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pp.31–34. <10.1016/j.crma.2014.10.013>. <hal-01023302>

HAL Id: hal-01023302

https://hal.archives-ouvertes.fr/hal-01023302

Submitted on 11 Jul 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
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Abstract

We extend the Hybrid High-Order method introduced by the authors for the Poisson problem to problems
with heterogeneous/anisotropic diffusion. The cornerstone is a local discrete gradient reconstruction from
element- and face-based polynomial degrees of freedom. Optimal error estimates are proved.

Résumé

Méthodes hybrides d’ordre élevé pour des problèmes à diffusion variable sur des maillages
généraux. Nous étendons la méthode hybride d’ordre élevé conçue par les auteurs pour le problème de
Poisson à des problèmes de diffusion hétérogène/anisotrope. La pierre angulaire est une reconstruction
locale du gradient discret à partir des degrés de liberté polynomiaux sur les éléments et les faces. On établit
des estimations d’erreur optimales.

1. Introduction

Let Ω ⊂ Rd, d ∈ {2, 3}, denote an open, bounded, polytopic domain. Let f ∈ L2(Ω) and, for a subset
X ⊂ Ω, denote by (·, ·)X and ‖·‖X the inner product and norm in L2(X), respectively. We focus on the
following variable-diffusion problem: Find u ∈ U0 := H1

0 (Ω) such that

(κ∇u,∇v)Ω = (f, v)Ω ∀v ∈ U0, (1)

where κ is a bounded, tensor-valued function in Ω, taking symmetric values with lowest eigenvalue uniformly
bounded from below away from zero. Owing to the Lax–Milgram Lemma, problem (1) is well-posed.

The approximation of diffusive problems on general polytopic meshes has received an increasing attention
lately. Several low-order methods have been developed; see, e.g., [1, 2] and references therein. Recently,
high-order methods have also become available; we mention the high-order Mimetic Finite Difference (MFD)
schemes [3, 4], the Virtual Element Method [5], the Mixed High-Order method [6], and the Hybrid High-
Order (HHO) methods [7, 8]. For the latter, the degrees of freedom (DOFs) are scalar-valued polynomials
at mesh elements and faces up to some degree k ≥ 0 (as for the MFD schemes in [4]), and the construction
hinges on (i) a local discrete gradient reconstruction of order k and (ii) a least-squares local penalty that
weakly enforces the matching between element- and face-based DOFs while preserving the order of the
gradient reconstruction. This design leads to optimal energy- and L2-norm error estimates; cf. [7] for the
Poisson problem (κ being the identity tensor in (1)) and [8] for (quasi-incompressible) linear elasticity.

The purpose of the present work is to extend the HHO method of [7] to the variable-diffusion problem (1).
The key idea is to modify the gradient reconstruction so as to account for the diffusion tensor κ. Then,
adapting the ideas of [7], we prove stability of the discrete problem and derive optimal error estimates.
We make the reasonable assumption that there is a partition PΩ of Ω so that κ is piecewise Lipschitz. For
simplicity of exposition, we also assume that κ is a piecewise polynomial; otherwise, an additional quadrature
error has to be accounted for. In applications from the geosciences, κ can often be taken piecewise constant.
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2. Discrete setting and local gradient reconstruction

We consider admissible mesh sequences in the sense of [9, Sect. 1.4]. Each mesh Th in the sequence
is a finite collection {T} of nonempty, disjoint, open, polytopic elements such that Ω =

⋃
T∈Th T and

h = maxT∈Th hT (with hT the diameter of T ), and there is a matching simplicial submesh of Th with locally
equivalent mesh size and which is shape-regular in the usual sense. For all T ∈ Th, the faces of T are
collected in the set FT . In an admissible mesh sequence, card(FT ) is uniformly bounded, the usual discrete
and multiplicative trace inequalities hold on element faces, and the L2-orthogonal projector onto polynomial
spaces enjoys optimal approximation properties on each mesh element. Let a polynomial degree k ≥ 0 be
fixed. For all T ∈ Th, we define the local space of DOFs as UkT := Pkd(T ) ×

{
×F∈FT Pkd−1(F )

}
, where

Pkd(T ) (resp., Pkd−1(F )) is spanned by the restrictions to T (resp., F ) of d-variate (resp., (d−1)-variate)
polynomials of total degree ≤ k. In what follows, A . B denotes the inequality A ≤ CB with positive
constant C independent of the polynomial degree k, the meshsize h, and the diffusion tensor κ. We assume
that each mesh Th in the sequence is compatible with the partition PΩ associated with the diffusion tensor.
We denote by κ[T and κ]T the lowest and largest eigenvalue of κ in T , respectively, and we introduce the
local heterogeneity/anisotropy ratio ρT := κ]T/κ[T ≥ 1. In what follows, we explicitly track the dependency
of the bounds on the ratio ρT . To avoid the profileration of symbols, we assume that for all T ∈ Th, the
Lipschitz constant of κ in T , say LκT , satisfies LκT . κ]T .

For all T ∈ Th, we define the local gradient reconstruction operator Gk
T : UkT → ∇Pk+1

d (T ) such that,

for all v :=
(
vT , (vF )F∈FT

)
∈ UkT and all w ∈ Pk+1

d (T ),

(κGk
T v,∇w)T = (κ∇vT ,∇w)T +

∑
F∈FT

(vF − vT ,∇w·κ·nTF )F , (2)

which can be computed by solving a local (well-posed) Neumann problem in Pk+1
d (T ). We next introduce

the potential reconstruction operator pkT : UkT → Pk+1
d (T ) such that, for all v ∈ UkT , ∇pkT v := Gk

T v and∫
T
pkT v :=

∫
T
vT (pkT v is well-defined since Gk

T v ∈ ∇Pk+1
d (T )). Finally, we define the local interpolation

operator IkT : H1(T ) → UkT such that, for all v ∈ H1(T ), IkT v :=
(
πkT v, (π

k
F v)F∈FT

)
, where πkT and πkF are

the L2-orthogonal projectors onto Pkd(T ) and Pkd−1(F ), respectively.

Lemma 2.1 (Approximation properties for pkT I
k
T ). The following holds for all v ∈ Hk+2(T ) with α = 1/2 if

κ is piecewise constant and α = 1 in the general case:

‖v−pkT IkT v‖T +h
1/2
T ‖v−p

k
T I
k
T v‖∂T +hT ‖∇(v−pkT IkT v)‖T +h

3/2
T ‖∇(v−pkT IkT v)‖∂T . ραTh

k+2
T ‖v‖Hk+2(T ). (3)

Proof. Let v ∈ Hk+2(T ). A direct calculation using (2), the definitions of pkT and IkT , and integration by
parts shows that, for all w ∈ Pk+1

d (T ),

(κ∇(v − pkT IkT v),∇w)T = ((κ− κ̄T )∇(v − πkT v),∇w)T −
∑
F∈FT

(πkF v − πkT v,∇w·(κ− κ̄T )·nTF )F ,

where κ̄T denotes the mean-value of κ in T . Note that the right-hand side vanishes if κ is piecewise
constant. In the general case, owing to the assumptions on κ and using the approximation properties of the
L2-orthogonal projectors along with a discrete trace inequality for ‖κ1/2∇w‖F , we infer that

|(κ∇(v − pkT IkT v),∇w)T | . LκThTh
k
T ‖v‖Hk+1(T )‖∇w‖T . κ]Th

k+1
T ‖v‖Hk+1(T )‖∇w‖T . (4)

We now observe that

‖κ1/2∇(v − pkT IkT v)‖2T = (κ∇(v − pkT IkT v),∇(v − πk+1
T v))T + (κ∇(v − pkT IkT v),∇(πk+1

T v − pkT IkT v))T . (5)

Denote by T1 and T2 the addends on the right-hand side of (5). Using the Cauchy–Schwarz inequality

and the approximation properties of πk+1
T , we obtain |T1| . ‖κ1/2∇(v − pkT IkT v)‖T (κ]T )1/2hk+1

T ‖v‖Hk+2(T ).
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When κ is piecewise constant, T2 vanishes, so that using Young’s inequality yields ‖∇(v − pkT I
k
T v)‖T ≤

(κ[T )−1/2‖κ1/2∇(v−pkT IkT v)‖T . ρ
1/2
T hk+1

T ‖v‖Hk+2(T ). In the general case, using (4) with w = (πk+1
T v−pkT IkT v)

and since ‖∇(πk+1
T v − pkT IkT v)‖T = ‖∇πk+1

T (v − pkT IkT v)‖T . ‖∇(v − pkT IkT v)‖T owing to the H1-stability of

the projector πk+1
T , we infer that |T2| . ρ

1/2
T (κ]T )1/2hk+1

T ‖v‖Hk+1(T )‖κ
1/2∇(v− pkT IkT v)‖T , which leads to the

estimate on ‖∇(v − pkT IkT v)‖T in (3). The other terms in (3) are then bounded as in [7, Lemma 3].

Remark 1 (α = 0). It is also possible to take α = 0 whenever, for all T ∈ Th, the eigenvectors of κ|T are
constant and its eigenvalues satisfy, with obvious notation, |λ(x)− λ̄T | . hTλ(x) for all x ∈ T .

3. Discrete problem and stability

For all T ∈ Th, we introduce the local bilinear forms aT and sT on UkT × UkT such that

aT (u, v) := (κGk
T u,G

k
T v)T + sT (u, v), sT (u, v) :=

∑
F∈FT

κF
hF

(πkF (uF − P kT u), πkF (vF − P kT v))F , (6)

with κF := ‖nTF ·κ·nTF ‖L∞(F ) and the local potential reconstruction P kT : UkT → Pk+1
d (T ) such that

P kT v := vT + (pkT v − πkT pkT v). We define the global space of DOFs by patching interface values, so that
Ukh :=

{
×T∈ThPkd(T )

}
×
{
×F∈FhPkd−1(F )

}
, and, for all T ∈ Th, we denote by LT : Ukh → UkT the restriction

operator that maps the global DOFs in Ukh to the corresponding local DOFs in UkT . The discrete problem
consists in seeking uh ∈ Ukh,0 :=

{
vh =

(
(vT )T∈Th , (vF )F∈Fh

)
∈ Ukh | vF ≡ 0 ∀F ∈ Fb

h

}
such that

ah(uh, vh) :=
∑
T∈Th

aT (LT uh, LT vh) =
∑
T∈Th

(f, vT )T =: lh(vh) ∀vh ∈ Ukh,0. (7)

To analyze the stability of the discrete problem, we introduce the following seminorm on UkT :

‖v‖2κ,T := ‖κ1/2∇vT ‖2T +
∑
F∈FT

κF
hF
‖vF − vT ‖2F , (8)

and we set ‖vh‖2κ,h :=
∑
T∈Th ρ

−1
T ‖LT vh‖2κ,T for all vh ∈ Ukh. Observe that ‖·‖κ,h is a norm on Ukh,0.

Lemma 3.1 (Stability). The following inequalities hold for all v ∈ UkT :

ρ−1
T ‖v‖

2
κ,T . aT (v, v) . ρT ‖v‖2κ,T . (9)

Consequently, ‖vh‖2κ,h . ah(vh, vh) for all vh ∈ Ukh and problem (7) is well-posed.

Proof. We adapt the proof of [7, Lemma 4]. Concerning the face terms, we obtain∑
F∈FT

κF
hF
‖vF −vT ‖2F ≤ sT (v, v)+ρT ‖κ

1/2Gk
T v‖2T , sT (v, v) .

∑
F∈FT

κF
hF
‖vF −vT ‖2F +ρT ‖κ

1/2Gk
T v‖2T . (10)

To compare ‖κ1/2Gk
T v‖T and ‖κ1/2∇vT ‖T , we observe that, for all w ∈ Pk+1

d (T ) and all F ∈ FT ,

‖∇w·κ·nTF ‖2F ≤ (|nTF ·κ·nTF |, |∇w·κ·∇w|)F .
κF
hF
‖κ1/2∇w‖2T , (11)

where we have used the Cauchy–Schwarz inequality for κ, the definition of κF , and a discrete trace in-
equality. Taking w = vT in the definition (2) of Gk

T v yields ‖κ1/2∇vT ‖2T = (κGk
T v,∇vT )T −

∑
F∈FT (vF −

vT ,∇vT ·κ·nTF )F . Hence, using (11), a discrete trace inequality for ‖κ1/2∇vT ‖F , the first bound in (10),
ρT ≥ 1, and Young’s inequality yields

‖κ1/2∇vT ‖2T . ‖κ1/2Gk
T v‖2T +

∑
F∈FT

κF
hF
‖vF − vT ‖2F . ρT ‖κ

1/2Gk
T v‖2T + sT (v, v).

Moreover, since ‖κ1/2Gk
T v‖T = supw∈Pk+1

d (T )
(κGkT v,∇w)T

‖κ1/2∇w‖T
and proceeding similarly leads to ‖κ1/2Gk

T v‖T .

‖v‖κ,T . Combining the above bounds yields (9), and the rest of the proof is straightforward.
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4. Error analysis

Theorem 4.1 (Energy-error estimate). Let u ∈ U0 solve (1) and let uh ∈ Ukh,0 solve (7). Assume that

u|T ∈ Hk+2(T ) for all T ∈ Th. Then, letting ûh :=
(
(πkTu)T∈Th , (π

k
Fu)F∈Fh

)
∈ Ukh,0 and, recalling the

definition of α from Lemma 2.1, the following holds with consistency error Eh(vh) := ah(ûh, vh)− lh(vh):

‖ûh − uh‖κ,h . sup
vh∈Ukh,0, ‖vh‖κ,h=1

Eh(vh) .

{∑
T∈Th

κ]T ρ
1+2α
T h

2(k+1)
T ‖u‖2Hk+2(T )

}1/2

. (12)

Proof. We adapt the proof of [7, Theorem 8]. The first inequality in (12) is an immediate consequence of
Lemma 3.1. Proceeding as in [7] with ǔT := pkTLT ûh = pkT I

k
T (u|T ) and vh ∈ Ukh,0 with ‖vh‖κ,h = 1 leads to

Eh(vh) =
∑
T∈Th

(κ∇(ǔT − u),∇vT )T +
∑
T∈Th

∑
F∈FT

(vF − vT , (∇ǔT −∇u)·κ·nTF )F +
∑
T∈Th

sT (LT ûh, LT vh).

Denote by T1,T2,T3 the three terms on the right-hand side. Combining the results of Lemmas 2.1

and 3.1, we infer that |T1 + T2|2 .
∑
T∈Th κ

]
T ρ

1+2α
T h

2(k+1)
T ‖u‖2Hk+2(T ). Moreover, since sT (LT ûh, LT vh) ≤

sT (LT ûh, LT ûh)1/2sT (LT vh, LT vh)1/2, proceeding as in [7] for the first factor, and using the second bound

in (10) for the second factor yields |T3|2 .
∑
T∈Th κ

]
T ρ

1+2α
T h

2(k+1)
T ‖u‖2Hk+2(T ).

Finally, adapting the proof of [7, Theorem 10] leads to the following L2-norm error estimate.

Theorem 4.2 (L2-error estimate). Assume elliptic regularity for problem (1) in the form ‖z‖H2(Ω) . ‖g‖Ω
for all g ∈ L2(Ω) and z ∈ U0 solving (1) with data g. Assume f ∈ Hk+δ(Ω) with δ = 0 for k ≥ 1 and
δ = 1 for k = 0. Then, using the same notation as in Theorem 4.1, and defining the piecewise polynomial
functions ûh and uh such that ûh|T = πkTu and uh|T = uT for all T ∈ Th, the following holds:

‖ûh − uh‖Ω . |(κ])1/2ρ
1/2+αh|`∞

{∑
T∈Th

κ]T ρ
1+2α
T h

2(k+1)
T ‖u‖2Hk+2(T )

}1/2

+ hk+2‖f‖Hk+δ(Ω),

where |(κ])1/2ρ1/2+αh|`∞ := maxT∈Th(κ]T )1/2ρ
1/2+α
T hT .
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