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Abstract. This paper addresses the problem of scheduling parallel real-
time tasks of Directed Acyclic Graph (DAG) model on multiprocessor
systems. We propose a new scheduling method based on a subtask-level,
which means that the schedulability decisions are taken based on the
local temporal parameters of subtasks. This method requires modify-
ing the subtasks to add more parameters which are necessary for the
analysis, such as local offsets, deadlines and release jitters. Then we pro-
vide interference and workload analyses of DAG tasks, and we provide a
schedulability test for any work conserving scheduling algorithm.

1 Introduction

Recently, the performance of systems has been increased using multiprocessors
instead of uniprocessors to overcome processor physical limitations and to pro-
duce faster and smaller processors. The use of parallelism in software makes
them compatible with multiprocessor hardware, because the calculations of par-
allel applications are performed on multiple processors simultaneously.
In real-time systems, scheduling parallel real-time tasks on multiprocessor sys-
tems is a challenging problem, and the extension of uniprocessor schedulability
conditions to parallel multiprocessor systems is not trivial. The need of syn-
chronization between parallel tasks and processors makes the scheduling process
more complicated.

In this paper, we are interested in scheduling Directed Acyclic Graph (DAG)
tasks on multiprocessor systems. The contribution is to provide schedulability
conditions for DAG tasks that take into account subtasks’ parameters instead of
DAG-level parameters (a solution commonly used in previous researches found
in literature).

The remainder of this paper is organized as follows. In Section 2, we present
a state-of-the-art of methods relative to real-time parallel task scheduling on
multiprocessor systems especially for the DAG model. The considered model
and the used terminology are described in Section 3. In Section 4, we explain the
subtask-level scheduling process, and we define additional parameters to subtasks
in order to be scheduled individually using any work conserving algorithm. A
workload analysis is given in Section 5. This workload analysis is used to derive



a schedulability test for any work conserving scheduling algorithms. Finally, we
conclude this study and show future work in Section 6.

2 Related work

Many hard real-time scheduling algorithms and schedulability analyses on homo-
geneous multiprocessor systems have been proposed in the literature [1]. They
mostly focus on the traditional sequential independent real-time task model.

Regarding parallel tasks, there are different models and each has its own
advantages and limitations. First there is the Fork-join model, in which a parallel
task is an alternating sequence of parallel and sequential segments, a stretching
algorithm to execute parallel segments as sequential as possible was proposed in
[2].

A more general model of parallel tasks, called the segment model, has been
studied in the literature. The multiprocessor scheduling of periodic tasksets with
implicit deadlines with this model has been addressed in [3]. This model represent
a task as a sequence of segments, each segment consists of a number of identical
threads.

The analysis has been extended to the DAG model and the same results can
be applied. Another scheduling approach based on the response time analysis
for the multi-threaded segment model has been provided in [4] for soft real-time
multi-core systems.

The DAG model has been studied in [5] in the uniprocessor case. The au-
thors considered a hybrid task set of periodic independent tasks and dependent
sporadic graph tasks that execute only once. A graph task in this model consists
of a set of tasks with precedence constraints and each task has a release time
and deadline. They proposed an algorithm based on a modification of task pa-
rameters in order to remove the dependencies between the tasks in the analysis.
We use a similar technique in Section 4 to modify subtasks with few differences
due to the characteristics of the model.

A capacity augmentation bound of 4− 2
m

and a resource augmentation bound
of 2− 1

m
have been proposed recently for GEDF scheduling of periodic implicit-

deadline DAG tasksets in [6], where m is the number of processors in the system.
Also, Bonifaci et al. [7] studied the schedulability of a DAG set on multiprocessor
systems. They proved that GEDF has a speedup bound of 2−1/m, and Deadline
monotonic a speedup bound equal to 3−1/m. It is worth noticing that the above
described scheduling methods do not consider the internal structure of DAGs in
the analysis. And the parallel DAG tasks are either transformed into a collection
of independent sequential tasks or they are scheduled directly while considering
the global parameters of the DAGs, such as their total worst-case execution time
and the critical path length.

More recently, we proposed in [8] a schedulability test of periodic implicit-
deadline DAG tasks when GEDF is used. The schedulability decisions are based
on a DAG-level (the global deadline of the DAGs), while the workload analysis of
the test considered the internal structure of DAGs. We proved by experimental



results that this method reduces analysis pessimism and enhances scheduling
performance for DAGs. This paper is an extension of this work, in which we
aim at enhancing the scheduling analysis by proposing a DAG scheduling on a
subtask-level. To our best knowledge, no similar research exists using the method
to address the problem of scheduling parallel DAG tasks.

3 System model

In this paper, we consider a taskset τ of n real-time Directed Acyclic Graph
(DAG) tasks scheduled on m identical processors. Each DAG task τi is a spo-
radic constrained-deadline graph composed of ni subtasks under precedence con-
straints.

A DAG task τi is characterized by (ni, {1  j  ni|τi,j}, Gi, Di, Ti), where
ni is the number of its subtasks, the second parameter is the set of subtasks, Gi

is the set of directed relations between the subtasks, Di is the relative deadline
of τi and Ti is the minimum inter-arrival time between the successive jobs.

Let τi,j denote the jth subtask of the set of subtasks forming DAG task
τi, where 1  j  ni. Each subtask τi,j is a single-threaded task that has a
single timing parameter which is its worst case execution time (WCET) Ci,j .
The subtasks of a DAG inherit the period and deadline of their DAG.

Let gi,ji,k 2 Gi represent a directed link from subtask τi,j to τi,k. A direct link
between subtask τi,j and τi,k means that subtask τi,k cannot start its execution
unless subtask τi,j completes its own. In this case, subtask τi,j is called a parent

subtask of τi,k where τi,j 2 parents(τi,k) 2 pred(τi,k), where pred(τi,k) is the
set of all predecessors of subtask τi,k from the source of the DAG which have
to execute indirectly before τi,k (such as parents of τi,k’s parents). Likewise,
subtask τi,k 2 children(τi,j) is called a child subtask of τi,j , and the set of all
successors of τi,k is denoted by succ(τi,k). Subtask τi,j may have zero or more
parent/children subtasks. A source subtask has no parent subtasks and a sink
subtask is the one without any successors.

Let Ci denote the total WCET of DAG task τi, where Ci =
Pni

k=1 Ci,k. Let
Li denote the length of the critical path of DAG task τi, which is defined as the
longest execution path in τi when it executes on a platform of infinite number
of processors.

We assume that each DAG task τi generates an infinite sequence of jobs. Let
Jk
i be the kth job of DAG task τi which is characterized by (ri, di), where ri

is the release time of the job, and di is its absolute deadline. Each DAG job
Jk
i consists of a collection of subtask jobs each is denoted by Jk

i,j , j 2 1 . . . ni.
In the remainder of this paper, the numeration of jobs is removed when it is
unnecessary for the clarity of the discussion.

Figure 1(a) shows an example of a DAG task τ1 which consists of 6 subtasks.
Subtask τ1,1 is the source of the DAG and τ1,6 is its sink. The lines in the figure
represent the directed precedence constraints between the subtasks. The critical
path of τ1 is {τ1,1, τ1,2, τ1,6} and its length is Li = 6. For subtask τ1,5, its parent
subtask is τ1,3 while τ1,1 is one of its predecessor.



For any DAG taskset, there are two necessary basic conditions, if at least
one of them is false, the taskset is not feasible:

X

τi2τ

Ci

Ti

 m

8{τi 2 τ} : Li  Di

In the following sections, we provide a schedulability analysis for DAG tasks
using any global work conserving scheduling algorithm. A global algorithm al-
lows job migration and preemptions between processors (migration costs and
preemption costs are not taken into account in this work), while a work conserv-
ing algorithm does not authorize delaying the execution of an active job if there
is an idle processor in the system.
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(a) A DAG task τ1 consists of 6
subtasks with parameters: D1 =
8, C1 = 10, L1 = 6.
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(b) Time diagram of each sub-
task of DAG task τ1

Fig. 1. Example of DAG model.

4 DAG task Scheduling

When scheduling DAG sets on multiprocessor systems, the interference on each
DAG task has the following two sources:

– an external interference from jobs of higher priority DAG tasks, in which
some or all of the interfering subtasks can contribute to the interference,

– an internal interference from the subtasks of the same DAG on each other.

For parallel DAG tasks, a DAG-level scheduling algorithm means that the
scheduling decisions are based on global parameters of the DAG tasks. According
to this scheduling, the priorities are assigned to DAG tasks which are applied
then to their respective subtasks. The DAG-level schedulability analysis depends
on the global parameters of the DAGs, such as their deadline, period, total
WCET and the length of their critical path. Usually, the resulted schedulability
tests are pessimistic, and the internal structure of the DAGs is not considered
in the performed analysis.



Hence, the interference analysis of DAG-level scheduling is difficult to be cal-
culated and it is harder to identify the exact sources of interference. However,
if the scheduling algorithm uses extra knowledge about subtasks and their exe-
cution flow, then the interference analysis can be more accurate and precise. In
this case the scheduling process is said to be done at a subtask-level. According
to this, subtasks will be assigned priorities based on the scheduling algorithm.
However, the schedulability analysis requires extra temporal parameters for each
subtask other than its WCET provided by the DAG model.

Further in this paper, we will propose a technique to add local temporal
parameters to the subtasks based on their dependencies and the precedence con-
straints between them. As a result, the problem of scheduling parallel DAG tasks
on multiprocessor systems will be simplified to scheduling a set of independent
sequential subtasks on multiprocessor systems, which is widely studied in the
literature.

4.1 Subtask analysis and modification

In a previous work [8], we provided algorithms to add two temporal parameters,
in addition to the WCET parameter (provided by the model), to each subtask
in the DAG set. This was done to improve the interference analysis of DAG
scheduling in the case of GEDF scheduling. These two parameters are the local
offset and deadline of each subtask, and they were derived from the internal
structure of the DAG task and the execution flow of the subtasks in the best
case scenario. We consider that this scenario happens when a DAG set executes
on an infinite number of processors, all of its subtasks execute in parallel as soon
as possible without being delayed due to interference.

Definition 1. A local offset Oi,j of a subtask τi,j is defined as the earliest pos-

sible activation time of the subtask w.r.t. the release of its DAG task τi.

Definition 2. A local deadline Di,j of a subtask τi,j is the latest time for subtask

τi,j to complete its execution so as to leave enough time for its successors to

execute within their local deadlines.

For each subtask, the local offset and deadline are calculated using straight-
forward depth-first search algorithms (a detailed description can be found in
[8]). The local offset of a subtask takes into consideration the time needed for its
predecessor subtasks to execute in the best case scenario. Respectively, the local
deadline of a subtask leaves enough time for its successor subtasks to execute.

Observation 1 If a subtask τi,j 2 τi misses its local deadline Di,j, then its

DAG task τi will definitely miss its deadline Di.

Based on the definition of the local deadline, when a subtask misses its lo-
cal deadline, the time remaining until the global deadline of the DAG task is
not enough for the successors to execute in the best case. Therefore, an early
schedulability failure can be announced based on the subtask’s deadline instead
of waiting for the DAG’s deadline miss.



Figure 1 shows the mapping between the DAG task τ1 and its subtasks after
the modification. The timing diagram of each subtask τ1,j , where 1  j  6, of
the DAG is shown in Figure 1(b). The local offset O1,1 of the source subtask
τ1,1 equals to 0 because this subtask has no predecessors and it is released at
the release time of the DAG task τ1. Its local deadline D1,1 = 3 because its
successors need at least 5 time units to execute in the best case, which is the
longest path from τ1,1 (excluded) to a sink subtask ({τ1,2, τ1,6} in the example).
Then, both subtasks τ1,2 and τ1,3 are released after the completion of τ1,1. As
a result, O1,2 = O1,3 = 1. For the rest of the subtasks, their local offsets and
deadlines are shown in Figure 1(b).

The local offsets and deadlines of subtasks are calculated based on their
best-case activation scenario, in which all the subtasks execute as soon as they
are released with no interference or delays, These parameters helps in identify-
ing the longest execution window of each subtask. However, the activation of a
subtask job can be delayed due to the interference of higher priority subtasks.
Respectively, the latest possible activation of a subtask job occurs when all of
its predecessors execute as late as possible (just before their local deadlines).
According to this, the activation of a subtask job can happen at any time within
this interval, and this can be considered as the maximum release jitter of the
subtask.

Definition 3. A maximum release jitter bji,j of a subtask τi,j is defined as the

difference between the earliest and latest release time of the subtask with respect

to the activation of the DAG task.

bji,j = max
8τi,k2Parents(τi,j)

(Di,k − (Oi,j −Oi,k)) (1)

Based on the definition of the release jitter of a subtask, all of its jobs are
released within the jitter interval, which is shown in the following equation:

8Jj
i,k , j 2 N, τi,k 2 τi : rji,k 2 [Oi,k, Oi,k + bji,j ]

Figure 1(b) shows the maximum release jitter values for the subtasks in DAG
τ1 from Figure 1(a). It’s worth noticing that the source subtask τ1,1 has no jitter
since it has no predecessor subtasks.

From Equation 4.1 and the example in Figure 1(b), we can notice that the
calculation of the release jitter of the subtasks is pessimistic, and it considers
always that the predecessor subtasks execute as late as possible. According to
this, the critical subtasks of a DAG task (subtasks forming its critical path) will
have no slack time1 if they are activated at their maximum release jitter. In the
following sections, we provide an optimization to the release jitter of subtasks
based on the interference analysis.

Regarding the period of the subtasks (minimum inter-arrival time for spo-
radic tasks), each subtask inherits the period of its DAG task, where 8τi,j 2
τi, Ti,j = Ti.

1 Slack time is the time difference between the deadline of a task and its WCET.



As a result, the subtasks of a given DAG task are characterized now by a
local offset, a WCET, a local deadline and a release jitter. These parameters will
allow us to treat subtasks individually and independently in order to provide a
schedulability analysis at a subtask-level.

4.2 Interference Analysis

For the subtask-level scheduling process using any work conserving algorithm,
the execution of a subtask can be blocked by higher priority subtasks. The
interference on a subtask τk,h 2 τk is defined as follows:

Definition 4. Ik,h(a, b) is the length of all intervals where subtask τk,h is ready

to execute but blocked by higher priority subtasks in an interval [a, b).

Definition 5. Ii,jk,h(a, b) is the length of all intervals where subtask τk,h is ready

to execute but blocked by subtask τi,j which has higher priority in an interval

[a, b).

Since the subtasks are single-threaded sequential real-time tasks, the relation
between Ik,h(a, b) and Ii,jk,h(a, b) is denoted by the following equation:

Ik,h(a, b) =
1

m
⇤

X

8τi,j2τi2τ

Ii,jk,h(a, b) (2)

Due to the characteristics of the DAG tasks and the precedence constraints
between the subtasks, the interference on a subtask τk,h is divided into two
sources, external and internal interference. Let Iek,h(a, b) denote the interference
from higher priority subtasks of DAG tasks other than τk in the set, which is
defined as follows:

Iek,h(a, b) =
1

m
⇤

X

i 6=k,8τi,j2τi

Ii,jk,h(a, b) (3)

Where some or all of the subtasks of DAG task τi (i 6= k) can interfere with τk,h
based on their priorities.

Furthermore, subtasks of DAG τk can block the execution of τk,h which is
defined as the internal interference Iik,h(a, b). Since we consider constrained
deadline DAG tasks, for a given job of subtask τk,h, one job at most from each
subtask contributes to the interference. The internal interference depends on the
type of interfering subtasks which are divided into the following categories:

– a predecessor subtask τk,x 2 pred(τk,h) of subtask τk,h: this subtask will
delay the activation of τk,h, but once subtask τk,x completes its execution,
subtask τk,h will start its own and there will be no further effect of τk,x on
τk,h,

– a sibling subtask τk,x 2 sibling(τk,h) is the subtask that executes in paral-
lel with no dependencies with subtask τk,h. The sibling(τk,h) is the set of
subtasks that are not predecessors or successors of subtask τk,h,



– a successor subtask τk,x 2 succ(τk,h) has no interference with subtask τk,h,
because both subtasks cannot execute in parallel and subtask τk,x starts its

execution after τk,h completes its own. According to this, Ik,xk,h(a, b) = 0,
– subtask τk,h has no interference on itself since we consider constrained dead-

line DAG tasks, in which only one job of each DAG task is activated at any
time t. Hence, Ik,hk,h (a, b) = 0.

Based on the above definitions, the internal interference Iik,h(a, b) on subtask
τk,h in the interval [a, b) is defined as:

Iik,h(a, b) =
1

m
⇤

X

8τk,i 62succ(τk,h);i 6=h

Ik,ik,h(a, b) (4)

Let J⇤
k,h be the job of subtask τk,h which has maximum interference, and let

Ik,h(r
⇤
k,h, d

⇤
k,h) denote the worst-case interference for subtask job J⇤

k,h of τk,h in

the interval [r⇤k,h, d
⇤
k,h). For the sake of clarity, we will use bIk,h = Ik,h(r

⇤
k,h, d

⇤
k,h)

in this document.

Lemma 1. A taskset τ , of sporadic constrained deadline DAG tasks, is schedu-

lable on m identical processors, for any work conserving algorithm if:

8τk,h 2 τk 2 τ

bIk,h = bIek,h + bIik,h  (Dk,h − Ck,h) (5)

Proof. The proof of this lemma is straight-forward. The interference on a subtask
job has two main sources; internal and external. In order for any subtask to be
schedulable, its execution window (between its activation and deadline) should
be enough to execute its execution time plus the interference workload which is
identified above.

4.3 Interference from Predecessor subtasks

As described earlier, a predecessor subtask should complete its execution before
its successors are activated. Hence, a successor subtask can only be delayed by
its predecessors. In Section 4.1, we assigned a maximum release jitter for each
subtask in the DAG. This parameter represents the interval in which the subtask
job can be activated and it replaces the dependencies between the subtasks. If
we consider that all the predecessors of τk,h have executed as late as possible,

then the subtask job J⇤
k,h will be delayed to the end of this interval (bjk,h time

units after its offset), then the condition in Lemma 1 will be modified as follows:

Lemma 2. A taskset τ of DAG tasks is schedulable on m identical processors,

using any work conserving algorithm, if:

8τk,h 2 τk 2 τ

bIek,h + bIik,h  (Dk,h − Ck,h − bjk,h)  (Dk,h − Ck,h − jk,h) (6)



where

bIik,h =
1

m
⇤

X

8τk,i2sibling(τk,h)

Ik,ik,h(a, b)

Proof. As shown in Figure 2 and based on the definition of the release jitter
in Equation 4.1, if all predecessors respected their local deadlines, then subtask
τk,h will be activated no later than t = (rk+Ok,h+bjk,h). In the interval [t, dk,h),
predecessors will have no further interference, and only sibling subtasks of τk,h
will interfere with τk,h, which should be less than the available slack time (Dk,h−
Ck,h − jk,h).

!k,h

rk dkdk,h

Ok,h

jk,h

Dk,h

Dk,h-Ck,h-jk,h

Fig. 2. The interference window excluding interference from predecessor subtasks.

We have mentioned earlier that considering the maximum release jitter bjk,h
of subtask τk,h in the interference analysis is too pessimistic, because it considers
that the predecessors will execute as late as possible. As a result, the upper bound
of interference used in Lemma 2 will be always zero for any critical subtask τk,h
since their release jitter bjk,h = Dk,h − Ck,h.

As shown in Figure 3, it is possible to optimize the jitter of each subtask by
knowing that a parent subtask τk,i has a response time equal to (bIk,i+Ck,i) when
a work conserving algorithm is used. Its latest finish time f⇤

k,i can be defined as:

f⇤
k,i = Ck,i + bIk,i  Dk,i

The finish time fk,i of any job of a schedulable subtask τk,i should not be
greater than its local deadline Dk,i, or a deadline miss will occur.

By using the finish time of each parent subtask of τk,h, we can calculate an
optimized release jitter j0k,h defined by the following equation:

j0k,h = max
8τk,i2parents(τk,h)

(f⇤
k,i − (Ok,h −Ok,i))

= max
8τk,i2parents(τk,h)

(Ck,i + bIk,i − (Ok,h −Ok,i)) (7)

 bjk,h



!k,i

!k,h

rk dk

Ck,i

Ck,h

jk,h

j’k,h

Ik,h

dk,i

dk,h

fk,i

Fig. 3. The optimized release jitter of subtask τk,h from its sole parent τk,i.

Corollary 1. A taskset τ of DAG tasks is schedulable on m identical processors,

using any work conserving algorithm, if:

8τk,h 2 τk 2 τ

bIek,h + bIik,h  (Dk,h − Ck,h − j0k,h) (8)

where

bIik,h =
1

m
⇤

X

8τk,i2sibling(τk,h)

Ik,ik,h(a, b) (9)

The use of the optimized release jitter of a subtask instead of its maximum
release jitter improves the schedulability test by considering a more accurate
upper bound on interference.

5 Workload Analysis

It is difficult to identify the actual interference from external and sibling subtasks
required for the schedulability test in Corollary 1. However, we can use an upper
bound on the interference based on the workload computation of an interfering
subtask, knowing that the interference of a subtask on another one in a fixed
interval cannot exceed the workload of the interfering subtask during the same
interval. Let Wi,j(a, b) be the amount of work done by the jobs of subtask τi,j
in the interval [a, b). Then:

Ii,jk,h(a, b)  Wi,j(a, b)

Within the interference interval [a, b), let a carry-in job of an interfering subtask
be defined as the job that is released before the start of the interval and has a
deadline within the interval. While a body job is the job that is released within
the interval [a, b) and its deadline can be within or after the end of the interval.

5.1 Workload from sibling subtasks

A sibling subtask τk,i of τk,h is the subtask from the same DAG task τk that can
execute in parallel with τk,h. Moreover, subtask τk,i has no precedence relations
with τk,h and it cannot be among its predecessors or successors.



For a given subtask job, one job at most from each sibling subtask will
interfere with it, because the jobs of sibling subtasks belong to the same DAG
job, and the release of their DAG job is considered as their activation reference.
In other words, one job from each sibling subtask τk,h is released in the interval

[rk +Ok,h, rk +Ok,h+bjk,h]. For any work conserving algorithm, the interference

bIik,ik,h of a subtask τk,i on its sibling τk,h is calculated by identifying the maximum

interfering interval Lk,i
k,h of τk,i on τk,h. This interval is defined as the longest

interval in which subtasks τk,h and τk,i can execute in parallel. It is calculated
as follows:

Lk,i
k,h = min(D0

k,i, D
0
k,h)−max(Ok,i, Ok,h) (10)

For the sake of clarity, we considered D0
k,h to be the relative deadline of subtask

τk,h from the release of the DAG task, where D0
k,h = Ok,h +Dk,h.

Lemma 3. The maximum internal interference bIik,ik,h of subtask τk,i on a job of

its sibling subtask τk,h is

bIik,ik,h  min(Ck,i, L
k,i
k,h) =

cWik,i (11)

Proof. Based on the definition of the interference interval Lk,i
k,h, the maximum

possible workload of subtask τk,i in the interval happens when τk,i executes as
long as possible in this interval. From here comes the min in the Equation 11.

5.2 Workload Analysis for External subtasks

For any work conserving algorithm, Bertogna et al. identified, in their paper [9],
the worst-case activation scenario of jobs of an interfering task in a fixed interval
(a, b) which generates the maximum possible workload. They considered a task
model of independent sequential single-threaded tasks. As shown in Figure 4,
this scenario happens when the carry-in job of the interfering task starts its
execution at the beginning of the interference window and executes as late as
possible. The following body jobs then execute as soon as possible until the end
of the window. This scenario is proved in [9] to generate the maximum workload
in the interval.

!i

Fig. 4. The densest possible packing of jobs in interval pf length L for traditional task
using any work conserving algorithm.

We use this scenario to calculate the workload of each external subtask in
order to be used as an upper bound of its interference on a given subtask in the



system. Since each external subtask τi,j has no precedence constraints with τk,h
(where k 6= i), then this scenario can be applied to each subtask independently.
As shown in Figure 5, the subtasks of an interfering DAG task τi will interfere
on subtask job J⇤

k,h. Assume that subtask job J⇤
k,h has an activation window

[r⇤k,h, d
⇤
k,h) as shown in Figure 5(b), while Figure 5(a) shows the DAG task τi

and its internal structure. In order to calculate the worst-case workload of its
subtasks on jk,h, the worst-case activation scenario is applied to each subtask
τi,j . As shown in Figure 5(b), the first job of each subtask starts its execution as
late as possible at the beginning of the interference interval, and the following
job executes as soon as possible. Based on this scenario, the maximum workload
done in the interference interval is 10.

However, applying this scenario on each subtask of the same DAG task in-
dependently is pessimistic. Because in reality, these interfering subtasks have
precedence constraints that define their execution flow. For example, subtask
τi,1 in Figure 5(b) cannot execute in parallel with its children subtasks τi,2 and
τi,3. But still, the workload in this activation scenario can be used as an upper
bound for workload. Using the following example, we will show that it is not
trivial to find a worst-case activation scenario of jobs adapted to DAG tasks
that generates the maximum workload.

(a) Example of a
DAG task τi.

!i,1

!i,2

!i,3

r*k,h d*k,h

r1i,1 d1i,1 r2i,1 d2i,1

(b) The worst workload activation
scenario for subtask jobs of τi for any
work conserving algorithm.

!i1 (0,4)

!i2 (3,3)

!i3 (3,3)

(c) The worst workload ac-
tivation scenario for sub-
task jobs of τi for Global
EDF.

(d) First possible activa-
tion scenario of subtasks
of τi. Total workload is 3.

(e) Second possible acti-
vation scenario of sub-
tasks of τi. Total workload
is 4.

(f) Third possible activa-
tion scenario of subtasks
of τi. Total workload is 5.

Fig. 5. Workload analysis for external subtasks.



Example

Back to the DAG task τi from Figure 5(a). According to the precedence con-
straints between its subtasks, the activation scenario of its subtask jobs is shown
in Figures 5(d)-5(f). We consider an interference interval of length L = 3. Each
Figure in 5(d)-5(f) shows a possible position of the interference interval w.r.t.
to the interfering subtasks. For example, Figure 5(d) considers that subtask τi,1
starts at the beginning of the interfering interval, and its total workload is 3.
While Figure 5(e) considers that subtasks τi,2 and τi,3 start at the beginning
of the interval and the total workload is 4. However, the maximum workload
happens in Figure 5(f), in which the interference interval starts within subtask
τi,1 and it ends at the deadline of τi,2 and τi,3. In this case the total workload is
5.

Based on this example, we conclude that in order to calculate the maximum
workload of external subtasks of the same DAG, we have to analyze all the
possible positions of interference interval w.r.t. the activation of subtasks, and
this is done at each time instant in the interfering interval.

Lemma 4. The external interference bIei,jk,h of subtask τi,j on subtask τk,h in an

interval, whose length is equal to the absolute deadline Dk,h of τk,h, is bounded by:

bIei,jk,h  Ni,j(Dk,h)Ci,j+ (12)

min(Ci,j , Dk,h +Di,j − Ci,j −Ni,j(Dk,h)Ti,j)

where

Ni,j(Dk,h) = b
Dk,h +Di,j − Ci,j

Ti,j

c

Proof. The maximum interference workload from the external subtask τi,j on
subtask τk,h happens based on the execution scenario described in [9] and shown
in Figure 4. The calculations of workload is based on number of interfering
jobs which lie completely within the interfering window plus the last job in the
interval which may contribute partially in the interference. More details about
these equations can be found in [9].

A schedulability test for DAG tasks using any work conserving algorithm on
m identical processors is provided as follows:

Theorem 1. A DAG set τ is schedulable on m identical processors using any

work conserving algorithm if:

8τk,h 2 τk 2 τ
X

τk,i2sibling(k,h)

min(bIik,ik,h, Dk,h − Ck,h − j0k,h)+

X

τi,j ; i 6=k

min( bIei,jk,h, Dk,h − Ck,h − j0k,h)

 m(Dk,h − Ck,h − j0k,h)



Proof. Knowing that the interference of a subtask in a given interval can never
exceed the workload of this subtask in the same interval, we can transform the
interference schedulability bound on subtask τk,h described in Lemma 3 into a
workload bound of schedulability of the same subtask. However, the internal
and the external interference are based on their respective workload calculations
shown in Equations 11 and 12,

The schedulability test described in the above theorem can be used to opti-
mize the release jitter value of each subtask. Based on the test, the optimized
release jitter can be calculated for each successor of the subtask. If the calculated
release jitter is more than the actual release jitter (the maximum release jitter
by default), then the calculated value is discarded and the actual release jitter
will not be modified.

In order to analyze the performance of our schedulability test, we compare
it with another test found in literature. Bonifaci et al. in [7] provided a GEDF
schedulability test for DAG set on m identical processors. The test depends
on the global parameters of the DAG tasks without considering the internal
structure and the execution flow of the subtasks. Our schedulability test provided
in Theorem 1 is provided for any work conserving algorithm. For the sake of
simulation, we derived a special case of this test for GEDF scheduling algorithm
and the results are shown in Figure 6.
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Fig. 6. Simulation results.

We generated a large number of random DAG tasksets, and we applied both
GEDF-schedulability tests on the sets of utilization that range from 0 to 8. As
shown in Figure 6, our own scheduling test (denoted by OWN ) performs better
than the test from [7] (denoted by BMS ). For each system utilization, our test
schedules more DAG sets than the BMS test.

The simulation results provided in this section proves the importance of the
internal structure of DAG tasks in the schedulability analysis.



6 Conclusion

In this paper, we were interested in the scheduling of parallel real-time DAG tasks
on multiprocessor systems. Our motivation was to show that the scheduling of
real-time DAG tasks is affected by the internal structure of the DAG and the
execution flow of its subtasks. Hence, we applied the scheduling algorithms at
subtask-level instead of DAG-level. This means that the scheduling decisions are
based on local parameters of subtasks instead of the global parameters of DAGs.

We modified the subtasks by adding local parameters such as local offset,
deadline and release jitter for each subtask. Then we provided interference and
workload analyses for any work conserving scheduling algorithm.

As a future perspective, we aim at extending our work to analyze common
scheduling algorithms such as EDF and DM, so as to provide precise schedu-
lability test for each algorithm. Also, we aim at providing further analysis for
subtask-level schedulers including performance metrics such as speedup factor
and approximations ratio. These metrics can be used as an indication of the
performance of our proposed scheduling method.
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