Culturing B. 

anthracis spores,” except for the presence of a membrane impermeable 

fluorescent Cl- indicator, 6-methoxy-N-(3-sulfopropyl)quinolinium (SPQ; 0.5 µM; 

Invitrogen).  SPQ fluorescence is quenched upon Cl- binding within the 

extracellular medium resulting from membrane disruption.  Medium fluorescence 

was monitored spectrofluorometrically using a Biotek Synergy 2 fluorescence 

plate reader exciting via a Tungsten Halogen SQ Xenon Flashbulb utilizing a 

bandpass filter at  360/40 nm and measuring the fluorescence emission through 

a bandpass filter at 460/40 nm. 

 

4.4.11 Cell lysis - glucose-6-phosphate dehydrogenase (G6PD) release.   

B. anthracis spores were incubated, as described under “Culturing B. 

anthracis spores,” except for the presence of the membrane impermeable 

reagents of the VybrantTM Cytotoxicity Assay Kit (2.0 mM resazurin, 1 x reaction 

mixture - diaphorase, glucose-6-phosphate, and NADP+; Invitrogen) to monitor 

G6PD release via an enzyme coupled assay according to manufacturers 

protocols.  Fluorescence occurs upon G6PD release into the extracellular 

medium resulting from membrane disruption.  Medium fluorescence was 

monitored spectrofluorometrically using a  Biotek Synergy 2 fluorescence plate 
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reader exciting via a Tungsten Halogen SQ Xenon Flashbulb utilizing a bandpass 

filter at  540/25 nm and measuring the fluorescence emission through a 

bandpass filter at 590/20 nm. 

 

4.4.12 Cell lysis - DNA release.   

 B. anthracis spores were incubated, as described under “Culturing B. 

anthracis spores.”  Germinated spore suspensions were split into equal volumes 

and washed twice with 1 x PBS.  One set of spores, 0 and 10 µM nisin present 

during germination, were resuspended in with 1 x PBS and kept on ice.  The 

second set of spores, 0 and 10 µM nisin present during germination, were 

resuspended in 4% sodium dodecyl sulfate (SDS, Fisher Chemical), 0.04% 

Triton X-100, and 0.01 M dithiothreitol (DTT, Fisher Chemical), and boiled for 30 

min.  All samples were cooled to 4 ºC on ice for 15 min, and EcoRI buffer (New 

England Biolabs, Ipswich, MA) was added at a ratio of 5 µL per 255 µL total 

volume and mixed.  EcoRI was added at a ratio of 1 µL per 256 µL total volume, 

mixed, and incubated at 37 ºC for 1 h.  DNA digestion was visualized utilizing 1 

% agarose gel electophoresis and staining with ethidium bromide (Fisher 

Chemical).   

 

4.4.13 Statistics.  

All data are representative of those from three or more independent 

experiments. Error bars represent standard deviations.  P values were calculated 

with Student's t test using paired, one tailed distribution.  P values of <0.05 
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indicate statistical significance. All statistics, including means, standard 

deviations, and Student's t tests, were calculated using Microsoft Excel (version 

11.0). 
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CHAPTER 5: BACILLUS ANTHRACIS SPORE INTERACTIONS WITH 
MAMMALIAN CELLS: EFFECTS OF MEDIUM COMPOSITION ON THE 
OUTCOME OF AN IN VITRO INFECTION2 
 
5.1 Introduction 

 Inhalational anthrax commences with the deposition of Bacillus anthracis 

spores into the bronchioalveolar spaces of the lungs, and culminates with the 

systemic dissemination of vegetative bacilli within the host (10, 15, 49). Within 

the lungs, internalization of dormant spores, possibly by several different types of 

host cells, is believed to be a key step for initiating the transition from the 

localized to disseminated stages of infection. Alveolar macrophages are reported 

to transport spores out of the lungs to regional lymph nodes (7, 8, 24, 44). 

Dendritic cells have also been implicated in the rapid carriage of spores to the 

draining lymph nodes (5, 47). Finally, alveolar epithelial cells have recently been 

demonstrated to internalize spores both in vitro and in vivo (39-41), and have 

been proposed to facilitate the transcytosis of B. anthracis across the epithelial 

barrier. Taken together, these findings suggest that B. anthracis may escape the 

lungs by several distinct mechanisms.  

 To characterize the interaction of B. anthracis spores with host cells during 

the early stages of inhalational anthrax, in vitro models of infection have been 

widely implemented (5, 9, 18-20, 26, 28, 36, 37, 42, 51). The tractability of in vitro 

models has facilitated new insights into the molecular and cellular basis of spore 

binding and uptake, as well as host cell responses. Nonetheless, the use of in 

vitro models has resulted in a striking lack of consensus as to the responses and 

                                                 
2
 Reproduced in part with permission from: " Bacillus anthracis spore interactions with mammalian 

cells: Relationship between germination state and the outcome of in vitro infections." BMC 
Microbiol.. 2011 Feb;11(46).  Copyright 2011 by BioMed Central. 
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fates of both intracellular B. anthracis and infected cells. Although there are 

multiple reports of germinated spores within host cells (9, 18, 19, 21, 51), several 

studies have indicated that germinated spores ultimately kill macrophages (9, 42, 

51), while others have reported that macrophages readily kill intracellular B. 

anthracis (26, 28). The lack of consensus may be due, in part, to fundamental 

differences between the infection models used by research groups, which 

includes variability in bacterial strains, mammalian cells, and experimental 

conditions employed.  

  An important issue that is likely to directly influence the outcome of in vitro 

models of infection is the germination state of spores as they are internalized into 

host cells. Several in vivo lines of evidence support the idea that spores remain 

dormant in the alveolar spaces of the lungs prior to uptake. First, dormant spores 

have been recovered from the lungs of animals several months after initial 

infection (16, 24). Second, all spores collected from the bronchial alveolar fluids 

of spore-infected Balb/c mice were found to be dormant (8, 21). In contrast, a 

substantial percentage of intracellular spores recovered from alveolar 

macrophages were germinated (21). Third, real time in vivo imaging failed to 

detect germinated spores within lungs, despite the effective delivery of dormant 

spores to these organs (13, 17, 53). One of these studies [25] reported that 

vegetative bacteria detected in the lungs during disseminated B. anthracis 

infection arrived at the lungs via the bloodstream, rather than originating from in 

situ spore growth. Finally, using spores that had been engineered to emit a 

bioluminescent signal immediately after germination initiation, a recent study 
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reported that germination was commenced in a mouse model of infection only 

after spore uptake into alveolar macrophages (44). However, despite 

considerable evidence that the lung environment is not intrinsically germinating 

for B. anthracis spores, most in vitro infection models have been conducted using 

culture media containing fetal bovin serum (FBS) and/or specific L-amino acids 

or nucleotides at concentrations previously demonstrated to promote germination 

of spores in vitro (4, 12, 25, 33, 34, 43, 51, 52). Under such conditions, it is likely 

that, in these previous studies, host cells were infected with heterogeneous 

populations of germinated and dormant spores.  

 This chapter presents studies that were performed to directly evaluate the 

manner in which the germination state of B. anthracis spores under in vitro 

culture conditions influences the infection of mammalian cells. Germinating and 

non-germinating culture conditions were used to compare the interaction of 

spores prepared from B. anthracis Sterne 7702 with RAW264.7 macrophage-like 

cells, as well as several other cell lines. These studies revealed that the uptake 

of B. anthracis into cells was largely unaffected by the germination state of 

spores. In contrast, the number of viable, intracellular B. anthracis recovered 

from infected cells, as well as the viability of the infected cells, was dependent on 

the germination state of spores during uptake. These results support the idea 

that the germination state of spores is an important consideration when 

interpreting results from in vitro infections with B. anthracis spores. 
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5.2 Results 

5.2.1 The composition of cell culture medium influences the germination 

and outgrowth of B. anthracis spores.  

 Several commonly used mammalian cell culture media, in the presence or 

absence of fetal bovine serum (FBS), were first evaluated for the capacity to 

induce germination when incubated with dormant spores prepared from B. 

anthracis Sterne 7702 (1.0 x 108 spores/mL) at 37 °C and under 5% CO2.  Loss 

of optical density and heat resistance were used as classical indicators for the 

initiation of spore germination and loss of dormancy (31, 32, 45). These studies 

revealed that regardless of the medium tested, B. anthracis spores underwent 

germination initiation and outgrowth when incubated in the presence of FBS 

(Table 5.1, Figure 5.1A, B), as indicated by increased sensitivity of the spores to 

heat treatment (29), as well as a time-dependent decrease in spore refractility, 

which indicates rehydration of the spore core following germination initiation (22). 

When spores were exposed to Dulbecco's modified Eagle's medium (DMEM) or 

Roswell Park Memorial Institute (RPMI) 1640 medium plus 10% FBS, 86.0% and 

83.4% of the spore population, respectively, converted from heat-resistant to 

heat sensitive forms within 10 min, and 97.6% and 96.6% of the spore 

population, respectively, converted to heat sensitive forms within 60 min (data 

not shown), indicating that germination initiation occurred under these medium 

conditions. These results are consistent with a previous study reporting that 

approximately 98% of the Sterne spores germinated within an hour when 

incubated in DMEM plus 10% FBS (51). Dose response studies revealed that 
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germination initiation was induced in DMEM containing 1% FBS, but not 0.5% 

FBS (Table 5.2). Spore germination or outgrowth was not dependent on the 

commercial source of FBS, as similar results were obtained with FBS purchased 

from 3 different vendors (data not shown, experiments were performed by Bojana 

Stojkovic and Dr. Angela M. Prouty). The capacity of spore preparations to 

germinate and outgrow were confirmed by incubating dormant spores in the 

presence of the known germinants, L-alanine and L-inosine (each at 10 mM, in 

phosphate buffered saline, PBS, pH 7.2) or Luria-Bertani broth (LB) (Figure 5.2), 

as previously reported (2, 14, 27). The time dependent increase in culture density 

(Figure 5.1A) and morphological conversion of spores into elongated bacilli 

(Figure 5.1C) indicated that in medium containing FBS, there was outgrowth of 

spores into vegetative bacilli.  

 In the absence of FBS, several media were discovered to induce 

germination initiation and outgrowth of B. anthracis spores (Table 5.1). 

Germination initiation (30-60 min) and outgrowth were detected when spores 

were incubated in brain heart infusion (BHI) broth (Table 5.1, Figure 5.3), 

modified minimum essential medium alpha modification (MEMα) (Table 5.1, 

Figure 5.3), CO2-independent media (CIM) (Table 5.1), or McCoy's 5A (M5A) 

(Table 5.1). Each of these cell culture formulations contains all 20 amino acids, is 

enriched particularly in the known germinant L-alanine (15-20 mg/L), and also 

contains non-specified nucleotides. Notably, some nucleotides function as 

germinants (35, 45, 50). In contrast, spores incubated in minimum essential 

medium (MEM), Dulbecco's modified eagle medium (DMEM), Roswell Park 
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Memorial Institute (RPMI) 1640 medium, advanced MEM (AMEM), eagle MEM 

(EMEM), basal medium eagle (BME), or Ham's F-12 (F-12) did not germinate, 

even after 4 h (Figure 5.3, Table 5.3). Each of these media possesses lower 

concentrations of L-alanine (<10 mg/L) than those media that induced 

germination, and generally lacked nucleotides. These results emphasize that 

care must be exercised when selecting a culture medium for conducting in vitro 

infections under non-germinating conditions.  

Figure 5.1  

 

 Figure 5.1.  FBS in cell culture media promotes germination and outgrowth of B. 

anthracis spores. Spores (1.0x10
8
 spore/mL) prepared from B. anthracis Sterne 7702 were 

incubated in 96-well plates at 37 °C and with rotary agitation within the indicated medium.  
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Figure 5.1 (continued)  

Germination and outgrowth of spores were monitored at the indicated times. Medium conditions 

are listed at the top of the figure, and applicable to A, B, and C. A. Optical determination of 

germination and outgrowth. The data are rendered as the O.D. (600 nm) of the spore suspension 

at the indicated time (0.5, 1, or 4 h) relative to the original O.D. (600 nm) of the spore suspension 

at the start of the 37 °C incubation (e.g. time=0). For BHI, DMEM, RPMI, and MEMα, initial 

decreases in O.D. (600 nm) reflect the loss of spore refractility that occurs subsequent to 

germination initiation, while the increases in O.D. (600 nm) measured at later time points (1 and 4 

h) reflects replication of vegetative bacteria. For PBS, the modest increases in O.D. (600 nm) are 

due to time-dependent evaporation of the medium. Error bars indicate standard deviations. For 

each medium tested, the P-values were calculated to evaluate the statistical significance of the 

differences between O.D. (600 nm) values at the indicated times and O.D. (600 nm) values at the 

initial time point. B. Sensitivity of spores to heat as a function of medium conditions. Aliquots from 

the spore cultures were removed at 1 or 4 h, as indicated, incubated for 30 min at either at 65 °C 

or on ice, diluted 10
1
-
 
or 10

2
-fold (PBS pH 7.2), as indicated, spotted (10 µL) on LB plates, and 

incubated at 25 °C. After 18 h, the plates were photographed. T: total. HT: heat-treated.  C. 

Visual determination of B. anthracis spore outgrowth as a function of cell culture medium. 

Aliquots from the spore cultures were removed at 1 or 4 h, as indicated, and analyzed for 

outgrowth using DIC microscopy. The data are rendered as images in which the bars indicate a 

length of 6.5 µm. The data in A are combined from 3 independent experiments.  The data in B 

and C are from a single experiment, and are representative of those obtained in 3 independent 

experiments.  
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Figure 5.2   

 

 Figure 5.2.  Rich media and amino acids promote germination and outgrowth of B. 

anthracis spores. Spores (1.0x10
8
 spore/mL) prepared from B. anthracis Sterne 7702 were 

incubated in 96-well plates at 37 °C and with rotary agitation within the indicated medium. 

Germination and outgrowth of spores were monitored at the indicated times. Medium conditions 

are listed at the top of the figure, and applicable to A, B, and C. A. Optical determination of 

germination and outgrowth. The data are rendered as the O.D. (600 nm) of the spore suspension 

at the indicated time (0.5, 1, or 4 h) relative to the original O.D. (600 nm) of the spore suspension 

at the start of the 37 °C incubation (e.g. time=0). For BHI, LB, and Amino acids (A.A.), initial 

decreases in O.D. (600 nm) reflect the loss of spore refractility that occurs subsequent to 

germination initiation, while the increases in O.D. (600 nm) measured at later time points (1 and 4  
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Figure 5.2 (continued)  

h) reflects replication of vegetative bacteria. For PBS, the modest increases in O.D. (600 nm) are 

due to time-dependent evaporation of the medium. Error bars indicate standard deviations. For 

each medium tested, the P-values were calculated to evaluate the statistical significance of the 

differences between O.D. (600 nm) values at the indicated times and O.D. (600 nm) values at the 

initial time point. B. Sensitivity of spores to heat as a function of medium conditions. Aliquots from 

the spore cultures were removed at 1 or 4 h, as indicated, incubated for 30 min at either at 65 °C 

or on ice, diluted 10
1
-
 
or 10

2
-fold (PBS pH 7.2), as indicated, spotted (10 µL) on LB plates, and 

incubated at 25 °C. After 18 h, the plates were photographed. T: total. HT: heat-treated.  C. 

Visual determination of B. anthracis spore outgrowth as a function of cell culture medium. 

Aliquots from the spore cultures were removed at 1 or 4 h, as indicated, and analyzed for 

outgrowth using DIC microscopy. The data are rendered as images in which the bars indicate a 

length of 6.5 µm. The data in A are combined from 3 independent experiments.  The data in B 

and C are from a single experiment, and are representative of those obtained in 3 independent 

experiments. 
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Figure 5.3 

 

 Figure 5.3. B. anthracis spore germination and outgrowth in FBS-free cell culture media. 

Spores (1.0x10
8
 spore/mL) prepared from B. anthracis Sterne 7702 were incubated in 96-well 

plates at 37 °C and with rotary agitation within the indicated medium. Germination and outgrowth 

of spores were monitored at the indicated times. Medium conditions are listed at the top of the 

figure, and are applicable to A, B, and C. A. Optical determination of germination and outgrowth. 

The data are rendered as the O.D. (600 nm) of the spore suspension at the indicated time (0.5, 1, 

or 4 h) relative to the original O.D. (600 nm) of the spore suspension at the start of the 37 °C 

incubation (e.g. time=0). Error bars indicate standard deviations. For each medium tested, the P-

values were calculated to evaluate the statistical significance of the differences between O.D. 

(600 nm) values at the indicated times and O.D. (600 nm) values at the initial time point.  
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Figure 5.3 (continued)  

B. Sensitivity of spores to heat as a function of medium conditions. Aliquots from the spore 

cultures were removed at 1 or 4 h, as indicated, incubated for 30 min at either at 65 °C or on ice, 

diluted 10
1
-
 
or 10

2
-fold (PBS pH 7.2), as indicated, spotted (10 µL) on LB plates, and incubated at 

25 °C. After 18 h, the plates were photographed. T: total. HT: heat-treated.  C. Visual 

determination of B. anthracis spore outgrowth as a function of cell culture medium. Aliquots from 

the spore cultures were removed at 1 or 4 h, as indicated, and analyzed for outgrowth using DIC 

microscopy. The data are rendered as images in which the bars indicate a length of 6.5 µm. The 

data in A are combined from 3 independent experiments. The data in B and C are from a single 

experiment and are representative of those obtained in 3 independent experiments. 
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   outgrowthd 

mediuma FBSb germinationc 1 h  4 h  

DMEM - - - - 

 + + + + 

- - - - 
RPMI 

+ + + + 

- + + + 
MEMα 

+ + + + 

- - - - 
MEM 

+ + + + 

- - - - 
AMEM 

+ + + + 

- - - - 
EMEM 

+ + + + 

- - - - 
BME 

+ + + + 

- + + + 
CIM 

+ + + + 

- - - - 
F-12 

+ + + + 

- + + + 
M5A 

+ + + + 

BHI - + + + 

LB - + + + 

AA - + - - 

 Table 5.1. FBS and cell culture media effects on germination and outgrowth of B. 

anthracis spores. 
a
 Three independent experiments were performed with three different spore 

preparations, each conducted in triplicate. 
b 
Spores prepared from B. anthracis Sterne 7702 were 

incubated in the indicated medium. 
c
 Indicates the presence (+) or absence (-) of 10% FBS in the 

indicated medium. 
d
 Spores were scored positive (+) for germination if the OD600 nm of the 

suspended spores decreased by more than 10% after 30 min incubation in the indicated medium. 

e
 Using DIC microscopy, spores were scored positive (+) for outgrowth if the spores bodies were 

visibly larger at 1 h, and had developed into vegetative bacteria by 4 h. 
f
 AA refers to L-alanine 

and L-inosine (each at 10 mM, in PBS pH 7.2). 



 176 

   outgrowthe 

mediuma FBS (%)b germinationc 1 h  4 h  

0.0 - - - 

0.1 - - - 

0.5 - - - 

1.0 + - + 

5.0 + + + 

DMEM 

10.0 + + + 

 

 Table 5.2.  Concentration dependence of FBS induced germination. 
a
 Three independent 

experiments were performed with three different spore preparations, each conducted in triplicate. 

b 
Spores prepared from B. anthracis Sterne 7702 were incubated in the indicated medium. 

c
 

Indicates the presence (+) or absence (-) of 10% FBS in the indicated medium. 
d
 Spores were 

scored positive (+) for germination if the OD600 nm of the suspended spores decreased by more 

than 10% after 30 min incubation in the indicated medium. 
e
 Using DIC microscopy, spores were 

scored positive (+) for outgrowth if the spores bodies were visibly larger at 1 h, and had 

developed into vegetative bacteria by 4 h. 
 

 

5.2.2 Effects of pre-conditioned culture medium on the germination state of 

B. anthracis spores.  

 We next considered the possibility that cell culture media that normally do 

not promote spore germination may be converted to germinating media when 

incubated in the presence of mammalian cells. To evaluate this possibility, B. 

anthracis spores were incubated in DMEM or RPMI that had been “pre-

conditioned” in the presence of RAW264.7 cells or MH-S cells, respectively. 

These studies revealed that neither DMEM nor RPMI, following a pre-

conditioning period of 4 h, induced germination of B. anthracis spores (Figure 

5.4A). Likewise, medium withdrawn from RAW264.7 cells infected for 1 or 4 h 
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with dormant spores at a multiplicity of infection of 10 (MOI 10) also remained 

non-germinating (Figure 5.4B). Finally, medium withdrawn from RAW264.7 cells 

infected with dormant spores (MOI 10) contained only heat resistant B. anthracis, 

and no heat sensitive spores (Figure 5.4), indicating that the extracellular spores 

remained dormant through the first 4 hours of infection. When the pre-

conditioning period was extended to 24 h, both DMEM and RPMI induced 

germination, but negligible outgrowth at 4 h, of spores (Figure 5.4A). Spore 

germination was eliminated by dialyzing (12-14 kDa molecular mass cutoff) the 

24 h preconditioned DMEM or RPMI, but not by heat treatment (95 ºC for 10 min, 

or, 65 ºC for 30 min; data not shown), suggesting that the germinating factors 

were relatively small molecular weight, heat-resistant factors. Nonetheless, these 

studies confirm that in vitro models can be established that maintain a non-

germinating environment for at least the first 4 h of infection. 
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Figure 5.4  

 

 Figure 5.4. The effects of pre-conditioned culture medium on the germination state of B. 

anthracis spores. DMEM (A, B) or RPMI (B) was pre-conditioned by incubating with monolayers 

of RAW264.7 (A, B) or MH-S cells (B), respectively, at 37 °C and under 5% CO2, in the absence 

(A) or presence (MOI 10) of (B) of spores prepared from B. anthracis Sterne 7702.  
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Figure 5.4 (continued)  

 (A, B).  After 4 h (white bars) or 24 h (black bars) (A), or after 1 (white bars) and 4 h (black bars) 

(B), as indicated, the medium was removed from the monolayers, filter sterilized, and then 

incubated with spores (1.0x10
8
 spore/mL) prepared from B. anthracis Sterne 7702 in 96-well 

plates at 37 °C and with rotary agitation. Germination and outgrowth of spores were monitored at 

0, 0.5, 1, or 4 h, as indicated, by measuring O.D. (600 nm). The results are rendered as the O.D. 

(600 nm) of the spore suspension at the indicated time relative to the original O.D. (600 nm) of 

the spore suspension at the start of the 37 °C incubation (e.g. time=0). P-values were calculated 

to evaluate the statistical significance of the differences between O.D. (600 nm) values at the 

initial time point and O.D. (600 nm) values at the indicated times. For B, BHI (gray bars) was used 

as a positive control to monitor germination and outgrowth. C. An equal number of spores 

prepared from B. anthracis Sterne 7702 were incubated at 37 °C and under 5% CO2 in DMEM 

(no FBS) in the absence (white bars) or presence (black bars) of RAW264.7 cells (MOI 10). At 1 

or 4 h, as indicated, aliquots of culture medium were removed and spores were evaluated for 

heat resistance. The results are rendered as the number of heat resistant spores relative to 

spores incubated in DMEM alone, which were normalized to 1.0. P-values were calculated to 

evaluate the statistical significance of the differences in heat resistant spores between those 

incubated in the presence or absence of RAW264.7 cells. For A-C, the results were obtained by 

combining the data collected from three independent experiments, each conducted in triplicate, 

and the error bars indicate standard deviations. 

 

5.2.3 Mammalian cells remain viable and functional for at least 4 h in FBS-

free culture medium. 

 Although a non-germinating environment was maintained for at least 4 h in 

FBS-free media (Figure 5.4), it was unclear whether viable and functional cells 

could be maintained in FBS-free medium over this same time period. Studies to 

evaluate this issue revealed that over a 4 h period, RAW264.7 cells in DMEM 
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demonstrated essentially identical viability (Figure 5.5A), cell cycle progression 

(Figure 5.5B), and metabolic activity (Figure 5.5C) in the absence or presence of 

FBS (10%). Even after 24 h, the viability (Figure 5.5A) and cell cycle profiles 

(Figure 5.5B) were not significantly different for RAW264.7 cells cultured in the 

absence or presence of FBS. The metabolic activity of RAW264.7 cells increased 

after 24 h, but significantly more so in the presence than absence of FBS (Figure 

5.5C), which we speculate was due to greater overall proliferation and number of 

cells in FBS-enriched medium. These results confirmed that, for at least 4 h, in 

vitro models of infection can be conducted under entirely non-germinating culture 

conditions without loss of host cell viability, cell cycle progression, or metabolic 

function. 

Figure 5.5 

 

 Figure 5.5.  Viability, cell cycle progression, and metabolic activity of RAW264.7 cells 

cultured under germinating or non-germinating conditions. RAW264.7 cells were incubated at 37 

° in DMEM in the presence (+, black bars) or absence (-, white bars) of FBS, and then evaluated 

at 4 or 24 h, as indicated, for viability (A), cell cycle progression (B), and metabolic activity (C). A. 

The cells were assayed for PI uptake, as described under Materials and Methods. The data are 

rendered as the relative PI uptake normalized at both 4 and 24 h to cells incubated in the 

absence of FBS. B. The cells were analyzed for their cell cycle profiles, as described under  
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Figure 5.5 (continued)  

Materials and Methods. The data are rendered as the relative numbers of cells in G2/M  

normalized at both 4 and 24 h to cells incubated in the absence of FBS. C. The cells were 

analyzed for conversion of MTT to formazan. The data are rendered as the fold change of 

formazan production normalized at both 4 and 24 h to cells incubated in the absence of FBS. To 

generate the bar graphs, data were combined from three independent experiments, each 

conducted in triplicate. Error bars indicate standard deviations. The P values were calculated to 

evaluate the statistical significance of the differences in viability (A), cell cycle progression (B), 

and metabolism (C) between cells cultured in the absence or presence of FBS. 

 

5.2.4 Germination state of spores does not alter the uptake by mammalian 

cells.  

 The demonstration that cultured RAW264.7 cells remained viable and 

functional in FBS-free cell culture medium did not directly address the possibility 

that spore uptake by mammalian cells might be substantially different under 

germinating and non-germinating cell culture conditions. To evaluate this issue, 

Alexa Fluor 488-labeled spores were incubated with RAW264.7, MH-S, or 

JAWSII cells (MOI 10) in the absence or presence of FBS (10%). After 5 or 60 

min, intracellular spores were monitored using flow cytometry to measure cell 

associated fluorescence that was not sensitive to the membrane-impermeable, 

Alexa Fluor 488 quenching agent, trypan blue (48).  These studies revealed that 

for each cell line tested, neither the percentage of infected cells within the 

population (Figure 5.6A-C), nor the overall increase in intracellular spores (Figure 

5.6D-F), was significantly different in the presence or the absence of FBS. 

Collectively, these results revealed that the uptake of B. anthracis spores by 
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mammalian cells is essentially the same within germinating and non-germinating 

in vitro environments. 

 

 Figure 5.6.  Uptake of B. anthracis spores into mammalian cells cultured under 

germinating or non-germinating conditions. RAW264.7 cells (A, D), MH-S cells (B, E), or JAWSII 

cells (C, F) were incubated with B. anthracis spores (MOI 10) in DMEM, RPMI, or DMEM, 

respectively, in the presence (+, black bars) or absence (-, white bars) of FBS (10%), and then 

evaluated at 5 or 60 min by flow cytometry and in the presence of trypan blue (0.5%) for the 

percentage of cells with intracellular spores (A-C), and, for total cell associated spore 

fluorescence (D-F), as described under Materials and Methods. In A-C, the data are rendered as 

the percentage of infected cells with the entire population that has internalized spores. In D-F, the 

data are expressed as the change in MFI, normalized to cells at 5 min post infection in FBS-free 

medium.  To generate the bar graphs, data were combined from three independent experiments, 

each conducted in triplicate. Error bars indicate standard deviations. The P values were 

calculated to evaluate the statistical significance of the differences in percent infected cells (A) or 

total intracellular spores (B) between cells incubated in the absence or presence of FBS. 
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5.2.5 Germination state of spores influences the number of viable, 

intracellular B. anthracis. 

 Although the uptake of B. anthracis spores into mammalian cells was 

independent of the presence or absence of FBS in the culture medium, it was not 

clear whether the outcome of infection would also be similar under germinating 

and non-germinating conditions. To evaluate this issue, the recovery of viable, 

intracellular B. anthracis was compared subsequent to uptake by RAW264.7 

cells in the absence or presence of FBS (10%), using the gentamicin protection 

assay (1, 28, 41, 48). These studies indicated that there were not significant 

differences in intracellular CFU after 5 min post-infection (Figure 5.7). However, 

after 60 or 240 min post infection, significantly greater CFU were recovered from 

cells in DMEM lacking FBS relative to cells incubated in the presence of FBS 

(Figure 5.7). Similar results were obtained when studies were conducted with 

MH-S cells and JAWSII cells (not shown). In addition, spores that were pre-

germinated and washed to remove the germinants were also evaluated for their 

intracellular survival in the absence of FBS to determine whether a loss of 

recoverable CFU was a function of the spore germination state or opsonization 

as a result of FBS addition.  Again, these studies indicated that there were not 

significant differences in intracellular CFU after 5 min post-infection (Figure 5.7). 

However, after 60 or 240 min post infection, significantly greater CFU were 

recovered from cells that were infected with dormant spores during a non-

germinating infection (Figure 5.7).  Although the exact mechanisms underlying 

the greater recovery of spores from infections conducted under non-germinating 
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conditions are not clear, we demonstrate that germinated spores are more 

susceptible than dormant spores to killing after uptake from the cell surface. This 

potential explanation is consistent with earlier reports that spores that had been 

intentionally pre-germinated prior to exposure to mammalian cells were more 

readily killed than dormant spores upon uptake into mammalian cells (26, 51). 

These results support the idea that the germination state of B. anthracis spores is 

a critical determinant of the fate of the intracellular bacteria. 

Figure 5.7  

 

 Figure 5.7. The germination state of spores influences the viability of intracellular B. 

anthracis. RAW264.7 cells were incubated for 30 min with dormant B. anthracis spores (MOI 10) 

in DMEM in the presence (+, black bars) or absence (-, white bars) of FBS (10%) or pre-

germinated B. anthracis spores (MOI 10) in DMEM in the absence of FBS (grey bars). After 30 

min, the cells were washed to remove extracellular B. anthracis, and then further incubated with 

FBS (10%) and, as described under “Methods,” with gentamicin to germinate and kill any 

remaining spores that had not been germinated. After 15 min, the cells were washed and then 

further incubated in the absence of gentamicin. At 5, 60, or 240 min after removal of gentamicin,  
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Figure 5.7 (continued)  

as indicated, the RAW264.7 cells were lysed, and the lysates were evaluated for viable B. 

anthracis, as described under Materials and Methods. For pre-germinated spores, B. anthracis 

spore were germinated with 10 mM L-alanine and L-inosine in 1x PBS pH 7.2 for 30 min and 

washed twice with 1x PBS pH 7.2 to remove germinants. The data were rendered as the fold-

change in recoverable CFU in the absence or presence of FBS, relative to cells at 5 min post 

infection in the absence of FBS. The rendered data were combined from three independent 

experiments, each conducted in triplicate. Error bars indicate standard deviations. The P values 

were calculated to evaluate the statistical significance of the differences in recoverable CFU 

between cells infected in the absence or presence of FBS. 

 

5.2.6 Germination state of B. anthracis spores influences the viability of 

RAW264.7 cells during in vitro infection. 

 The greater number of viable, intracellular B. anthracis recovered from 

cells infected under non-germinating conditions (Figure 5.7) prompted us to 

examine whether the viability of infected host cells might also be influenced by 

the germination state of spores during uptake. To evaluate this issue, RAW264.7 

cells were incubated with B. anthracis spores (MOI 10) in the presence or 

absence of FBS (10%). Subsequent to employing the same gentamicin-

protection procedure used for monitoring intracellular B. anthracis (Figure 5.7), PI 

uptake by RAW264.7 cells was measured at 5 min, 1 h, and 4 h, post-infection. 

These studies revealed that at 4 h post-infection, there was approximately 2-fold 

greater PI uptake, indicating a significantly greater loss in viability of RAW264.7 

cells that had been incubated with spores in FBS-deficient medium, as compared 

to FBS-enriched medium (Figure 5.8). When evaluated at 8 h post-infection, PI 
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uptake was nearly 5-fold greater in RAW264.7 cells that had been incubated with 

B. anthracis spores in FBS-deficient medium (data not shown). Understanding 

the reasons underlying these significant differences in the viability of infected 

cells will require future studies, but we speculate that the greater intracellular 

load of B. anthracis in cells infected under non-germinating conditions (Figure 

5.7) may directly contribute to the higher degree of cell death. 

 

 Figure 5.8. The germination state of spores influences the viability of B. anthracis-

infected cells. RAW264.7 cells were incubated for 30 min with B. anthracis spores (MOI 10) in 

DMEM in the presence (+, black bars) or absence (-, white bars) of FBS (10%). After 30 min, the 

cells were washed to remove extracellular B. anthracis, and then further incubated with FBS 

(10%) and, as described under “Methods,” with gentamicin to germinate and kill any remaining 

spores that had not been germinated. After 15 min, the cells were washed and then further 

incubated in the absence of gentamicin. At 0 (immediately after gentamicin removal), 60, or 240 

min after removal of gentamicin, as indicated, the cells were evaluated for mammalian cell death 

via PI uptake, as described under Materials and Methods. The data are rendered as the fold-

increase of PI uptake relative to non-infected cells in the absence or presence of FBS at 5, 60, or 

240 min, as indicated. The rendered data have been combined from three independent 

experiments, each conducted in triplicate. Error bars indicate standard deviations. The P values 

were calculated to evaluate the statistical significance of the differences between the fold-

increase of PI uptake between cells incubated with spores in the absence or presence of FBS. 
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5.3 Discussion 

 Despite compelling evidence that during in vivo infection, the alveolar 

spaces of the lungs are intrinsically non-germinating, and dormant spores are 

taken up by mammalian cells prior to germination (8, 13, 16, 17, 21, 24, 44, 53), 

many studies involving in vitro models of infection have been conducted under 

germinating medium conditions (4, 12, 25, 33, 34, 43, 51, 52). Most studies have 

been conducted in cell culture medium containing 2-10% FBS, including those 

using RAW264.7 cells (38, 46), and the germination state of spores have not 

generally been monitored or controlled for during in vitro infections.  

 Several in vitro models have employed additives to the culture medium in 

an attempt to modulate germination. Several studies used D-alanine and/or D-

histidine (25, 26, 30), known inhibitors of germination initiation. However, 

interpretation of these studies may be complicated by the finding that D-

alanine/D-histidine, when added subsequent to spore uptake into macrophages, 

alter the extent to which spores germinate (25), suggesting that these D-amino 

acid germination inhibitors diffuse into host cells and affect spore germination 

within intracellular vesicles. Horse serum has been used by several groups to 

limit spore outgrowth during infection (3, 4, 25, 51). However, 10% horse serum 

in DMEM only slows, but does not eliminate the germination initiation of spores 

(51). The finding that RAW264.7 cells maintain viability, cell cycle progression, 

and mitochondrial metabolic activity for at least 4 h when maintained in serum-

free medium (Figure 5.5), indicates that in vitro infections, at least with 
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RAW264.7 cells, can be conducted under non-germinating conditions using FBS-

free medium. 

 Both spore (Figure 5.7) and host cell (Figure 5.8) viability were influenced 

by the germination state of spores at the time of uptake. Because several cell 

lines internalized the same number of spores under both germinating and non-

germinating conditions (Figure 5.6), it is unlikely that differences in the outcome 

of infection are due solely to initial differences in spore load. Rather, we 

speculate that, in contrast to dormant spores, germinated spores might be more 

vulnerable to growth inhibition and/or killing during phagocytosis. These results 

are consistent with previous reports in which infections were conducted with 

spores in medium containing FBS or fetal calf serum (i.e. germinating 

conditions).  Generally, within the first 4-5 h post-infection, losses were observed 

in intracellular CFU recovered from primary human dendritic cells (37), primary 

mouse alveolar macrophages (37), J774.A1 murine macrophage-like cells (36), 

bone marrow derived macrophages from A/J mice (43), or RAW 264.7 cells (9).  

 This study demonstrates that the infection of RAW 264.7 cells by B. 

anthracis spores is influenced by the germination state of spores, as dictated by 

the in vitro culture medium. The extent to which the germination state of B. 

anthracis spores ultimately affects the outcome of infections using cells other 

than RAW264.7 cells may ultimately depend on the properties idiosyncratic to 

that particular cell type or cell line. However, our results indicate the importance 

of rigorously considering the germinating properties of the culture medium when 
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establishing in vitro models to study the infection of host cells with B. anthracis 

spores. 

   

5.4 Materials and Methods 

5.4.1 Spore preparations and fluorescent labeling.  

 Spores were prepared from B. anthracis Sterne 7702 and enumerated 

using a hemacytometer (Thermo Fisher Scientific, Waltham, MA), as described 

previously (48). As quality control, spore preparations were tested for both heat 

resistance and the capacity to germinate, as described (48). 

 

5.4.2 Mammalian cell culture.  

 Abelson murine leukemia virus-transformed murine macrophages derived 

from ascites of BALB/c mice (RAW 264.7 macrophage-like cells; CRL-2278; 

ATCC, Manassas, VA) were maintained within a humidified environment at 37 °C 

and under 5% CO2 in complete DMEM, (Thermo Scientific, Waltham, MA) 

containing penicillin (100 U; Gibco BRL, Grand Island, NY), streptomycin (0.1 

mg/ml; Gibco BRL), L-glutamine (2 mM; Sigma, St. Louis, MO), and FBS 

(10%; JRH Biosciences, Lenexa, KS). MH-S cells (CRL-2019; ATCC) were 

maintained within a humidified environment at 37°C and under 5% 

CO2 in
 complete RPMI medium (Thermo Scientific) containing penicillin-

streptomycin (100 U, Gibco BRL), L-glutamine (4 mM), and FBS (10%). JAWSII 

(CRL-11904; ATCC) were maintained within a humidified environment at 37°C 

and under 5% CO2 in complete MEMα (Thermo Scientific) containing penicillin-
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streptomycin (100 U), L-glutamine (4 mM), and FBS (20%). All tissue culture 

plasticware was purchased from Corning Incorporated (Corning, NY).  

 

5.4.3 Evaluation of B. anthracis spore germination in cell culture media.   

 Using 96 well plates, spores prepared from B. anthracis 7702 (108 

spores/mL) were incubated at 37 °C and under 5% CO2 in BHI (BD Biosciences, 

San Jose, CA), LB (0.1 % tryptone, BD Biosciences; 0.05 % yeast extract, BD 

Biosciences; 0.05 % NaCl, Fisher Chemical, Fairlawn, NJ), PBS pH 7.2 

(Mediatech, Manassas, VA), or germinating amino acids (10 mM L-alanine, 1 mM 

L-inosine, both from Sigma) in PBS pH 7.2. In other studies, spores were 

incubated in 96 well plates (108 spores/mL) and at 37 °C and under 5% CO2 in 

the following cell culture media without or with FBS (10%, unless otherwise 

indicated; Mediatech): DMEM (0.1, 0.5, 1, 5 or 10% FBS), RPMI-1640, MEMα 

modification (10 or 20% FBS), MEM (Mediatech), AMEM (Gibco), EMEM 

(Mediatech), BME (Sigma), CIM (Gibco), Ham's F-12 (Mediatech), McCoy's 5A 

(M5A, ATCC), or DMEM with 10% FBS and 10 mM D-alanine (Sigma) and D-

histidine (Sigma). In some assays, FBS obtained from Mediatech was substituted 

with FBS purchased from Invitrogen or Sigma. As described previously (22), 

spore germination was evaluated by measuring loss in spore refractility or loss of 

heat resistance, while outgrowth was monitored by monitoring the elongation of 

bacilli using a Delta Vision RT microscope (Applied Precision; Issaquah, WA), 

outfitted with an Olympus Plan Apo 100x oil objective. DIC images were collected 
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using a Photometrics CoolSnap HQ camera; (Photometrics, Tucson; AZ), and 

processed using SoftWoRX Explorer Suite (version 3.5.1, Applied Precision Inc). 

 

5.4.4 Pre-conditioning of cell culture media.  

 To pre-condition cell culture medium, monolayers of RAW264.7 or MH-S 

cells in 24-well plates (80 to 95% confluency) were washed three times with 

Hanks’ balanced salt solution (HBSS) and then incubated in DMEM (for 

RAW264.7 cells) or RPMI-1640 (for MH-S cells) without FBS and penicillin-

streptomycin in a humidified environment at 37 °C and under 5% CO2. After 4 or 

24 h, the medium was withdrawn, centrifuged (600 x g for 5 min), and the 

supernatant was filter sterilized using a 0.22 µm filter (Corning). To evaluate heat 

sensitivity, some of the filter-sterilized pre-conditioned medium was incubated at 

95 ºC for 10 min or, alternatively, 65 ºC for 30 min Alternatively, some of the 

filter-sterilized pre-conditioned medium (3 mL) was dialyzed four times against 

PBS pH 7.2 (500 mL), using dialysis tubing with 12,000-14,000 molecular mass 

cutoff (Spectrum Laboratories, Inc., Rancho Dominguez, CA), each time for 6 h.   

 

5.4.5 Mammalian cell viability.  

 To evaluate the viability of RAW264.7, MH-S, or JAWSII cells, alterations 

in membrane permeability, as indicated by relative PI (1 µg/mL; Invitrogen 

Molecular Probes, Eugene, OR) uptake, were measured using flow cytometry, as 

previously described (48). 
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5.4.6 Flow cytometry.   

 Analytical flow cytometry was carried out using a Beckman Coulter EPICS 

XL-MCL™ flow cytometer equipped with a 70-µm nozzle, 488 nm line of an air-

cooled argon-ion laser, and 400 mV output. The band pass filter used for 

detection of Alexa Fluor 488 spores was 525/10 nm. The long pass filter used for 

cell cycle phase determination assays and mammalian cell viability assays was 

655 nm/LP. Cell analysis was standardized for side/forward scatter and 

fluorescence by using a suspension of fluorescent beads (Beckman Coulter Inc., 

Fullerton, CA). At least 10,000 events were detected for each experiment (>2000 

events per min). Events were recorded on a log fluorescence scale and 

evaluated using FCS Express 3.00.0311 V Lite Standalone. Sample debris (as 

indicated by lower forward and side scatter and a lack of PI staining) represented 

a small fraction (1 to 2%) of the detected events and was excluded from 

analysis.  

 

5.4.7 Cell cycle assay.  

 To compare the cell-cycle profiles of RAW264.7 cells cultured in FBS-

containing medium or FBS-free medium, relative PI uptake was measured using 

flow cytometry. At 4 or 24 h, as indicated, cells were incubated at room 

temperature with Cellstripper™ (Mediatech). After 15 min, the cells were further 

diluted with PBS pH 7.2 containing 10% FBS (800 mL). The cell suspensions 

were centrifuged for 5 min at 500 xg at room temperature. The pellets were 

resuspended in 300 µL of PBS pH 7.2 at room temperature, fixed by adding 

anhydrous ethanol (100%, 700 µL prechilled to -20 °C, Fisher Scientific) with 
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continuous vortexing, and then further incubated for at least 2 h at -20 °C. The 

cells were centrifuged for 5 min at 500 xg at room temperature, and the pellets 

were resuspended in 1 mL of PBS pH 7.2, and then incubated at room 

temperature for 30 min. The cells were centrifuged 5 min at 500 xg at room 

temperature. The cell pellets were resuspended in 300 µL PBS pH 7.2, 0.1% 

Triton X-100 (MP Biomedicals, Solon, OH), DNase-free RNase A (100 mg/mL; 

Sigma), and PI (10 µg/mL), and further incubated at room temperature for 60 

min. The stained cells were analyzed by flow cytometry.  

 

5.4.8 Mammalian cell metabolism assay.  

 To compare the metabolic activities of RAW264.7 cells cultured in FBS-

containing medium or FBS-free medium, the relative conversion of tetrazolium 3-

(4,5-di-methylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (tetrazolium; 5 

mg/mL, Sigma) to formazan over 30 min and at 37 °C was measured at 570 nm 

with a Synergy 2 plate reader (BioTek Instruments, Inc., Winooski, VT), as 

described (6, 22). 

 

5.4.9 In vitro infection of mammalian cells with B. anthracis. 

  Mammalian cells (5.0 x 105 total cells/well) were incubated in the 

appropriate complete medium, as indicated above under “Mammalian cell 

culture,” for two days in a humidified environment at 37 °C and under 5% CO2, 

resulting in 80-95% confluency. To calculate the number of spores needed to 

achieve MOI 10, cells from several wells were detached using Cellstripper™ and 
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enumerated using a hemacytometer. The cells were used only if greater than 

90% of the cells excluded trypan blue; generally, greater than 95% of the cells 

within the monolayer excluded trypan blue. Prior to the addition of labeled spores, 

cells were washed three times with HBSS and then incubated in DMEM 

(RAW264.7 and JAWSII) or RPMI-1640 (MH-S), without or with FBS, as 

indicated. To synchronize the exposure of cells to spores, spores were 

immediately and gently centrifuged (600 x g for 5 min) onto the surfaces of cells. 

The plates were incubated within a humidified environment at 37 °C and under 

5% CO2 for the indicated times prior to analysis. 

 

5.4.10 Quantification of B. anthracis uptake by mammalian cells.  

 Internalization of B. anthracis spores by mammalian cells was quantified 

using a previously described flow cytometry based assay (48). Briefly, the 

indicated mammalian cell lines were seeded into 48-well plates (Corning) in order 

to achieve 80-95% confluency after two days of incubation. As previously 

described (48), B. anthracis spores were labeled using an amine reactive Alexa 

Fluor® 488 carboxylic acid, succinimidyl ester (Molecular Probes–Invitrogen). 

Alexa Fluor 488-labeled B. anthracis spores were quantified using a 

hemacytometer, added to cells at the desired MOI, and immediately but gently 

centrifuged (300 xg for 5 min) onto the surface of cells. The plates were 

incubated within a humidified environment at 37 °C and under 5% CO2 for the 

indicated times prior to analysis using flow cytometry, as previously described 

(48) 
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 To discriminate intracellular spores from those which remain surface-

associated during infection, cells were analyzed in the presence of trypan blue, a 

membrane-impermeable, Alexa Fluor 488® fluorescence quenching agent (23). 

Previously, 0.5% trypan blue was demonstrated to completely quench the 

fluorescence emission of Alexa Fluor 488-labeled spores bound to the surface of 

mammalian cells, while having no affect the fluorescence emission of internalized 

spores (48). From these data, the percentage of cells with internalized B. 

anthracis was calculated by dividing the number of viable cells with greater than 

background auto-fluorescence by the total number of viable cells. For spore 

internalization experiments, viable mammalian cells (typically 90-98% of the total 

events) were readily identified by their high forward scatter and lack of propidium 

iodide (PI) staining. A second distinct population, (2-10%) of dead cells was 

routinely detected with relatively lower forward scatter (which indicates a smaller 

size) and positive PI staining (indicating non-viable cells; data not shown). Over 

the course of 60 min, we observed no detectable increase in cell death in the 

presence of labeled spores, as indicated by PI uptake (data not shown). Finally, 

sample debris (as indicated by relatively lower forward and side scatter and a 

lack of PI staining) represented a small fraction (1-2%) of the detected events. 

Based on these data, the data from subsequent experiments were gated to 

include only viable cells, while excluding non-viable cells, cellular debris, and 

spores not associated with cells. Alternatively, the time dependent total uptake of 

spores was determined by plotting the geometric mean of the fluorescence 

intensity (MFI).  
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5.4.11 Quantification of viable, intracellular B. anthracis.  

 Cells were incubated with dormant B. anthracis spores, as indicated 

above.  For germinated B. anthracis spore infections, B. anthracis spore were 

germinated with 10 mM L-alanine and L-inosine in 1x PBS pH 7.2 for 30 min and 

washed twice with 1x PBS pH 7.2 to remove germinants and enumerated as 

described above. After 30 min, cells were washed three times with HBSS, and 

further incubated in the indicated medium with FBS (10%) and gentamicin (100 

µg/ml) to kill all external germinated spores. After 15 min, the cells were washed 

three times with HBSS, and further incubated in the indicated appropriate 

medium supplemented with FBS (10%). At the indicated times, the cells were 

lysed by incubating with sterile tissue culture grade water (Mediatech) for 5 min 

at 25 °C. Serial dilutions of the lysates were plated on LB agar plates and 

incubated overnight at 37 °C. CFU were enumerated by direct counting of visible 

colonies and correcting for the appropriate dilution. 

 

5.4.12 Statistics.   

 All data are representative of those from three or more 

independent experiments. The Q-test was performed to eliminate data that were 

statistical outliers (11). Error bars represent standard deviations.  P values were 

calculated with Student's t test using paired, one-tailed distribution. P <0.05 

indicates statistical significance. Statistical analyses to calculate means, standard 

deviations, and Student's t tests, were calculated using Microsoft Excel (version 

11.0). 
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CHAPTER 6: NISIN MODULATION OF BACILLUS ANTHRACIS SPORE AND 
IMMUNE CELL INTERACTIONS AND SURVIVAL 
 
6.1 Introduction 

 Spores enter the mammalian host via broken skin, the gastrointestinal 

tract when ingested orally, and the lungs through inhalation of spores, which is 

the most deadly route of infection (11, 14, 23-25).  Interaction between immune 

cells and B. anthracis spores is essential for infection and dissemination of 

disease within a host especially within an inhalation infection, which is contingent 

upon spore-immune cell interaction that results in phagocytosis of inhaled spores 

by alveolar macrophages or dendritic cells sampling the alveolar space. 

Dissemination of infection into the spleen and liver begins with trafficking of 

spore-containing immune cells to regional lymph nodes followed by the release 

of B. anthracis spores or bacilli into the bloodstream (24, 26, 39).  The 

establishment of a systemic infection without medical intervention will result in 

bacteremia, toxemia, and ultimately death of the host  (15, 39).  Recent literature 

has also pointed to the use of alveolar epithelial cells as a potential route of 

spore egress from the lungs (35).   

The resistance of B. anthracis to several antibiotics and the capacity to 

acquire resistance to currently used antibiotics underscores the importance of 

identifying new antimicrobials and therapies that can be utilized against anthrax. 

B. anthracis demonstrates resistance to bacitracin, cephalosporin, and 

streptomycin (8, 29). Currently employed antibiotic treatments, primarily 

ciprofloxacin and doxycycline, caused adverse side effects such as severe 

gastrointestinal symptoms, such as diarrhea and vomiting, seizures, 
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hallucinations, and anaphylaxis, which were observed during post-exposure 

prophylaxis to aerosolized B. anthracis endospores (31, 37). B. anthracis 

development of reduced susceptibility to the quinolones occurred in the presence 

of sub-inhibitory concentrations of orofloxacin or ciprofloxacin(41).  Current 

treatments of endemic anthrax outbreaks in developing countries have resulted 

in penicillin resistant B. anthracis by activating the dormant β-lactamase present 

in all tested isolates (10). The acquisition of antibiotic resistance gene(s) through 

horizontal gene transfer is of great concern, originating in part from the ability of 

B. anthracis to become competent for transformation when experiencing nutrient 

limited conditions (33).   

 Current antibiotic treatments require that the spore be fully germinated 

and outgrown into a vegetative cell with functional metabolism for antibiotics to 

target protein synthesis, cell wall biosynthesis, specific metabolic pathways, or 

DNA replication.  Cell wall and DNA replication inhibition will prevent bacteremia 

by blocking growth. It is notable that these drugs will not eliminate the effects on 

the host of bacterial produced toxins. Therefore, ribosomal inhibitors in 

conjunction with these antimicrobials are required to prevent toxin synthesis to 

eliminate toxemia (31, 37).  The adverse side effects associated with treatment of 

anthrax infections and the ability of B. anthracis to acquire antibiotic resistance 

underscores the critical need for the development of alternative treatments. 

 As described in previous chapters, lantibiotics are cationic antimicrobial 

peptides (9) that provide a unique peptide platform to inhibit infections by spore-

forming pathogens such as B. anthracis. As discussed in chapter 1, nisin is a 
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highly post-translationally modified peptide containing non-proteogenic amino 

acids and (methyl)lanthionine thioether rings, which provides resistance to 

proteolytic degradation and the necessary structural constraints for target 

recognition (9).  Nisin induces pore formation in lipid membranes (34) and inhibits 

transglycosylation preventing cell wall biosynthesis via lipid II binding to inhibit 

vegetative bacteria (28, 43) while preventing germinating spore outgrowth via 

membrane disruption (27).  Interestingly, nisin has been relatively unaffected by 

the emergence of microbial resistance, despite widespread use in the food 

industry as a preservative (13, 34). 

 Because B. anthracis spore interactions with macrophages and dendritic 

cells are important for both the dissemination and control of disease progression, 

the effects of nisin on spore interactions with these immune cells was 

investigated.  Taking advantage of the in vitro infection model discussed in 

chapter 5 (38), the effects nisin has on spore-immune cell interactions were 

evaluated utilizing both alveolar and peritoneal cultured macrophage cell lines 

and a cultured dendritic cell line.  The effect nisin has on the survival of both the 

spore and the immune cell during and post infection was investigated. In 

addition, any effects nisin would have on binding and phagocytosis of the spore 

were evaluated.  Further interrogation of spore-immune cell interactions centered 

on whether nisin was able to interact with the spore within a macrophage during 

and post infection to determine the effect of post exposure treatment.  In addition, 

cytokine expression was used to evaluate whether nisin prevents the 

establishment of a "normal" infection as wells as whether nisin, itself, is immuno-
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modulatory.  Collectively, the data demonstrated that nisin aids in immune cells 

clearance of spore infection while reducing the proper establishment of an 

infection within an in vitro infection model and increased immune cell survival. 

 

6.2 Results 

6.2.1 Nisin induced dose dependent clearance of viable B. anthracis.   

 To determine whether nisin would aid in the clearance of bound and 

phagocytized viable B. anthracis associated with macrophages and dendritic 

cells, immune cells were infected with spores with nisin treatment during the 

infection.  These infections were also performed in the presence or absence of a 

potent germinant, fetal bovine serum (FBS) (Chapter 5).  When nisin was present 

in both germinating and non-germinating conditions during RAW264.7 (peritoneal 

macrophage-like cells) infections, nisin was able to significantly reduce the 

number of recoverable viable organisms within macrophages at 60 min at both 1 

and 10 µM nisin (Figure 6.1 A, B).  Furthermore, nisin was effective at reducing 

the number of viable organisms in germinating and non-germinating conditions 

through 240 min at 10 µM (Figure 6.1 A, B).  Further investigation identified that 

nisin was able to reduce the number of recoverable viable organisms from spore 

infected MH-S (alveolar macrophages) and JAWSII (dendritic cells) for both 

germinating and non-germinating conditions beginning at 1 h through 4 h (Figure 

6.1 C-F).  Moreover, nisin was able to reduce the number of viable bacilli 

beginning at 1 h through 4 h when RAW264.7 macrophages were infected with 

vegetative bacteria (Figure 6.2). Non-germinating spores (heat treated samples) 
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were not affected by antibiotic intervention (Figure 6.2).  When the activity of 

nisin was compared to genatmicin within an infection, only nisin was able 

eliminate all germinated, heat sensitive, spores in both germinating and non-

germinating infections (Figure 6.3). In long term infections, both nisin (0.1-10 µM) 

and gentamicin were able to prevent visible growth within the cell culture medium 

(data not shown).  Collectively, these data indicate that nisin was a potent 

inhibitor of B. anthracis when cells were treated during an infection.   

Figure 6.1 

A      B 

0.01

0.1

1

10
5 min 60 min 240 min

[nisin] (µM) 0 0.1 1 10 0 0.1 1 10 0 0.1 1 10

RAW264.7

*

*

*
* *

re
c
o
v
e
ra

b
le

 C
F

U
(f

o
ld

 c
h
a
n
g
e
)

 

0.01

0.1

1

10
5 min 60 min 240 min

[nisin] (µM) 0 0.1 1 10 0 0.1 1 10 0 0.1 1 10

*

* *
* *

re
co

ve
ra

b
le

 C
F

U
(f

o
ld

 c
h
a
n
g
e
)

RAW264.7

 
C      D 

0.01

0.1

1

10

100
5 min 60 min 240 min

0 0.1 1 10 0 0.1 1 10 0 0.1 1 10

MH-S

*

* * * *

re
co

ve
ra

b
le

 C
F

U

(f
o
ld

 c
h
a
n
g
e
)

[nisin] (µM)

 

0.1

1

10
5 min 60 min 240 min

0 0.1 1 10 0 0.1 1 10 0 0.1 1 10

MH-S

*
* *

re
c
o
ve

ra
b
le

 C
F

U
(f

o
ld

 c
h
a
n
g
e
)

[nisin] (µM)

 

 
 
 
 
 
 
 
 



 207 

Figure 6.1 (continued) 
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 Figure 6.1. Nisin induced dose dependent clearance of viable B. anthracis.  A,C,E. 

Germinating constant infection was performed with FBS as a germinant.  B,D, F. B. Non-

germinating constant infection was performed in the absence of FBS.  A-F. The data are 

expressed as the fold change of recoverable colony forming units (CFU) at 5, 60, and 240 min 

from lysed immune cells.  * indicates a P < 0.05 between control (0 µM nisin, black) and 

experimental condition (0.1 - 10 µM nisin, white).  Error bars indicate standard deviations. 

 

 

 

Figure 6.2. Nisin induced dose dependent clearance of viable B. anthracis vegetative 

cells. Constant infection was performed in the presence of FBS.  The data are expressed as the 

fold change of recoverable colony forming units (CFU) at 5, 60, and 240 min from lysed immune 

cells.  * indicates a P < 0.05 between control (0 µM nisin, black) and experimental condition (0.1 - 

10 µM nisin, white).  Error bars indicate standard deviations. 
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 Figure 6.3. Nisin mediated greater clearance of viable B. anthracis than gentamicin. A. 

Germinating constant infection was performed with FBS as a germinant.  B. Non-germinating 

constant infection was performed in the absence of FBS.  The data are expressed as the fold 

change of recoverable colony forming units (CFU) at 60 min from lysed immune cells.  Error bars 

indicate standard deviations. 

 

6.2.2 Nisin prevents B. anthracis proliferation in post infection treatments. 

 Since nisin's presence during an infection was able to reduce the number 

of viable B. anthracis, it was necessary to determine whether nisin would be able 

to reduce the number of viable organisms within an macrophage post infection.  

When spores were used to infect RAW264.7 macrophages in germinating 

conditions followed by nisin addition, nisin was able to significantly reduce the 

number of viable organisms through 24 h (Figure 6.4 A).  In addition, the 

presence of nisin at all concentrations, even at concentrations below the MIC for 

B. anthracis (27), prevented an increase in the number of viable organisms 

(Figure 6.4 A). Nisin reduced the number of viable organisms for both MH-S and 
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JAWSII cell lines in germinating conditions at 1 and 10 µM and prevented an 

increase in recoverable viable organisms at all concentrations (Figure 6.4 C, E). 

In the absence of nisin, the number of recoverable viable organisms increased 

over time for both cell lines (Figure 6.4 C, E).  Even during a constant infection 

where spores were incubated with cells during the entire infection, nisin 

incubation with peritoneal macrophages prior to, simultaneous with, or post spore 

infection were able to reduce the number of recoverable CFUs (Figure 6.5). 

 When evaluating the effect of nisin under germinating conditions, nisin 

was able to prevent the increase of viable organisms recovered from RAW264.7, 

MH-S, and JAWSII cell lines (Figure 6.4 A,C,E).  However, under non-

germinating conditions, nisin at 1 and 10 µM prevented the increase of 

recoverable CFUs from RAW264.7 and MH-S macrophages (Figure 6.4 B,D) 

while  a reduction was observed for JAWSII dendritic cells (Figure 6.4 F).   As a 

comparator, polymixin B was only able to prevent an increase of recoverable 

CFU in germinating conditions (Figure 6.4).  In addition, the presence of nisin 

(0.1-10 µM) and polymixin prevented or reduced visible bacterial growth within 

the cell culture medium for both germinating and non-germinating conditions 

(data not shown). When added post infection, the presence of nisin prevented an 

increase, or reduced recoverable CFU.  
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Figure 6.4  
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 Figure 6.4. Nisin prevented B. anthracis proliferation in post infection treatments.  A,C,E. 

Immune cells were infected with B. anthracis spore under germinating conditions followed by 

gentamicin protection and post infection treatment with nisin in the presence of FBS as indicated  
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Figure 6.4 (continued)  

in the “Materials and Methods”.  B,D,F. Immune cells were infected with B. anthracis spore under 

non-germinating conditions followed by gentamicin protection and post infection treatment with 

nisin in the presence of FBS as indicated in the “Materials and Methods”  A-F. The data are 

expressed as the fold change of recoverable colony forming units (CFU) at 0, 1, 4, and 24 h from 

lysed immune cells.  * indicates a P < 0.05 between control (0 µM nisin, black) and experimental 

condition (0.1 - 10 µM nisin, white; 8 µM polymixin B, gray) at the corresponding time point.  Error 

bars indicate standard deviations 
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 Figure 6.5. Nisin prevented B. anthracis proliferation when added prior to, during or post 

spore infection of macrophages. CS: Spore infection of RAW 264.7 macrophages.  SN: Spore 

infection of RAW 264.7 macrophages in presence of 10 µM nisin.  PSN: Spore and 10 µM nisin 

were pre-incubated prior to RAW 264.7 macrophages infection.  PCS: Post infection addition of 

10 µM nisin.   A. Germinating constant infection was performed with FBS as a germinant.  B. 

Non-germinating constant infection was performed in the absence of FBS.  A,B. The data are 

expressed as the fold change of recoverable colony forming units (CFU) at 0, 1, 4, and 24 h.  * 

indicates a P < 0.05 between control (0 µM nisin, black) and experimental condition (10 µM nisin, 

white) at the corresponding time point.   
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6.2.3 Nisin increased the survival of immune cells.   

 It was unclear whether the nisin-dependent decrease in recoverable CFU 

discovered when mammalian cells were infected with B. anthracis spores would 

affect the viability of infected cells. Studies to address this issue revealed 

significantly fewer dead RAW264.7 cells when infected for 4 h in the presence 

than absence of nisin (Figure 6.6). The presence of nisin was also able to 

decrease RAW264.7 cell death when infected with B. anthracis bacilli (Figure 

6.7). The addition of nisin (10 µM) prior to, simultaneous with, or post an infection 

increased macrophage survival in either germinating or non-germinating 

conditions (Figure 6.8). When nisin was present during a 24 h constant infection 

of RAW264.7 macrophages, nisin (0.1-10 µM) was able to prevent peritoneal 

macrophage cell death in both germinating and non-germinating conditions 

(Figure 6.9).  The presence of nisin (0-10 µM) post infection after gentamicin 

protection was able to prevent cell death in both germinating and non-

germinating conditions (Figure 6.9).  Nisin was also able to prevent immune cell 

death in both the constant and gentamicin protection infections of MH-S and 

JAWSII cell lines in both germinating and non-germinating conditions (Figure 

6.9).  These results indicate that the presence of nisin, even at non-inhibitory 

concentrations in solution, resulted in increased viability of infected mammalian 

cells during infection with  spores.     
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Figure 6.6. Nisin increased the short term survival of immune cells.  A.  Germinating 

constant infection was performed with FBS as a germinant. B. Non-germinating constant infection 

was performed in the absence of FBS.  A, B. Cell death was monitored as a function of PI uptake 

by immune cell.  The data are expressed as percent cell death as a function of PI uptake at 5, 60, 

and 240 min.    * indicates a P < 0.05 between control (0 µM nisin, black) and experimental 

condition (0.1 - 10 µM nisin, white).  Error bars indicate standard deviations. 
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Figure 6.7. Nisin increased the short term survival of immune cells when infected by 

vegetative cells.  Constant infection was performed in the presence of FBS.  Cell death was 

monitored as a function of PI uptake by immune cell.  The data are expressed as percent cell 

death as a function of PI uptake at 5, 60, and 240 min.    * indicates a P < 0.05 between control (0 

µM nisin, black) and experimental condition (0.1 - 10 µM nisin, white).  Error bars indicate 

standard deviations. 
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Figure 6.8. Nisin increased the short term survival of immune cells when added prior to, 

during or post spore infection of macrophages. CS: Spore infection of RAW 264.7 macrophages.  

SN: Spore infection of RAW 264.7 macrophages in presence of 10 µM nisin.  PSN: Spore and 10 

µM nisin were pre-incubated prior to RAW 264.7 macrophages infection.  PCS: Post infection 

addition of 10 µM nisin.  A. Germinating constant infection was performed with FBS as a 

germinant.  B. Non-germinating constant infection was performed in the absence of FBS.  A,B.  

Cell death was monitored as a function of PI uptake by immune cell.  The data are expressed as 

percent cell death as a function of PI uptake at 5, 60, and 240 min.  * indicates a P < 0.005 

between control (0 µM nisin, black) and experimental condition (0.1 - 10 µM nisin, white).  Error 

bars indicate standard deviations. 
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Figure 6.9 (continued)  
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Figure 6.9.  Nisin increased the long term survival of immune cells.  A. RAW264.7 

peritoneal macrophages.  B. MH-S alveolar macrophages.  C. JAWSII dendritic cells. A-C.  Cell 

death was monitored at 24 h via PI uptake.  The data are expressed as percent cell death as a 

function of PI uptake at 24 h.  * indicates a P < 0.005 between control (0 µM nisin, black) and 

experimental condition (0.1 - 10 µM nisin, white).  Error bars indicate standard deviations. 

 

6.2.4 The presence of nisin during infection reduced spore association and 

internalization. 

The effects of nisin on both the binding and uptake of Alexa Fluor 488-

spores (AF488-spores) by mammalian cells were monitored by flow cytometry. 

These studies revealed that under both germinating and non-germinating 

conditions, the presence of nisin resulted in significantly fewer RAW264.7 cells 

with bound and internalized spores (Figure 6.10). Furthermore, nisin reduced 

spore binding and uptake in both germinating and non-germinating conditions by 

MH-S and JAWSII cell lines (data not shown).  In addition, microscopic analysis 

of Alexa-Fluor 568 labeled spore (AF568-spore) infections of RAW264.7 cells in 
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the presence of 10 µM nisin significantly reduced the number of spores within 

infected macrophages for both germinating and non-germinating infections 

(Figure 6.11).  Nisin incubation with RAW264.7 cells prior to or during a constant 

spore infection was able to reduce the number of internalized spores while the 

addition of nisin after the infection time slowed the rate of further infection (Figure 

6.12).  As a control, nisin did not affect AF488-spore fluorescence (Figure 6.13), 

which indicates that the observed reduction in spore binding and uptake upon 

nisin addition was not a function of quenching spore fluorescence.  When 

gentamicin protection infections were analyzed by flow cytometry, the addition of 

nisin as a post infection treatment did not alter extent of infection in germinating 

and non-germinating conditions for all cell lines (Figure 6.14 and data not 

shown).  Nisin did not reduce the binding and uptake of fluorescent beads in the 

presence of FBS (germinant), but in the absence of a germinant, nisin increased 

the uptake of beads (Figure 6.15).  Additionally, binding and uptake was reduced 

in a dose dependent fashion when RAW264.7 macrophages were infected with 

GFP-expressing bacilli, which suggests the reduction in B. anthracis interaction 

with immune cells is relevant to spores or vegetative cells rather than an 

inanimate polymer (Figure 6.16). 
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 Figure 6.10.  Nisin reduced spore interaction with immune cells.      A.  Germinating 

constant infection was performed with FBS as a germinant.  B. Non-germinating constant 

infection was performed in the absence of FBS.  A, B.  Immune cell binding and internalization of 

B. anthracis spore were monitored via an increase in immune cell fluorescence as a result of the 

interactions with fluorescently labeled spores.  The data are expressed as the fold increase of 

mean fluorescence intensity of immune cells at 5, 60, and 240 min.    * indicates a P < 0.05 

between control (0 µM nisin, black) and experimental condition (0.1 - 10 µM nisin, white).  Error 

bars indicate standard deviations. 
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 Figure 6.11. Quantification of spore per infected macrophages.  The data are expressed 

as the number of spores per an infected macrophage.  * indicates a P < 0.05 between an 

infection performed in the presence of 10 µM nisin and 0 µM nisin.  Shown is the mean of a three 

experiments conducted in duplicate. Error bars indicate standard deviations.  + : 10 µM nisin, - : 0 

µM nisin. 
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 Figure 6.12.  Nisin altered spore interaction with immune cells when added prior to, 

during or post spore infection of macrophages. CS: Spore infection of RAW 264.7 macrophages.  

SN: Spore infection of RAW 264.7 macrophages in presence of 10 µM nisin.  PSN: Spore and 10 

µM nisin were pre-incubated prior to RAW 264.7 macrophages infection.  PCS: Post infection 

addition of 10 µM nisin.   A.  Germinating constant infection was performed with FBS as a 

germinant. B. Non-germinating constant infection was performed in the absence of FBS.  A, B.  

Immune cell binding and internalization of B. anthracis spore were monitored via an increase in 

immune cell fluorescence as a result of the interactions with fluorescently labeled spores.  The 

data are expressed as the fold increase of mean fluorescence intensity of immune cells at 5, 60, 

and 240 min.    * indicates a P < 0.05 between control (0 µM nisin, black) and experimental 

condition (0.1 - 10 µM nisin, white).  Error bars indicate standard deviations 
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 Figure 6.13. Nisin effect on spore fluorescence. AF488-spores were incubated in the 

presence of nisin (0-10 µM) for 30 min at 37 ºC.  Flow cytometry was monitored the effect of nisin 

on spore fluorescence for 10,000 spores. 
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 Figure 6.14.  Nisin does not alter spore interactions with nisin added after infection of 

RAW264.7 cells.  A. Immune cells were infected with B. anthracis spore under germinating 

conditions followed by gentamicin protection and post infection treatment with nisin in the 

presence of FBS as indicated in the “Materials and Methods”.  B. Immune cells were infected with 

B. anthracis spore under non-germinating conditions followed by gentamicin protection and post 

infection treatment with nisin in the presence of FBS as indicated in the “Materials and Methods”.    

A, B.  Immune cell binding and internalization of B. anthracis spore were monitored via an 

increase in immune cell fluorescence as a result of the interactions with fluorescently labeled 

spores.  The data are expressed as the fold increase of mean fluorescence intensity of immune 

cells at 5, 60, and 240 min.    * indicates a P < 0.05 between control (0 µM nisin, black) and 

experimental conditions (0.1 - 10 µM nisin, white; 8 µM polymixin B, gray).  Error bars indicate 

standard deviations. 
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 Figure 6.15. Addition of nisin altered the interaction between inert beads and immune 

cells.  Germinating (+) and non-germinating (-) constant infections were performed with FBS as a 

germinant. Immune cell binding and internalization of B. anthracis spore were monitored via an 

increase in immune cell fluorescence as a result of the interactions with fluorescently labeled 

spores.  The data are expressed as the fold increase of mean fluorescence intensity of immune 

cells at 5, 60, and 240 min.    * indicates a P < 0.05 between control (0 µM nisin, black) and 

experimental condition (10 µM nisin, white).  Error bars indicate standard deviations. 
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 Figure 6.16. Nisin reduced bacilli interaction with immune cells.      A.  Germinating 

constant infection was performed with FBS as a germinant.  B. Non-germinating constant 

infection was performed in the absence of FBS.  A, B.  Immune cell binding and internalization of 

B. anthracis bacilli were monitored via an increase in immune cell fluorescence as a result of the 

interactions with GFP-expressing bacilli.  The data are expressed as the fold increase of mean  
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Figure 6.16 (continued)  

fluorescence intensity of immune cells at 5, 60, and 240 min.    * indicates a P < 0.05 between 

control (0 µM nisin, black) and experimental condition (0.1 - 10 µM nisin, white).  Error bars 

indicate standard deviations. 

 

 The percentage of cells with internalized spores was significantly reduced 

in the presence versus absence of nisin (Figure 6.17). In contrast, nisin treatment 

after spore infection of immune cells did not alter the percentage of cells with 

internalized spores (Figure 6.18).  Incubation of RAW264.7 cells with nisin prior 

to and simultaneous to further incubation with spores resulted in a significant 

reduction in the percentage of cells with internalized spores (Figure 6.19). Nisin 

also reduced the percentage of RAW264.7 macrophages infected with GFP-

expressing bacilli (Figure 6.20).  However, nisin did not reduce the percentage of 

cells with intracellular fluorescent beads in the presence or absence of germinant 

(FBS). Moreover, nisin increased the percentage of cells that took up beads in 

the absence of FBS (Figure 6.21).   
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 Figure 6.17. Nisin reduced spore infection of immune cells within the population.      A.  

Germinating constant infection was performed with FBS as a germinant.  B. Non-germinating 

constant infection was performed in the absence of FBS.  A, B.  Immune cell infection with B. 

anthracis spores was monitored via an increase in immune cell fluorescence as a result of the 

interactions with fluorescently labeled spores.  The data are expressed as the percent of immune 

cells displaying an increased fluorescence as a function of AF-488 spore interaction at 5, 60, and 

240 min.    * indicates a P < 0.05 between control (0 µM nisin, black) and experimental condition 

(0.1 - 10 µM nisin, white).  Error bars indicate standard deviations. 
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 Figure 6.18. Nisin does not spore interaction with nisin post immune cell infection.  A. 

Immune cells were infected with B. anthracis spore under germinating conditions followed by 

gentamicin protection and post infection treatment with nisin in the presence of FBS as indicated  
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Figure 6.18 (continued)  

in the “Materials and Methods”.  B. Immune cells were infected with B. anthracis spore under non-

germinating conditions followed by gentamicin protection and post infection treatment with nisin in 

the presence of FBS as indicated in the “Materials and Methods”.    A, B.  Immune cell infection 

with B. anthracis spores was monitored via an increase in immune cell fluorescence as a result of 

the interactions with fluorescently labeled spores.  The data are expressed as the percent of 

immune cells displaying an increased fluorescence as a function of AF-488 spore interaction at 5, 

60, and 240 min.  * indicates a P < 0.05 between control (0 µM nisin, black) and experimental 

conditions (0.1 - 10 µM nisin, white; 8 µM polymixin B, gray).  Error bars indicate standard 

deviations. 
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 Figure 6.19.  Nisin altered spore interaction with immune cells when added prior to, 

during or post spore infection of macrophages. CS: Spore infection of RAW 264.7 macrophages.  

SN: Spore infection of RAW 264.7 macrophages in presence of 10 µM nisin.  PSN: Spore and 10 

µM nisin were pre-incubated prior to RAW 264.7 macrophages infection.  PCS: Post infection 

addition of 10 µM nisin.   A.  Germinating constant infection was performed with FBS as a 

germinant.  B. Non-germinating constant infection was performed in the absence of FBS.  A, B.  

Immune cell infection with B. anthracis spores was monitored via an increase in immune cell 

fluorescence as a result of the interactions with fluorescently labeled spores.  The data are  
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Figure 6.19 (continued)  

expressed as the percent of immune cells displaying an increased fluorescence as a function of 

AF-488 spore interaction at 5, 60, and 240 min.  * indicates a P < 0.05 between control (0 µM 

nisin, black) and experimental condition (0.1 - 10 µM nisin, white).  Error bars indicate standard 

deviations. 
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 Figure 6.20.  Nisin reduced bacilli infection of immune cells within the population.  A.  

Germinating constant infection was performed with FBS as a germinant.  B. Non-germinating 

constant infection was performed in the absence of FBS.  A, B.  Immune cell infection with B. 

anthracis bacilli was monitored via an increase in immune cell fluorescence as a result of the 

interactions with fluorescently labeled spores.  The data are expressed as the percent of immune 

cells displaying an increased fluorescence as a function of GFP-expressing bacilli interaction at 5, 

60, and 240 min.    * indicates a P < 0.05 between control (0 µM nisin, black) and experimental 

condition (0.1 - 10 µM nisin, white).  Error bars indicate standard deviations. 
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 Figure 6.21.  Addition of nisin altered immune cells internalization of inert beads.  

Germinating (+) and non-germinating (-) constant infections were performed with FBS as a 

germinant. Immune cell infection with B. anthracis spores was monitored via an increase in 

immune cell fluorescence as a result of the interactions with fluorescently labeled spores.  The 

data are expressed as the percent of immune cells displaying an increased fluorescence as a 

function of AF-488 spore interaction at 5, 60, and 240 min.  * indicates a P < 0.05 between control 

(0 µM nisin, black) and experimental condition (10 µM nisin, white).  Error bars indicate standard 

deviations. 

 To determine whether the nisin-dependent reduction in internalized spores 

was due to reduced binding of spores in the presence of nisin, RAW264.7 cells 

were pre-incubated with 10 µM nisin at 37 ºC followed by further incubation of 

spores (MOI of 10) at 4 °C to prevent uptake, but not binding of spores to the cell 

surface. These studies revealed a significant reduction in cell-associated spores 

when incubated in the presence (Figure 6.22A) but not absence of FBS (Figure 

6.22B).  Additionally when RAW264.7 cells were pre-incubated with 10 µM nisin 

at 4 ºC followed by a germinating spore infection at 37 ºC in the absence of nisin, 

a reduction in binding was not observed for both germinating and non-

germinating conditions (Figure 6.22C,D). In cytochlasin D binding experiments, 
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nisin did not abolish binding, but it induced a dose dependent decrease in spore 

binding that biologically appears to be a minimal reduction yet was statistically 

significant for both germinating and non-germinating conditions (Figure 6.23).  

Furthermore, when the binding effect of nisin was compared to polymixin B or an 

antibiotic combination of penicillin and streptomycin, all treatments in both 

germinating infections had a minimal yet statistically significant reduction in spore 

binding with RAW264.7 macrophages while only polymixin B reduced spore 

binding in a non-germinating infection (Figure 6.24).  Collectively, these data 

indicate that nisin alters the spore-immune cell interaction resulting in a decrease 

in the number of infected immune cells when infecting with a biological particle, 

spore or bacilli. Moreover, immune cell binding of B. anthracis spore was 

implicated as the factor resulting in the decrease in immune cell infection. 
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 Figure 6.22.  Nisin altered spore binding to immune cells.  A, C.  Germinating constant 

infection was performed with FBS as a germinant. B, D. Non-germinating constant infection was 

performed in the absence of FBS. A, B. Spore infection at 4 ºC.  RAW 264.7 macrophages were 

pre-incubated in the presence and absence of 10 µM nisin at 37 ºC, washed, and infected at 4 

ºC.  C,D. Nisin pre-incubation at 4 ºC. RAW 264.7 macrophages were pre-incubated in the 

presence and absence of 10 µM nisin at 4 ºC, washed, and infected at 37 ºC.  A-D.  Immune cell 

infection with B. anthracis spores was monitored via an increase in immune cell fluorescence as a 

result of the interactions with fluorescently labeled spores.  The data are expressed as the 

percent of immune cells displaying an increased fluorescence as a function of AF-488 spore 

interaction at 5, 60, and 240 min.  * indicates a P < 0.05 between control (0 µM nisin, black) and 

experimental condition (10 µM nisin, white).  Error bars indicate standard deviations. 
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 Figure 6.23.  Nisin altered spore binding to immune cells - cytochalasin D infection.  A.  

Germinating constant infection was performed with FBS as a germinant. B. Non-germinating 

constant infection was performed in the absence of FBS. A, B.  Immune cell infection with B. 

anthracis spores was monitored via an increase in immune cell fluorescence as a result of the 

interactions with fluorescently labeled spores.  The data are expressed as the percent of immune 

cells displaying an increased fluorescence as a function of AF-488 spore interaction at 5, 60, and 

240 min.  * indicates a P < 0.05 between control (0 µM nisin, black) and experimental condition 

(0.1 - 10 µM nisin, white).  Error bars indicate standard deviations. 
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 Figure 6.24. Effect of antibiotics on spore binding - cytochalasin D infection.  A.  

Germinating constant infection was performed with FBS as a germinant. B. Non-germinating 

constant infection was performed in the absence of FBS. A, B.  Immune cell infection with B. 

anthracis spores was monitored via an increase in immune cell fluorescence as a result of the  
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Figure 6.24 (continued)  

interactions with fluorescently labeled spores.  The data are expressed as the percent of immune 

cells displaying an increased fluorescence as a function of AF-488 spore interaction at 5, 60, and 

240 min. * indicates a P < 0.05 between control (0 µM nisin, black) and experimental condition 

(10 µM nisin, 8 µM polymixin B, or 100 U penicillin,
 
0.1 mg streptomycin/ml; white).  Error bars 

indicate standard deviations. 

 

6.2.5 Nisin interacted with spores during an infection.   

In an effort to further clarify the conditions that facilitate the interaction of 

nisin with spores in relation to immune cells, AF568-spores were used to infect 

RAW264.7 macrophages with the addition 10 µM fluorescein-nisin (f-nisin) either 

during or post infection in the absence or presence of the germinant FBS.  When 

f-nisin was present during the infection in the presence of a germinant, nisin was 

determined to co-localize with greater than 85% of the internalized spores 

(Figure 6.25 A, B).  Nisin also localized to intracellular spores when incubated 

with RAW264.7 cells in the absence of germinants, or after the incubation was 

completed, but to a lesser degree (< 15%) (Figure 6.25 A, B).  
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Figure 6.25. Nisin interacted with spores during an infection.  A. Microscopy of spore 

infection and localization of f-nisin.  f-nisin: green, spores: red, co-localization: yellow, DNA: blue, 

actin: purple.  The data are representative of three independent experiments.  B.  Quantification 

of f-nisin localization with a phagocytized spore.  The data are expressed as the percent of 

spores that were co-localized with f-nisin.  * indicates a P < 0.05 between nisin present during 

and post a germination infection and all other conditions. nspores indicates the number of spores 

that were evaluated.  nmΦ indicates the number of infected macrophages that were evaluated. 

A,B.  + (10 µM nisin) or - (0 µM nisin) are utilized to indicate the presence or absence of nisin 

either during the infection or post the infection. 

 

6.2.6 Nisin reduced cytokine release during an infection.   

In effort to identify whether nisin allows the establishment of a prototypical 

anthrax infection within immune cells, the expression of 23 cytokines was 

evaluated with Bio-plex in the presence and absence of nisin (10 µM) during a 

constant germinating infection of RAW264.7 cells.  This screen identified that the 
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expression of G-CSF, TNF-α, IL-1β, and IL-6 were significantly reduced in the 

presence of nisin (data not shown).  In addition, it was determined that nisin was 

not inherently immune stimulating (data not shown), but reduced the expression 

of MCP1 (CCL2), MIP-1α (CCL2), and MIP-1β (CCL2), which are involved with 

infection associated inflammatory recruitment of monocytes (6, 7, 32) and 

immune cells as G-CSF.  ELISA was used to confirm the Bio-plex results for 

these four cytokines.  Furthermore, vancomycin, a non-pore forming lipid II 

binding antibiotic, was used a comparator for these analyses to determine 

whether the reduction in cytokine response was specific to nisin or a function of 

lipid II binding.  The presence of nisin reduced the extracellular levels of all tested 

cytokines through 24 h (Figure 6.26 A-D), however vancomycin was only able to 

reduce the extracellular levels of IL-1β (Figure 6.26 C).  The reduction of TNF-α 

at 24 h (Figure 6.26 B) is the product of immune cell death in the absence of any 

antibiotic intervention as the cells became rounded and non-adherent, which are 

regularly observed characteristic of cell death (data not shown).  Additional 

antibiotic controls were performed with chloramphenicol (62 µM) and polymixin B 

(8 µM).  The effect on extracellular cytokine levels during an infection in the 

presence of chloramphenicol closely mimicked the cytokine expression observed 

with nisin (data not shown).  However, the presence of polymixin B had virtually 

no effect on extracellular cytokine levels and closely mimicked the extracellular 

cytokine levels of spores alone for all cytokines including the reduction in TNF-α 

at 24 h as a result of immune cell death (Figure 6.27 A-D).  Studies conducted in 

either the presence or absence of germinant in which nisin was added to 
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RAW264.7 cells after incubation with spores followed by treatment with 

gentamicin revealed that extracellular cytokine levels were significantly less in 

the presence than absence of nisin (Figure 6.27).  As above, polymixin B had 

little effect on extracellular cytokine levels (data not shown).  Additionally, nisin 

did not alter extracellular cytokine levels of RAW264.7 cells when induced by 

lipopolysaccharide (LPS) isolated from E. coli K-12, which was provided by the 

Richard Tapping laboratory (Figure 6.28).  Collectively, these data suggest that in 

the presence of nisin, the response of RAW264.7 cells to spores was altered as 

a function of improper infection establishment. 
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 Figure 6.26. Effect of nisin on infection induced cytokine expression - constant infection.  

A. G-CSF.  B. TNF-α.  C.  IL-1β  D.  IL-6.  The data are representative of three independent 

constant germinating infections.  The data are expressed as cytokine release in pg/ml. 
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 Figure 6.27. Effect of nisin on infection induced cytokine expression - gentamicin 

protection.  A. Immune cells were infected with B. anthracis spore under germinating conditions 

followed by gentamicin protection and post infection treatment with nisin in the presence of FBS 

as indicated in the “Materials and Methods”..  B. Immune cells were infected with B. anthracis 

spore under non-germinating conditions followed by gentamicin protection and post infection 

treatment with nisin in the presence of FBS as indicated in the “Materials and Methods”.  A, B.  

Cytokine expression from immune cell infections with B. anthracis spores was monitored at 24 h 

after gentamycin protection via ELISA.  The data are expressed as the fold change of cytokine 

expression during post infection incubations in the presence of nisin relative to the absence of 

nisin.  Error bars indicate standard deviations. ND indicates that cytokine expression was not 

detectable.   
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 Figure 6.28. Effect of nisin on LPS induced cytokine expression - gentamicin protection.  

A.  Gentamicin protection infection was performed in the presence of FBS.  B.  Gentamicin 

protection infection was performed in the absence of FBS.  A, B.  Cytokine expression from 

immune cell infections with LPS was monitored at 24 h after gentamycin protection via ELISA.  

The data are expressed as the fold change of cytokine expression during post infection 

incubations in the presence of nisin relative to the absence of nisin.   Error bars indicate standard 

deviations.  

 

6.3 Discussion 

 With the onset of increasing antimicrobial resistance within bacteria, there 

must be an effort to identify new antimicrobials and targets that mediate microbial 

cell death and growth inhibition.  In addition to identifying new antibiotics, one 

could exploit previously used antimicrobials in new ways.  In accordance with this 

point of view, nisin was evaluated for its ability to inhibit the growth of the spore 

forming bacteria Bacillus anthracis within an in vitro infection. Nisin has been 

demonstrated to be a potent inhibitor of bacterial infection in vivo utilizing non-

spore forming bacteria such as Staphylococcus aureus (22). However, B. 
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anthracis has both an intracellular and extracellular phase during the infection 

process (15). In general, little is known about the effectiveness of antimicrobial 

compounds on killing or inhibiting the growth of bacteria that are intracellular 

pathogens (either obligate or intracellular). Unfortunately, antimicrobial 

compounds are ineffective against dormant spores with germination occurring 

after uptake into host cells within the alveolar spaces of the lungs (16, 17, 27, 

36). Moreover, the rapid onset of bacteremia and toxemia during the 

disseminated stages of disease (15, 21, 39, 40) limits the therapeutic window 

during which antimicrobials can effectively clear the infection in a manner that 

prevents the onset of disease sequelae or fatalities. Evidence indicating that 

spores germinate and outgrow within the intracellular environment of host cells 

(15, 21, 39, 40) underscores the challenges associated with therapeutically 

targeting B. anthracis prior to the transition from the intracellular stage of spore 

outgrowth and replication to the extracellular phase of dissemination.  

Several cell lines that serve as in vitro models for studying B. anthracis 

infections were employed to evaluate interactions between spores, host cells, 

and antimicrobial treatments.  The studies revealed that nisin was effective at 

inhibiting the outgrowth of B. anthracis spores in the presence of several cell 

lines, even subsequent to uptake of spores within an intracellular location. 

Furthermore, in the presence of nisin a greater percentage of immune cells 

resisted cell death associated with infection through 24 h (Figure 6.6-9), and this 

increase in survival was witnessed at 0.1 µM of nisin, which is significantly below 

the IC50 for B. anthracis in solution reported in chapter 2(27).  Interestingly, 0.1 



 236 

µM nisin was shown in chapter 2 to perturb the establishment of a membrane 

potential through 30 min without dramatically slowing growth kinetics (27).  This 

suggests that the presence of nisin at non-inhibitory concentrations will slow the 

establishment of a membrane potential to negatively alter the activation of a 

metabolism, which would include the expression of virulence factors.  This would 

potentially allow the immune cell to mount an adequate innate and adaptive 

immune response that can inhibit or kill internalized spores prior to pathogen 

subversion of an immune response and eventual escape from the macrophage 

as in the case of inhalation anthrax.   

 In addition to aiding spore clearance, nisin also altered the interaction 

between the B. anthracis (spore and bacilli) and mammalian cells resulting in a 

reduction in detectable intracellular spores (Figure 6.10,17).  The presence of 

nisin resulted in a very modest to undetectable decrease in spore binding (Figure 

6.22-24). A previous study reported that adhesion of a fungal pathogen, Candida 

albicans, to human gingival cells was decreased in the presence of nisin (1). 

Overall, these results suggest the possibility that the administration of nisin, 

either post-exposure or prophylatically if inhalation of spores is suspected, might 

improve the outcome of infection by decreasing the load of intracellular B. 

anthracis.  

 The use of lantibiotics like nisin provides a unique addition to treatment of 

bacterial and spore infection because nisin utilizes two activities, pore formation 

and inhibiting cell wall biogenesis, to inhibit growth (5, 28, 34, 43).  In the case of 

an infection by B. anthracis, antimicrobial intervention must be able to prevent 
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both the growth of the bacteria and toxin production to prevent death by 

bacteremia and toxemia, respectively. This means treatment must include two 

antibiotics that are independently a growth inhibitor and a protein synthesis 

inhibitor.  However, in the presence of a pore forming antimicrobial such as nisin, 

cell death is accompanied by the lack of protein synthesis due to the disruption of 

an active metabolism (27).  In addition, treatment of a spore infection with nisin 

would prevent spore outgrowth, in conjunction with inhibiting bacilli, preventing 

toxin production (2-5, 27, 28, 34).  Even though the environment within the lung 

is not overtly germinating (36), nisin demonstrated the ability to reduce the 

number of recoverable B.anthracis  in non-germinating in vitro infections.  Nisin 

should be able to inhibit spores and bacilli released into regional lymph nodes or 

blood stream from migrating infected immune cells, which are germinant and 

nutrient rich (20).   

 Furthermore, nisin has an added advantage in that it has a distinct second 

activity. Nisin disrupts cell wall biogenesis through lipid II binding, which is a 

subsequent and distinct mode of action for the inhibition of bacilli and outgrown 

spores (28).  When combined with either ciprofloxacin or doxycycline, the CDC 

suggested treatment for anthrax (8), three inhibitory activities would be in use to 

inhibit an anthrax infection.  In addition, the use of multiple antibiotics with 

differing modes of action would prevent the establishment of antibiotic resistance 

(18, 19).   

 Nisin is an FDA–approved natural product that has been used for 40 years 

in food-preservation, due in part to the selective toxicity of this lantibiotic towards 
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Gram-positive bacteria (12, 13, 42), and this food preservative was evaluated for 

its potential ability to alter a spore infection of immune cells. Since nisin mediates 

its inhibition through the interaction with penultimate precursor for cell wall 

biogenesis, lipid II, nisin could be a relevant treatment option for other spore 

forming pathogens such as Clostridia botulinum and Clostridia difficile.  

Collectively, these results presented here suggest that nisin and similar 

lantibiotics could be used as relevant treatment option at appropriate 

concentrations that are non-toxic to the host (30) and have the potential to work 

in a synergistic fashion with the host immune response to kill both spore forming 

and non-spore forming pathogenic bacteria. 

 

6.4 Materials and Methods 

6.4.1 Spore preparations and fluorescent labeling.  

 Spores prepared from B. anthracis Sterne 7702 were labeled with NHS-

AlexaFluor-488 (AF488-spores; Invitrogen, Carlsbad, CA) or NHS-AlexaFluor-

568 (AF568-spores, Invitrogen) as previously described (38).  Enumeration of 

spores or bacilli was performed using a Petroff-Hauser hemocytometer under a 

light microscope at 400x magnification (Nikon Alphaphot YS, Mellville, NY). A 

typical spore preparation yielded 10 mL of spores at a concentration of 2.0 x 109 

spores/mL. 
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6.4.2 CFU quantification.  

 Spores were serially diluted and plated on Luria-Bertani (LB; B10 g/L 

Bacto Tryptone, 5 g/L NaCl, 5 g/L Bacto Yeast Extract, 15 g/L Bacto Agar; BD 

Biosciences) agar plates. After 12-18 h at 37 °C B. anthracis colonies were 

counted, from which CFU/mL were calculated.  

 

6.4.3 Heat resistance.  

 Spores were diluted into 0.1 M MOPS pH 6.8 containing D-alanine and D-

histidine (both at 10 mM; Sigma), to prevent further germination initiation of 

dormant spores, and identical aliquots were incubated at either 65 °C or on ice 

for 30 min. Viable B. anthracis were quantified by plating serial dilutions and 

enumerating CFU. The percentage of heat resistant spores was calculated by 

dividing CFU recovered from samples heated at 65 °C by CFU recovered from 

samples incubated on ice. 

 

6.4.4. Nisin purification. 

  Nisin was purified and assessed according to previously published quality 

control procedures (27).   

 

6.4.5 Labeling of Nisin.   

 See Chapter 3 for methods. 
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6.4.6 Cell culture.  

 RAW264.7 cells (CRL-2278; ATCC, Manassas, VA) were 

maintained within a humidified environment at 37°C and under 5% CO2
 in 

Dulbecco's modified Eagle's medium (DMEM) (JRH Biosciences) containing 

penicillin (100 U; Gibco BRL, Grand Island, NY), streptomycin (0.1 mg/ml; Gibco 

BRL), L-glutamine (2 mM; Sigma), and fetal bovine serum (FBS) (10%; JRH 

Biosciences, Lenexa, KS). MH-S cells (CRL-2019; ATCC) were maintained within 

a humidified environment at 37°C and under 5% CO2 in
 containing RPMI-1640 

medium (ATCC) penicillin-streptomycin, L-glutamine (4 mM; Sigma, St. Louis, 

MO), and FBS (10%). JAWSII (CRL-11904; ATCC) were maintained within a 

humidified environment at 37 °C and under 5% CO2 in
 containing modified 

minimum essential medium alpha modification (MEM) (JRH Biosciences) 

penicillin-streptomycin, L-glutamine (4 mM; Sigma, St. Louis, MO), and FBS 

(20%). All tissue culture plasticware was purchased from Corning Incorporated 

(Corning, NY). 

 

6.4.7 Spore interactions and uptake by mammalian cells.  

 Cells were seeded into 24-well plates, 96-well plates or 8-well chambered 

slides (Nalge Nunc International, Rochester, NY) in order to achieve 80 to 95% 

confluency after 2 days of incubation and were incubated with appropriate media 

containing penicillin-streptomycin (100 U penicillin, 0.1 mg streptomycin/ml), L-

glutamine (4 mM), and FBS (10%) in a humidified environment at 37 °C and 

under 5% CO2. To accurately calculate the number of labeled spores needed to 
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achieve a multiplicity of infection (MOI) of 10, cells from several wells were 

counted using a hemacytometer immediately before each experiment. The cells 

were used only if greater than 90% of the cells excluded trypan blue; generally, 

greater than 95% of the cells within the monolayer excluded trypan blue. Prior to 

the addition of labeled spores, cells were washed at least three times with HBSS 

and then incubated in DMEM (RAW264.7 and JAWSII) or RPMI-1460 

containing L-glutamine (4 mM) with or without FBS (germinant). To synchronize 

the exposure of cells to spores, labeled spores were gently centrifuged 

(600 x g for 5 min) onto the surfaces of cells immediately after addition. The 

plates or slides were incubated within a humidified environment at 37 °C and 

under 5% CO2 for the indicated times prior to analysis. In constant infections, 

spores were incubated with immune cells for the duration of the experiment.  For 

post infection treatments, cells were washed at least three times with HBSS and 

incubated in appropriate media with 10% FBS and 50 ug/ml gentamicin for 15 

min to kill all external germinated spores. Following gentamicin treatment at 

least three washes with HBSS and incubation in appropriate media with FBS was 

performed.  For binding experiments, cells were pre-incubated with cytochalasin 

D (10 µM) for 1 h prior to the addition of labeled spores.  For cold (on ice) binding 

experiments, cells were pre-incubated on ice for 15 min prior to the addition of 

spores or nisin, and the following spore infections or incubations with nisin were 

performed on ice. 
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6.4.8 Mammalian cell viability.  

 Propidium iodide (PI) (1 µg/ml) uptake by RAW264.7, MH-S or JAWSII 

cells was measured using flow cytometry, as previously described (38).  

 

6.4.9 Fluorescence quenching of Alexa Fluor AF488-spores.  

 Stock solutions of trypan blue were made in PBS, pH 7.2, and filtered 

using a 0.22-µm filter prior to use. Where indicated, trypan blue was added (at 

the indicated final concentration; typically, 0.5% in PBS, pH 7.2) to AF488-

spores or to mammalian cells exposed to labeled spores. The samples were 

incubated for 5 min on ice and analyzed immediately by flow cytometry. 

 

6.4.10 Flow cytometry.  

 Spore and bacilli infection of mammalian cells assayed and evaluated as 

previously described (38).  

 

6.4.11 Quantification of cell-associated viable B. anthracis.  

 Cells exposed to B. anthracis were washed three times with PBS and then 

lysed by resuspending and vortexing the cell pellet in sterile tissue culture grade 

water (Sigma) for 5 min at room temperature. To determine CFU, serial dilutions 

of the suspensions were plated on LB agar plates as described above.  
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6.4.12 Epi-Fluorescence microscopy. 

 After a 30 min infection and a 1 hr post infection treatment within chamber 

slides, cell were washes 3 times with PBS and fixed during incubation in 4% 

formaldehyde (Sigma) for 30 min at 37 °C followed by permeabilization with 0.1 

% triton X-100 (Sigma) and 0.1% sodium citrate (Sigma).  Cells were stained with 

4',6-diamidino-2-phenylindole (DAPI, Invitrogen) and Alexa Fluor® 647 phalloidin 

(Invitrogen) and cured with ProLong® Gold antifade reagent (Invitrogen) 

according to manufactures protocols.  Images were collected using an Applied 

Precision assembled DeltaVision EpiFluorescence microscope containing an 

Olympus Plan Apo 100x oil objective with NA 1.42 and a working distance of 

0.15 mm, and images were processed using SoftWoRX Explorer Suite 

(Issaquah, WA). 

 

6.4.13 Cytokine release - cytometric array assay.  

 At indicated times, cell-culture supernatant of constant B. anthracis 

infections of RAW264.7 were collected and stored at -80ºC for analysis using the 

Bio-Plex suspension array system  (Bio-Rad, Hercules, Ca) where 23 biological 

markers were assayed according to manufacturers protocols: eotaxin, 

interleukins-1α, 1β (IL-1β), 2, 3, 4, 5, 6 (IL-6), 9, 10, 12p40, 12p70, 13, 17, 

granulocyte macrophage colony-stimulating factor, granulocyte colony-

stimulating factor (G-CSF), interferon-γ, keratinocyte chemoattractant, tumor 

necrosis factor-α (TNF-α), RANTES, macrophage inflammatory protein-1α, 1β, 

and monocyte chemoattractant protein-1. The biological markers were quantified 
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using the Bio-Plex protein array reader with data automatically processed and 

analyzed by Bio-Plex Manager Software 4.1 using the standard curve produced 

from recombinant cytokine standard.   

 

6.4.14 Cytokine release - ELISA.   

 At indicated times, cell-culture supernatant of B. anthracis infections of 

RAW264.7 with and without gentamicin protection were collected and stored at -

80 ºC for analysis using commercial quantitative sandwich enzyme immunoassay 

kits: interleukins -1β (Ready-SET-Go!, eBioscience, San Deigo, CA, sensitivity 8 

pg/ml), 6 (Ready-SET-Go!, eBioscience, sensitivity 4 pg/ml), TNF-α (Ready-SET-

Go!, eBioscience, sensitivity 8 pg/ml),  and G-CSF (DuoSet®, R&D Systems, 

Minneapolis, MN, sensitivity 4 pg/ml). 

 

6.4.15 Statistics.  

 All data are representative of those from three independent experiments. 

Error bars represent standard deviations. P values were calculated with 

Student's t test using paired, one-tailed distribution. P values of <0.05 indicate 

statistical significance. All statistics, including means, standard deviations, and 

Student's t tests, were calculated using Microsoft Excel (version 11.0). 
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CHAPTER 7: NISIN INTERACTION WITH IMMUNITY PROTEINS AND       
LOCALIZATION 
 
7.1 Introduction 

 The immunity to nisin afforded to the native producer, L. lactis ATCC 

11544, consists of a stoichiometric nisin binding protein, NisI, and an ATP-

dependent transporter complex, NisFEG (6, 14).  These systems work in a 

synergistic fashion to facilitate immunity (6, 14).  NisI is a constitutively 

expressed 25.9 kDa protein in its fully modified form.  Upon export, NisI 

undergoes proteolytic removal of a 19-amino acid N-terminal peptide and 

lipidation of the new N-terminal Cys for membrane anchoring (14).  

Approximately 50% of the NisI produced escapes lipidation and is secreted into 

the surrounding environment (12). Surface plasmon resonance yielded NisI-nisin 

interactions with a KD of 0.6 – 2 µM (19), and this complex has been reported to 

be unstable and insoluble (14).  In terms of function, NisI reduces the amount of 

soluble nisin able to interact with the membrane thus preventing pore formation 

(3). Deletion studies have demonstrated that NisI provides the majority of the 

immunity preventing nisin mediated cell death of the producer strain (14).  In 

addition to NisI, L. lactis 11454 also utilizes an ATP-dependent pump to remove 

nisin from the membrane, and this complex is organized with two NisF proteins, 

which contain the ATP binding motifs, interacting with the cytosolic portions of 

the trans-membrane proteins NisEG.  The expression of these proteins is 

controlled by the two-component regulatory system nisRK (3).  Through the use 

of these two systems L. lactis acquires the essential immunity for nisin 

production. 
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 Subtilin is a linear lantibiotic produced by B. subtilis ATCC 6633 that 

contains 5 rings derived from the cyclization of dehydroalanine (Dha) or 

dehydrobutyrine (Dhb) with Cys.  Subtilin shares 63% overall sequence identity 

with nisin with the first 3 rings in the exact same locations.  Similarities between 

nisin and subtilin continue with both producer strains utilizing an ATP dependent 

pump, SpaFEG for subtilin, and a stoichiometric binding protein, SpaI for subtilin, 

to prevent lantibiotic interaction with the producer cell (3).  The subtilin producer, 

B. subtilis 6633, also has a mechanism to succinylate subtilin resulting in a 10-

fold decrease in antimicrobial  activity relative to parental subtilin (10).  SpaI has 

very little sequence similarity to NisI, and SpaI is only 143 amino acids compared 

to 226 residues for NisI.  The presence of either SpaI or NisI does not afford 

cross immunity to nisin and subtilin, respectively, despite high similarity between 

the lantibiotics (20).   

 The expression of the structural, biosynthetic, and immunity genes of nisin 

and subtilin is controlled by a two-component regulatory system, LanRK, to 

activate expression, which senses the presence of extracellular fully modified 

lantibiotic.  For subtilin, SpaR will bind to Spa boxes located in front of spaS, 

spaB , and spaI to induce preferential expression in the listed order (18).  SpaRK 

also induce their own expression, but their expression has additional regulation 

through σH, which is the first σ factor involved in sporulation.  This means that 

subtilin is expressed in very late logarithmic and stationary phases prior to spore 

formation while nisin is expressed concurrently in logarithmic phase with lactic 
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acid production.  This chapter describes the efforts to better understand the 

mechanisms of immunity provided by LanI and LanFEG.  

 

7.2 Results 

7.2.1 Cloning and tagging of immunity genes. 

 In order to investigate the interactions between a lantibiotic and its 

cognate LanI, as well as its localization within the producing organism, several 

constructs were made to facilitate affinity purification of LanI and generate 

fluorescently tagged LanI and LanF.  For in vitro studies and protein purification, 

the genes for nisI and spaI were amplified from genomic DNA in a fashion that 

eliminated the secretion signal from the N-terminus of the protein and resulted in 

the removal of the first 19 and 22 amino acids, respectively, creating NisI∆1-19 

and SpaI∆1-22.  The amplified gene products were inserted in pGEX-6P-1 

creating N-terminally glutathione S-transferase (GST) tagged constructs for 

affinity purification.  In addition, SpaI∆1-22 was inserted into pET15b to provide 

an N-terminal His6-tagged variant for cobalt affinity purification.   

 Fusion constructs were also developed to create C-terminally tagged SpaI 

and SpaF proteins.  The genes for spaI and spaF were cloned into  pMUTIN and 

pSG (7, 11) chromosomal integrative plasmids that created a C-terminal 

fluorescent fusion with either green fluorescent protein (GFP), cyan fluorescent 

protein (CFP), or yellow fluorescent protein (YFP).  pMUTIN will integrate at the 

gene of interest leaving expression under the control of the native promoter with 

the rest of the operon under inducible control (11).  pSG will integrate within the 
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amylase gene putting the gene of interest under the control of a xylose inducible 

promoter (7).  Additionally, both SpaI and SpaF were independently fused with C-

terminal hemagglutinin (HA) and cMYC tags in pMUTIN for immunological 

detection of these proteins.  Moreover, SpaI and SpaF were both C-terminally 

tagged with either a tetra-cysteine or cMyc tag via overlap extension at the 3' end 

of the gene followed by insertion into a non-integrative Bacillus over-expression 

plasmid, pHCMC05, allowing induction of the gene by IPTG.  These series of 

constructs provide a wide set of options that will facilitate differential expression 

and multiple visualization options.  The utility of these options is discussed further 

in the discussion section.  Bacillus subtilis 6633 has been transformed with these 

plasmids with insertion and expression confirmed by PCR and immunoblot (GFP, 

CFP, YFP, HA, MYC) or fluorescence gel imaging (TC), respectively (data not 

shown).  

 

7.2.2 GST purification of NisI∆∆∆∆1-19 and SpaI∆∆∆∆1-22. 

 Both NisI∆1-19 and SpaI∆1-22 were expressed as soluble, recombinant 

proteins in E. coli, each with a N-terminal GST fusion protein to facilitate 

glutathione affinity chromatography.  After a single chromatography step, NisI∆1-

19 and SpaI∆1-22 were purified to greater than 98% purity as determined by 

SDS-PAGE analysis.  The N-terminal GST-tag was removed with the 

commercially available PreScission protease, and both NisI∆1-19 and SpaI∆1-22 

were purified via glutathione affinity chromatography to high purity as determined 

by SDS-PAGE analysis (Figure 7.1, 7.2).   
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 Figure 7.1. Expression and purification of NisI∆1-19.  The NisI∆1-19 expression, 

homogenization fractions, clarified lysates, purified GST-fusion from glutathione affinity 

chromatography, cleavage reaction, and truncated protein from glutathione affinity 

chromatography were analyzed by 10% SDS-PAGE, followed by GelCode® Blue staining. 

 

 Figure 7.2. Expression and purification of SpaI∆1-22.  The SpaI∆1-22 over expression, 

homogenization fractions, clarified lysates, purified GST-fusion from glutathione affinity 

chromatography, cleavage reaction, and truncated protein from glutathione affinity 

chromatography were analyzed by 10% SDS-PAGE, followed by GelCode® Blue staining. 
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7.2.3 Nickel affinity purification of SpaI∆∆∆∆1-22. 

 SpaI∆1-22 was expressed as a soluble, recombinant protein in E. coli with 

an N-terminal hexa-histidine fusion peptide to facilitate purification via cobalt-

chelate affinity chromatography.  The N-terminal hexa-histidine peptide was 

removed by thrombin cleavage, and SpaI∆1-22 was purified to high purity as 

determined by SDS-PAGE analysis (Figure 7.3).  

 

 Figure 7.3. Expression and purification of SpaI∆1-22.  The SpaI∆1-22 expression, 

homogenization fractions, clarified lysates, purified GST-fusion from cobalt chelate affinity 

chromatography, and purified thrombin cleaved protein were analyzed by 10% SDS-PAGE, 

followed by GelCode® Blue staining. 

   

7.2.4 Circular dichroism of nisin and NisI∆∆∆∆1-19. 

 Investigations were conducted to identify any structural changes 

accompanying this interaction.  First, structure predictions conducted on both 
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Nis∆1-19 and SpaI∆1-22 identified that both proteins are highly disordered with 

SpaI∆1-22 predicted to have a significantly more α-helical character than NisI∆1-

19 (Table 7.1). However, CD spectra of NisI∆1-19 displayed a significantly higher 

α-helical character than predicted with 24% of the structure being α-helical 

compared to the 6.6% that was predicted. Overall, both the predicted and the 

observed structures of NisI∆1-19 were highly disordered (Table 7.1, Figure 7.4).  

Interestingly, the observed NisI∆1-19 structure and predicted SpaI∆1-22 are 

highly similar despite a lack of primary sequence similarity.  The addition of nisin 

to NisI∆1-19 did not significantly alter the CD spectra of NisI∆1-19 with only a 

minor decrease in the α-helical nature upon the addition of nisin (Table 7.1, 

Figure 7.4).  These results suggest that NisI∆1-19 does not undergo a significant 

structural change upon nisin addition.   

Table 7.1 

Secondary structure characterization of NisI∆1-19 and SpaI∆1-22 

  α-helix β-strands Loops/Disordered 

predicted
a
 6.6 38.1 55.3 

NisI∆1-19 
actual

b
 24.0 ± 2.9 23.8 ± 0.3 53.0 ± 1.9 

NisI∆1-19 & 
nisin 

actual
b
 20.3 ± 0.1 24.3 ± 0.2 55.4 ± 0.2 

SpaI∆1-22  predicted
a
 25.2 20.3 54.5 

  
 Table 7.1. Secondary structure characterization of NisI∆1-19 and SpaI∆1-22.  

a
 The 

secondary structures of NisI∆1-19 and SpaI∆1-22 predictions were performed using the 

consensus prediction method on the NPS@ web server (network protein sequence analysis; 

http://npsa-pbil.ibcp.fr/cgi-bin/npsa_automat.pl?page=/NPSA/npsa_seccons.html) of the Pôle 

BioInformatique Lyonnais (4).  
b
 CD spectra were recorded in the far-UV range utilizing a J-720 

CD spectropolarimeter. The spectra were recorded from 190 to 260 nm at a scan rate of 50 nm/s 

and a 1-nm wavelength step with five accumulations utilizing 5 µM NisI∆1-19 in absence and  
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Table 7.1 (continued)  

presence of 50 µM nisin. The spectra were uploaded onto the DICHROWEB online server and 

analyzed as described in Materials and Methods. 

A      B 

 
 Figure 7.4. Circular dichroism of nisin and NisI∆1-19. A.  CD spectra of nisin, NisI∆1-19 

(listed as NisI), and a NisI∆1-19 with increasing concentrations. B. CD spectra of nisin and 

NisI∆1-19 with nisin contribution to elipticity subtracted.  A, B.  CD spectra were recorded in the 

far-UV range utilizing a J-720 CD spectropolarimeter. The spectra were recorded from 190 to 260 

nm at a scan rate of 50 nm/s and a 1-nm wavelength step with five accumulations.   

 

7.2.5 Oligomerization analysis of NisI∆∆∆∆1-19. 

 In the absence of any dramatic structural changes in Nis∆1-19 incubated 

with nisin, investigations were conducted to determine whether Nis∆1-19 attained 

an altered oligomerization state upon nisin binding.  Both size exclusion 

chromatography and native-PAGE analysis were performed. Size exclusion 

chromatography demonstrated Nis∆1-19 is present in both dimeric and 

tetrameric states in the presence or absence of nisin (Figure 7.5 A).  Native gel 

analysis supported this result with no observable change in band intensity or 

location with the addition of nisin (Figure 7.5B).  It is important to note that nisin is 

not efficiently stained with Coomassie protein dyes for visualization (data not 
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shown).  The ratio of oligomeric states was not affected by the addition of nisin; 

however, a two-fold reduction of solution signal intensity was observed with the 

addition of nisin (Figure 7.5A).  These observations are congruent with previous 

studies that suggest the NisI-nisin binding renders both proteins insoluble (19).  

However, no observable precipitate was observed in Nis∆1-19 solutions with 

nisin present (data not shown). 
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 Figure 7.5. Oligoimerization analysis of NisI∆1-19.  A. Size exclusion chromatography 

was utilized to determine the oligomerization state of NisI∆1-19 in the absence (black) and 

presence (blue) of nisin.  The molecular weights of each species were calculated from the 

retention times of the peak absorbance by comparison with calibration standards having known 

molecular weights to identify the oligomerization state of NisI∆1-19.  B. Native-PAGE analysis 

was utilized to determine the oligomerization state of 5 µM NisI∆1-19 in the absence and 

presence of nisin. 

 

7.2.6 Lipid II localization within B. subtilis ATCC 6633. 

The goal of this study was to optimize the staining, mounting, and growth 

conditions for the observation of lipid II localization in B. subtilis 6633. Conditions 
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tested included live versus fixed (4% formaldehyde) imaging; culturing for 4, 6, 

12, or 18 h; use of diverse growth media - Luria-Bertani (LB) broth, tryptone-

yeast extract (TY) broth, brain heart infusion (BHI) broth, or DifcoTM sporulation 

medium (DSM); different labeled antibiotic concentrations - 0.1, 0.5 or 1 µM b-

vancomycin and b-nisin (see chapter 3); various mounting conditions - Slowfade 

(antifade reagent), poly-d-lysine, or 0.5% low melt agarose; and the use of epi-

fluorescence versus confocal microscopy.  A series of experiments were 

performed with each condition independently, and the optimal conditions for lipid 

II viewing were B. subtilis 6633 cultures grown in DSM broth for 6-12 h with live 

imaging and 0.5% agarose immobilization utilizing 0.5 µM b-vancomycin and b-

nisin (Figure 7.6 and data not shown). B. subtilis 6633 cultured in TY, LB, and 

BHI broths grew to higher cell numbers, but the lipid II localization was more 

difficult to observe since cells were significantly shorter in length.  The shorter 

cells prevented the visualization of lipid II along the long axis of the cell (data not 

shown).  Observations at 4 h were hindered by low cell density while cultures at 

18 h were affected by sporulation.  Released spores were highly labeled and 

exceptionally bright when present in fields of vision, which hindered accurate 

observation of lipid II of adjacent bacilli (data not shown).  Cells that were treated 

with 0.1 µM b-vancomycin and b-nisin were not stained sufficiently and required 

long exposure times to observe lipid II localization, which caused photo-

bleaching of the fluorophore. B-vancomycin at 1 µM stained both the lipid II and 

the cell wall of the bacilli, which hindered specific localization of only lipid II.  The 

use of 1 µM b-nisin displayed some but minor non-specific labeling of the cell 
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membrane (data not shown).  When mounting slides in Slowfade, the cells were 

not immobilized or adherent to the slide surface allowing cell movement and 

causing blurred images.  Immobilization with poly-D-lysine caused a significant 

increase in background fluorescence that prevented accurate visualization of lipid 

II (data not shown).  Fixing of the cells altered membrane physiology to the 

extent that lipid II localization was also altered resulting in an overall diffuse 

localization of lipid II (data not shown).  Epi-fluorescence microscopy was chosen 

over confocal microscopy because of high fluorescence sensitivity and reduced 

transmission energy to prevent photo bleaching.  With the optimized conditions 

identified, high-resolution images were obtained that demonstrated lipid II 

localization at the poles and across the long axis of the cell.  These images 

correlated with previous studies visualizing lipid II with fluorescently labeled 

antibiotics (5, 21). 

Figure 7.6 

 

 Figure 7.6. Optimized lipid II localization within B. subtilis 6633.  B. subtilis 6633 cells 

were cultured in DSM for 12 h followed by the addition of b-vancomycin (0.5 µM) for 5 min.   
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Figure 7.6 (continued)  

Samples were taken and mounted on glass slide in 0.5% agarose for live epi-fluorescence 

microscopy.  The localization of lipid II as a function of b-vanocmycin staining is indicated at the  

long axis (yellow arrows) and the poles (red arrows) of the cells.  The image was obtained using a 

Applied
 
Precision assembled DeltaVision epi-fluorescence microscope containing

 
an Olympus 

Plan Apo x100 oil objective with a numerical aperture
 
of 1.42 and a working distance of 0.15 mm. 

 

7.2.7 Purification of subtilin from B. subtilis ATCC 6633. 

To facilitate in vitro investigation into the interaction between SpaI∆1-22 

and subtilin, a purification protocol had to be developed to purify subtilin to high 

purity from culture supernatants of B. subtilis ATCC 6633.  Special effort was 

made to identify conditions to purify N-succinyl-subtilin from wild-type subtilin 

since the N-terminal modification induces a substantial loss of antimicrobial 

activity (10).  B. subtilis ATCC 6633 was cultured at 37 ºC for 12, 15, or 18 h in 

500 mL of LB broth, and culture supernatants were analyzed by MALDI-TOF 

mass spectrometry. The data demonstrated that all cultures produced subtilin as 

the most abundant analyte within the supernatants (Figure 7.7A).  However, with 

increased incubation times an increase in the N-succinyl-subtilin was observed, 

particularly at 18 h (Figure 7.7A).  The culture supernatants were subjected to a 

two-step purification method utilizing Varian C18 bond-elute chromatography and 

reverse phase-HPLC with a C4 column to obtain subtilin as a single species from 

reverse phase-HPLC.  MALDI-TOF mass spectrometry analysis identified this 

species as subtilin and associated salt adducts (Figure 7.7B).  Thus, a protocol 

has been developed utilizing a two-step procedure that effectively purifies subtilin 
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from cell culture supernatants and most importantly from N-succinyl-subtilin, with 

no similar protocol developed to date. 
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 Figure 7.7. Purification of subtilin from B. subtilis ATCC 6633.  A.  B. subtilis ATCC 6633 

was cultured for 12 (black), 15 (red), and 18 h (blue) in LB broth.  Samples were taken at the end 

of culture to observe the expression of subtilin and n-succinyl-subtilin.  B. Cultures were first 

partially purified with a Varian C18 bond elute chromatography prior to final HPLC purification and 

analysis by MALDI-TOF mass spectrometry.  Subtilin, major peak, with salt adducts and n-

succinyl-subtilin, minor peak, were observed.   

 

7.3 Discussion 

 A series of SpaI and SpaF tagged constructs were generated to facilitate 

differential expression, multiple visualization options, and differential protein 

tagging to monitor the interaction of immunity proteins with other prominent 

cellular structures, specifically cell proteins and peptidoglycan substrates.  The 2 

types of integrative plasmids, pMUTIN and pSG, were chosen because they 

facilitate differential expression of the gene of interest.  pMUTIN will integrate at 

the gene of interest via a single crossover event between the chromosomal and 
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cloned fragments.  The transformant will produce a tagged construct of the 

inserted gene of interest under the native promoter with the remainder of the 

operon under the control of an isopropyl β-D-1-thiogalactopyranoside (IPTG) 

inducible promoter (11).  pSG integrates into the amylase gene, amyE, via a 

single crossover event  with the target gene under the control of a xylose 

inducible promoter (7).  The multiple tags of each protein - CFP, GFP, YFP, 

cMYC, HA, and tetracysteine - provides several color options to ensure that 

fluorescence emission and excitation profile do not overlap, especially in 

experiments designed to simultaneously detect SpaI and SpaF localization as 

well as with any potential cell wall substrates or proteins.  The addition of a tetra-

cysteine tag to SpaI and SpaF allows visualization in live cells with ReAsh in the 

red visual spectrum (1).  The addition of ReAsh extends the available color 

spectrum to include red to further prevent emission and excitation overlap.  The 

addition of HA and MYC tags facilitate antibody based imaging, which expands 

the color pallet from blue to far red utilizing a series of AlexaFluor conjugated 

antibodies instead of being limited to the cyan to red color spectrum presented by 

current fluorescent protein limitations.  The ability to express the tagged proteins 

under the native promoter or with sugar inducers facilitates controlled expression 

of the tagged protein.  Furthermore, placing the expression of SpaEG under 

inducible expression enables investigation into pump formation and protein 

localization as a function of complex formation.  Unfortunately, with the IPTG 

induced expression of SpaEG, the wild type untagged SpaF will also be 

expressed, which is a consequence of the single crossover insertion that tagged 
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the gene of interest.  The untagged SpaF will compete with natively expressed 

tagged SpaF for SpaEG interaction and complex formation, which may ultimately 

affect tagged SpaF localization.  In addition to providing a wide set of colors for 

tagging to prevent overlap of fluorescence properties, the multiple tags of a 

single protein will be used to determine whether any tag specific alterations in 

localization occur.  Lastly, the multiple tags provide several options in the event 

that multiple microscopes are required for these studies.   Each microscope is 

accompanied by a set of limitations, and the tractability of multiple color options 

will help to prevent any delays that may arise as a consequence of limited 

fluorescence image filter sets or lasers. With these tools and with an optimized 

protocol for lipid II staining, studies can be initiated to determine the in vivo 

localization of lantibiotic immunity genes and their relationship to membrane 

bound proteins and structures.   

 As a part of this chapter, studies were conducted to determine the in vitro 

interaction between NisI∆1-19 and nisin as well as performing the necessary 

ground work to investigate SpaI∆1-22 and subtilin interactions.  In vitro 

investigations were facilitated by the development of NisI∆1-19 expression and 

purification protocols, and these studies demonstrated that nisin did not induce 

any changes to the structural or oligomeric state of the immunity protein.  Further 

research is necessary to fully understand the NisI∆1-19-nisin interaction 

particularly with reports that this interaction is highly unstable causing 

precipitation (19), although thus far such behavior was not observed.  For the 

studies into SpaI∆1-22, constructs and protocols were developed for the 
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expression of both GST- and His6-tag constructs, and for the first time, a protocol 

was developed for the purification of subtilin that was also able to separate 

subtilin from N-succinyl-subtilin.  These materials will enable mechanistic 

investigations into binding interactions between subtilin and SpaI∆1-22.   

 A significant number of studies have been performed to identify new 

lantibiotics, elucidate biosynthetic mechanisms, perform bioengineering, and 

determine mechanisms of action (2, 3, 8, 16, 17); however, a detailed 

understanding of how lantibiotic immunity genes interact with their cognate 

producers have been very limited.  In vitro and in vivo studies have identified 

general mechanisms of action, predicted protein structure, provided protein 

specificity for immunity, and in limited cases identified necessary residues or 

structure characteristics that mediate immunity (6, 14, 20).  Significantly more 

research into these aspects of immunity is required to truly understand how 

producer organisms create highly specific and effective self-resistance to 

lantibiotics.  The diversity witnessed in antimicrobial peptide structures can 

potentially be rivaled by the structural diversity and specificity of immunity 

proteins.   

 

7.4 Materials and Methods 

7.4.1 Cloning of immunity genes.   

pGEX-6P-1-nisI∆1-19 - Genomic DNA was obtained from  L. lactis ATCC 

11454 cultivated at 30°C without aeration in GM17 (3.725% M17 broth, Oxoid, 

Hampshire, England; Millipore deionized water; 0.5% glucose, Fisher Chemical, 
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Fairlawn, NJ). DNA was isolated from mid-log-phase cultures and was purified 

using the DNeasy tissue kit (QIAGEN, Valencia, CA). L. lactis 11454 nisI was 

PCR amplified using primers (Integrated DNA Technologies, Coralville, IA) that 

excluded the first 57 5' nucleotides to develop a deletion of the first 19 N-terminal 

amino acids (Table 7.2). These primers were engineered such that 5' BamHI and 

3' XhoI restriction sites were incorporated. Each PCR product was purified using 

the PCR purification kit (QIAGEN). The purified amplicons were sequentially 

incubated with BamHI (New England Biolabs, Ipswich, MA) and XhoI (New 

England Biolabs) to generate directional annealing sites. The amplicons were 

then ligated with pGEX-6P-1 (GE Healthcare, Piscataway, NJ) plasmid digested 

with the same restriction enzymes to replace the BamHI-XhoI fragment within the 

multiple cloning site. The ligation mixtures were introduced into E. coli DH5α 

(Novagen, Madison, WI) by electroporation. The integrity of each gene from 

individual clones was confirmed by DNA sequencing. pGEX-6P-1-nisI∆1-19 was 

isolated using the plasmid miniprep kit (QIAGEN) and introduced by 

electroporation into E. coli T7 lysogen BL21 (DE3) (Novagen).  Pfx platinum 

polymerase for PCR amplification was acquired from Stratagene (La Jolla, CA).  

DNA sequencing was performed at the Roy J. Carver Biotechnology Center 

(Urbana, IL). 

 pGEX-6P-1- spaI∆1-19 - Genomic DNA was obtained from  B. subtilis 

ATCC 6633 cultivated at 37 °C with aeration on a rotary shaker in brain heart 

infusion medium (3.7% Bacto brain heart infusion, BD Diagnostics, Franklin 

Lakes, NJ;  Millipore deionized water; 0.5% glycerol, Fisher Chemical). DNA was 
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isolated from mid-log-phase cultures and was purified using the DNeasy tissue 

kit. B. subtilis 6633 spaI was PCR amplified using primers that excluded the first 

66 5' nucleotides of the gene to develop a deletion of the first 22 N-terminal 

amino acids (Table 7.2). These primers were engineered such that 5' BamHI and 

3' XhoI restriction sites were incorporated. Each PCR product was purified using 

the PCR purification kit. The purified amplicons were sequentially incubated with 

BamHI and XhoI to generate directional annealing sites. The amplicons were 

then ligated with pGEX-6P-1 plasmid digested with the same restriction enzymes 

to replace the BamHI-XhoI fragment within the multiple cloning site. The ligation 

mixtures were introduced into E. coli DH5α by electroporation. The integrity of 

each gene from individual clones was confirmed by DNA sequencing. pGEX-6P-

1-spaI∆1-22 was isolated using the plasmid miniprep kit and introduced by 

electroporation into E. coli T7 lysogen BL21 (DE3). 

 pET15b-spaI∆1-22 - Genomic DNA was obtained from  B. subtilis ATCC 

6633 cultivated at 37°C with aeration on a rotary shaker in brain heart infusion 

medium (3.7% Bacto brain heart infusion, Millipore deionized water, 0.5% 

glycerol shaker). DNA was isolated from mid-log-phase cultures and was purified 

using the DNeasy tissue kit. B. subtilis 6633 spaI was PCR amplified using 

primers that exclude the first 66 5' nucleotides of the gene to develop a deletion 

of the first 22 N-terminal amino acids (Table 7.2). These primers were 

engineered such that 5' NdeI and 3' XhoI restriction sites were incorporated. 

Each PCR product was purified using the PCR purification kit. The purified 

amplicons were sequentially incubated with NdeI (New England Biolabs) and 
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XhoI to generate directional annealing sites. The amplicons were then ligated 

with pET-15b (Novagen) plasmid to replace the NdeI-XhoI fragment within the 

multiple cloning site. The ligation mixtures were introduced into E. coli DH5α by 

electroporation. The integrity of each gene from individual clones was confirmed 

by DNA sequencing. pET15b-spaI∆1-22 was isolated using the plasmid miniprep 

kit and introduced by electroporation into E. coli T7 lysogen BL21(DE3). 

Table 7.2 

Primer sequences for cloning LanI immunity proteins 

Gene
a
 Protein ID

b
 Primer Primer Sequence (5'→3')

c
 Plasmid 

Affinity 
tag

d
 

First 
residue of 

coding 
sequence

e
  

Last 
residue of 

coding 
sequence

f
 

Forward 

 
5'-GCGCGCGGATCCTG 
TTATCAAACAAGTCAT 
AAAAAGG-3' 
 

nisI CAA54209.1 

Reverse 

 
5'-ATATATCTCGAGCT 
AGTTTCCTACCTTCGT 
TGCAAGC-3' 
 

  pGEX-
6P-1 

GST Cys20 Asn245 

Forward 

 
5'-GCGCGCGGATCC 
TGTCAATCATTAACA 
AAGTTTAAAG-3' 
 

spaI AAB91598.1 

Reverse 

 
5'-ATATATCTCGAGTT 
ATTCCTTTTCATTCTT 
TATTAAAACC-3' 
 

  pGEX-
6P-1 

GST Cys23 Asp165 

Forward 

 
5'-GCGCGCCATATGTG 
TCAATCATTAACAAAG 
TTTAAAG-3' 
 

spaI AAB91598.1 

Reverse 

 
5'-
ATATATCTCGAGTTAT 
TCCTTTTCATTCTTTATT 
AAAACC-3' 
 

  pET-
15b 

His6 Cys23 Asp165 

 

 Table 7.2. Primer sequences cloning LanI immunity proteins.  
a
 nisI was cloned from 

L.lactis ATCC 11454.  spaI was cloned from B. subtilis ATCC 6633.  
b
 Protein and DNA 

sequences were obtained from Pubmed Nucleotide, National Center for Biotechnology 

Information, U.S. National Library of Medicine (http://www.ncbi.nlm.nih.gov/nucleotide/).   
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Table 7.2 (continued) 

c
 Oligonucleotide primers were engineered such that 5' BamHI and 3' XhoI  restriction sites were 

incorporated for genes that were inserted into pGEX-6P-1. Oligonucleotide primers were 

engineered such that 5' NdeI and 3' XhoI restriction sites were incorporated for the gene inserted  

into pET-15b. Primers were synthesized by Integrated DNA Technologies (Coralville, IA). Coding 

sequence was obtained from Pubmed Nucleotide.  
d
 Indicates the N-terminal that installed by 

plasmid for affinity purification.  
e
 Nucleotide sequence for the first 19 amino acids of NisI were 

excluded to remove the N-terminal secretion signal peptide.  Nucleotide sequence for the first 22 

amino acids of SpaI was excluded to remove the N-terminal secretion signal peptide.  First amino 

acid of cloned immunity gene is indicated.  
f
 Indicates the last amino acid of protein. 

 pHCMC05 constructs - Genomic DNA was obtained from  B. subtilis 

ATCC 6633 cultivated at 37 °C with aeration on a rotary shaker in brain heart 

infusion medium.  DNA was isolated from mid-log-phase cultures and was 

purified using the DNeasy tissue kit.  B. subtilis 6633 spaI and spaF were PCR 

amplified using primers corresponding to the 5' and 3' ends of each gene (Table 

7.3 and 7.4).  A series of sequential PCR amplification introduced 5' BamHI and 

3' EcoR1-AatII restriction sites as well as a 3' tetracysteine (TC) or MYC tag  

utilizing primer extension (Table 7.3 and 7.4). Each PCR product was purified 

using the PCR purification kit. The purified amplicons were sequentially 

incubated with BamHI and EcoRI (New England Biolabs) to generate directional 

annealing sites. The amplicons were then ligated with pUC-19 plasmid (New 

England Biolabs) to replace the BamHI-EcoRI fragment within the multiple 

cloning site.  The ligation mixtures were introduced into E. coli DH5α by 

electroporation.  The integrity of each gene from individual clones was confirmed 

by DNA sequencing.  The pUC-19 constructs with the correct sequences were 
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isolated using the plasmid miniprep kit and incubated with BamHI and AatII (New 

England Biolabs) to isolate the target tagged gene and generate directional 

annealing sites.  The digest fragments were purified via 1% agarose gel 

purification and Qiaquick gel extraction kit (Qiagen) and ligated with pHCMC05 

plasmid (15) to replace the BamHI-AatII (spaI/F) or BamHI-ClaI (nisI) fragment 

within the multiple cloning site.  The ligation mixtures were introduced into E. coli 

DH5α by electroporation.  The integrity of each gene from individual clones was 

confirmed by DNA sequencing.   pHCMC05-spaI-TC, pHCMC05-spaI-MYC, 

pHCMC05-spaF-TC, and pHCMC05-spaF-MYC were isolated using the plasmid 

miniprep kit for transformation of B. subtilis ATCC 6633.   

Table 7.3 

Cloning of B. subtilis ATCC 6633 SpaI and addition of a C-terminal tag 

Gene Protein id
a
 Primer Primer Sequence (5'→3')

b
 Plasmid  Tag

c
 

First 
residue of 

coding 
sequence

e
  

  Forward 
5'-GCGCGCGGATCCAT 
GTTGTTTTTGAAAAGA 
AGTGTTAC-3' 

tetra-
Cys/cMyc 

  Reverse 1 
5'-GCAGCAGCCCGGGC 
AGCATTCCTTTTCATTC 
TTTATTAAAACC-3' 

  Reverse 2 
5'-ATATATGAATTCGAC 
GTCCTAGCAGCAGCC 
CGGGCAGCA-3' 

tetra-Cys 

  Reverse 1 
5'-ACTTATTAATTTTTG 
CTCTTCCTTTTCATTCT 
TTATTAAAACC-3' 

  Reverse 2 
5'-GACGTCCTATAAA 
TCCTCCTCACTTATT 
AATTTTTGCTC-3' 

spaI AAB91598.1 

  Reverse 3 
5'-ATATATGAATTCG 
ACGTCCTATAAATC 
CTCCTC-3' 

  pHCMC05 

cMyc 

Met1 

 
 Table 7.3. Cloning of B. subtilis ATCC 6633 SpaI and addition of a C-terminal tag.  

a
 DNA 

sequence was obtained from Pubmed Nucleotide, National Center for Biotechnology Information,  
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Table 7.3 (continued) 

U.S. National Library of Medicine (http://www.ncbi.nlm.nih.gov/nucleotide/).  
b
 Oligonucleotide 

primers were engineered such that 5' BamHI and 3' EcoRI-AatII restriction sites were  

incorporated. Primers were synthesized by Integrated DNA Technologies (Coralville, IA). Coding 

sequence was obtained from Pubmed Nucleotide.  
c
 Primers utilized to create the indicated c-

terminal tag that was added via overlap extension.  
d
 Indicates the first amino acid of cloned 

immunity gene. 

Cloning of B. subtilis ATCC 6633 SpaF and addition of a C-terminal tag 

Gene Protein id
a
 Primer Primer Sequence (5'→3')

b
 Plasmid  Tag

c
 

First 
residue of 

coding 
sequence

e
  

  Forward 
5'-GCGCGCGGATCC 
ATGAAAAGGAATAAG 
GGAGAGTGTGAC-3' 

tetra-
Cys/cMyc 

  Reverse 1 
5'-GCAGCAGCCCGGG 
CAGCATCTTTTTACAC 
CTTCTTTTTCACGAG-3' 

  Reverse 2 
5'-ATATATGAATTCGAC 
GTCCTAGCAGCAGCC 
CGGGCAGCA-3' 

tetra-Cys 

  Reverse 1 
5'-ACTTATTAATTTTTG 
CTCTCTTTTTACACCTT 
CTTTTTCACGAG-3' 

  Reverse 2 
5'-GACGTCCTATAAATC 
CTCCTCACTTATTAATT 
TTTGCTC-3' 

spaF AAB91598.1 

  Reverse 3 
5'-ATATATGAATTCGA 
CGTCCTATAAATCCT 
CCTC-3' 

  pHCMC05 

cMyc 

Met1 

 

 Table 7.4. Cloning of B. subtilis ATCC 6633 SpaF and addition of a C-terminal tag.   

a
 DNA sequence was obtained from Pubmed Nucleotide, National Center for Biotechnology 

Information, U.S. National Library of Medicine (http://www.ncbi.nlm.nih.gov/nucleotide/).   

b
 Oligonucleotide primers were engineered such that 5' BamHI and 3' EcoRI-AatII restriction sites 

were incorporated. Primers were synthesized by Integrated DNA Technologies (Coralville, IA). 

Coding sequence was obtained from Pubmed Nucleotide.  
c
 Primers utilized to create the 

indicated c-terminal tag that was added via overlap extension.  
d
 Indicates the first amino acid of 

cloned immunity gene. 
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 pSG contructs - Genomic DNA was obtained from  B. subtilis ATCC 6633 

cultivated at 37°C with aeration on a rotary shaker in brain heart infusion 

medium. DNA was isolated from mid-log-phase cultures and was purified using 

the DNeasy tissue kit. B. subtilis 6633 spaI and spaF were PCR amplified using 

primers corresponding to the 5' and 3' ends of each gene (Table 7.5 and 7.6). 

These primers were engineered such that 5' KpnI (spaI) or ClaI (spaF) and 3' 

XhoI (spaI and spaF) restriction sites were incorporated. Each PCR product was 

purified using the PCR purification kit. The purified amplicons were sequentially 

incubated with KpnI (spaI; New England Biolabs) or ClaI (spaF) and XhoI (spaI 

and spaF) to generate directional annealing sites. The amplicons were then 

ligated with pSG (GFP, CFP, YFP) (7) plasmids to replace the KpnI-EcoRI (spaI) 

or XhoI-EcoRI (spaF) fragment within the multiple cloning site. The ligation 

mixtures were introduced into E. coli DH5α by electroporation. The integrity of 

each gene from individual clones was confirmed by DNA sequencing. pSG-spaI-

GFP, pSG-spaI-CFP, pSG-spaI-YFP, pSG-spaF-GFP, pSG-spaF-CFP, and 

pSG-spaF-YFP were isolated using the plasmid miniprep kit for transformation of 

B. subtilis ATCC 6633. 
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Cloning of B. subtilis ATCC 6633 SpaI and addition of a fluorescent C-terminal tag 

Gene Protein id
a
 Primer 

Primer Sequence 
(5'→3')

b
 

Plasmid
c
  Tag

d
 

First residue 
of coding 

sequence
e
  

pSG1154 GFP 
  Forward 

5'-GCGCGCGGTACC 
ATGTTGTTTTTGAAA 
AGAAGTGTTAAC-3' 

pSG1192 CFP spaI AAB91598.1 

  Reverse 
5'-ATATATGAATTCTT 
CCTTTTCATTCTTTAT 
TAAAAC-3' pSG1193 YFP 

Met1 

 

 Table 7.5. Cloning of B. subtilis ATCC 6633 SpaI and addition of a fluorescent C-terminal 

tag.  
a
 DNA sequence was obtained from Pubmed Nucleotide, National Center for Biotechnology 

Information, U.S. National Library of Medicine (http://www.ncbi.nlm.nih.gov/nucleotide/).  
b
 

Oligonucleotide primers were engineered such that 5' KpnI and 3' EcoRI restriction sites were 

incorporated. Primers were synthesized by Integrated DNA Technologies (Coralville, IA). Coding 

sequence was obtained from Pubmed Nucleotide.  
c
 Plasmid used will insert into amyE within the 

chromosome inactivating the gene.  The expression of spaI will be under the control of a xylose 

inducible promoter.  
d
 Indicates the transcriptional c-terminal tag added to SpaI.  

e
 Indicates the 

first amino acid in SpaI. 

 

Table 7.6 

Cloning of B. subtilis ATCC 6633 SpaF and addition of a fluorescent C-terminal tag 

Gene Protein id
a
 Primer 

Primer Sequence 
(5'→3')

b
 

Plasmid
c
  Tag

d
 

First residue 
of coding 

sequence
e
  

pSG1154 GFP 
  Forward 

5'-GCGCGCCTCGA 
GATGAAAAGGAATA 
AGGGAGAGTGTG-3' 

pSG1192 CFP spaF AAB91597.1 

  Reverse 
5'-ATATATGAATTCTC 
TTTTTACACCTTCTTT 
TTCACGAGTTG-3' pSG1193 YFP 

Met1 

  
 Table 7.6. Cloning of B. subtilis ATCC 6633 SpaF and addition of a fluorescent C-

terminal tag.  
a
 DNA sequence was obtained from Pubmed Nucleotide, National Center for  

Biotechnology Information, U.S. National Library of Medicine 

(http://www.ncbi.nlm.nih.gov/nucleotide/).   
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Table 7.6 (continued) 

b
 Oligonucleotide primers were engineered such that 5'  XhoI and 3' EcoRI restriction sites were 

incorporated. Primers were synthesized by Integrated DNA Technologies (Coralville, IA). Coding 

sequence was obtained from Pubmed Nucleotide.  
c
 Plasmid used will insert into amyE within the 

chromosome inactivating the gene.  The expression of spaF will be under the control of a xylose 

inducible promoter.  
d
 Indicates the transcriptional c-terminal tag added to SpaF.  

e
 Indicates the 

first amino acid in SpaF. 

 

 pMUTIN constructs -Genomic DNA was obtained from B. subtilis ATCC 

6633 cultivated at 37 °C with aeration on a rotary shaker in brain heart infusion 

medium. DNA was isolated from mid-log-phase cultures and was purified using 

the DNeasy tissue kit. B. subtilis 6633 spaI and spaF were PCR amplified using 

primers corresponding to the 5' and 3' ends of each gene (Table 7.7 and 7.8). 

These primers were engineered such that 5' HindIII (spaI and spaF) and 3' KpnI 

(spaI) or ClaI (spaF) restriction sites were incorporated. Each PCR product was 

purified using the PCR purification kit. The purified amplicons were sequentially 

incubated with HindIII (New England Biolabs) and KpnI (spaI) or ClaI (spaF) to 

generate directional annealing sites. The amplicons were then ligated with 

pMUTIN (GFP, CFP, YFP, HA, MYC) (11) plasmids to replace the HindIII-KpnI 

(spaI) or HindIII-ClaI (spaF) fragment within the multiple cloning site. The ligation 

mixtures were introduced into E. coli DH5α by electroporation. The integrity of 

each gene from individual clones was confirmed by DNA sequencing. pMUTIN-

spaI-GFP, pMUTIN-spaI-CFP, pMUTIN-spaI-YFP, pMUTIN-spaI-HA, pMUTIN-

spaI-MYC, pMUTIN-spaF-GFP, pMUTIN-spaF-CFP, pMUTIN-spaF-YFP, 
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pMUTIN-spaF-HA, and pMUTIN-spaF-MYC were isolated using the plasmid 

miniprep kit for transformation of B. subtilis ATCC 6633. 

Cloning of B. subtilis ATCC 6633 SpaI and addition of a fluorescent C-terminal tag 

Gene Protein id
a
 Primer 

Primer Sequence 
(5'→3')

b
 

Plasmid
c
  Tag

d
 

First residue 
of coding 

sequence
e
  

pMutin-
GFP 

GFP 

pMutin-
CFP 

CFP 
  Forward 

5'-GCGCGAAGCTT 
ATGTTGTTTTTGAAA 
AGAAGTGTTAAC-3' 

pMutin-
YFP 

YFP 

pMutin-
cMyc 

cMyc 

spaI AAB91598.1 

  Reverse 
5'-ATATATCCATGGT 
TCCTTTTCATTCTTT 
ATTAAAAC-3' 

pMutin-HA HA 

Met1 

 

 Table 7.7. Cloning of B. subtilis ATCC 6633 SpaI and addition of a fluorescent C-terminal 

tag.  
a
 DNA sequence was obtained from Pubmed Nucleotide, National Center for Biotechnology 

Information, U.S. National Library of Medicine (http://www.ncbi.nlm.nih.gov/nucleotide/).  
b
 

Oligonucleotide primers were engineered such that 5' HindIII and 3' KpnI restriction sites were 

incorporated. Primers were synthesized by Integrated DNA Technologies (Coralville, IA). Coding 

sequence was obtained from Pubmed Nucleotide. 

c
 Plasmid used will insert into the chromosome at the gene of interest via double crossover 

tagging chromosomal copy of the gene with the indicated tag under the control of the native 

promoter and placing the downstream genes of the operon under the control of a IPTG inducible 

promoter.  
d
 Indicates the transcriptional c-terminal tag added to SpaI.  

e
 Indicates the first amino 

acid in SpaI. 

 

 

 

 

 

 

 



 275 

Cloning of B. subtilis ATCC 6633 SpaF and addition of a fluorescent C-terminal tag 

Gene Protein id
a
 Primer Primer Sequence (5'→3')

b
 Plasmid

c
  Tag

d
 

First residue 
of coding 

sequence
e
  

pMutin-
GFP 

GFP 

pMutin-
CFP 

CFP 
  Forward 

5'-GCGCGCAAGCT 
TATGAAAAGGAATA 
AGGGAGAGTGTG-3' 

pMutin-
YFP 

YFP 

pMutin-
cMyc 

cMyc 

spaF AAB91597.1 

  Reverse 
5'-ATATATTAGCTATC 
TTTTTACACCTTCTTT 
TTCACGAGTTG-3' 

pMutin-HA HA 

Met1 

 

 Table 7.8. Cloning of B. subtilis ATCC 6633 SpaF and addition of a fluorescent C-

terminal tag.  
a
 DNA sequence was obtained from Pubmed Nucleotide, National Center for 

Biotechnology Information, U.S. National Library of Medicine 

(http://www.ncbi.nlm.nih.gov/nucleotide/).  
b
 Oligonucleotide primers were engineered such that 5' 

HindIII and 3' ClaI restriction sites were incorporated. Primers were synthesized by Integrated 

DNA Technologies (Coralville, IA). Coding sequence was obtained from Pubmed Nucleotide.   

c
 Plasmid used will insert into the chromosome at the gene of interest via double crossover 

tagging chromosomal copy of the gene with the indicated tag under the control of the native 

promoter and placing the downstream genes of the operon under the control of a IPTG inducible 

promoter.   
d
 Indicates the transcriptional c-terminal tag added to SpaF.  

e
 Indicates the first amino 

acid in SpaF. 

 

7.4.2 Transformation of Bacillus subtilis: starvation.  

 The recipient strain, B. subtilis ATCC 6633, was streaked on solid Luria-

Bertani broth (LB, 1.0% Bacto Trypton, BD Diagnostics; 0.5% Bacto yeast 

extract, BD Diagnostics; 0.5%  NaCl, Fisher Chemical;  Millipore deionized water) 

and incubated overnight (18 hr) at 37 °C.  Colonies were selected and used to 

4.5 mL of medium A (0.1% yeast extract, BD Diagnostics; 0.02% casamino 
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acids, Fisher Chemical; 0.5% glucose; 0.2% (NH4)2SO4, Fisher Chemical; 

0.183% K2HPO4, Fisher Chemical; 0.6% KH2PO4, Fisher Chemical; 0.1% sodium 

citrate, Fisher Chemical;  0.02% MgSO4, Fisher Chemical) in a sterile test tube. 

Contents of the tube were mixed thoroughly and optical density (OD) was 

measured at 600 nm with a spectrophotometer (Genesys 20 spectrophotometer, 

Thermo Fisher Scientific, Waltham, MA). The OD600 was adjusted 0.1-0.2 while 

maintaining the volume at 4.5 ml.  The cultures were incubated at 37 °C with 

vigorous aeration. The optical density was measured at 600 nm every 20 min 

and OD600 plotted against time on semi-log paper. After a brief lag, the OD 

increased logarithmically. The point at which the culture leaves log growth is 

known as t0 in Bacillus genetics. The incubation was continued for 90 minutes 

after the cessation of log growth (t90). The cultures (0.05 mL) were back diluted 

into 0.45 mL of pre-warmed medium B (medium A; 0.5 mM CaCl2, Fisher 

Chemical; 2.5 nM MgCl2) with in a clean and sterile test tube for each 

transformation plus an extra tube for a DNA-free control.  The diluted cultures 

were incubated at 37 °C with vigorous aeration.  After 90 min, DNA (1 µg) was 

added to the competent cells and incubated at 37 °C with aeration for 30 

minutes. Aliquots of the transformed cells were plated onto selective agar and 

incubated overnight at 37 °C. 

  

7.4.3 GST purification of NisI∆∆∆∆1-19 and SpaI∆∆∆∆1-22.   

 E. coli BL21 (DE3) transformed with either pGEX-6P-1-nisI∆1-19 or 

pGEX-6P-1-spaI∆1-22 was grown in Luria-Bertani broth (LB, 5 mL) 
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supplemented with ampicillin (100 µg/mL, Fisher Chemical) at 37 °C and with 

aeration. After 8 h, the initial culture was back-diluted into fresh LB broth (50 mL) 

supplemented with ampicillin (100 µg/mL) at 37 °C and grown overnight with 

aeration.  After 12 h, the starter culture was back diluted into fresh LB broth 

(2000 mL) supplemented with ampicillin (100 µg/mL) at 37 °C and grown with 

aeration until the optical density at 600 nm reached 0.7. Expression of nisI∆1-19 

or spaI∆1-22 was induced by addition of IPTG (0.25 mM, Fisher Chemical).  The 

cultures were grown for an additional 4 h and then harvested by centrifugation at 

8,000 x g for 10 min at 4 °C (Beckman JA-10 rotor, Brea, CA).  The pellets were 

resuspended in 25 mL of binding buffer (500 mM KCl, 140 mM NaCl, 10 mM 

Na2PO4, 1.8 mM KH2PO4; pH 7.3; Sigma Aldrich, St. Louis, MO)  with 20% 

glycerol and lysed by sonication (35% amplitude, 4.4 s pulse, 9.9 s pause for 

total 25 min; Sonics & Materials, Inc., Newtown, CT).  The sample was 

centrifuged at 23,700xg for 30 min at 4 °C. The supernatant was loaded onto 10 

mL (bed volume) glutathione affinity resin (glutathione sepharose 4 fast flow 

resin, GE Healthcare) pre-equilibrated with binding buffer.  After 1 hour of gentle 

agitation at 4 °C, the bound protein was washed with twenty 10 mL volumes of 

binding buffer, three 10 mL volumes of equilibration buffer (50 mM Tris ,100 mM 

NaCl; pH 8; Sigma Aldrich, St. Louis, MO), and eluted with three 10 mL volumes 

of elution buffer (50 mM Tris ,100 mM NaCl, 20 mM glutathione; pH 8; Sigma 

Aldrich).  The column eluant was then exchanged into PreScission protease 

cleavage buffer (50 mM Tris-HCl, 100 mM NaCl, 1 mM EDTA, 1 mM DTT; pH 

8.0; Sigma Aldrich) utilizing an Amicon centrifugal filter device.  GST tagged 
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proteins were incubated with 150 µL of PreScission protease overnight at 4 °C 

with gentile agitation. After 12 h, the cleavage reaction was loaded onto 10 mL 

(bed volume) glutathione affinity resin (GE Healthcare) pre-equilibrated with 

binding buffer.  After 1 hour of gentle agitation at 4 °C, the untagged NisI∆1-19 

and SpaI∆1-22 were eluted with twenty 10 mL volumes of binding buffer.  The 

column eluant was then exchanged into 50 mM HEPES (EMD Biosciences, Inc., 

La Jolla, CA) with 20% glycerol utilizing an Amicon centrifugal filter device.  

Proteins were quantified utilizing the Bradford protein quantification assay. 

 The glutathione resin was prepared for protein binding by washing 10 mL 

(bed volume) of resin with six 10 mL volumes of 6 M guanidine HCl (Sigma 

Aldrich), ten 10 mL volumes of deionized water, three 10 mL volumes of 1 mM 

dithiothreitol (DTT, Sigma Aldrich), and twenty 10 mL volumes of binding buffer.  

 

7.4.4 Nickel affinity purification of SpaI ∆∆∆∆1-22.   

 E. coli BL21(DE3) transformed with either pET-15b-spaI ∆1-22 was grown 

in LB broth (5 mL) supplemented with ampicillin (100 µg/mL) at 37 °C and with 

aeration. After 8 h, the initial culture was back-diluted into fresh LB broth (50 mL) 

supplemented with ampicillin (100 µg/mL) at 37 °C and grown overnight with 

aeration.  After 12 h, the starter culture was back-diluted into fresh LB broth 

(2000 mL) supplemented with ampicillin (100 µg/mL) at 37 °C and grown with 

aeration until the optical density at 600 nm reached 0.7. Expression of nisI ∆1-19 

or spaI ∆1-22 was induced by addition of IPTG (0.25 mM, Fisher Chemical).  The 

cultures were grown for an additional 4 h and then harvested by centrifugation at 



 279 

8,000 x g for 10 min at 4°C (Beckman JA-10 rotor, Brea, CA).  The pellets were 

resuspended in 25 mL of GST binding buffer (500 mM KCl, 140 mM NaCl, 10 

mM Na2PO4, 1.8 mM KH2PO4; pH 7.3; Sigma, St. Louis, MO)  with 20% glycerol 

and lysed by sonication (35% amplitude, 4.4 s pulse, 9.9 s pause for total 25 min; 

Sonics & Materials, Inc., Newtown, CT).  The sample was centrifuged at 

23,700xg for 30 min at 4 °C. The supernatant was loaded onto 5 mL (bed 

volume) of Talon® cobalt affinity resin (Clontech, Mountain View, CA) pre-

equilibrated with start buffer.  After 1 hour of gentle agitation at 4 °C, the bound 

protein was washed with two 10 mL volumes of binding buffer, one 10 mL 

volumes of wash buffer (500 mM KCl, 140 mM NaCl, 10 mM Na2PO4, 1.8 mM 

KH2PO4, 5 mM imidazole; pH 7.3; Sigma Aldrich), and eluted with two 10 mL 

volumes of elution buffer (500 mM KCl, 140 mM NaCl, 10 mM Na2PO4, 1.8 mM 

KH2PO4, 200 mM imidazole; pH 7.3).  The column eluant was then exchanged 

into 50 mM HEPES (EMD Biosciences, Inc., La Jolla, CA) with 20% glycerol 

utilizing an Amicon centrifugal filter device. 

 For His6-tag removal, the Novagen thrombin cleavage kit and protocol 

were utilized.  Briefly, purified protein was exchanged into thrombin protease 

cleavage buffer (200 mM Tris-HCl pH 8.4, 1.5 mM NaCl, 2.5 mM CaCl2, 10 mM 

DTT) utilizing an Amicon centrifugal filter device.  The tagged protein was 

incubated for 18 h with gentile shaking at 4 ºC.  Streptavidin agarose beads 

bound biotinylated thrombin during a 30 min incubation at room temperature. 

Beads were removed via spin column filtration at 500 x g using a bench top 

microcentrifuge (Thermo Electron Corporation, Waltham, MA) provided with the 
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kit.  The column eluant was then exchanged into 50 mM HEPES (EMD 

Biosciences, Inc., La Jolla, CA) with 20% glycerol utilizing an Amicon centrifugal 

filter device.  Proteins were quantified utilizing the Bradford protein quantification 

assay.  

 

7.4.5 Purification of nisin and subtilin.   

 Nisin was purified and characterized as described previously (9).  Subtilin 

was purified from spent media of B. subtilis ATCC 6633 cultures.   B. subtilis 

ATCC was cultured at 37 ºC for 12, 15, or 18 h in 500 mL of LB broth.  The 

culture was centrifuged at 8,000 xg for 20 min at 4 °C, and supernatants were 

filter sterilized and loaded onto a Varian C18 bond-elute column twice (Agilent 

Technologies, Santa Clara, CA) pre-equilibrated with 50% acetonitrile (Fisher 

Chemical).   Bound peptide was washed and then eluted with a gradient of 0-

100% acetonitrile utilizing a 10% step-wise increase of 50 mL fractions.  Matrix 

Assisted Laser Desorption/Ionization – Time Of Flight (MALDI-TOF) mass 

spectrometry (General Electric, NY) was performed to identify the fractions that 

contained purified subtilin.  Fractions containing subtilin were pooled and 

lyophilized.  Dried peptide was resuspended in 30% acetonitrile with 0.1% 

trifluoroacetic acid (TFA, Sigma Aldrich), and Reverse Phase-High Performance 

Liquid Chromatography (RP-HPLC, Waters, Milford, MS) was performed with a 

PrePack C4 semi-preparative column (Waters, Milford, MS, diameter 25 mm, 

length 100 mm) with a gradient of 0-100% acetonitrile. Under these conditions, 

subtilin had a retention time of 29 min. Acetonitrile and TFA were removed from 
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fractions containing subtilin by rotary evaporation followed by lyophilization to 

remove water.  The identity of purified subtilin was confirmed by MALDI-TOF 

mass spectrometry.  Prior to use, lyophilized nisin was weighed on an analytical 

balance and dissolved in 0.1 M MOPS pH 6.8 to yield the desired concentration. 

 

7.4.6 Labeling of nisin and vancomycin.   

 See Chapter 3 for methods. 

 

7.4.7 Epi-Fluorescence microscopy.  

  Samples of B. subtilis 6633 cultured in Difco sporulation media (DSM , 

0.8% Bacto nutrient broth, BD Diagnostics;  0.1%  KCl, Fisher Chemical; 0.025%  

MgSO4, Fisher Chemical; Millipore deionized water), TY broth (0.8% Tryptone, 

0.5% yeast extract, 0.5% NaCl, Millipore dionized water) for 12 h were incubated 

with 0.1, 0.5, 1 µM b-vancomycin or b-nisin for 5 min.  Samples were fixed by 

incubation in 4% formaldehyde (Sigma) for 30 min at 37 °C followed by mounting 

on glass slides in 20% glycerol (Sigma) or Slow-Fade® antifade reagent 

(Invitrogen) under glass cover slips for epi-fluorescence microscopy. Live epi-

fluorescence microscopy was also performed by mounting samples on glass 

slides in 0.5% agarose under cover slips. Differential interference contrast (DIC) 

and fluorescence microscopy images were collected with an Applied Precision 

assembled DeltaVision epi-fluorescence microscope containing an Olympus Plan 

Apo x100 oil objective with a numerical aperture of 1.42 and a working distance 

of 0.15 mm using CFP (Ex. 430/24, Em.470/24), FITC (Ex. 490/20, Em. 528/38), 
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rhodamine (Ex. 555/28, Em. 617/73), and CY-5 (Ex. 640/20, Em. 685/40) filter 

sets, and the images were processed with the SoftWoRX (Issaquah, WA) 

Explorer Suite program. 

 

7.4.8 Circular dichroism.   

 Circular dichroism (CD) spectra was collected for NisI∆1-19 with 

increasing concentrations of nisin (0, 5, 10, and 50 µM) in the far-UV range 

utilizing a J-720 CD spectropolarimeter from JASCO (Easton, MD). A cylindrical 

cuvette with a total volume of 350 µL and a path length of 0.1 cm was used for 

each assay. The CD spectra of NisI∆1-19 (5.0 µM) in optically clear borate buffer 

(50 mM potassium borate, pH 8.0) was recorded from 190 to 260 nm at a scan 

rate of 50 nm/s with a 1-nm wavelength step and with five accumulations. 

 Data acquisition was coordinated using the JASCO Spectra Manager 

v1.54A software. Raw data files were uploaded onto the DICHROWEB online 

server (http://www.cryst.bbk.ac.uk/cdweb/html/home.html) and analyzed using 

the CDSSTR algorithm with reference set 4, which is optimized for the analysis of 

data recorded in the range from 190 to 240 nm (13). 

 

7.4.9 Oligomerization analysis - size exclusion chromatography and native 

gel electrophoresis.    

 Size exclusion chromatography was conducted using an AKTA Purifier 

900 fast protein liquid chromatography (FPLC) system (GE Healthcare) equipped 

with a Superdex 200 10/300 GL size exclusion column (GE Healthcare) and a 
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UV detector (GE Healthcare).   NisI∆1-19 (5 µM; 100 µl) or a gel filtration 

standard mixture was injected onto the column pre-equilbrated with 0.1 M MOPS 

(Fisher Chemical, pH 6.8) liquid phase at a flow rate of 0.5 mL/min. Standard 

curves were generated by plotting the log of the molecular weights (provided by 

the supplier) of the gel filtration standards versus retention times. Experimental 

retention times were used to calculate the apparent molecular weights of NisI∆1-

19 in the presence and absence of 50 µM nisin from the standard curve.  To 

confirm FPLC results native-PAGE was performed.   

 

7.4.10 Immunoblot analysis.  

 Samples removed from B. subtilis ATCC 6633 cultures were mixed with 

an equal volume of 2x sodium dodecyl sulfate (SDS) sample buffer (4% SDS, 100 

mM Tris, 0.4 mg bromophenol blue/ml, 0.2 M dithiothreitol, 20% glycerol). The 

samples were boiled for 5 min and were resolved by SDS-PAGE (10% 

acrylamide). The contents of the gels were electrotransferred to 

nitrocellulose membranes (Pierce, Rockford, IL). The membranes were 

probed for the presence of GFP, MYC, HA, and TC using anti-GFP mouse 

monoclonal antibody (Sigma Aldrich), anti-MYC mouse monoclonal antibody 

(Invitrogen), anti-HA rabbit monoclonal antibody (Sigma Aldrich), and ReAsh 

(Invitrogen), respectively. Goat horseradish peroxidase-conjugated anti-mouse  

or rabbit immunoglobulin G (Abcam Inc., Cambridge, MA) was used as 

the secondary antibody, and cross-reacting material was visualized after the blots 

were exposed to X-ray film (Denville Scientific Inc., Metuchen, NJ) in the 



 284 

presence of the enhanced chemiluminescence immunoblotting reagent (Pierce, 

Rockford, IL).  ReAsh was detected using a Typhoon gel scanner (GE 

healthcare). 

 

7.4.11 Structure prediction.   

 The secondary structures of NisI∆1-19 and SpaI∆1-22 predictions were 

performed using the consensus prediction method on the NPS@ web server 

(network protein sequence analysis; http://npsa-pbil.ibcp.fr/cgi-

bin/npsa_automat.pl?page=/NPSA/npsa_seccons.html) of the Pôle 

BioInformatique Lyonnais (4). 

 

7.4.12 Statistics. 

 All data are representative of those from three or more 

independent experiments. Error bars represent standard 

deviations. P values were calculated with Student's t test using paired, one-

tailed distribution. P values of <0.05 indicate statistical significance. All statistics, 

including means, standard deviations, and Student's t tests, were calculated 

using Microsoft Excel (version 11.0). 

 

7.5 References 

1. Adams, S. R., and R. Y. Tsien. 2008. Preparation of the membrane-
permeant biarsenicals FlAsH-EDT2 and ReAsH-EDT2 for fluorescent 
labeling of tetracysteine-tagged proteins. Nat Protoc 3:1527-34. 

2. Asaduzzaman, S. M., and K. Sonomoto. 2009. Lantibiotics: diverse 
activities and unique modes of action. J Biosci Bioeng 107:475-87. 



 285 

3. Chatterjee, C., Paul, M., Xie, L, van der Donk, W. A. 2005. Biosynthesis 
and Mode of Action of Lantibiotics. Chem Rev 105:633-683. 

4. Combet, C., C. Blanchet, C. Geourjon, and G. Deleage. 2000. NPS@: 
network protein sequence analysis. Trends Biochem Sci 25:147-50. 

5. Daniel, R. A., and J. Errington. 2003. Control of cell morphogenesis in 
bacteria: two distinct ways to make a rod-shaped cell. Cell 113:767-76. 

6. Draper, L. A., R. P. Ross, C. Hill, and P. D. Cotter. 2008. Lantibiotic 
immunity. Curr Protein Pept Sci 9:39-49. 

7. Feucht, A., and P. J. Lewis. 2001. Improved plasmid vectors for the 
production of multiple fluorescent protein fusions in Bacillus subtilis. Gene 
264:289-97. 

8. Field, D., C. Hill, P. D. Cotter, and R. P. Ross. 2010. The dawning of a 
'Golden era' in lantibiotic bioengineering. Mol Microbiol 78:1077-87. 

9. Gut, I. M., A. M. Prouty, J. D. Ballard, W. A. van der Donk, and S. R. 
Blanke. 2008. Inhibition of Bacillus anthracis spore outgrowth by nisin. 
Antimicrob Agents Chemother 52:4281-8. 

10. Heinzmann, S., K. D. Entian, and T. Stein. 2006. Engineering Bacillus 
subtilis ATCC 6633 for improved production of the lantibiotic subtilin. Appl 
Microbiol Biotechnol 69:532-6. 

11. Kaltwasser, M., T. Wiegert, and W. Schumann. 2002. Construction and 
application of epitope- and green fluorescent protein-tagging integration 
vectors for Bacillus subtilis. Appl Environ Microbiol 68:2624-8. 

12. Koponen, O., T. M. Takala, U. Saarela, M. Qiao, and P. E. Saris. 2004. 
Distribution of the NisI immunity protein and enhancement of nisin activity 
by the lipid-free NisI. FEMS Microbiol Lett 231:85-90. 

13. Lobley, A., L. Whitmore, and B. A. Wallace. 2002. DICHROWEB: an 
interactive website for the analysis of protein secondary structure from 
circular dichroism spectra. Bioinformatics 18:211-2. 

14. Lubelski, J., R. Rink, R. Khusainov, G. N. Moll, and O. P. Kuipers. 
2008. Biosynthesis, immunity, regulation, mode of action and engineering 
of the model lantibiotic nisin. Cell Mol Life Sci 65:455-76. 



 286 

15. Nguyen, H. D., Q. A. Nguyen, R. C. Ferreira, L. C. Ferreira, L. T. Tran, 
and W. Schumann. 2005. Construction of plasmid-based expression 
vectors for Bacillus subtilis exhibiting full structural stability. Plasmid 
54:241-8. 

16. Piper, C., P. D. Cotter, R. P. Ross, and C. Hill. 2009. Discovery of 
medically significant lantibiotics. Curr Drug Discov Technol 6:1-18. 

17. Ross, A. C., and J. C. Vederas. 2010. Fundamental functionality: recent 
developments in understanding the structure-activity relationships of 
lantibiotic peptides. J Antibiot (Tokyo). 

18. Stein, T., S. Heinzmann, P. Kiesau, B. Himmel, and K. D. Entian. 2003. 
The spa-box for transcriptional activation of subtilin biosynthesis and 
immunity in Bacillus subtilis. Mol Microbiol 47:1627-36. 

19. Takala, T. M., O. Koponen, Q. Mingqiang, and P. E. Saris. 2004. Lipid-
free NisI: interaction with nisin and contribution to nisin immunity via 
secretion. FEMS Microbiol Lett 237:171-177. 

20. Takala, T. M., and P. E. Saris. 2006. C-terminus of NisI provides 
specificity to nisin. Microbiology 152:3543-9. 

21. Tiyanont, K., T. Doan, M. B. Lazarus, X. Fang, D. Z. Rudner, and S. 
Walker. 2006. Imaging peptidoglycan biosynthesis in Bacillus subtilis with 
fluorescent antibiotics. Proc Natl Acad Sci U S A 103:11033-8. 

 
 



 287 

CHAPTER 8: CONCLUSIONS AND FUTURE DIRECTIONS 
 
8.1 Introduction  

 Nisin is most effective against Gram-positive bacteria, and few strains 

have developed resistance in spite of unregulated worldwide use in the food 

industry due to the three distinct activities (3). Nisin exerts its bactericidal effects 

through pore formation (11) and/or disruption of cell wall biosynthesis functioning 

as a transglycosylase inhibitor by binding to lipid II (4, 13). A third activity  

attributed to nisin is the prevention of spore outgrowth (2).  Previous studies 

demonstrated through phase contrast microscopy that nisin prevents the 

outgrowth of both Bacillus and Clostridia spores (2, 7).  The exact manner in 

which nisin alters Bacillus spores to inhibit outgrowth had not been characterized. 

Dha5 was reported to be essential for outgrowth inhibition and postulated to form 

a covalent bond with a Cys in a spore protein (8). 

 In the studies presented this thesis, Bacillus anthracis Sterne 7702 was 

used as a model organism to determine the mechanism by which nisin inhibits 

outgrowth, to identify nisin's target(s), and to determine the requirement of pore 

formation for outgrowth inhibition.  In addition, an in vitro infection model was 

developed and used to demonstrate that nisin is protective against spore 

infection of immune cells. Finally, constructs and protocols have been developed 

to monitor the localization of the immunity proteins of a lantibiotic producer.   

 

 

 



 288 

8.2 Summary of Results 

8.2.1 Characterization of the consequences of Bacillus anthracis exposure 

to nisin. 

 First, it was determined that nisin inhibits spore outgrowth with IC50 and 

IC90 values of 0.60 µM and 0.95 µM, respectively.  Colony forming unit (CFU) 

analysis revealed that no recoverable spores were observed after incubation with 

nisin concentrations ≥ 1 µM in brain heart infusion broth.   Differential 

interference contrast microscopy experiments provided congruent data 

illustrating outgrowth inhibition at nisin concentrations ≥ 1 µM.  These 

observations were confirmed via spectrophotometric analysis at O.D. 600 nm and 

with scanning electron microscopy.  These data taken as a whole demonstrated 

that nisin has the ability to inhibit outgrowth of Bacillus anthracis spores. 

 When spores were incubated with nisin, the inability to detect recoverable 

CFUs could be due to irreversible inhibition of germination initiation by nisin or 

spore killing post germination initiation.  Loss of refractility, which signifies spore 

hydration, and loss of heat resistance are two classical determinants of 

germination (5, 12).  Spores were able to initiate germination in the presence of 

BHI in all nisin concentrations (0-100 µM).  In fact, nisin required the initiation of 

germination to inhibit spores, and the inhibition was irreversible. This later point 

was demonstrated by incubating spores with 10 µM nisin in the presence or the 

absence of BHI followed by washing and resuspension in nisin free BHI and 

monitoring growth after 18 h. Further confirmation that nisin requires germination 

was provided by the observation that only spores incubated with BODIPY-nisin in 
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the presence of BHI exhibited nisin associated fluorescent labeling of spores.  

Collectively, these data demonstrated that nisin requires germination initiation 

allowing spore-nisin interaction to induce irreversible inhibition.   

 Previous data demonstrated that early events of germination, loss of 

refractility and heat resistance, occurred while a late event of germination, 

outgrowth, was inhibited.  Nisin was then evaluated for its ability to modulate 

other hallmarks of germination.  Since toxin expression is essential for anthrax 

infection and disease, lethal toxin (LT), which is composed of lethal factor (LF) 

and protective antigen (PA), was assayed for expression by immunoblot when 

spores were incubated in the presence of 10 µM nisin in BHI.  After 7 h and 10 h, 

expression of either component of LT was not observed.  Additionally, spores 

and bacilli were homogenized and assayed for the components of LT.  LF and 

PA were only observed in association with bacilli.  Subsequently, oxidative 

metabolism was assayed by monitoring the conversion of tetrazolium to 

formazan.  Spores germinated in nisin concentrations ≥ 1 µM were devoid of 

oxidative metabolism.  Under these conditions nisin inhibited membrane potential 

establishment through 10 h.  Additional flow cytometric analysis using propidium 

iodide (PI) demonstrated a dose dependent increase in spore fluorescence.  This 

increase in fluorescence was due to membrane permeablization allowing PI to 

interact with spore DNA. Another event of germination is the release of dipicolinic 

acid (DPA) chelated to calcium.  The release of DPA in solution can be 

monitored utilizing DPA-terbium energy transfer interactions in solution. 

Endospores germinated in the presence of nisin (0-100 µM) were able to release 
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DPA at similar rate and magnitude.  These data also suggested indirectly that 

nisin does not inhibit the release of calcium.  Further analysis of germination 

utilizing transmission electron microscopy demonstrated that nisin did not inhibit 

the shedding of the sporecoat, exosporium, or cortex during germination.  

Additional research of the nisin pore demonstrated that the pore allows the efflux 

of Cl- and K+ ions and the influx of PicoGreen DNA dye while not releasing spore 

DNA and cytosolic proteins through lysis of the spore.  Nisin-mediated 

membrane disruption can be inhibited with ion channel blockers or polyethylene 

glycol in a manner that suggests that the membrane perturbations are 

approximately 2 nm in diameter and slightly anion selective. These data taken as 

a whole demonstrate nisin inhibition of spore outgrowth and metabolic function 

through membrane potential dissipation via cell membrane permeablization.  

 

8.2.2 Nisin inhibits outgrowth via membrane disruption. 

 BODIPY-nisin and fluorescein-vancomycin were used to identify lipid II as 

a target for outgrowth inhibition demonstrated via co-localization studies with epi-

fluorescence microscopy.  Competition assays between vancomycin and nisin 

revealed that vancomycin blocked nisin binding and visa versa, which confirms 

nisin binding of lipid II for spore outgrowth inhibition.  In an effort to identify a 

covalently bound protein target for outgrowth inhibition, biotin- and fluorescent-

nisin were used as probes, however such a target was not isolated. The activity 

of wt nisin was compared against vancomycin (lipid II binding), nisin 1-21 (non-

pore forming, but lipid II binding),  nisin N20P/M21P (non-pore forming, but lipid II 
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binding), nisin M21P/K22P (non-pore forming, but lipid II binding), and 

ciprofloxacin (DNA gyrase inhibitor).  These studies revealed that lipid II binding 

is not sufficient for outgrowth inhibition, and that the pore forming activity of wt 

nisin is essential to prevent membrane potential establishment resulting in 

outgrowth inhibition.  However, the nisin S5A mutant still retains the ability to 

inhibit membrane potential establishment and outgrowth while disrupting the 

membrane, which demonstrates that Dha5 is not essential for inhibition of 

germinating spores.  

 

8.2.3 Nisin is protective with respect to in vitro infection of mammalian 

immune cells. 

 Next, the effectiveness of nisin in an in vitro infection model was 

evaluated. First, a completely non-germinating infection model had to be 

developed.  These investigations identified an in vitro infection model that was 

devoid of fetal bovine serum and utilizing either DMEM or RPMI as cell culture 

media that did not induce spore germination within 4 h while maintaining the 

health of the immune cells.  Utilizing this infection model  it was determined that 

nisin aided, in a dose dependent manner, clearance of spores while increasing 

immune cell survival with continuous spore infection of cultured peritoneal and 

alveolar macrophages and dendritic cells.  In addition, nisin also reduced the 

uptake of spores for all cell lines in germinating conditions while not affecting 

spore binding assays. The use of fluorescein-nisin demonstrated spore-nisin 

localization within a phagosome of a peritoneal macrophage illustrating that nisin 
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can interact with a spore within a phagosome. In addition, nisin reduced spore-

induced expression of IL-1β, IL-6, TNF-α, and G-CSF. 

 

8.2.4 Localization and activity of immunity proteins for protection against 

lantibiotics in producing organisms. 

 Immunity to nisin and subtilin by the native producer is derived via the 

synergistic cooperation between LanI, to bind and reduce the concentration of 

the lantibiotic, and an ATP- dependent transporter, LanFEG, to remove it from 

the membrane (2).  NisI was cloned, purified, and over-expressed.  Native gel 

and gel filtration data indicate that NisI remains in a dimer with no significant 

structural changes observed by circular dichroism, and NisI retains a highly 

disordered secondary structure in the presence of nisin.  To monitor the 

localization of the immunity genes the subtilin equivalent of LanF, which is SpaF, 

has been tagged on the chromosome with GFP or HA tags while SpaI was 

tagged with tetra-cysteine or cMYC expressed from plasmids in B. subtilis 6633 

and 168. A protocol has been optimized for lipid II localization using Bodipy-633-

vancomycin.   

 

8.3 Conclusions and Future Directions 

 In this thesis the mechanism and target for nisin inhibition of spore 

outgrowth has been identified, and a model for the mode of action has been 

developed (Figure 8.1).  Upon germination of B. anthracis spores, nisin will 

interact with spore lipid II to disrupt the membrane, presumably by pore 
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formation.  This disruption of the membrane will allow the flow of small molecules 

and ions, most importantly H+, thus preventing the establishment of a membrane 

potential.  The data suggest that the nisin-lipid II interaction could facilitate the 

inhibition of other spore-forming bacteria from the genera Bacillus and 

Clostridium, including those of medical relevance such as C. botulinum and C. 

difficile. Further investigation is necessary to confirm the potential universal 

nature of this mechanism.   It is anticipated that other lantibiotics such as subtilin 

(6, 10), epidermin (1), and haloduracin (9) would also inhibit spore outgrowth 

utilizing the same mechanism.  Furthermore, any antimicrobial that either 

specifically dissipates a membrane potential, FCCP for example, or is membrane 

disrupting would inhibit spore outgrowth.  However, the interaction of nisin with 

lipid II provides specificity to nisin-mediated membrane disruption preventing 

non-specific killing of mammalian cells as would be observed with an non-

specific inhibitor.  Further investigation is required to determine whether the 

above listed lantibiotics as well as other membrane acting antimicrobials would 

also inhibit spore outgrowth.   

 Upon the development of an entirely non-germinating in vitro infection 

model, nisin was evaluated for its ability to alter the outcome of spore infections 

of mammalian cells.  Nisin significantly tipped the scale in the favor of the 

immune cell.  The addition of nisin reduced the number of viable B. anthracis 

recovered from immune cells while increasing immune cell survival and reducing 

infection mediated cytokine expression in both germinating and non-germinating 

conditions.  Spore uptake was decreased as a result of reduced spore binding to 
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immune cells.  However, the mechanism by which nisin inhibits spore attachment 

to immune cells is not understood and requires further investigation.  The ability 

of nisin or another pore-forming lantibiotic such as haloduracin, which is more 

stable (9), to clear a B. anthracis infection would be accurately assessed in an in 

vivo mouse infection model utilizing B. anthracis Ames (which expresses toxins 

and capsule).  The results from an in vivo infection would determine whether 

nisin or lantibiotics as a group of antimicrobials could function as a relevant 

treatment option for spore-forming bacterial infections.   

Figure 8.1 

 

 Figure 8.1. Model of nisin mode of action.  Upon binding of an amino acid germinant 

(AA), spores will efflux H
+
 and Ca

2+
 chelated to dipicoclinic acid (DPA), hydrate the core, and 

degrade and shed the cortex, spore coat, and exosporium.  Concurrently, nisin will hydrogen 

bond to lipid II inserted into the membrane forming pores preventing membrane potential  
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Figure 8.1 (continued) 

establishment and allowing the efflux of small molecules without inducing lysis.  Nisin renders the 

spore metabolically inactive and unable to synthesize macromolecules such as RNA and protein.  

The nisin-lipid II interaction also suggest that nisin will inhibit transglycosylation as a second 

mode of action against spores.    
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Department of Microbiology Annual Conference Co-Chair October 13, 2007 
University of Illinois - Urbana/Champaign 
 

Effect of Nisin on Bacillus anthracis Germination and October 13, 2007  
Growth. 
Department of Microbiology Annual Conference - University of Illinois - 
Urbana/Champaign 
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Nisin Inhibition of Bacillus anthracis Growth. September 29, 2007 
Midwest Microbial Pathogenesis Conference - Northwestern University  
 
Characterization of the Inhibitory Effects of Nisin Against April 20, 2007  
Bacillus anthracis. 
New and Reemerging Infectious Disease Conference  
Department of Veterinary Medicine- University of Illinois - Urbana/Champaign 
 
Characterization of the Inhibitory Effects of Nisin Against October 15, 2006  
Bacillus anthracis. 
Department of Microbiology Annual Conference - University of Illinois -  
Urbana/Champaign 
 

Mentoring  
Isabel Neacato, Microbiology Graduate Student,   2010-2011 
Univeristy of Illinois - Urbana/Champaign 
Stephanie Czeschin, Molecular and Cellular Biology  2009-2011  
Undergraduate, University of Illinois - Urbana/Champaign 
Katie Whalen, Biochemistry Graduate Student,  2009 
Univeristy of Illinois - Urbana/Champaign 
Christian Dewan, Molecular and Cellular Biology Undergraduate,  2008-2010 
University of Illinois - Urbana/Champaign 
Paul Dilfer, Molecular and Cellular Biology Undergraduate,  2008-2009 
University of Illinois - Urbana/Champaign 
Mychal Kelly, Molecular and Cellular Biology Undergraduate,  2008 
University of Illinois - Urbana/Champaign 
Lindsey Johnstone, Chemical Biology Graduate Student,  2007 
University of Illinois - Urbana/Champaign 
Brett Chrabot, Molecular and Cellular Biology Undergraduate,  2007-2008 
University of Illinois - Urbana/Champaign 
 
Skills   
Boiling Point    Recrystallization  Filtration   
Aseptic Technique  Distillation    Gas Chromatography  
Melting Point   Gel-Electrophoresis  PCR 
SubcellularFractionation  Gram Staining   Column Chromatography 
Bacterial Plating  Titration   Flow Cytometry  
HPLC     Molecular Biology   Mass Spectrometry 
Radioactivity   Protein Purification   Cell Culture    
BSL-2 Organisms  Western Blotting  Protein Modification 
ELISA    FPLC    ITC-Titrations  
LC-MS/MS   Circular Dichroism   Confocal Microscopy 
Epi-fluorescence Microscopy      
Transmission Election Microscopy    
Scanning Electron Microscopy 
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Relevant 
Coursework    
General Chemistry   General Biology    Organic Chemistry & Lab 
Physics   Human Anatomy   Cell Biology & Lab 
Human Physiology   Nutrition     Genetics 
Microbiology   Environmental Toxicology Biometry 
Microbial Genetics  Molecular Microbiology Bacterial Pathogenesis 
Physical Biochemistry  Enzyme Mechanisms and Reactions 
Advanced Biochemistry Advanced Molecular Biology 
Natural Science Labs  
 
Specialized 
Coursework  
NCBI Mini Course: Identification of Disease Genes,   2007  
University of Illinois 
NCBI Mini Course: Making Sense of DNA and    2007  
Protein Sequences, University of Illinois 
NCBI Mini Course: Blast Quick Start,     2007  
University of Illinois 
NCBI Mini Course: Structural Analysis Quick Start,   2007  
University of Illinois 
 
Computers  
Microsoft Word, Microsoft Excel, Microsoft PowerPoint, Microsoft Access, 
Internet, All Windows and OSX (Macintosh) Based Machines, ChemDraw, 
Summit (Flow Cytometry), FCS Express (Flow Cytometry), Graphpad Prism, 
KaleidaGraph, and Adobe Illustrator. 
 

 


