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COLORFUL LINEAR PROGRAMMING, NASH EQUILIBRIUM, AND

PIVOTS

FRÉDÉRIC MEUNIER AND PAULINE SARRABEZOLLES

Abstract. The colorful Carathéodory theorem, proved by Bárány in 1982, states that

given d+1 sets of points S1, . . . ,Sd+1 in Rd, such that each Si contains 0 in its convex hull,

there exists a set T ⊆
⋃

d+1

i=1
Si containing 0 in its convex hull and such that |T ∩Si| ≤ 1 for

all i ∈ {1, . . . , d + 1}. An intriguing question – still open – is whether such a set T , whose

existence is ensured, can be found in polynomial time. In 1997, Bárány and Onn defined

colorful linear programming as algorithmic questions related to the colorful Carathéodory

theorem. The question we just mentioned comes under colorful linear programming.

We present new complexity results for colorful linear programming problems and pro-

pose a variant of the “Bárány-Onn” algorithm, which is an algorithm computing a set T

whose existence is ensured by the colorful Carathéodory theorem. Our algorithm makes a

clear connection with the simplex algorithm. Some combinatorial versions of the colorful

Carathéodory theorem are also discussed from an algorithmic point of view. Finally, we

show that computing a Nash equilibrium in a bimatrix game is polynomially reducible to a

colorful linear programming problem. On our track, we found a new way to prove that a

complementarity problem belongs to the PPAD class with the help of Sperner’s lemma.

1. Introduction

1.1. Context. In 1982, Bárány proved a colorful generalization of the Carathéodory theo-
rem, whose statement is the following.

Theorem 1 (Colorful Carathéodory theorem [2]). Given d+1 sets of points S1, . . . ,Sd+1 in

Rd, such that each Si contains 0 in its convex hull, there exists a set T ⊆
⋃d+1

i=1 Si containing

0 in its convex hull and such that |T ∩ Si| ≤ 1 for all i ∈ {1, . . . , d+ 1}.

A natural question raised by this theorem is whether such a colorful set T can be computed
in polynomial time. The case with S1 = · · · = Sd+1, corresponding to the usual Carathéodory
theorem, is known to be solvable in polynomial time, via linear programming. However, the
complexity of the colorful version remains an open question.

In 1997, Bárány and Onn defined algorithmic and complexity problems related to the
colorful Carathéodory theorem [4], giving birth to colorful linear programming. In their
paper, the complexity question raised by the colorful Carathéodory theorem is referred as an
“outstanding problem on the borderline of tractable and intractable problems”. In addition
to provide a theoretical challenge, the colorful Carathéodory theorem has several applications
in discrete geometry (e.g. Tverberg partition, “first selection lemma”, see [18]). Any efficient
algorithm computing such a colorful set T would benefit these applications. We formally
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2 FRÉDÉRIC MEUNIER AND PAULINE SARRABEZOLLES

define the problem of finding a set T as in the colorful Carathéodory theorem. It is a search

problem, and more specifically belongs to the TFNP class. A search problem is like a decision
problem but a certificate is sought in addition to the ‘yes’ or ‘no’ answer. The class of search
problems whose decision counterpart has always a ‘yes’ answer is called TFNP, where TFNP
stands for “Total Function Non-deterministic Polynomial”.

A set of points is said to be positively dependent if it is nonempty and contains 0 in its
convex hull. Given a configuration of k sets of points S1, . . . ,Sk in Rd, a set T ⊆

⋃k

i=1 Si

such that |T ∩ Si| ≤ 1 for i = 1, . . . , k is said to be colorful.

Colorful Linear Programming (TFNP version)
Input. A configuration of d+ 1 positively dependent sets of points S1, . . . ,Sd+1 in Qd.
Task. Find a positively dependent colorful set.

As we have already mentioned, the complexity status is still open. A more general problem,
still in TFNP, has been recently proved to be PLS-complete by Mulzer and Stein [22]. The
PLS class, where PLS stands for “Polynomial Local Search”, is a subclass of the TFNP class
and contains the problems for which local optimality can be verified in polynomial time [12].
The original proof of the colorful Carathéodory theorem by Bárány naturally provides an

algorithm computing a solution to this problem. This algorithm, known as the Bárány-Onn
algorithm, was analyzed in [4]. It is a pivot algorithm roughly relying on computing the
closest facet of a simplex to 0. Although not polynomial, this algorithm is quite efficient, as
proved by Deza et al. through an extensive computational study [8].

In addition to the TFNP version of Colorful Linear Programming, Bárány and
Onn formulated the following problem, which is in a sense more general.

Colorful Linear Programming
Input. A configuration of k sets of points S1, . . . ,Sk in Qd.
Task. Decide whether there exists a positively dependent colorful set for this configuration
of points. If there is one, find it.

Bárány and Onn showed that the case of Colorful Linear Programming with k = d
is NP-complete even if each Si is of size 2, proving that the general case is NP-complete as
well. It contrasts with the TFNP version of Colorful Linear Programming. In this
version, when each Si is of size 2, we clearly have a polynomial special case: select one point
in each Si, find the linear dependency, and change for the other point in Si for those having
a negative coefficient.

A slightly more general version of Colorful Linear Programming can be defined
with conic hulls instead of convex hulls.

Colorful Linear Programming (conic version)
Input. A configuration of k sets of points S1, . . . ,Sk in Qd and an additional point p in Qd.
Task. Decide whether there exists a colorful set T such that p ∈ cone(T ).
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By an easy geometric argument, this problem coincides with Colorful Linear Pro-
gramming when conv({p} ∪

⋃k

i=1 Si) does not contain 0. Note that as usual for this kind
of problems, there is a shift in the dimension when going to one version to the other.

1.2. Main contributions. We show thatColorful Linear Programming is NP-complete
even if k − d is fixed and each Si is of size 2. The complexity status of the case k − d = 1
was a question of Bárány and Onn (Section 5 of [4]). As a by-product of this complexity
result, we get a new proof of the coNP-completeness of deciding whether a polytope is the
projection of another polytope, both being described by systems of linear inequalities. These
results are stated and proved in Section 2.

Section 3 is devoted to a link we found between Colorful Linear Programming
and Bimatrix, which is the problem of finding a Nash equilibrium in a bimatrix game.
We exhibit a polynomial reduction of Bimatrix to Colorful Linear Programming.
Bimatrix being PPAD-complete, it shows that any NP-complete problem is at least as
hard as any PPAD-complete problem. It has already been noted that P=NP would imply
P=PPAD, see [24]. We give here a concrete example of a reduction of a PPAD-complete
problem to an NP-complete problem. We do not know whether such an example was already
known. On our way we present a general method to prove that a complementarity problem
belongs to the PPAD class, based on Sperner’s lemma.

In Section 4, we give a new version of the Bárány-Onn algorithm, replacing the search of
a closest facet by a classical reduced cost consideration. We get in this way an algorithm
similar to the “Phase I” simplex method. Numerical performances of this approach are
provided.

We end the paper with a study of special cases and analogues of colorful linear program-
ming in combinatorics. In particular, two combinatorial and polynomial cases of the TFNP
version of Colorful Linear Programming are presented.

2. Complexity of colorful linear programming

2.1. Proof of NP-completeness. For a fixed q ∈ Z, we define CLP(q) to be the Color-
ful Linear Programming problem with the additional constraint that k − d = q.

Lemma 1. If CLP(q) is NP-complete, then CLP(q − 1) is also NP-complete.

Proof. Let S1, . . . ,Sk in Rd be an instance with k = d+q. Define d′ = d+1. Embedding this
instance in Rd′ by adding a d′th component equal to 0, we get an instance with k = d′+q−1,
every solution of which provides a solution for the case k = d+q, and conversely. This latter
case being NP-complete, we get the conclusion. � �

Lemma 2. If CLP(q) is NP-complete, then CLP(q + 1) is also NP-complete.

Proof. Let S1, . . . ,Sk in Rd be an instance with k = d+ q. Define d′ = d+ 1 and k′ = k+ 2.
Embed this instance in Rd′ by adding a d′th component equal to 0. Add two sets Sk+1 and
Sk+2 entirely located at coordinate (0, . . . , 0, 1). We have thus an instance with k′ = d′+q+1,
every solution of which provides a solution for the case k = d+q, and conversely. This latter
case being NP-complete, we get the conclusion. � �

We have the following theorem.
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Theorem 2. CLP(q) is NP-complete for any fixed q ∈ Z.

In particular, it is NP-complete for q = 1.

Proof of Theorem 2. CLP(0) is NP-complete according to Theorem 6.1 in [4]. Lemmas 1
and 2 allow to conclude. � �

Polynomially checkable sufficient conditions ensuring the existence of a positively de-
pendent colorful set exist: the condition of the colorful Carathéodory theorem is one of
them. More general polynomially checkable sufficient conditions when k = d + 1 are given
in [1, 10, 21]. However, the fact that CLP(1) is NP-complete implies that there are no poly-
nomially checkable conditions that are simultaneously sufficient and necessary for a positively
dependent colorful set to exist when k = d+ 1, unless P=NP.

Remark 1. The instances built in the proof of Lemma 2 are not in general position, since 0

and the Si’s with i ≤ k are all in a same hyperplane. By general position, we mean no d′+1
points in a same (d′ − 1)-dimensional affine subspace. We could wonder whether the case
k = d+ 1 remains NP-complete when the points are in general position. The answer is yes,
and we explain how to reduce the instance built in the proof of Lemma 2 to an instance in
general position.

First, the sets Sk+1 and Sk+2 can be slightly perturbed without changing the conclusion.
Second, we slightly move 0 into one of the halfspaces delimited by the hyperplane containing
the Si’s for i ≤ k. We choose the halfspace containing Sk+1 and Sk+2. This move must
be sufficiently small so that 0 does not traverse another hyperplane generated by d′ points
in

⋃k+2
i=1 Si. All coordinates being rational, Cramer’s formula allows to compute a length

of the displacement that ensures this condition. Third, we move each point of the
⋃k

i=1 Si

independently along a line originating from 0.

2.2. Projection and colorful linear programming. Algorithmic questions related to
projecting polytopes are usually identified as difficult questions. Tiwary [27] recently showed
that given two polytopes Q and Q′ described by systems of linear inequalities, deciding
whether Q is a projection of Q′ is coNP-complete. Note that it is in coNP since deciding
whether a partial solution of a system of linear inequalities can be extended to a full solu-
tion is a linear programming problem. His proof of coNP-completeness uses a reduction of
the problem of deciding whether a polytope described by its facets is contained in a poly-
tope described by its vertices, which is a coNP-complete problem [9]. Colorful Linear
Programming is another way to prove this result.

Take any instance S1, . . . ,Sd,p of the conic version of Colorful Linear Program-
ming, all points being in general position, with conv({p}∪

⋃d+1
i=1 Si) not containing 0. Because

of Theorem 2 and Remark 1, the problem of deciding whether there is colorful solution is
NP-complete. We show how to reduce this instance to an instance of a the aforementioned
polytope projection problem. We define Ai to be the matrix with the columns being the
vectors in Si, for i = 1, . . . , d. We define then the following polytopes:

P =

{

x = (x1, . . . ,xd) ∈ Rd2

+ :
d

∑

i=1

Aixi = p

}
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and
Pi = {x = (x1, . . . ,xd) ∈ P : xi = 0} .

They are polytopes because of the assumption conv({p} ∪
⋃d+1

i=1 Si) does not contain 0.
There exists a colorful solution to the Colorful Linear Programming problem we

consider if and only if P \ conv(
⋃d

i=1 Pi) is nonempty. Indeed, if there exists a colorful
solution to the Colorful Linear Programming problem, the latter set in nonempty:
a colorful solution provides a point (a basis in the linear programming terminology) in P
with each xi being nonzero, because of the genericity assumption. Conversely, if the set
is nonempty, there is a vertex of P not in conv(

⋃d

i=1 Pi), and such a vertex has exactly d
nonzero components, each corresponding to a column of a distinct Ai, and provides a solution
to the Colorful Linear Programming problem we consider.

Deciding whether P \ conv(
⋃d

i=1 Pi) is nonempty is therefore NP-hard. We prove below

that conv(
⋃d

i=1 Pi) is a projection of some higher dimensional polytope Q′. Hence, deciding

whether P \ conv(
⋃d

i=1 Pi) is nonempty is equivalent to deciding whether P is the projection
of Q′.

The polytope conv(
⋃d

i=1 Pi) is described by the solutions x = (x1, . . . ,xd) satisfying the
following system of linear equalities and inequalities:



































































d
∑

j=1

Aixij − yip = 0 ∀i

d
∑

i=1

xij = xj ∀j

d
∑

i=1

yi = 1

xii = 0 ∀i
yi ∈ R+ ∀i

xij ∈ Rd
+ ∀i, j.

Indeed, a point x = (x1, . . . ,xd) ∈ conv(
⋃d

i=1 Pi) is such that x =
∑d

i=1 yix
′
i, with

∑d

i=1 yi = 1 and x′
i = (x′

i1, . . . ,x
′
id) ∈ Pi for each i. Defining xij to be yix

′
ij shows that such

an x satisfies the system. Conversely, a solution of the system induces a point x that can
be written as

∑d

i=1 yix
′
i with x′

i ∈ Pi for all i. Indeed, define x′
ij =

1
yi
xij when yi 6= 0, and

x′
ij = 0 otherwise. In this latter case, all the xij’s are equal to 0 because of the assumption

0 /∈ conv({p} ∪
⋃d+1

i=1 Si).

3. Links with Nash equilibria

3.1. Another problem. The link between Nash equilibria and Colorful Linear Pro-
gramming relies on the study of another problem similar to Colorful Linear Pro-
gramming. This problem was proposed by Meunier and Deza [21] as a byproduct of an
existence theorem, the Octahedron lemma [3, 7], which by some features has a common
flavor with the colorful Carathéodory theorem. The Octahedron lemma states that if each
Si of the configuration is of size 2 and if the points are in general position, the number of
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positively dependent colorful sets is even. The problem we call Finding Another Col-
orful Simplex is the following.

Finding Another Colorful Simplex
Input. A configuration of d+1 pairs of points S1, . . . ,Sd+1 in Qd and a positively dependent
colorful set in this configuration.
Task. Find another positively dependent colorful set.

Another positively dependent colorful set exists for sure. Indeed, by a slight perturbation,
we can assume that all points are in general position. If there were only one positively
dependent colorful set, there would also be only one positively dependent colorful set in
the perturbed configuration, which violates the evenness property stated by the Octahedron
lemma. In their paper, Meunier and Deza question the complexity status of this problem. We
solve the question by proving that it is actually a generalization of the problem of computing
a Nash equilibrium in a bimatrix game.

3.2. Finding Another Colorful Simplex is in PPAD. In [21], it was noted that Find-
ing Another Colorful Simplex is in PPA. The class PPA, also defined by Papadim-
itriou in 1994 [23], contains the class PPAD. PPA contains the problems that can be polyno-
mially reduced to the problem of finding another degree 1 vertex in a graph whose vertices
all have degree at most 2 and in which a degree 1 vertex is already given. The graph is
supposed to be implicitly described by the neighborhood function, which, given a vertex,
returns its neighbors in polynomial time. The PPAD class is the subclass of PPA for which
the implicit graph is oriented and such that each vertex has an outdegree at most 1 and an
indegree at most 1. The problem becomes then: given an unbalanced vertex, that is a vertex
v such that deg+(v) + deg−(v) = 1, find another unbalanced vertex. See [23] for further
precisions.

We prove in this subsection that Finding Another Colorful Simplex is in PPAD.
We proceed by showing that the existence of the other positively dependent colorful set is
a consequence of Sperner’s lemma [26]. Our method for proving that Finding Another
Colorful Simplex belongs to PPAD is adaptable for other complementarity problems,
among them Bimatrix. We believe that our method is new. It avoids the use, as in [6, 13,
23, 29], of oriented primoids or oriented duoids defined by Todd [28].

One of the multiple versions of Sperner’s lemma is the following theorem, proposed by
Scarf [25], which involves a triangulation of a sphere, whose vertices are labeled. A simplex
whose vertices get pairwise distinct labels is said to be fully-labeled.

Theorem 3 (Sperner’s lemma). Let T be a triangulation of an n-dimensional sphere Sn

and let V be its vertex set. Assume that the elements of V are labeled according to a map

λ : V → E, where E is some finite set. If E is of cardinality n + 1, then there is an even

number of fully-labeled n-simplices.

We state now the main proposition of this subsection.

Proposition 1. Finding Another Colorful Simplex is in PPAD.
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Proof. By a perturbation argument, we can assume the points to be in general position,
see [19] for instance for a description of such a polynomial-time computable perturbation.
The proof consists then in proving the existence of another positively dependent colorful set
via a polynomial reduction to Sperner’s lemma.

We define a simplicial complex K with vertex set
⋃d+1

i=1 Si:

K = {σ ⊆

d+1
⋃

i=1

Si :
d+1
⋃

i=1

Si \ σ is positively dependent}.

Since any superset of a positively dependent set is a positively dependent set, K is a simplicial
complex. The points being in general position, the dimension of K is 2(d+1)−(d+1)−1 = d.
Actually, K is a triangulation of Sd. It can be seen using Gale transform and Corollary 5.6.3
(iii) of [18].

Now, for v a vertex of K, define λ(v) to be its color, i.e. the index i such that v ∈ Si. Any

fully-labeled simplex σ of K is such that
⋃d+1

i=1 Si \σ is a positively dependent colorful set and
conversely. There is thus an explicit one-to-one correspondence between the fully-labeled
simplices of K and the positively dependent colorful set. Applying Theorem 3 (Sperner’s
lemma) with T = K, n = d, and E = {1, . . . , d + 1} shows that there is an even number of
fully-labeled simplices in K, and hence, an even number of positively dependent colorful sets.
Since there is a proof of Sperner’s lemma using an oriented path-following argument [20, 25]
and since the triangulation here can easily be encoded by a Turing machine computing
the neighbors of any simplex in the triangulation in polynomial time, Finding Another
Colorful Simplex is in PPAD. � �

3.3. Reduction of Bimatrix. A bimatrix game involves two m × n matrices with real
coefficients A = (aij) and B = (bij). There are two players. The first player chooses a
probability distribution on {1, . . . ,m}, the second a probability distribution on {1, . . . , n}.
Once these probability distributions have been chosen, a pair (̄i, j̄) is drawn at random
according to these distributions. The first player gets a payoff equal to a(̄i,j̄) and the second
a payoff equal to b(̄i,j̄). A Nash equilibrium is a choice of distributions in such a way that if
a player changes his distribution, he will not get in average a strictly better payoff.
Let ∆k be the set of vectors x ∈ Rk

+ such that
∑k

i=1 xi = 1. Formally, a Nash equilibrium

is a pair (y∗, z∗) with y∗ ∈ ∆m and z∗ ∈ ∆n such that

(1) y′TAz∗ ≤ y∗TAz∗ for all y′ ∈ ∆m and y∗TBz′ ≤ y∗TBz∗ for all z′ ∈ ∆n.

It is well-known that if the matrices have rational coefficients, there is a Nash equilibrium
with rational coefficients, which are not too large with respect to the input. Bimatrix is
the following problem: given A and B with rational coefficients, find a Nash equilibrium.
Papadimitriou showed in 1994 that Bimatrix is in PPAD [23]. Later, Chen, Deng, and
Teng [6] proved its PPAD-completeness.

A combinatorial approach to these equilibria consists in studying the complementary so-
lutions of the two systems

(2) [A, Im]x = (1, . . . , 1)T and x ∈ Rn+m
+
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and

(3) [In, B
T ]x = (1, . . . , 1)T and x ∈ Rn+m

+ .

By complementary solutions, we mean a solution xA of (2) and a solution xB of (3) such
that xA · xB = 0. Indeed, complementary solutions with supp(xA) 6= {n+ 1, . . . , n+m} or
supp(xB) 6= {1, . . . , n} give a Nash equilibrium. This point of view goes back to Lemke and
Howson [16]. A complete proof within this framework can be found in Remark 6.1 of [20].
We derive the difficulty of Finding Another Colorful Simplex from the complexity

of Bimatrix.

Proposition 2. Finding Another Colorful Simplex is PPAD-complete.

Proof. We prove that the following version of Finding Another Colorful Simplex
with cones is PPAD-complete. This version is equivalent to Finding Another Colorful
Simplex.

Finding Another Colorful Cone
Input. A configuration of d+ 1 pairs of points S1, . . . ,Sd+1 in Qd+1, an additional point p

in Qd+1 such that conv({p} ∪
⋃d+1

i=1 Si) does not contain 0, and a colorful set T such that
p ∈ cone(T ).
Task. Find another colorful set T ′ such that p ∈ cone(T ′).

The proof uses a reduction of Bimatrix to Finding Another Colorful Cone. Con-
sider an instance of Bimatrix. First note that we can assume that all coefficients of A and
B are positive. Indeed, adding a same constant to all entries of the matrices does not change
the game. Build the (m+ n)× (2(m+ n)) matrix

M =

(

A Im 0 0

0 0 In BT

)

.

We denote by Mi the ith column of M . Note that the vector u = (1, . . . , 1) ∈ Rn+m is in
the conic hull of T = {Mn+1, . . . ,Mn+m,Mn+m+1, . . . ,M2n+m}. Indeed, the corresponding
submatrix is the identity matrix.

Let Si be the pair {Mi,Mm+n+i} for i = 1, . . . ,m + n. Since all coefficients of A and B
are positive, 0 is not in the convex hull of the columns of M and u. A polynomial time
algorithm solving Finding Another Colorful Simplex with T as input set would find
another colorful set T ′ such that u ∈ cone(T ′). The decomposition of u on the points in
T ′ gives a vector x such that Mx = u, xixm+n+i = 0 for i = 1, . . . ,m + n, and supp(x) 6=
{n + 1, . . . , 2n + m}. Such an x can be written (xA,xB) with xA,xB ∈ Rm+n

+ satisfying
xA ·xB = 0 and such that supp(xA) 6= {n+1, . . . , n+m} or supp(xB) 6= {1, . . . , n}. In other
words, it would find a Nash equilibrium. Bimatrix being PPAD-complete, Proposition 1
implies therefore that Finding Another Colorful Simplex is PPAD-complete. � �

This proof shows that Finding Another Colorful Simplex is more general than
computing complementary solutions of Equations (2) and (3). In [21], a pivoting algorithm
for solving Finding Another Colorful Simplex is proposed. It reduces to the classical
pivoting algorithm due to Lemke and Howson [16] used for computing such complementary
solutions.
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Remark 2 (Complexity of Sperner’s lemma). In the proof of Proposition 1, we reduce Find-
ing Another Colorful Simplex to the following Sperner-type problem; let T be a
triangulation of the d-dimensional sphere involving 2(d + 1) vertices and let λ : V (T) →
{1, . . . , d+ 1} be a labeling; assume given a fully-labeled simplex; find another fully-labeled
simplex. Proposition 2 shows that this problem is actually PPAD-complete, even if each
label appears exactly twice. Sperner-type problems have already been proved to be PPAD-
complete [5, 23], but these latter problems are in fixed dimension, with an exponential
number of vertices, and with a labeling given by an oracle, while the Sperner-type problem
we introduce has an explicit description of the vertices and of the labeling. Note that the
number of vertices is small. A computational problem with similar features has been pro-
posed in a paper by Király and Pap [14], but it involves a polyhedral version of Sperner’s
lemma distinct from the classical Sperner’s lemma. Remark 4 is Section 5 will exhibit some
polynomial cases of the Sperner-type problem we introduce here.

3.4. Reduction of Bimatrix to Colorful Linear Programming. Let A be an algo-
rithm solving Colorful Linear Programming. Note that we refer here to the decision
problem. In this subsection, we describe an algorithm solving Finding Another Color-
ful Simplex, and therefore Bimatrix because of the reduction described in Section 3.3,
by calling exactly d + 1 times A. We get this way a polynomial reduction of Bimatrix to
Colorful Linear Programming. We are probably not aware of the good references, but
we were not able to find another such problem in the literature giving a concrete illustration
of the fact that NP-complete problems are harder than PPAD problems.

We describe now the algorithm for Finding Another Colorful Simplex. The input
is given by the d + 1 pairs of points S1, . . . ,Sd+1 and the positively dependent colorful set
T . The algorithm selects successively a point in each of the Si’s. Each iteration consists
in testing with the help of A which point of Si is in a positively dependent colorful set
compatible with the already selected points and in selecting such a point, with the priority
given to Si \ T . A typical iteration is

Define S′
i := Si \ T ; apply A to S′

1, . . . ,S
′
i,Si+1, . . . ,Sd+1; if the answer is ‘no’,

define instead S′
i := Si ∩ T .

At the end, the algorithm outputs
⋃d+1

i=1 S
′
i.

Since we know that there is another positively dependent colorful set, the answer will be
‘yes’ for at least one i. The returned colorful simplex is therefore a positively dependent
colorful set distinct from T . This algorithm returns another positively dependent colorful
set after calling d+ 1 times A.

Remark 3. The same approach shows that the TFNP version of Colorful Linear Pro-
gramming is polynomially reducible to the general version of Colorful Linear Pro-
gramming.

4. Simplexification of Bárány-Onn algorithm

4.1. Algorithm. Recall that the colorful Carathéodory theorem states that when each of
the Si’s is positively dependent and k = d + 1, there exists a positively dependent colorful



10 FRÉDÉRIC MEUNIER AND PAULINE SARRABEZOLLES

set. The pivoting algorithm proposed by Bárány and Onn for finding a positively dependent
colorful set under these conditions goes roughly as follows. The input is the sets S1, . . . ,Sd+1

of points in Qd, each of cardinality d+ 1 and positively dependent. All points are moreover
assumed to be in general position.

Bárány-Onn algorithm

• Choose a first colorful set T1 of size d+ 1 and let i := 0.
• Repeat:

– Let i := i+ 1.
– If 0 ∈ conv(Ti), stop and output Ti.
– Otherwise, find Fi ⊆ Ti of cardinality d such that aff(Fi) separates Ti\Fi from 0;
choose in the half-space containing 0 a point t of the same color as the singleton
Ti \ Fi; define Ti+1 := Fi ∪ {t}.

Since each conv(Si) contains 0, there is always a point of each color in the half-space
delimited by aff(Fi) and containing 0. It explains that a point t as in the algorithm can
always be found as long as the algorithm has not terminated.

The technical step is the way of finding the subset Fi and requires a distance computation
or a projection [4], or the computation of the intersection of a fixed ray and conv(Ti) [21].
Deza et al. [8] proceed to an extensive computational study of algorithms solving this prob-
lem, with many computational experiments. In addition to some heuristics, “multi-update”
versions are also proposed, but they do not avoid this kind of operations.

We propose to modify the approach as follows. We add a dummy point v and define the
following optimization problem.

min z

s.t. Aλ+ zv̄ =









0
...
0
1









λ ≥ 0, z ≥ 0,

where v̄ = (v, 1) and where A is the (d+ 1)× (d+ 1)2 matrix whose columns are the points

of
⋃d+1

i=1 Si with an additional 1 on the (d + 1)th row. This optimization problem simply

looks for an expression of 0 as a convex combination of the points in {v} ∪
⋃d+1

i=1 Si with
a minimal weight on v. Especially, if 0 ∈ conv(

⋃

i Si), the optimal value is 0. The idea
consists in seeking an optimal basis, with the terminology of the linear programming, which
in addition is required to be colorful. The colorful Carathéodory theorem ensures that such
a basis exists.
Now, choose a first transversal F1, which is a colorful set of cardinality d. Choose the

dummy point v so that F1 ∪ {v} contains 0 in the interior of its convex hull. Note that
F1 ∪{v} is a feasible basis. The algorithm proceeds with simplex pivots, going from feasible
colorful basis to feasible colorful basis, until an optimal colorful basis is found. We start
with i := 0. We repeat then
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– Let i := i+ 1.
– Choose a point t of the missing color in Fi with negative reduced cost. The
reduced costs are computed according to the current basis Fi ∪ {v}.

– Proceed to a simplex pivot operation with t entering the current basis.
– If v leaves the basis, stop and output Fi ∪ {t} (it is an optimal colorful basis).
– Otherwise, define Fi+1 to be the new basis minus v.

This algorithm eventually finds a positively dependent colorful set because of the following
lemma. The remaining arguments are exactly the same as above: as long as a positively
dependent colorful set has not been found, there is a point of the missing color in the half-
space delimited by aff(Fi) and containing 0.

Lemma 3. The points in the half-space delimited by aff(Fi) and containing 0 are precisely

the points with a negative reduced cost.

Proof. Let Fi = {u1, . . . ,ud} and let t be any other point in
(

⋃d+1
j=1 Sj

)

\ Fi. Consider

x1, . . . , xd, r, s ∈ R such that

(4) rt+ sv +
d

∑

i=1

xiui = 0,

with r > 0 and r + s+
∑d

i=1 xi = 0. We have s 6= 0 by genericity assumption. The reduced
cost of t is exactly s/r. Therefore, proving the lemma amounts to prove that s is negative
exactly when t is in the half-space delimited by aff(Fi) and containing 0.

To see this, note that Equation (4) can be rewritten

(5) r(t− u1) + s(v − u1) +
d

∑

i=2

xi(ui − u1) = 0.

Now, take the unit vector n orthogonal to aff(Fi) and take the scalar product of Equation (5)
and n. It gives

rn · (t− u1) + sn · (v − u1) = 0

and the conclusion follows since v and 0 are in the same half-space delimited by aff(Fi). �

�

This approach is reminiscent of the “Phase I” simplex method, which computes a first
feasible basis by solving an auxiliary linear program whose optimal value is 0 on such a
basis.

4.2. Numerical results. We implemented our algorithm in C++. The tests are performed
on a PC Intel R© Core

TM

i3-2310M, with two 64-bit CPUs, clocked at 2.1 GHz, with 4 GB
RAM. The instances are provided by five random generators, implemented by Huang in
MATLAB. All the generators provide instances of (d+ 1)2 points in general position on the
unit sphere, partitioned into d+ 1 colors and such that the origin 0 is in the convex hull of
each color. Descriptions of the generators can be found in [11]. At each iteration, we choose
the entering point t that has the most negative reduced cost.
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Table 1 presents the computational results on 50 instances by dimension and by generators.
The columns “time” give the average execution time of the algorithm in milliseconds. The
columns “# pivots” give the average number of pivots. The entry corresponding to the
“tube” case in dimension 384 is empty, since we faced cycling behavior for some instances
(we felt that adding anti-cycling pivot rules was not imperative for our experiments).

Random Tube Highdensity Lowdensity Middensity
Dimension time # pivots time # pivots time # pivots time # pivots time # pivots

3 0.0135 1.94 0.0123 2.02 0.0342 1.62 0.0138 2.32 0.0170 1.70
6 0.0180 3.38 0.0195 3.42 0.0474 1.98 0.0213 6.50 0.0164 2.88

12 0.0406 6.56 0.0396 7.68 0.0609 1.84 0.0591 19.00 0.0371 4.88
24 0.1433 13.76 0.1574 19.66 0.0871 1.94 0.2958 51.06 0.1123 9.62

48 0.9612 31.86 1.1684 43.88 1.1006 1.94 2.7946 133.70 0.7725 19.44
96 8.5069 76.42 11.2441 108.10 3.1116 1.92 28.5813 349.44 6.1306 39.46

192 8.1017 186.62 250.1050 284.96 21.6753 1.86 263.1400 831.26 50.2998 93.88
384 1111.5020 476.50 441.1310 2.00 5987.8880 2032.6 846.9148 279.12

Table 1. Average solution time and number of pivots for the simplex-like algorithm

We compare these results with those of the Bárány-Onn algorithm presented in the paper
by Deza et al. [8] using the same generators. In general, our number of pivots is slightly
larger than what they get. Regarding the time per iteration, it is hard to draw a conclusion
since their implementation was done in MATLAB and since they used a different machine
(a server with eight 64-bit CPUs, clocked at 2.6 GHz, with 64 GB RAM). However, the time
per iteration of our algorithm is of the order of a thousand times smaller.

5. Special cases and analogues of colorful linear programming in
combinatorics

We start this section with two combinatorial corollaries of the colorful Carathéodory the-
orem. For each of them, we provide a direct proof. In both cases, we show that the colorful
set can be computed in polynomial time, and get thus special polynomial cases of the TFNP
version of Colorful Linear Programming.

Proposition 3. Let D = (V,A) be a directed graph with n vertices. Let C1, . . . , Cn be

pairwise arc-disjoint circuits. Then there exists a circuit C sharing at most one arc with

each of these Ci. Moreover, such a circuit can be computed in polynomial time.

The existence of the colorful circuit as a consequence of the colorful Carathéodory theorem
has already been noted and is attributed to Frank and Lovász [2].

Proof. We consider the bipartite graph with vertex classes V and {1, . . . , n}, and in which
edge vi exists if the vertex v belongs to Ci. If each X ⊆ V touches at least |X| distinct
colors, Hall’s marriage theorem ensures the existence of a perfect matching in the bipartite
graph. We can thus select for each vertex v ∈ V an arc a in δ−(v) belonging to a distinct
Ci. The subgraph induced by these arcs contains a circuit C as required.
Otherwise, there is a subset X ⊆ V with a neighborhood in the bipartite graph of car-

dinality at most |X| − 1. One can remove X from D and apply induction. Note that the
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existence of such an X can be decided in polynomial time by a classical maximum matching
algorithm, which provides also the set X itself if it exists. � �

The existence statement of the next proposition is a consequence of the conic version of
the colorful Carathéodory theorem. We provide a direct proof based on a greedy algorithm.

Proposition 4. Let D = (V,A) be a directed graph with n vertices. Let s and t be two

vertices, and P1, . . . , Pn−1 be pairwise arc-disjoint s-t paths. Then there exists an s-t path P
sharing at most one arc with each Pi. Moreover, such a path can be computed in polynomial

time.

Proof. We build progressively an arborescence rooted at s.
We start with X = {s}. At each step, X is the set of vertices reachable from s in the

partial arborescence. At step i, if X does not contain t, choose an arc a of Pi belonging to
δ+(X) and add to X the endpoint of a not yet in X. This arc exists since by direct induction
X is of cardinality i at step i and the s-t path Pi leaves X. � �

We end the paper by a brief survey of matroidal counterparts of colorful linear program-
ming. The next proposition is common knowledge in combinatorics. It is a matroidal version
of the colorful Carathéodory theorem (with an additional algorithmic result).

Proposition 5. Let M be a matroid of rank d. Assume that the elements of M are colored

in d colors. If there exists a monochromatic basis in each color, then there exists a colorful

basis and this latter can be found by a greedy algorithm.

A matroidal version of the Octahedron lemma stated in Section 3.1 also exists. It is due
to Magnanti [17].

Proposition 6. Let M be a matroid of rank d with no loops. Assume that the elements of

M are colored in d colors and that the number of elements colored in each color is at least

two. If there is a colorful basis, then there is another colorful basis and this latter can then

be found in polynomial time.

The proof by Magnanti is based on the matroid intersection algorithm due to Lawler [15].
The same algorithm shows that the matroidal version of Colorful Linear Program-
ming, namely deciding whether there is a colorful basis in a matroid whose elements are
colored, is polynomial.

Remark 4 (Back to Sperner’s lemma). Remark 2 of Section 3.3 shows that even a very
special case of Sperner’s lemma already leads to a PPAD-complete problem. The matroidal
counterpart of the Octahedron lemma implies that the problem becomes polynomial when
the triangulation is the boundary of the cross-polytope. The cross-polytope is the convex
hull of the vectors of the standard orthonormal basis and their negatives.

Proposition 7. Let T be the boundary of the (d + 1)-dimensional cross-polytope and let

λ : V (T) → {1, . . . , d + 1} be any labeling. Assume given a fully-labeled simplex. Another

fully-labeled simplex can be computed in polynomial time.

Proof. If a vertex has a label that appears only once on V (T), we remove it and its antipodal,
and work on the boundary of a cross-polytope with a dimension smaller by one. Solving this
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new problem leads to a solution for the original problem. We repeat this process until each
label appears exactly twice. Now, note that the simplices of the boundary of a cross-polytope
form the independents of a matroid (it is a partition matroid). Considering the labels as
colors, the conclusion follows then from Proposition 6. � �

With a similar proof (omitted), we also have the following proposition.

Proposition 8. Let T be the boundary of the (d + 1)-dimensional cross-polytope and let

λ : V (T) → {1, . . . , d + 1} be any labeling. Deciding whether there is a fully-labeled simplex

can be done in polynomial time. Moreover, if there is such a fully-labeled simplex, it can be

found in polynomial time as well.
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