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Large Complex Correlated Wishart Matrices:
Fluctuations and Asymptotic Independence at the Edges.

Walid Hachem *, Adrien Hardy ¥, Jamal Najim *

September 26, 2014

Abstract

We study the asymptotic behavior of eigenvalues of large complex correlated Wishart
matrices at the edges of the limiting spectrum. In this setting, the support of the limiting
eigenvalue distribution may have several connected components. Under mild conditions
for the population matrices, we show that for every generic positive edge of that support,
there exists an extremal eigenvalue which converges almost surely towards that edge and
fluctuates according to the Tracy-Widom law at the scale N2/3. Moreover, given several
generic positive edges, we establish that the associated extremal eigenvalue fluctuations
are asymptotically independent. Finally, when the leftmost edge is the origin, we prove
that the smallest eigenvalue fluctuates according to the hard-edge Tracy-Widom law at
the scale N2. As an application, an asymptotic study of the condition number of large
correlated Wishart matrices is provided.

AMS 2000 subject classification: Primary 15A52, Secondary 15A18, 60F15.
Key words and phrases: Large random matrices, Wishart matrix, Tracy-Widom fluctua-
tions, Asymptotic independence, Bessel kernel.
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1 Introduction

Correlated Wishart matrices and more generally empirical covariance matrices are ubiquitous
models in applied mathematics. After Marcenko and Pastur’s seminal contribution [46], a
systematic study of their large dimension properties has been undertaken (see for instance
[8, 54] and the many references therein), which found many applications in multivariate
statistics , e.g. [1], electrical engineering, e.g. [26], mathematical finance [44, 49], etc.

Now that many global properties of their spectrum are well-understood (cf. [3, 4, 5, 50,
59]), attention has shifted to local properties (cf. [9, 32, 20|, etc.) and their underlying
universal phenomenas (cf. [43] and references therein).

The main contribution of this article is to provide a local analysis of the spectrum of
large complex correlated Wishart matrices near the edges of the limiting support: It is well-
known that such random Hermitian matrices have a real spectrum whose limiting support
may display several disjoint intervals. Beside the behavior of the largest and smallest random
eigenvalues, we investigate here the fluctuations of the eigenvalues that converge to any end-
point of the limiting support. These eigenvalues are referred to as extremal eigenvalues,
for which we shall provide a precise definition later.

The model. Let Xy be an N x n matrix with independent and identically distributed
(i.i.d.) standard complex Gaussian entries N¢(0,1), and let X5 be a n x n deterministic
positive definite Hermitian matrix. The random matrix of interest here is the N x N matrix

1

My N

XySyXy (1.1)



It has N non-negative eigenvalues 0 < 1 < ... < xy, but which may be of different nature:
min(n, N) of them are non-negative random (i.e. non-deterministic) eigenvalues, whilst the
other N —min(n, N) eigenvalues are deterministic and equal to zero. A companion matrix of
interest is the n x n sample covariance matrix

~— 1
My = NE}V/QX*NXNz}V/Q, (1.2)

which models the empirical covariance of a sample of N independent observations
{SY’Xi, 1<k<N}

where [X7%]r stands for the k-th column of X7}, with population covariance matrix Xy.
Indeed, matrices M and M ~ share the same non-null eigenvalues with the associated mul-
tiplicities.

We shall consider the asymptotic regime where n = n(N), N — oo and

lim - =~ € (0, 00). (1.3)

This regime will be simply referred to as N — oo in the sequel.

The random matrix My can also be interpreted as a multiplicative deformation of the
Laguerre Unitary Ensemble (LUE) and is related to multiple Laguerre polynomials. A close
matrix model is the additive deformation of the Gaussian Unitary Ensemble (GUE), also
known as GUE with an external source; it involves multiple Hermite polynomials instead.
For further information, see [17] and references therein. Capitaine and Péché [25] recently
studied the fluctuations of extremal eigenvalues for this model.

We now briefly review the literature and present our contribution.

Global regime. Denote by uy the empirical distribution of the eigenvalues of My, also
called spectral measure in the sequel. Namely,

1 N
NN:NZ59%

i=1

where J, is the Dirac measure at point x; we shall also refer to py as the spectral distribution
of M. In the uncorrelated case where X = I,,, it is well-known [46] that ux almost surely
(a.s.) converges weakly towards the Marcenko-Pastur (MP) distribution of parameter -,

pyp(dz) = (1 =) + % (b—2)(z —a) 1 p(z)dz, (1.4)

where 2 = max(z, 0) and the endpoints of its support read a = (1—,/7)* and b = (1+,/7)%.
In the general case where Xy is not the identity, say with eigenvalues 0 < A\ < -+ < Ay,
a similar result holds true [59] under the additional assumption that the spectral measure

1 n
VN = nz:l(S)\j (15)
]:

of 3 converges weakly towards a limiting distribution v. In the latter case, the limit p of
only depends on the limiting parameters v and v but is no longer explicit; this dependence



p = p(7y,v) will be indicated when needed. However, its Cauchy-Stieltjes transform satisfies
an explicit fixed-point equation from which many properties of p can be inferred. For example,
it is known that if »({0}) = 0, then

p(dz) = (1 =) "o + p(x)d, (1.6)

where p(z) is a non-negative and continuous function on (0, +00). Depending on the properties
of v and v, the support of p(z)dxr may have several connected components, see Section 2
for more precise informations. Alternatively, one can describe p(y,v) in terms of the free
multiplicative convolution of MP distribution (1.4) with v, see [66]. From now we shall refer
to the support of p(x)dx as the bulk and to the endpoints of its connected components as
the edges. Also, a positive edge is called soft edge and the terminology hard edge is here
used when the edge is the origin.

Left and right edges. We say that an edge a is a left edge, resp. b is a right edge, if for
every ¢ > 0 small enough,

a+o b
/ p(x)dz >0, resp. / p(x)dz >0 .
a b—9
The leftmost edge can be a soft edge or an hard edge depending on the value of ~, as explained
in Section 2. Of course, any other left edge and any right edge are soft edges.

Local regime: Behavior at the rightmost edge. If ¥y is the identity, Geman [36]
proved the a.s. convergence of the largest eigenvalue Zmax of My to the right edge of MP’s
bulk b = (1+ \ﬁ)Q, for independent, not necessarily Gaussian, real entries of X . Johansson
[40] established Tracy-Widom fluctuations for zpyax at the scale N 2/3 for complex Gaussian
entries; Johnstone [41] established a similar result for real Gaussian entries. Subsequent
works [55, 56, 62, 67] then relaxed the Gaussian assumption, illustrating a phenomenon of
universality.

If ¥ is a finite-rank perturbation of the identity, the limiting eigenvalue distribution is
still given by MP distribution (1.4). Baik and Silverstein [10] studied the limiting behaviour
of Tmax for general entries. In the complex Gaussian case, Baik, Ben Arous and Péché
[9] thoroughly described the fluctuations of the largest eigenvalues at the right edge and
unveiled a remarkable phase transition phenomenon (referred to as BBP phase transition in
the sequel). They established, for v > 1, that the convergence and fluctuations of zpax are
actually highly sensitive on the way vy converges to ;. More precisely, depending on the
strength of the perturbation, they established that deformed Tracy-Widom fluctuations near
the right edge b at the scale N2/3 can arise, and that 2. may also converge outside of the
bulk with Gaussian-like! fluctuations at the scale N1/ 2. in the latter case Tmay is referred to
as an outlier. Thus, depending on the way vy converges towards its limit, the universality
phenomenon may break down. Finally, Bloemendal and Virag [20, 19] and Mo [48] extended
the results in [9] for real Gaussian entries, see also [18] for further extensions.

For general ¥ x’s and complex Gaussian matrices, El Karoui [32] (n/N < 1) and then
Onatski [53] (n/N > 1) followed the approach developed in [9] to establish Tracy-Widom

!By Gaussian-like, we mean that the largest eigenvalue of My, when correctly centered et rescaled and
when associated to a large perturbation of the identity 3 of finite multiplicity k, asymptotically converges
to the distribution of the largest eigenvalue of a fixed k x k& GUE.



fluctuations for xmax, under mild conditions concerning 3 x’s spectral measure vy provided
that the rightmost edge satisfies some regularity condition. The Gaussian assumption has
recently been relaxed by Bao et al. in [11].

Local regime: Behavior at the leftmost edge. If 3 is the identity and v > 1, Bai
and Yin [7] established the a.s. convergence of the smallest eigenvalue xy,i, of My to MP’s
left edge a = (1 — \/7)?, see also [6, Chapter 5]. The nature of the fluctuations of Zpin
dramatically changes whether v = 1 (hard edge) or v > 1 (soft edge). In the soft edge case,
the fluctuations remain of a Tracy-Widom nature, see Borodin and Forrester [23] and further
extensions by Feldheim and Sodin [34]. In the hard edge case, the fluctuations of zpyi, are
of order N?; if N = n then the limiting distribution follows the exponential law as shown
by Edelman [30] (cf. [63] for further extensions), while if n = N + a with « independent of
N, then the limiting distribution has been described by Forrester [35] with the help of Bessel
kernels; the so-called hard-edge Tracy-Widom law, see Section 3 for a precise definition.

To the best knowledge of the authors, no result for the fluctuations at the leftmost edge
in the general 3 case is available in the literature.

Local regime: Asymptotic independence. When Xy is the identity and v > 1 (and
also in the case of the GUE), Basor, Chen and Zhang [12] proved that @i, and Zmax, prop-
erly rescaled, are asymptotically independent as N — oco. Their approach heavily relies on
orthogonal polynomials techniques, which are not available for complex correlated Wishart
matrices. Using different techniques, the asymptotic independence for the GUE’s smallest
and largest eigenvalues was also obtained by Bianchi et al. [16] and Bornemann [21].

Again, it seems there is no result concerning the asymptotic independence for the extremal
eigenvalues, even for the smallest and largest eigenvalues, in the general 3 case.

Main results. Recall the asymptotic regime (1.3) of interest. We first state the main
assumption related to matrix My (cf. (1.1)) and then informally state the main results
of the paper; pointers to the precise definitions and statements are provided in the next
paragraph.

Assumption 1. The entries of X are i.i.d. standard complex Gaussian random variables.

Assumption 2. 1. The spectral measure vy of 3 weakly converges towards a limiting
probability distribution v as N — oc.

2. The eigenvalues 0 < A} < ... < A, of 3y stay in a compact subset of (0,+00) which is
independent of N, namely,

liminf A; > 0, lim sup A,, < 4o0. (1.7)
N—oo N—oo

In particular, v({0}) = 0.

Another important assumption is the fact that the considered edges need to be regular.
By this, we mean an edge which satisfies the regularity condition of Definition 2.5. This con-
dition essentially rules out pathological behaviors at edges, e.g. when the limiting eigenvalue
density does not vanish like a square root. It however enables the appearance of outliers.

Theorem 1. Let Assumptions 1 and 2 hold true. Then



(a) Extremal eigenvalues: Given a regular right (resp. left) edge, there are perfectly located
mazimal (resp. minimal) eigenvalues which converge a.s. towards this edge as N — oo;
these eigenvalues are called extremal eigenvalues.

(b) Tracy-Widom fluctuations: Given a regular right (resp. left) soft edge, the associated
extremal eigenvalue, properly rescaled, converge in law to the Tracy- Widom distribution
(resp. reversed Tracy-Widom distribution) at the scale N*/3.

(c) Asymptotic independence: Given a finite family of regular soft edges, the associated
extremal eigenvalues, properly rescaled, are asymptotically independent as N — oo.

(d) Hard-edge Tracy-Widom fluctuations: In the case where v = 1, the bulk displays a hard
edge at 0. If n = N + «a with a € Z independent of N, then the smallest eigenvalue,
properly rescaled, is shown to converge to the hard-edge Tracy-Widom distribution with
parameter o € N at the scale N2.

Close to our work is the recent paper by Capitaine and Péché [25] where the fluctuations
of the extremal eigenvalues for the additive deformation of the GUE are established, that is
the counterpart of Part (b) of Theorem 1, and the Gaussian-like fluctuations for outliers as
well. Besides the model, there are also other differences: While they also study the appear-
ance of the Pearcey process when two bulks merge together, we investigate the asymptotic
independence for the extremal eigenvalues and the appearance of the Bessel process at the
hard-edge. As the involved techniques are extremely model-dependent, the technical difficul-
ties are substantially different for the model under study. In particular, the assumptions on
the convergence of vy toward v here seem less restrictive than its counterpart in [25].

Let us now briefly comment on Theorem 1.

In Part (a), we rely on results by Silverstein et al. [3, 4, 60] on the support of limiting
spectral distributions and on fine asymptotic properties of the empirical spectrum to define
regular edges and to properly express the convergence of extremal eigenvalues.

In Part (b), we first obtain an asymptotic Fredholm determinantal representation of the
extremal eigenvalues’ distribution and then perform an asymptotic analysis of the associated
kernels to prove convergence toward the Airy kernel. The latter analysis is based on a steepest
descent analysis involving contours deformations. Contrary to the analysis performed by
Baik-Ben Arous-Péché [9], El Karoui [32] and Péché-Capitaine [25] which work out explicit
deformed contours, our analysis relies on a more abstract argument where the existence
of appropriate contours is obtained by mean of the maximum principle for subharmonic
functions. This argument has the advantage to work for every regular right or left edges up
to minor modifications. Let us also stress that we do not follow the same strategy as in [9, 32]
concerning the involved operators convergence.

In Part (c), our proof of the asymptotic independence builds upon the operator-theoretic
approach developed by Bornemann [21] in the context of the GUE. We actually show that
a weaker mode of convergence for the involved operators than the one required in [21] is
sufficient to establish the asymptotic independence; it has the advantage to be compatible
with the previous asymptotic analysis.

Part (d) also relies on an asymptotic analysis of the rescaled kernel. It is based on an
appropriate representation of the Bessel kernel as a double complex integral.



Organization of the paper. In Section 2, we provide a precise description for the bulk
and the extremal eigenvalues and introduce the notion of regular edge. The precise statement
of Part (a) of Theorem 1 is provided in Theorem 2 and proved.

In Section 3, we state our results concerning the fluctuations of the extremal eigenvalues
and their asymptotic independence. Parts (b), (¢) and (d) of Theorem 1 are respectively
stated in Theorem 3, Theorem 4 and Theorem 5. We also recall there the definition of
the Tracy-Widom and hard-edge Tracy-Widom distributions (Sections 3.1 & 3.3). We close
the section with an asymptotic study of the condition number of large correlated Wishart
matrices, a discussion on the non-regular edges, on spikes phenomena and provide some
graphical illustrations.

Section 4 is devoted to the proof for Theorem 3 (Tracy-Widom fluctuations). Section 5
is devoted to the proof of Theorem 4 (asymptotic independence for extremal eigenvalues).
Finally, Section 6 is devoted to the proof of Theorem 5 (hard-edge fluctuations).

Acknowledgements. AH and JN are pleased to thank the organizers of the 2011 France-
China summer school in Changchun “Random Matriz Theory and High-dimensional Statis-
tics” where this project began. The authors are indebted to Steven Delvaux for providing
an important argument in the asymptotic analysis, see Section 4.4. Moreover, AH would
like to thank Sandrine Péché for interesting discussions, and Manuela Girotti for generously
sharing her computations on the double integral representation for the Bessel kernel, see the
proof of Lemma 6.2. During this work, AH was supported by the KU Leuven research grant
OT/12/73 and the grant KAW 2010.0063 from the Knut and Alice Wallenberg Foundation.
The work of WH and JN was partially supported by the program “modeles numériques” of
the French Agence Nationale de la Recherche under the grant ANR-~12-MONU-0003 (project
DIONISOS).

2 Bulk description, regularity and extremal eigenvalues

In this section, we introduce the notion of regular soft edges (cf. Def. 2.5) and extremal
eigenvalues (cf. Theorem 2). In particular, Theorem 2 provides a precise statement for
Theorem 1-(a). We finally gather their main properties in Propositions 2.11 and 2.12. Before
this, we provide a precise description of the bulk, mainly based on [60].

2.1 Description of the limiting bulk

In [46], Maréenko and Pastur characterized the Cauchy-Stieltjes transform? of the limiting
distribution u = p(7y, ) of the eigenvalues of My as N — oo,

m(z):/zi)\,u(d/\), z€Cy ={2€C: Im(z) > 0},

as the unique solution m € C_ = {z € C: Im(z) < 0} of the fixed-point equation

-1
m = <z - fy/ ] —)\m)\ V(d)\)> for any z € Cy. (2.1)

ZNote that our definition of the Cauchy-Stieltjes transform differs by a sign from the one in [46] but will
turn out to be more convenient in the sequel.



Recall that, by Assumption 1, v = limn/N € (0,+0o0), the probability measure v is the
limiting eigenvalue distribution of X and its compact support is included in (0,+00). In
particular, v({0}) = 0.

In [60], Silverstein and Choi showed that

p(dz) = (1 — )" + p(z)dz, (2.2)

where p is a non-negative and continuous function on (0, c0) which is analytic wherever it is
positive. Moreover, following a procedure already described by Marcenko and Pastur, they
showed rigorously how to extract from the fixed point equation above a characterization of
the support of u, and thus of p(z)dz. Specifically, the function m(z) has an explicit inverse
given by

g(z) = % + 7/ 1 —)\z)\ v(dX) (2.3)

which analytically extends to the open subset of the real line
D={zeR: z#0, z ¢ Supp(v)}. (2.4)

Except in the proof of Proposition 2.7 below, we shall confine the notation g to the restriction
of this function to D. On any interval I of R\ Supp(u), the function m exists, is real and
is decreasing (as a Cauchy-Stieltjes transform). Consequently, its inverse also exists and is
decreasing on m([). Silverstein and Choi showed that g is this inverse, and that R\ Supp(u)
coincides with the values of g(x) where this function is decreasing on D:

Proposition 2.1 (Silverstein & Choi [60]). For any € R\ Supp(u), let p = m(x). Then
pe D, xz=g(p), and ¢'(p) < 0. Conversely, let p € D such that ¢'(p) < 0. Then x = g(p) €
R\ Supp(u) and p = m(x).

Remark 2.2. This proposition has the following practical importance: In order to find
Supp(u), plot the function g on D; whenever g is decreasing (¢'(xz) < 0), remove the corre-
sponding points g(x) from the vertical axis. What is left on this axis is precisely Supp(u).

As an example, a plot of the function g is provided in Figure 1 along with Supp(u) in the
case where v is the weighted sum of two Dirac measures and v < 1.

The soft edges of the bulk are described more precisely by the next proposition.

Proposition 2.3 (Silverstein & Choi [60]). Any soft left edge a satisfies one of the two
following properties:

(a) There exists a unique ¢ € D such that a = g(c), ¢’(c) =0 and ¢"(c) < 0.

(b) There exists a unique ¢ € 0D such that (¢,c +¢&) C D for some € > 0 small enough,
the function g is decreasing on (¢,¢ +¢), and a = limg|. g(x). In that case, we write

a=g(c).

Conversely, for any point ¢ satisfying one of these properties, a = g(c) is a soft left edge.

Similarly, any (soft) right edge b of the measure u satisfies one of the two following
properties:



(a) There exists a unique 0 € D such that b = g(?), ¢'(0) =0 and ¢"(d) > 0.

(b) There exists a unique 0 € 9D such that (0 —e,0) C D for some € > 0 small enough,
the function g is decreasing on (0 —¢,9), and b = limgyy g(z). In that case, we write

b=g(d).

Conversely, for any point 0 satisfying one of these properties, b = g(9) is a right edge of the
measure (.

Hence, any soft edge of the bulk coincides with a unique extremum ¢ of the function g and
it reads g(c). These extrema may or may not be attained on D. In case they are, the second
derivative of g is never equal to zero there, and it has been proved in [60] that the density
vanishes like a square root at the associated edges. We shall see later that the Tracy-Widom
fluctuations appear in this case. A right edge b = ¢(?) together with its preimage 0 are
plotted in Figure 1.

The next proposition provides additional information on the bulk that will be useful in
the sequel. Its proof is in Appendix A.

Proposition 2.4. Let Assumption 2 hold true. Let a be the leftmost edge of the bulk. The
following facts hold true:

(a) Ify > 1, thena > 0. Moreover, the function g(x) increases from zero to a then decreases
from a to —oo as x increases from —oo to zero. In particular, if v > 1, then a is the
unique mazimum for g on (—oo,0).

(b) If v < 1, the function g is negative and decreasing on (—oc,0).

(¢) If v < 1, then a > 0. Moreover, if we set n = inf Supp(v) > 0, then a = g(c) is the
supremum of g on (1/n,00). In addition, g increases to a on (1/n,¢) whenever this
interval is non empty, then decreases from a to zero on (¢, 00).

Let b = g(9) be a right edge of the bulk. Then the following facts hold true:
(d) [0,00) Z D.

(e) Assume b is the rightmost edge of the bulk. For any v € (0,00), if we set & =
sup Supp(v) < oo, then g decreases from infinity to b on (0,0) and increases on (9,1/§)
if this last interval is not empty. In particular, 0 is the unique extremum of g on (0,1/£).

Fact (a) shows that when v > 1, the study of g on (—o0,0) allows to locate the leftmost
edge a and this edge only. Facts (a) and (b) show that if v < 1 then it suffices to study g
on D N (0,00) to locate the edges of the bulk. In particular, if v < 1, Fact (c¢) shows that
the location of a is provided by the study of g on (1/n,00). This is illustrated by Figure 1,
where a is the rightmost maximum of the function g. Fact (d) shows that when b = ¢(?) is
a right edge of the bulk, then 0 cannot belong to the unbounded connected component of D
in (0,00). Finally, the behavior of g described by (e) is illustrated on Figure 1 by the plot of
this function on the interval (0,1/3).



2.2 Regularity condition and its consequences

So far, we have thoroughly described the edges of the limiting eigenvalue distribution. Re-
member however that BBP phase transition [9] may occur regardless of the limiting spectral
distribution (which is always MP distribution in [9]). As we shall see later, the notion of
regular endpoint captures a joint condition on the limiting spectral distribution i and on
the convergence vy — v, which will guarantee Tracy-Widom fluctuations (cf. Theorem 3).

Definition 2.5. (Regular edge) Recall that the \;’s are the eigenvalues of matrix ¥ y; a soft
edge a = g(c) is regular if
n
lim inf min [¢ — A1 > 0. (2.5)
N—ooo j=1 J
Remark 2.6. (a) If a = g(c) is a regular soft edge, then the weak convergence vy — v
stated in Assumption 2 rules out the options labelled (b) in Proposition 2.3.

(b) If a is an endpoint satisfying one of the options labelled (a) in Proposition 2.3, and if,
furthermore, the distance dist(\;, Supp(v)) satisfies

dist(A;, S —0
jax dist(A;, Supp(v)) =0,
then a is a regular endpoint of Supp(u). However, this last condition is not necessary.
Further comments will be made in Section 3.1 below.

(c) If v > 1, then the leftmost edge is regular (for a proof of this fact, simply write the
leftmost edge as g(c), then Proposition 2.4—(a) shows that ¢ < 0, which immediatly
implies (2.5)).

Let yn = n/N and consider now the probability measure p(yn, vn), which is the unique
solution of the fixed point equation (2.1) associated with the data yy,vy. It is a finite-
N deterministic equivalent of the spectral measure of My. Associated to u(yn,vn) is the
function

1 A 1 1 & i
=4 dA ——7+—E 2 2.
gn(2) z WN/l—z)\VN( ) z szl 1—2z\; (2:6)

(cf. (2.3)). Similarly to p(y,v), the measure u(vyn,vny) has a density on (0,00) and its
support can be also characterized with the help of Proposition 2.1 (simply replace g by gn).
We furthermore have the following proposition:

Proposition 2.7. Let Assumption 2 hold true. Let g(c) be a reqular soft edge. Then, for N
large enough,

(a) gn is analytic in a neighborhood of ¢ which is independent of N.

(b) gn converges to g uniformly on the compact sets of this neighborhood, and so does its
k-th order derivative 95\];) to g%, for any k > 1.

(¢) There ezists a sequence of positive numbers ¢y, unique up to a finite number of terms,

such that cxy — ¢, giy(cn) =0, and gg\]f)(cN) — g% (c) as N — oo for any k.

10



This proposition shows in particular that when a soft edge g(c) is regular, there is a
sequence gy (cy) of endpoints of Supp(u(vyn,vn)) that converge to g(c), and ¢y satisfies

n
lim inf min [y — A7 > 0. (2.7)
N—oo j=1 J

Proof. Set n = min(|c|/2, lim inf 5 min; |)\;1 —¢|), and let B = B(c,n/2) be the open ball with
center ¢ and radius 1/2. Since
A 1 1
= S <
|1 — 2\ R Y el e B

| wo

for z € B and for all N large, the functions gy are analytic and uniformly bounded on B
for all N large. This establishes (a) in particular. Moreover, this yields that the family of
analytic functions gy is uniformly bounded on B. Thus, by Montel’s theorem, the family gy
is normal. It follows from the convergences vy — v and vy — v provided by Assumption
1 that gy converges pointwise to g on B. Consequently, gy converges to g uniformly on
the compact subsets of B, and the same is true for the convergence of the g](\’;) to g%) by
[57, Th. 10.28]. Turning to (c), notice that ¢ is a zero of ¢’ by the regularity assumption,
see Remark 2.6-(a). Since gy converges to ¢’ uniformly on the compact sets of B and ¢’ is
analytic there, Hurwitz’s theorem shows that ¢}, has a zero ¢y that converges to the zero ¢
of ¢’ and that this zero is unique provided N is large enough. Write ]g](\lf) (en) — g®(0)] <
|gJ(\];)(cN) — 9B (en)| + [¢® (en) — g™ (¢)|. Since for any k, g](\’;) converge uniformly to ¢* on
the compact subsets of B, the first term at the right hand side vanishes as N — oco. The
second term vanishes as N — oo by the continuity of g(*). This establishes (c). O

2.3 Extremal eigenvalues and their convergence

Our purpose is now to locate the eigenvalues of My, or equivalently those of M ~N (denoted
by #; < --- < Z,), that converge to a prescribed edge. The reader may refer to Figure 1 to
better visualize the results of this proposition:

Remark 2.8. (Convention) In the remaining, we shall systematically use the notational
convention A\g = Zo = 0 and A1 = Tp41 = 00.

Proposition 2.9 (Bai & Silverstein [3, 4]). Let Assumptions 1 and 2 hold true. Assume that
[u,v] with u > 0 lies in an open interval outside Supp(u(yn,vn)) for N large enough and
recall the definition (2.1) of the fixed-point solution m. Then the following facts hold true:

(a) If v > 1, then T,—Nn4+1 — a almost surely as N — oo, where a > 0 is the leftmost edge
of the bulk.

(b) In any of the two cases i) v < 1 orii) v > 1 and [u,v] ¢ [0,a], it holds that m(v) > 0.
Let ¢(N) be the integer defined as

Ap(N)+1 > m(v)~!  and Ap(n) < m(u)~L. (2.8)

Then
IP’(JY:¢(N)+1 >wv, Zgny <u for all large N) =1. (2.9)

11



Remark 2.10. In [4], the result was established for matrices Xy taken from a doubly infinite
array of i.i.d. random variables with finite fourth moment. If the entries are Gaussian, one
can relax the doubly infinite array assumption and establish Proposition 2.9 by using the
completely different tools of [45].

We are now in position to properly state and prove part (a) of Theorem 1.

Theorem 2 (Extremal eigenvalues). Let Assumptions 1 and 2 hold true’.

(a) If v > 1 and a is the leftmost edge of the bulk, then set o(N) =n — N + 1. Otherwise,
let a = g(c) be a regular soft left edge and let o(N) = min{j : )\;1 < ¢}. Then, almost
surely,

A}i_r}noo Tynvy =a  and l}\rfri}glof(a — ZTyn)—1) >0,

(b) Let b = g(d) be a regular right edge and let ¢(N) = max{j : )\;1 > 0}. Then, almost

surely
]\}gnoo Tyvy =0 and lmglof@ﬂf\f)ﬂ —b)>0.

FEigenvalues TNy and Ty are called extremal eigenvalues.

Proof. We shall only prove the result for a right edge b. By Proposition 2.7, we can choose a
compact neighborhood C of d such that gx and g}, converge uniformly to g and ¢’ respectively
on C. Let p,q,r, s be real numbers such that p < ¢ <r < s <¢, [p,s] CC, and ¢'(z) < 0 for
x € [p, s]. This last condition is made possible by the fact that b is a right edge of Supp(u). Let
u = g(r) and v = g(q). Since gy and g, converge uniformly to g and ¢’ respectively on [p, s],
it holds that ¢y (z) < 0 on [p, s, and [u,v] C [gn(s), gn(p)] for all N large. Proposition 2.1
applied to p(vn, vn) show then that [u,v] lies in an open set outside Supp(u(yn,vn)) for all
N sufficiently large.

Now the integer ¢(IN) defined in the statement is characterized by the inequalities A;(lN) >

0> )\;(IN) 41+ Since no )\j_l’s can belong to C for N large enough, we can equivalently write
Aoty > =m(u) > g =m(v) > AJ\,, which is (2.8). By Proposition 2.9, we get (2.9).

Since v > b, we have liminf y (Z4(n)41 —b) > 0 with probability one. Moreover, we know that
a.s., the number of Z; in [b — ¢, b] is non zero for any € > 0 and for all large N. Making r 1 0,
we get u = g(r) | b. Since T4y < u a.s. for all large N, we get that 4y — b a.s. when
N — o0. O

2.4 Summary of the properties of regular edges

For the reader’s convenience and constant use in the sequel, we gather in the two following
propositions some of the most important properties of regular edges introduced above. Recall
the convention in Remark 2.8.

Proposition 2.11 (Left regular soft edges). Let Assumption 2 hold true. Let a be a left edge.

(a) Consider first the case where a is the leftmost edge.

3In view of Remark 2.10, one can relax the Gaussianity assumption and replace it by the fact that Xxn’s
entries are extrated from a doubly infinite array of i.i.d. random variables.

12



—0.5

Figure 1: Plot of g : D — R for v+ = 0.1 and v = 0.76; + 0.363. In this case,
D = (—00,0) U (0,%) U (5,1) U (1,00) . The two thick segments on the vertical axis
represent Supp(u). The right edge b of the measure p satisfies property (a) of Proposition
2.3.

1
3
e

— Ify>1 then a = g(c) > 0 with ¢ < 0 and a is a regular soft edge.

— If v <1 then a = g(c) > 0 with ¢ > 0; a is a soft edge but its reqularity is a priori
not granted.

(b) Assume now that a is a regular left soft edge. Then

a=g(c) with { Zl,,((cc)) z 8

¢ <0 ifa is the leftmost edge and v > 1,
nd .
¢ >0 otherwise.

For N large enough, there exists a unique sequence ¢n such that g (cy) = 0 and (by

gg\(]))’g(o) we mean gy, g)

k
N NS © 9§V)(CN)m9('“)(C) for any k>0 .

Finally, there exists a deterministic sequence (p(N)) such that almost surely,

Jim Zov=a and liminf(a—Z,v-1) >0 .

Proposition 2.12 (Right regular soft edges). Let Assumption 2 hold true and assume that
b is a reqular right soft edge. Then

and 0>0.

b=g(d) with {9,(0)

=0
g"(@) > 0

13



For N large enough, there exists a unique sequence dn such that ¢iy(On) = 0 and

oy —— 0, g](\];)(DN) ——¢®@) foranyk=0.
N—o00 N—oo

Finally, there exists a deterministic sequence (¢(N)) such that almost surely,

lim Z = liminf(x — .
A Ty b and im in: (Top(ny41 —b) >0

3 Fluctuations around the edges

In this section, we state the main results of the paper, namely the fluctuations of the extremal
eigenvalues and their asymptotic independence. Parts (b), (c) and (d) of Theorem 1 are
respectively associated with Theorem 3 (Section 3.1), Theorem 4 (Section 3.2) and Theorem
5 (Section 3.3). We also provide a discussion on non-regular edges and spikes phenomena
with graphical illustrations.

As an application, we obtain in Section 3.4 new results for the asymptotic behavior of the
condition number of complex correlated Wishart matrices.

3.1 Tracy-Widom fluctuations at the regular soft edges

We first introduce the Tracy-Widom distribution. The Airy function Ai is the unique solution
of the differential equation Ai”(z) = xAi(z) which satisfies the asymptotic behavior

2..3/2

Ai(z) 37 (14 0(1)), T — 4o0.

1
- 2\/77':101/46

With a slight abuse of notation, denote by K; the integral operator associated with the Airy

kernel
Ai(r) AT (y) ~ Ai(y) AT (2)

r—y
A real-valued random variable X is said to have Tracy-Widom distribution if

Kai(z,y) = (3.1)

P(X < s) =det (I—KAi)L2 s eR,

(s,00)”

where the right hand side stands for the Fredholm determinant of the restriction to L?(s, co)
of the operator Ku; (see also Section 4.2). Tracy and Widom [64] established the famous
representation

det (I - KAi)LZ(s ooy = OXP <—/ (x — s)q(x)Qd:U) ,

where ¢ is the Hastings-McLeod solution of the Painlevé II equation, namely the unique so-
lution of ¢”(z) = 2q(z)3 + zq(x) with boundary condition g(x) ~ Ai(z) as z — co.

We are now in position to state our result concerning the Tracy-Widom fluctuations.
Recall that gn has been introduced in (2.6).

Theorem 3. Let Assumptions 1 and 2 hold true.

14



(a) Let a be a left regular soft edge, and T,y and (¢x)n be as in Proposition 2.11. Set
5 1/3
ay = N ), oN=|—F7— .
U )
Then, for every s € R,

lim P(N*Poy (an = Zp(xn) <) = det (I - Kay) (3.2)

N—oo L2(s,00)"

(b) Let b be a right regular soft edge, and Ty(ny and (On)N be as in Proposition 2.12. Set

5 1/3
by :gN(DN)a on = < 1" > :

Then, for every s € R,

dim P(N20y (Fo(n) = by) <) = det (I = Kas) (3.3)

s7w) ’

The proof is deferred to Section 4; see Section 4.1 for an outline.

Connexion with El Karoui’s result.

Let us first comment the last theorem in the light of El Karoui’s result [32], see also Onatski’s
work [53]. If we assume that
liminfoy A, <1, (3.4)
N—o0

then, as a consequence of the analysis provided in Section 2, the sequence (dy)y is associ-
ated with the rightmost edge b and the associated extremal eigenvalue has to be the largest
eigenvalue of My (or equivalently of My ). Moreover, (3.4) implies that b is regular, so that
Theorem 3 applies. This is the result of El Karoui announced in the introduction, which he
actually proves in a more general setting.

Indeed, in [32] the weak convergence of vy towards some limiting probability distribution
and the convergence of n/N to some limit were not assumed; it is only assumed that n/N
stays in a bounded set of (0,1] (actually of (0,+o0) after [53]) together with (3.4). Let us
mention that under these only assumptions, by compactness one can always extract converging
subsequences for vy and n/N so that our result applies along a subsequence.

Notice also that the condition (3.4) is stronger than our regularity condition, since b can
be regular with liminfy dyA, > 1. In this case, the extremal eigenvalue associated with
the rightmost edge is no longer the largest eigenvalue of My; this entails the presence of
outliers, as we shall explain in the next paragraph. Our result then states that the largest
eigenvalue which actually converges to the rightmost edge b fluctuates for large N according
to the Tracy-Widom law.

Non-regular edges and spikes phenomena.

In Remark 2.6-(b), we explained that when a soft edge reads b = g(9) with @ € 9D, and when
the Hausdorff distance between Supp(vy) and Supp(v) converges to zero, then the endpoint
b is regular. Still assuming that 0 ¢ 9D, let us now assume instead that

VN = *5<+Z7N
n
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where k is a fixed positive integer, ¢ > 0 is fixed and lies outside Supp(r), and the Hausdorff
distance between Supp(7y) and Supp(v) converges to zero. The eigenvalue ¢ of Xy with
multiplicity k is often called a spike. Assume without generality loss that b is a right edge
and that that 1/¢ belongs to the same connected component of D as . Three situations that
we describe without formal proofs are of interest:

1. The spike ¢ satisfies ¢’(1/¢) < 0. This can only happen if 1/{ < 0 as shown in Figure 2.

In that case, ¢ produces k outliers, i.e., eigenvalues of M ~ which converge to a value
outside the bulk, see [10, 14]. In terms of the support of u(vyn,vn), the location of
these outliers corresponds to a small interval in Supp(u(vn,vn)) (see Figure 2) which
is absent from Supp(u(v,v)). The width of this new interval is actually of order N—1/2.
Since 1/¢ < 0, the regularity condition still holds for b, and Tracy-Widom fluctuations
around by = gy (0x) will be observed.
Let us say a few words on the fluctuations of the outliers. Notice that ¢ incurs the
presence of a local minimum and a new local maximum in gy which are absent from
g, see Figure 2. Considering e.g. the minimum reached at, say 0y, one can show
that |1/¢ — 0'y| is of order N~1/2. In particular, the regularity assumption (2.7) is not
satisfied for dy. In fact, it is known that when they are scaled by N 1/2 the k outliers
asymptotically fluctuate up to a multiplicative constant as the eigenvalues of a k x k
matrix taken from the GUE ensemble, see [9, 2, 13] among others.

2. The spike ¢ satisfies ¢’(1/¢) > 0. The case where 1/{ > 0 is shown on Figure 3. Here,
the spike ¢ does not create an outlier and the regularity condition on b is still satisfied.
Tracy-Widom fluctuations around by = gy (0n) will be also observed here.

3. The spike depends generally on N and satisfies 1/ — 0 as N — oco. Here, we are at
the crossing point of the phase transition discovered in [9] between the “Tracy Widom
regime” and the “GUE regime”. More specifically, under an additional condition (see
(B.2)) we shall briefly show in Appendix B that at the scale N*/3 the asymptotic fluc-
tuations are described by the so-called deformed Tracy-Widom law whose distribution
function Fy, is defined in [9, Eq. 17].

All these arguments can be straightforwardly generalized to the case where a finite number
of different spikes are present.

As explained in 3., we can tackle the situation where an edge satisfies a weak kind of
non-regularity. Nevertheless, our approach breaks down when dealing with non-regular edges
in the case where vy is as above but with k& — oo as N — oo, or in the general case of a
limiting measure v for which Proposition 2.3-(b) occurs.

3.2 Asymptotic independence

Our next result states that the fluctuations of the extremal eigenvalues associated with any
finite number of regular soft edges are asymptotically independent.

Theorem 4. Let Assumptions 1 and 2 hold true and let I and J be finite sets of indices.
Denote by (a;)icr left reqular soft edges and by (bj);je right reqular soft edges.
Let z,,(ny and ¢; N be associated to a; as in Proposition 2.11, and denote by

9 1/3
a; N = gnN(Ci,N), ON =\ —77.—~ )
wmat o= (i)
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1.5 2

—0.5 0

Figure 2: Plot of gy (x) for n = 300, vy = 0.1 and vy = ﬁ&m + %51 + %53. The spike
¢ = 1.7 produces an outlier. Asymptote at 1/¢ not shown for better visibility.

Similarly, let Ty () and 5N be associated to bj as in Proposition 2.12, and denote by
9 1/3
bjn = gn (), 0j,N = () ;
’ ! ’ g (05,n)

Then, for every real numbers (s;)icy, (tj)jes, we have

N—oo

= H det (I - KAi)LQ(Si,OO) H det (I B KAi)Lz(t]WOO)'
i€l i€

lim P<N2/3Uz’,N(az’,N — :U%.(N)) < 8, N2/35j,N($¢j(N) — bj’N) < iy, (i,7) € I x J)

We prove Theorem 4 in Section 5. Our strategy is to build on the operator-theoretic
proof of Bornemann in the case of the smallest and largest eigenvalues of the GUE [21]; it
essentially amounts to prove that the off-diagonal entries of a two by two operator valued
matrix decay to zero in the trace class norm. In our setting, the problem involves a larger
operator valued matrix and we show that obtaining the decay to zero for the off-diagonal
entries in the Hilbert-Schmidt norm is actually sufficient. We establish the latter by using
the estimates established in Section 4.

A comment on universality. The results presented in this paper rely on the fact that
the entries of Xy are complex Gaussian random variables, a key assumption in order to take
advantage of the determinantal structure of the eigenvalues of the model under study. A
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Figure 3: Plot of gy (x) for n = 300, vy = 0.1 and vy = ﬁ&l,l + %51 + %53. The spike
¢ = 1.1 does not produce an outlier. Asymptote at 1/ not shown for better visibility.

recent work [42] by Knowles and Yin enables to transfer the results presented here (except
the hard edge fluctuations, see Theorem 5 below) to the case of complex, but not necessarily
Gaussian, random variables. Indeed, by combining the local convergence to the limiting
distribution established in [42] together with Theorems 3 and 4 , one obtains Tracy-Widom
fluctuations and asymptotic independence in this more general setting, provided that the
entries of matrix Xy fulfill some moment condition. This also provides a similar generalization
of our Proposition 3.2 describing the asymptotic behavior for the condition number of My
when « > 1. Let us stress that the case of real Gaussian random variables, of important
interest in statistical applications, remains open.

3.3 Fluctuations at the hard edge

Proposition 2.4 shows that when the leftmost edge is a hard edge, v = 1 (actually, one
can show that this is an equivalence). In order to study the smallest random eigenvalue
fluctuations at the hard edge, we restrict ourselves to the case where n = N + «, where o € Z
is independent of N. Thus, the smallest random eigenvalue of My is

o r1 = i'a-‘,—l if v = 0,
min ~ o
Ti—a =T1 fa<O.

We shall prove that the fluctuations of xpi, around the origin follows the hard-edge Tracy-
Widom distribution of parameter «, that we introduce now.
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The Bessel function of the first kind J, with parameter a € Z is defined by

5w)= (5)' S e (5w 5)

n=0

Note that when a < 0, the first || terms in the series vanish since the Gamma function T’
has simple poles on the non-positive integers. Denote by Kpe o the Bessel kernel

_ VYIa(VE)Ja(VY) — vV (Va) Ja(VY)
KBe,a(x7 y) - ) (3'6)
2(x —y)
and by extension Kpe the associated integral operator. A non-negative real-valued random
variable X is said to have hard-edge Tracy-Widom distribution if

P(X > s) =det (I — KBe,a) s> 0,

L2(0,s)’
where the right hand side stands for the Fredholm determinant of the restriction to L?(0, s)
of the integral operator Kpe o. When av = 0 this is actually the distribution of an exponential
law of parameter 1, namely det (I - KBe’O)LQ(O 9= e~%. As for the name, it comes from the
following alternative representation due to Tracy and Widom [65],

1 S
det (I — KBe’a)LQ(()’S) = exp <4/0 (log s — log x)q(m)2dx> ,

where ¢ is the solution of a differential equation which is reducible to a particular case of the
Painlevé V equation (involving « in its parameters) and boundary condition ¢(x) ~ J, (/)
as x — 0.

Let us now state our result for the fluctuations around the hard edge.

Theorem 5. Let Assumptions 1 and 2 hold true; assume moreover that n = N + «, where
«a € 7 is independent of N. Set

41
7j=1
Then, for every s > 0, we have
. 2
ngnoo]P’<N ON Tin = s) = det (I — Kpoa) 1200, (3.8)

In particular, if N = n, then we have for every s > 0

lim IP(N%’N Tmin = 5) =e °. (3.9)
N—o0

Remark 3.1. The assumption that vy converges weakly toward some limit v is actually
not used in the proof of Theorem 5. Namely, this result holds true under Assumption 1 and
Assumption 2-2 only.

We provide a proof for Theorem 5 in Section 6. It is also based on a asymptotic analysis
for the rescaled kernel; the key observation here is that when an edge is the hard edge, the
associated critical point ¢ is located at infinity (when embedding the complex plane into the
Riemann sphere).
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3.4 Application: Condition numbers
The condition number of the matrix My with eigenvalues 0 < x1 < --- < xn is defined by

TN
RN = —,

z1
provided it is finite, that is n/N > 1. If n/N < 1, one may instead consider the condition
number associated to My defined as iy = &,/Z1. The study of condition numbers is im-
portant in numerical linear algebra [51, 39] and random matrix theory has already provided
interesting theoretical [31, 12] and applied [47, 15] results. As a consequence of our former
results, we provide an asymptotic study for xy (one can easily derive similar results for Ry).

Proposition 3.2. Let Assumptions 1 and 2 hold true and v > 1. Let a be the leftmost edge,
assume it is reqular and let (¢cy)n and ¢ be as in Proposition 2.11. Let b be the rightmost
edge, assume it is reqular and let (On)n and O be as in Proposition 2.12. Denote by

9 1/3 2 1/3
ay = gN(cN) , ON = <—g§<[(cN)> and by = gN(DN) s 6N = <g;<](ON)> .

Assume moreover that xt1 — a and xy — b a.s. Then

_bN>D X by

s b
KN —2 5 = and N2/3 KN —t+t—=
N—oco da  oa

N—oco @ an
where 25 denote convergence in distribution, X and Y are two independent Tracy-Widom
distributed random variables, and where

9 1/3 9 \1/3
o= (—g”(c)) = ]\}iinoooN and 6 = <g”(0)> = A}iinooéN .

Remark 3.3. The condition that 1 — a and zny — b a.s. imposes that neither xn nor
x1 are outliers, otherwise their fluctuations (together with those of kxy) would be of order
N'/2 and a different asymptotic analysis (somewhat easier) should be conducted. We do not
pursue in this direction here.

Proof. Only the convergence in distribution requires an argument. Write

N2/3 (nN_[”V) - N2/3 (‘”N_E’N> —  N2/3 <aN:I:N—bNSC1>
an €1 ay T1aN
N2/3
- {an (zy —by) — by (71 —an)}
r1an
1 b
= 7N2/35N (zy —by) + N N2/3O'N (ay — 1) .

T10N T1ANON

Using the asymptotically independent Tracy-Widom fluctuations of N2/35y (zx — by) and
N3¢y (ay — x1) (cf. Theorems 3 and 4) together with the a.s. convergence z; — a and the
convergences ay — a, by — b, vy — d and oy — o (cf. Prop. 2.7), one can conclude. O

We now handle the case where v = 1.
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Proposition 3.4. Let Assumptions 1 and 2 hold true and let n = N + o where o € N s
independent of N. Let

4 N1 1 .
UN_N;)\J' and 0—4/xd1/(:n)—]\}gnooUN-

Assume that a.s. xny — b for some b > 0. Then

1 D bo
— k s
N2 N N—ooco X

where 25 denote convergence in distribution and X is a hard-edge Tracy- Widom distributed
random variable of parameter a.

Proof. Write

RN _JN(xN—b) O'N[l

N2 N2oynz N2oyz1
Since by assumption z —b — 0 a.s. and by Theorem 5 (N?oyx1)~! — X! in distribution,
where X is a hard-edge Tracy-Widom distributed random variable of parameter «, we have

on(zy —b) ¢

0.
N20'N$1 N—o0

By Slutsky’s lemma, N ~2ky then converges towards bo X ~! in distribution. O

Remark 3.5. Interestingly, in the square case where v = 1, the fluctuations of the largest
eigenvalue zp (either of order NV 1/2 if x is an outlier, see the next paragraph, or of order
N?/3 in the Tracy-widom regime) have no influence on the fluctuations of ky as these are
imposed by the limiting distribution of z;.

4 Proof of Theorem 3: Tracy-Widom fluctuations

This section is devoted to the proof of Theorem 3.

4.1 Outline of the proof

Step 1 (preparation): Asin [9] and [32], the starting point to establish Tracy-Widom fluc-
tuations is that the random eigenvalues of M or M n form a determinantal point process, so
that the gap probabilities can be expressed as Fredholm determinants of an integral operator
Ky with kernel Ky (z,y). We provide all the necessary material from operator theory in
Section 4.2. In Section 4.3 we first recall the double contour integral formula for Ky (z,y)
obtained in [9, 53]. Next, we show using Theorem 2 that one can represent the cumulative
distribution functions for the extremal eigenvalues as Fredholm determinants involving K
asymptotically. As a consequence, proving the Tracy-Widom fluctuations boils down to estab-
lish the appropriate convergence of rescaled versions K ~N(z,y) of the kernel Ky (x,y) towards
the Airy kernel. To this end, we split Ky (z,y) into two parts, Kg\?) (x,y) and Kg\l,) (x,y), each
involving different integration contours.
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Step 2 (contours deformations): Anticipating the forthcoming asymptotic analysis, we
focus in Section 4.4 on right edges and prove the existence of appropriate integration contours
coming with Kg\?) (z,y) and Kg\l[) (x,y); the case of a left edge is deferred to Section 4.6. To
obtain appropriate explicit contours is usually the hard part in the asymptotic analysis, see
in particular [32]. Here, we instead provide a non-constructive proof for the existence of
appropriate contours by mean of the maximum principle for subharmonic functions, and
which has the advantage to work for every regular edge up to minor modifications.

Step 3 (asymptotic analysis): Still focusing on the right edge setting, we prove in Sec-

tion 4.5.1 that Kg\?) (z,y) does not contribute in the large N limit. Moreover, we prove the
convergence of kernel Kg\l,) (x,y) to the Airy kernel in an apropriate sense and then complete
the proof of Theorem 3-(b). For this last step, we use a different approach than in [9, 32]:
Instead of relying on a factorization trick and the Holder inequality to obtain the trace class
convergence, we use an argument involving the regularized Fredholm determinant dets to
show the convergence of the Fredholm determinants. Finally, in Section 4.6, we adapt the

arguments to the left edge setting and complete the proof of Theorem 3.

4.2 Operators, Fredholm determinants and determinantal processes

Trace class operators and Fredholm determinants. We provide hereafter a few ele-
ments of operator theory; classical references are [27, 38, 61]. Consider a compact linear op-
erator A acting on a separable Hilbert space H (we write A € L(#)), and denote by (s,)5
the singular values of A repeated according to their multiplicities, i.e. the eigenvalues of

(AA*)'/2. The set
Ji = {AGL(H), an<oo}

n=1
is the (sub)algebra of trace class operators endowed with the norm ||Al[; = > 77 | s,. which
is complete. If A € J; with eigenvalues ()52, (repeated according to their multiplicities),
then the trace and the Fredholm determinant of A, respectively defined by

Tr(A) = i)\n and det(l —A) = ﬁ(l —An)
n=1 n=1

are well-defined and finite. The maps A — Tr(A) and A +— det( — A) are continuous on
(J1,]l - 1l;). If both AB and BA are trace class, then we have the useful identity

det(I — AB) = det(I — BA). (4.1)

Similarly, let
Jo = {AEL(H), > s < oo}
n=1

be the (sub)algebra of Hilbert-Schmidt operators endowed with the norm [|Al|, = {307, s2 2

The set (J2, || - ||2) is complete. If A € Jo with eigenvalues (\,)02; (repeated according to
their multiplicities), then the regularized 2-determinant of A,

dety(I — A) = ﬁ(1 —An)e (4.2)

n=1
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is well-defined and finite. The map A + deto(I — A) is continuous on (Ja, || - [|2)-

The inclusion J; C J» is straightforward. Moreover, the Holder inequality |[[AB|; <
IA]|2||BJ|2 yields that if A, B are Hilbert-Schmidt then both AB and BA are trace class. The
following simple property will play a key role in the sequel:

Proposition 4.1. Let A € Jp then
deta(1 — A) = det(1 — A)e™ TR

As a consequence, if the operators A,,, A € Ji are such that Tr(A,) — Tr(A) and |A, — All, —
0 as n — oo, then
det(I — A,)) —— det(I — A) .
n—o0
Integral operators. When working on H = L?(R), we identify a given kernel (z,y)
K(z,y) with its associated integral operator Kf = [K(-,y)f(y) dy acting on L?*(R), provided

the latter makes sense. Let J C R be a Borel set and 1; be the orthogonal projection of
L%*(R) onto L?(J). The restriction K| ; of K to L*(J) is defined by

Kbﬂwzlxﬂ/}«awﬂwd% fe A,

and is associated to the kernel (z,y) — 1;(x)K(z,y)1;(y), namely K|; = 1;K1;. In order
to keep track of these projections when dealing with Fredholm determinants, we shall often
write det(/ — K) 2y for det(/ —1,K1,).

Given a measurable kernel K : R x R — R, the associated integral operator K on L?(R)
is Hilbert-Schmidt if and only if

//K(m,y)dedy < oo,
RJR

Wm=<éAme%m@m. (43)

We finally recall (cf. [38, Th. 8.1]) that if K : [a,b] X [a,b] — R is a continuous kernel whose
associated operator 1, K1, ) is trace class* on L?(R), then

and in this case we have

b
Tr (1(onKlip)) = / K(z,z)dz . (4.4)
a
Convention: From now, the trace Tr and the Hilbert-Schmidt norm || - ||, will always refer
to the Hilbert space L?(R).
Determinantal point process. Real random variables 1, ...,z are said to form a de-

terminantal point process with kernel K : R x R — R (and Lebesgue measure for reference
measure) if its gap probabilities are expressed as Fredholm determinants, namely for any
Borel set J C R we have

P(H{1<k<m: oy €J}=0) =det (I-K) ),
provided that the right hand side makes sense; the latter stands for the Fredholm determinant
of the restriction to L?(J) of the integral operator with kernel K(z,y).

*See for instance [38, Theorem 8.2] for sufficient conditions on K to be trace class.
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4.3 The kernel of a correlated Wishart matrix and its properties
The next proposition will be of fundamental use in this paper.

Proposition 4.2. Let Assumption 1 holds true. Then, for every N, the min(n, N) random

etgenvalues of MN (and equivalently of My ) form a determinantal point process associated
with the kernel

N 1 AN (w— ATt
K _ —Nz(z—q)+Ny(w—q) ~ | | J 4.
N () (2im)? ﬁdzﬁ)dwe w—z (w) Zf)\jfl , (45)

Jj=1

where the real q € (0,\;}) is a free parameter and we recall that the \;’s are the eigenvalues
of Xn. ' and © are disjoint closed contours, both oriented counterclockwise, such that T’
encloses the )\j_l 's and lies in {z € C: Rez > q}, whereas © encloses the origin and lies in
{z€C: Rez < ¢}

By convention, all the contours we shall consider will be assumed to be simple and oriented
counterclockwise. The integration contours are shown in Figure 4.

This proposition can be found in [9] (n/N < 1) where it is attributed to Johansson, and
n [53] (n/N > 1). Notice that since the pioneering work of Brézin and Hikami [24], many
such double integral representations appeared for determinantal point processes.

Figure 4: The contours of integration

Remark 4.3. The assumption over ¢, i.e. ¢ € (0, A1), ensures that Ky with kernel (4.5) is
trace class on L?(R). In the sequel, we shall only need Ky to be locally trace class, that
is trace class on L?(J) for every compact subset J C R. As an important consequence, we
can choose ¢ € R with no further restriction. In fact, let ¢ € (0,\;'), ¢ € Rand J C R a
compact set, then the multiplication operator E : f(z) — eld—a)Nz ¢ (r) and its inverse E~1
are trace class on L?(J). Write Ky = KyE™'E and use (4.1) to get

det(I — Kn)r2(y) = det(I — EKNE™") 25

The kernel of EKyE~! is simply obtained by (4.5) where ¢ has been replaced by ¢’ and our
claim follows.

Asymptotic determinantal representation for the law of extremal eigenvalues.
Recall that to prove Theorem 3 for the maximal eigenvalue Z, of My, a classical way to
proceed is to identify the events { N*/30x (Z,—bx) < s} = {no #;’s in (by+s/(N*30x),00)},
to use the determinantal representation

P<N2/30N(ﬁn - [JN) < 8) = det(I — KN>L2(bN+s/(N2/3UN),oo) )
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and to prove the convergence of operator Ky to the Airy operator Ku; after the rescaling
z+— by +x/(N?/30y) for the trace class topology. This would yield the desired result since
the Fredholm determinant is continuous for that topology.

Since the probabilities of interest P(N2/30N(:i¢(N) —by) < s) and IP’(N2/30N(aN—:TcS0(N)) <
s) cannot be expressed as gap probabilities in general, we provide below an asymptotic Fred-
holm determinant representation as N — oo for these.

Proposition 4.4. Consider the setting of Theorem 3 and recall that by convention Tg = 0
and Tniy1 = 4+00. Then the following facts hold true:

(a) For every e > 0 small enough and for every sequence (ny)n of positive numbers satis-
fying limpy ny = 400,

P(nv(ay = o) < 5) = det (I = Kn) oo 2o —urmny + 0(1) (4.6)
as N — oo.

(b) For every e > 0 small enough and for every sequence (nn)n of positive numbers satis-
fying limy ny = +o00,

P(UN (Zov) = bv) < 3) = det (I — KN)L2(bN+s/nN,bN+s) +o(1) (4.7)
as N — oo.

Proof. We only prove (b), proof of (a) being similar. Observe that Theorem 2-(b) and the
convergence by — b yield together the existence of € > 0 small enough such that

P(UN(-%qb(N) — bN) < S) = ]P)(UN(-%qj(N) — bN) <s, iqﬁ(N)-i—l > by + 8) + 0(1) (4.8)
as N — o0o. Now, ¢ being fixed, use the determinantal representation to write
det (1= KN) o pafm onsey = P ({0 <R <ms by s/my <3, <oy +2h =0) (49)

where ¢ = n — min(V,n) + 1. Recall the notational convention in Remark 2.8; we obtain by
splitting along disjoint events

P(ﬁ{€<k<n by + /1N < bN+5} 0)
= IP’(ﬂN(%(N) —bN) <5, Fg(vy > by +€)
n P(@ > by +5) (4.10)

+ > P(xk by +s/nN, Tk 2 by + 6)
k=t, k# $(N)

Since we have the upper bounds

d(N)—1
Z P(m by + /0N, Tpyr = bN+€) < P<33"¢(N) > bN+5> ;

Z P(Ik by + s/nN , T4 = by +€) < P(ﬁ:¢(N)+1 < by -i-s/nN),
k=¢(N)+1
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we obtain from (4.9), (4.10), Th. 2—(b) and the convergence by — b that

det (1= KN) gy +ajn o se) = B (13 (Fon) = BN) <55 gy > by +2) +o(1). (411)

Finally, (4.7) follows by combining (4.8) and (4.11). O

Rescaling and splitting the kernel Ky. We introduce hereafter the rescaled kernel K N
and provide an alternative integral representation with new contours. The aim is to prepare
the forthcoming asymptotic analysis for right regular edges.

Let b be a soft regular right edge. By Proposition 2.12, there exist 0 > 0 such that
b= 9(0)7 g/(o) =0, g//(o) >0, (412)

and an associated sequence (9y) such that g](\lf) (on) = ¢g®(d). Denote by

by = gN(DN), ony = (QXI(QDN)> 13 , (4.13)

then in particular

2 \1/3
/ _ : _ 3 — 3 —
hion) =0, Jmav=o Jmey=t = (Ge) T @)

q"(

In particular ¢y, g% (cny) and oy are positive numbers for every N large enough, and (on)n
is a bounded sequence.

It follows from the definition of the extremal eigenvalue Z4 (), see Theorem 2, and Propo-
sition 4.4 that for every € > 0 small enough

P(N?30 (To(n) — b) < 5) = det (I = Kn) oo vojvoany oy + 01 (415)
as N — co. By a change of variable, we can write
det (I —KN) 250 4o/ (n2/30y), byt = 96 (1= Lo v, KN (s cn2issy)) 2600y (4-16)

where the scaled integral operator Ky has kernel

1

~ . €T y
Ruv(r.) = S K (bn + g oy 7N2/35N> (4.17)
and where Ky (x,y) was introduced in (4.5). Consider the map
1 n
fn(z) = —by(z —dn) + log(z) — N ZZ;log(l —Xiz). (4.18)

Remark 4.5. In order to fully define fy, one needs to specify the determination of the
logarithm. This will be done when needed. Notice however that functions Re fx, exp(fn)

and the derivatives f 1(\/;6 ) are always well-defined.
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By taking ¢ = 0 in (4.5), which is possible according to Remark 4.3, we have

N N2 /1= )\
Kn(z,y) = 53 dz% dw e~ NeGEan) +Ny(w= DN)w — <i) H <)\Jw> . (4.19)
j=1

(2im)? w 1— )z

where we recall that the contour I' encloses the A;l’s whereas the contour © encloses the
origin and is disjoint from I'. It then follows from the definition (4.17) of Ky that

1/3 t
Ky (z,y) N j{dzj{ dw —— *Nl/‘gx(Z*ON)/5N+N1/3y(w*°N)/5N+NfN(Z)*NfN(w).
(2im 25N
(4.20)
The key observation here is the identity

In(z) = gn(2) — gn(OnN), (4.21)

which follows from (2.6) and (4.13). As a byproduct, (4.14) yields that 0y is a root of
multiplicity two for f};, and more precisely

fa@n) = f"on) =0,  f$on) = gk(on) > 0. (4.22)

The aim is to perform a saddle point analysis for fy around its critical point 0. To this
end, we deform the contours I' and © in a way that they pass near 0.
If 9 is smaller than all the )\j_l’s, as it is the case in [32] when dealing with the maximal

eigenvalue, then go directly to Section 4.4, set ') = T, Kg\lf) = Ky and disregard every
statement related to I'?).

If not, then we proceed in two steps. First, we split I' into two disjoint contours r©
and '™ as shown on Figure 5: the contour I'®©) encloses the )\j_l’s which are smaller than

o, while '™ encloses the )\j_l’s which are larger that dy. Notice that Proposition 2.4-(d)

\ 1(0) @

Na
N,

Figure 5: The new contours I'®©) and T(),

applied to the measure vy shows that the set {j, 1 < j < n : )\j_l > Dy} is not empty.

Therefore, the contour I'V) is always well-defined.
We now introduce for a € {0, 1} the kernels

K (z,y) N1/ ?{ dz?{ dw 1 7N1/3(szN)x/(SNJer/?’(waN)y/éNJerN(z)foN(w)
(2im 2(5N (e ’
(4.23)
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then it follows from the residue theorem that
~ 0 1
Kn(z,y) = K\ (z,9) + K (2,9) | (4.24)

and a similar identity for the associated operators.

In the second step, we modify the contour © in order for it to surround I'®) while remaining
at the left of 0y, cf. Figure 6. This can be done with no harm for the kernel K%). As for
Kg\?), this modification for the contours yields a residue term, coming with the singularity
(w — z)~! of the integrand. The latter residue term equals

_ N 7{ N (—2)(e—en)fon g
2imonN Jro)

and thus identically vanishes since the integrand is analytic.

Figure 6: The new contours for the kernel K N-

4.4 Contours deformations and subharmonic functions

We now provide the existence of deformations for the contours I'©), T} and © which are

appropriate for the asymptotic analysis. These new contours will be referred to as O r®
and ©.

Proposition 4.6. For every p > 0 small enough, there exists a contour YO independent of
N and two contours Y = YM(N) and © = O(N) which satisfy for every N large enough
the following properties.

(1) (a) YO encircles the )\;1 's smaller than Oy ,
() YW encircles all the )\]71 s larger than dy
(c) © encircles all the )\j_l 's smaller than dn and the origin.
2) (a) T =7, U 1) where
T, = {on +te™3 : t [0, p]}.

(b) ©® = O, U O,.5 where

O, = {on —te™™3 . t €0, p]}.



(3) There exists K > 0 independent of N such that
(a) Re (fn(z) — fn(dn)) < =K for all z € YO
(b) Re (fn(z) — fn(dn)) < =K for all z € Teq
(¢) Re (fn(w) — fn(dn)) = K for allw € Ores
(4) There exists d > 0 independent of N such that
inf{|z—w|'z€T(0) weé} ,
inf{|z —wl: ze€T,,we @Tes} d
inf{|z—w| 2 2 €Y pes, wGG*} >d,
inf {|z— w]: 2 € Ty w € Orea} > d

9

(5) (a) The contours © and YO are disjoint, so are T© and YM, but © N TW = {oy},
(b) The contours TD and O lie in a bounded subset of C independent of N,
(¢) The lengths of TD and © are uniformly bounded in N.

Note that both the contours Y1) and © pass through the critical point 0.

In order to provide a proof for Proposition 4.6, we first establish a few lemmas. We recall
that B(z,p) for z € C and p > 0 stands for the open ball of C with center z and radius p.

Recall that 0 < infy A1 < supy )\ < 00 by Assumption 2. By the regularity assump-
tion, namely lim infy min_; [0— A7 11'> 0, there exists € > 0 such that )\ € (0,+00)\B(0,¢)
for every 1 < j < n and every N large enough. Denote by K the compact set

K = ([i%f Aln sup 5 ] \ BO, g)) U{o} . (4.25)

Notice that by construction {z € R: z~! € Supp(vy)} C K for every N large enough, and
also that {x € R: 27! € Supp(v)} C K because of the weak convergence vy — v.
Recall the definition (4.18) of fy and introduce its asymptotic counterpart:

f(z) = —b(z —0) + log(z) — ’y/log(l —zz)v(dz) . (4.26)
Notice that whereas f and fy are defined up to a determination of the complex logarithm,
Re f(z) = —bRe(z — 0) + log |z| — *y/log |1 — zz|v(dx) (4.27)

and Re f are well-defined. The following properties of Re f and Re fn around 9 and 5 will
be of constant use in the sequel.

Lemma 4.7. Let Assumption 2 hold true and let K be as in (4.25). Then

(a) The function Re fn converges locally uniformly to Re f on C\ K. Moreover,

lim Re fN(DN) Re f(a) (4.28)

N—o0
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(b) There exists pg > 0 and A = A(pg) > 0 independent of N such that for every N large
enough, B(0n, p) C C\K for every p € (0, po] and, whatever the analytic representation
of fv on B(dn,p), we have

|fn(2) = fn(On) — g (On) (2 —0n)?/6] < Alz —on|*

and
| Re(fn(2) — fn(0n)) — g5 (0n) Re[(z — 0n)%]/6] < Alz —on]* .

(¢) There exists po > 0 and A = A(pg) > 0 such that B(d,p) C C\ K for every p € (0, po)
and
| Re(f(2) — £(2)) — ¢"(0) Re[(= —0)°] /6] < Al= —2|* .

Proof. Fix an open ball B of C\ K. By definition of I, one can chose a determination of the
logarithm such that fn is well-defined and holomorphic there for N large enough. Indeed,
there exists an analytic determination of the logarithm on every simply connected domain of
C\ {0}. Use the same determination for f, which is then also well-defined and holomorphic
on B. By weak convergence of vy to v, fy converges pointwise to f on B. Similarly as in the
proof of Proposition 2.7, the sequence of holomorphic functions (fx )y is uniformly bounded
on B and thus has compact closure by the Montel theorem, which upgrades the pointwise
convergence fy — f to the uniform one on B. The uniform convergence of Re fn to Re f on
B follows since | Re fy(z) — Re f(2)| < |fn(2) — f(2)] for all z € B. Now since 0 — 0 and
On,0 € C\ K for all N large enough by the regularity assumption, (4.28) follows from the
local uniform convergence Re fy — Re f on C\ K and (a) is proved.

It follows from Proposition 2.7 that for pg > 0 small enough and every N large enough we
have B(dn, po) C B(0,2p9) C C\ K. Using the same determination of the log as previously
yields that fy is well-defined and holomorphic on B(dy, po). Since (4.14) and (4.21) yield
In@n) = frdn) =0, f](\:;’)(ON) = g%(dn) > 0 and f](\?) = gg\?) for all N large enough, we can
perform a Taylor expansion for fy around 0y in order to get

4
. o . 3 < |z — o] (3)
[1(2) = (o) = gk ow) e —0w)*/6] < Fge max o (w)

lz—owlt
24 weB(0,2p0)

N

provided that z € B(®y,p) and p € (0,pg]. Proposition 2.7 moreover provides that gg\?)

converges uniformly on B(9,2pg) to ¢© which is bounded there. The existence of A = A(pp)
independent of N and 0 < p < py satisfying the first inequality in Part (b) of the proposition
follows. The inequality for the real part follows directly and Part (b) of the proposition is
proved; so is Part (c) by using similar arguments.

]

We now provide a qualitative analysis for the map Re f. First, we study the behavior of
Re f(z) as |z| = oo. To do so, we introduce the sets

Q_={z€C: Ref(z) <Ref(d)}, Qr={2€C: Ref(z) >Ref(0)}, (4.29)

and prove the following.
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Lemma 4.8. Both Q; and Q)_ have a unique unbounded connected component. Moreover,
given any o € (0,7/2), there exists R > 0 large enough such that

Of = {zE(C: |z| > R, —g+a<arg(z) <g—a} c_, (4.30)
3
Qf:{ze(C: |z| > R, 72T+oz<arg(z)<27ra}CQ+- (4.31)

Proof. Recall the expression (4.27) of Re f(z) which yields that Re f(z) = —bRe(z — ) +
O(log |z|) as |z] — oo. Since b > 0, it follows that for any fixed o € (0,7/2) there exists
R > 0 large enough such that

of cao, of ca,. (4.32)

Next, we compute for any A € R\ {0}

d , t (x71 —1)
&Ref(t%—z/l) b—i— 2 A2 +7/(:U1—t)2+A2 v(dx).

Since b > 0 and Supp(v) is a compact subset of (0, +00), there exists Ay > 0 such that for
any A satisfying |A| > Ao the map ¢ — % Re f(t+1iA) is negative, namely ¢ — Re f(t+1iA) is
decreasing. Assume there exists an other unbounded connected component of 2_ than the one
containing 2¥. By (4.32), this unbounded connected component then lies in C \ (2% U Q%)
and thus there exists zp in this component satisfying |Im(zp)| > Ag. Since the half line
{Re(z0) + t + ilm(z) : t > 0} then belongs to Q_ and eventually hits QF we obtain a
contradiction. That 2, has a unique unbounded connected component follows by using the
same line of arguments.

O

Next, we describe the behavior of Re f at the neighborhood of 0. Taking advantage of
Lemma 4.7-(c) which encodes that Re f(2) — Re f(?) behaves like Re[(z — 9)3] around 0, we
describe in the following lemma subdomains of 24 of interest.

Lemma 4.9. There exist n > 0 and 6 > 0 small enough such that, if we set
Ak:{ze(C: 0<|z—0|<m, |arg(z—02)— ‘<0}
for =2 < k <3, then
Agpi1 C Q- Ao C Q4 ke{-1,0,1}.
The regions Ay, are shown on Figure 7.

Proof. Recall Lemma 4.7-(c) and let n < po as defined there. Then
[Re f(2) — Re f(2) — ¢"(2) Re[(2 —0)°] /6] < A(po)|> —0[*

for every z € B(d,n). Notice that Re[(z — 0)%] = (=1)* if z = 2 + €**™/3 for consecutive
integers k. Since g”(9) > 0, the lemma follows by choosing 1 small enough. O
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We denote by Qoxy1 the connected component of 2 which contains Agyiq. Similarly,
Q9. stands for the connected component of 2, which contains Agi. We now describe these
sets by using the maximum principle for subharmonic functions, in the same spirit than in
[29, Sec. 6.1], see also [28, Section 2.4.2], although the setting is more involved here; such a
use of the maximum principle has been communicated to us by Steven Delvaux.

Recall that if G is an open subset of C, a function u : G — R U {—o00} is subharmonic
if u is upper semicontinuous and, for every closed disk B(z,d) contained in G, we have the
inequality

1 2 "
< — v .
u(z) < 277/0 u(z + de')do

A function v : G — R U {+o0} is superharmonic if —u is subharmonic; in particular it
is lower semicontinuous. Moreover, if v : G — C is subharmonic, it satisfies a maximum
principle: For any bounded domain (i.e. connected open set) U C C where u is subharmonic,
if for some k € R it holds that

limsup u(z) < &, ¢ e oU,
z—(, zeU

then u < k on U. Similarly, superharmonic functions satisfy a minimum principle.
The use of the maximum principle for subharmonic functions is made possible here because
of the following observation.

Lemma 4.10. The function Re f is subharmonic on C\ {z € R : x~! € Supp(v)} and
superharmonic on C\ {0}.

Proof. It will be enough to establish the result for the map
z > log |z| — ’y/log |1 — zz|v(dz) = log |z| — v/log |z — x| 7(dx) — ’y/log:cy(dz)

where the compactly supported probability measure 7 is the image of v by  — 2. The
assumptions on v imply that log z is v-integrable. Now, it is a standard fact from potential
theory that, given a positive Borel measure n on C with compact support, the map z —
[log|z — z|n(dz) is subharmonic on C and harmonic on C \ Supp(n), see e.g. [58, Chapter
0]. Consequently, z — log|z| is harmonic on C\ {0} and subharmonic on C, and z —
7 [ log |z— x| 7(dx) is harmonic on C\ Supp(7) and subharmonic on C. The result follows. [

Equipped with Lemma 4.10, we can obtain more information concerning the connected
components of Q4.

Lemma 4.11. (1) If Q. is a connected component of Q4, then Q. is open and, if Q0 is
moreover bounded, there exists x € Supp(v) such that x~! € €.

(2) Let Q. be a connected component of Q_ such that Q. ¢ R.

(a) If Q. is bounded, then 0 € Q..
(b) If Q. is bounded, then its interior is connected.
(c) If 0 & Q2 then the interior of Q. is connected.
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Proof. Let us show (1). Since Re f(z) — —o0 as |z| — 0, then Q4 C C\ {0}. By Lemma
4.10, Re f is then lower semicontinuous on 2, which shows that 24 is an open set. As a
consequence, 0904 C C\ Q4 and thus Re f < Re f(0) on 9Q4. If 2, is a connected component
of 4, then €, is open and 99, C 04 ; in particular Re f < Re f(0) on 0. If Q, is moreover
bounded, then we have Re f > Re f(?) on the bounded domain €2, and Re f < Re f(9) on
its boundary. Since subharmonic functions satisfies a maximum principle, Re f cannot be
subharmonic on the whole set €, and (1) follows from Lemma 4.10.

We now turn to (2a). We argue by contradiction and assume that Q, ¢ R is a bounded
connected component of 2, which does not contains the origin. The assumption Q. ¢ R
shows that at least one of the sets €, N {Im(z) > 0} and Q. N {Im(z) < 0} is non-empty.
Consider the set

Qiym:{zGC: EGQ*}

and notice it is also a connected component of 2_ because of the symmetry Re f(z) = Re f(Z).
Without loss of generality, assume that Q. N {Im(z) > 0} # 0 (otherwise switch the role of
Q. and Q™ in what follows). Notice that since Re f is continuous on C\ K by Lemma 4.10,
the set Q. N {Im(z) > 0} is open and moreover

Re f(z) =Re f(0), z€00,\K. (4.33)

Let us fix 9 > 0 such that Q. N{Im(z) > eo} # 0 and pick 2 € Q. satisfying Im(zp) > ¢ and
Re f(z0) < Re f(d). Our goal is to construct a bounded domain which contains zy but not the
origin and where Re f > Re f(2¢) on its boundary. Indeed, this would lead to a contradiction
via the minimum principle for superharmonic functions since Re f is superharmonic on C\ {0}
as stated in Lemma 4.10.

First, notice that if dist(£2,,R) > 0 then Re f is harmonic on €, Re f = Re f(d) on 0,
and Re f < Re f(0) on €, which is a bounded domain. But this contradicts the minimum
principle for (super)harmonic functions, and thus dist(£2,,R) = 0. Because dist(£2,,R) =0
and Q, N {Im(z) > 0} is open and non-empty, for every £ > 0 small enough Q, N {Im(z) =
e} = U + ie where U is a non-empty open subset of the real line. Thus, we can write

QN {Im(z) = e} = | (u), (e), ulidy(e)) + e
jeJ

where J is a countable set satisfying Card(J) > 1, and the ur(ﬁi)n(a)’s and u

numbers such that any open intervals (ufflhz(e), utk(e)) and (uffjﬁ(@), u2).(¢)) are disjoint as

soon as j; # jo. Notice that by symmetry,

Q™ N {Im(z) = —¢} = | (u¥ (), ulle(e)) — ie.
jeJ

()

min

(e)’s are real

By construction, for every j € J, both ul) (€) + ie and ul(ljlzlx(s) + ie belong to 92, \ R. In

min

particular, by (4.33) and the symmetry Re f(z) = Re f(Z),

Re f(u(J)

min

(e) £ie) = Ref(uggx(s) +ie) = Re f(0), jed. (4.34)

Since by assumption 0 ¢ Q. C Q_ and Re f(z) — —oo as |z| — 0, there exists 6 > 0 such that

B(0,6) N Q. = 0. Because €, is moreover bounded by assumption, |u£fl3n(s)| and |u£ﬁzlx(€)]
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stay in a compact subset of (0, 400) independent on € and j € J as ¢ — 0. As a consequence,
we can choose € € (0,¢0) small enough so that

2 52

ul) (£)2 ulih(e)?

mll’l

max ( ) < min (Re f(®) —Re f(20), %), jed. (4.35)

If we moreover consider for any j € J the open rectangle

Rj(s):{u+iv€(C: w9 (e) < u < ul) (o), \v|<€},

min

then we can also assume that ¢ is small enough so that 0 ¢ R;(e) for every j € J.

Let us fix j € J. Let n € R be such that || < ¢ and set z, = uinzn( ) + in. Since
|1 —z2,| < |1 — 22| for every x € R, it follows that

/log |1 — xzy|v(de) < /log 11 — zze| v(da)

and, together with (4.34), that

Re f(2,) = Re f(z:) + log z—" = Re f(0) + log Z—" . (4.36)
€ &€
Next, we have
G) (~\2 o 2 2 _ 2
1 - 1 —
log | 71| = Ligg (tmmE)"F07) Ly oy o
=l 2\ @2 e 2 uf), (6)? + 2
1 2 2
> —log|1-— S P S ) (4.37)
2 uh,(©?) "l (e)?

where for the last inequality we used that log(1—z) > —2z for any z € [0,1/2]. By combining
(4.35)—(4.37), we have shown that

Ref( mln( ) +”7) > Ref(20)7 |77’ <, ] e J. (438)

The same line of arguments also shows that

Re f(ul) (e) +in) > Re f(z), |n<e,  je (4.39)

Now, consider the set

Q. = {z € Qy: Im(z) > 6} U {z € QY™ Im(z) < —6} U ( U Rj(5)>

jedJ

and notice it is a bounded open set containing zg (since Im(zg) > €9 > ), but which may not
be connected, and which does not contain the origin. Let ﬁ*(zo) be the connected component
of Q, which contains zp. Since 0 ¢ €,(z), Re f is superharmonic on the bounded domain
Q.(20). It follows from (4.33), (4.38), (4.39) and the symmetry Re f(z) = Re f(z) that
Re f > Re f(zp) on 852*(20). This yields a contradiction with the minimum principle for
superharmonic functions and (2a) follows.
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We now turn to (2b) and (2¢) and, again, argue by contradiction. Let Q. ¢ R be connected
component of Q_ such that its interior int(€2.) is not connected. Notice that since Re f is
continuous on C \ K, we have int(Q,) \ £ = Q, \ £ and in particular (4.33) yields

Re f(z) = Re f(0), z € 0int(Qy) \ K.

If Q, is bounded, then by (2a) we have 0 € €, and moreover, since Re f(z) - —oco as z — 0,
0 € int(£2,). Let €, be a connected component of int(£2,) which does not contain the origin.
It is then a bounded domain on which Re f < Re f(?) and Re f = Re f(?) on 909, \ K. By
picking zo € Q. N {Im(z) > 0} and by performing the same construction than in the proof
of (2a) but replacing Q. by €, we obtain a bounded domain €, (zy) containing 2y in its
interior, on which Re f is superharmonic, and such that Re f > Re f(zp) on its boundary.
The minimum principle for superharmonic functions shows this is impossible and (2b) follows.
To show (2c), assume now that 0 ¢ €., so that , is necessarily unbounded by (2a). By
using that int(€2,) \ £ = Q, \ £ where K is a compact set, that Q_ has a unique unbounded
connected component by Lemma 4.8, and that by assumption int({2,) is not connected, it
follows that at least one connected component of int(Q,), say €, is bounded. Since by
assumption 0 ¢ ), the same argument than in the proof of (2b) yields a contradiction and

(2¢) is proved.
O

Finally, we use the previous lemmas to describe the sets (;’s.
Lemma 4.12.

(1) We have 1 = Q_q, the interior of Q; is connected, and for every 0 < a < mw/2 there
exists R > 0 such that

{zEC: |z| > R, —g+a<arg(z)<g—a}cﬁl. (4.40)

(2) We have Qo = Q_q, the interior of Qg is connected, and there exists R > 0 such that

3
{ZGC: |z| > R, 72T+a<arg(z)<;—a}CQg. (4.41)

(3) The interior of Q3 is connected and there exists § > 0 such that B(0,d) C Q3.

Proof. We first prove (2). Since €25 is by definition a connected subset of 24, Lemma 4.11 (1)
yields that its interior is connected (since it is open). Next, we show by contradiction that Qs is
unbounded. If 5 is bounded, then Lemma 4.11 (1) shows there exists € Supp(v) such that
7l € Qo If 271 <0 (resp. 271 > 0), then it follows from the symmetry Re f(Z) = Re f(z)
that {23 completely surrounds 3 (resp. 21). As a consequence, 23 ¢ R (resp. Q1 ¢ R) is
a bounded connected component of {2 which does not contain the origin, and Lemma 4.11
(2a) shows this is impossible. The symmetry Re f(Z) = Re f(z) moreover provides that Q_»
is also unbounded, and (2) follows from the inclusion (4.31) and the fact that €4 has a unique
unbounded connected component, see Lemma 4.8.

We now turn to (1). Since 9 is unbounded, then €2; does not contain the origin and it
follows from Lemma 4.11 (2a)-(2c) that €; is unbounded and has a connected interior. Then,
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(1) follows from symmetry Re f(Z) = Re f(z), the inclusion(4.30) and that Q_ has a unique
unbounded connected component (cf. Lemma 4.8).

Finally, since Q3 is bounded as a byproduct of Lemma 4.12-(2), it has a connected interior
(Lemma 4.11 (2b)) and contains the origin (Lemma 4.11 (2a)). Moreover, since Re f(z) —
—o0 as z — 0, (3) follows. O

" 4 radius 7

Figure 7: Preparation of the saddle point analysis for a right edge. The dotted path at the

right is Tﬁl (Np). The dotted path at the left is its counterpart for ©. The closed contour at
the left of 9 is Y(0),

We are finally in position to prove Proposition 4.6.

Proof of Proposition 4.6. Given any p > 0 small enough, it follows from the convergence of
on to 9 that for all Ny large enough the points dx;, + pe'™/3 and o, + pe~ /3 belong to Ay
and A_j respectively. Thus both points belong to €; by Lemma 4.12-(1). As a consequence,
we can complete the path {on, + te™™/3 . t € [0,p]} into a (closed) contour with a path
1) (Np) lying in the interior of € (see Figure 7). Since 1) (Np) lies in the interior of €2y,
the convergence 0y — 0 moreover yields that we can perform the same construction for all
N > Ny with 'I‘ﬁ)s(N ) in a closed tubular neighborhood 7 C Qp of 'I‘,(«le)s(NO). By Lemma
4.12-(1) again, we can moreover choose 1 (Np) in a way that it has finite length and only
crosses the real axis at a real number lying on the right of L. By construction, this yields that
the set 7 is compact and that the Tﬁl(N )’s can be chosen with a uniformly bounded length
as long as N > Ny. Since Q; C Q_ there exists K > 0 such that Re f(z) < Re f(d) — 3K
on 7. Since moreover Re fy uniformly converges to Re f on 7 and Re fy(dn) — Re f(?)
according to Lemma 4.7-(a), we can choose Ny large enough such that Re fy < Re f + K on
T and Re f(?) < Re fn(0n) + K. This finally yields that Re(fn(2) — fn(dn)) < —K for all
z € T and proves the existence of a contour T(!) satisfying the requirements of Proposition
4.6, except for the point (4). Similarly, the same conclusion for O follows from the same lines
but by using s instead of ©; and Lemma 4.12-(2).
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As a consequence of Lemma 4.12-(3), there exists a contour in the interior of Q3 surround-
ing {r € £: 0 <z <0} but staying in {z € C: Rez > 0} and which intersects exactly
twice the real axis in R \ I with finite length, see Figure 7. Using again Lemma 4.7-(a), the
existence of Y(© with the properties provided in the statement of Proposition 4.6 follows.

Finally, the item (4) of Proposition 4.6 is clearly satisfied by construction since the sets
Q_ and Q4 are disjoint, and the proof of the proposition is therefore complete. O

4.5 Asymptotic analysis for the right edges and proof of Theorem 3-(b)

Recall that Ky = KS\(;) + Kg\l,). We now analyze the asymptotic behavior of KS\?) in the next

section and then investigate K%) in Section 4.5.2.

4.5.1 Asymptotic analysis for Kg\?)

Recall the definition (4.23) of the kernel KS\?) and its associated contours I'©) and ©, cf.
Figure 6. The aim of this section is to establish the following statement, which asserts that

Kg\?) will have no impact on the asymptotic analysis in the large N limit.

Proposition 4.13. Let Assumptions 1 and 2 hold true, then for every € > 0 small enough

; 0

]\}gnooH1(578N2/35N)K§V)1(S,8N2/35N)H2 = 0’ (442)
i 0
A}gnooTr(1<Sv€N2/36N)K§V)1(S,EN2/36N>) = 0. (4.43)

Notation: If a contour I' is parametrized by ~v : I — I' for some interval I C R, then for

every map h: I' — C we set
/F h(2)|dz] = / ho () [y (1)]dt

when it does make sense. In particular, §.|dz| is the length of the contour I'.

Proof. Recall that by definition of Kg\e) (z,y), see (4.23), we have

9

KO (2, y) N3 % dz% duw L —N1/3x(z—DN)/6N+N1/3y(w—DN)/6N+NfN(z)—NfN(w)
(2im 25N ()

(4.44)
where © and I'® are as in Figure 6. We now deform the contours © and r'® so that
© =0 and I'O = T where © and T© are given by Proposition 4.6. As a consequence of
Proposition 4.6-(4), we have the upper bound

1/3
) ‘< N % —N'/32 Re(2—0x)/6x5+N Re(fx ()~ (0))
‘KN (x,y)| < e )e |dz|

XjéeN1/3yRe(w—DN)/éN—NRe(fN(w)—fN(DN))’dw‘_ (4.45)
)
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Recall that T(© does not depend on N. By Proposition 4.6-(5b), the contour O lies in a
compact set. Hence there exists L > 0 independent of N such that |Re(z — ¢y)| < L for
2z € TO or z € ©. Together with Proposition 4.6 (3a), we obtain that for all z > s

7{ ¢~ N30 Re(2=0n) /3NN el (2)=I 0n)) | d
T(0)

N1/3

< o NI (La-s) Lls) }'{ dz| . (4.46)
1 (0)

Similarly, by splitting © into ©,¢, and ©,, we get from Proposition 4.6-(3c) for every y > s

7{ NPy Re(w=on) /65 =N Re(fx ()= Ox)) | gy |
G

< €N1/3L(yfs)/5N+N1/3L‘s‘/61\] <€NK/~ |dw\ +/~ 6NRe(fN(w)fN(DN))|dw‘) ) (447)

res *

The definition of ©, and Lemma 4.7-(b) then yield
/~ 67NRe(fN(w)ffN(DN))|dw| < /~ engX,(DN)Re(wbe)3+NA|wfaN|4’dw‘

6 6
< / ¢ NI (O) Re(w—an )+ NpA W= | gy
e
p 1
— 9 / VOGO g < 9 (4.48)
0

provided that p is chosen small enough so that gX,(dx) — pA > 0.
By combining (4.45)—(4.48), we thus obtained that there exist constants Cp,C7 > 0 inde-
pendent of N such that for every z,y > s and every N large enough

1/3
1N+%2L(z+y)

K9] < Coe™© (4.49)

Since by (4.3),

© 5N2/36N €N2/35N © 1/2
H1(575N2/36N)KN 1(s,aN2/36N)H2 = (/ / Ky ($7y)2d$dy> ,

we obtain from (4.49) the rough estimate
v — —
H1(‘9’EN2/35N)K§\/’)1(5,6N2/36N)H2 < 00(5N2/35N —s)e N(Cy—4eL)

from which (4.42) follows provided that we chose ¢ small enough. Similarly, by (4.4)
(0) EN2/35N 0
Tr (1(5,5N2/35N)KN 1(5,£N2/35N)) :/ KN (I’x)ddjv
S
and (4.49) yields the estimate
eN2/38y
0 0
T (L e K L ererosn) < [ K @0)lda
S

< C0(€N2/3O'N _ S)e—N(Cl—45L)

which proves (4.43) as soon as € is small enough. Proof of Proposition 4.13 is therefore

complete.
O
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4.5.2 Asymptotic analysis for Kg) and proof of Theorem 3-(b)
(1)

We now investigate the convergence of Kj;
Theorem 3-(b).

towards Ka; and thereafter complete the proof of

Proposition 4.14. For every € > 0 small enough, we have

KW

Alm Hl sen2/3sy) Ky — Kai)l, 5N2/35N)H2 = 0, (4.50)
: 1
A}E\Iloo Tr (1(3,5N2/36N)(K( ) KAI) (s, 5N2/35N)) = 0. (4'51)

First, we represent the Airy kernel as a double complex integral. To do so, we introduce
for some ¢ > 0, which will be specified later, the contours

FOO

{oN+5e”9: 0 e [—w/s,w/3]}u{aN+teﬂ“/3; tels, oo)} . (452)
0x — {0N+5e”9 0 ¢ [2n/3, 477/3]}U{ oy — tet3 Lt e g, oo)} . (4.53)

and prove the following.

Lemma 4.15. For every 6 > 0 and z,y € R, we have

N1/3 —Nl/ST(Z aN)+ 5 9% On)(z—on)?
Kai(z,y) (2in)%0n 7{% dzj{oo _

—0
N1/BUEIN) K gl (o) (w—dn)?

X e

Proof. First, it easily follows from the differential equation satisfied by the Airy function,
namely Ai”(x) = zAi(z), and an integration by part that

Kai(z,y) = /000 Ai(z + u)Ai(y + u)du. (4.54)

The Airy function admits the following complex integral representation (see e.g. [52, p.53])

1 3 1 3
Ai(z) = ——— ¢ e # T 3d, = ]{ "B, 4.55
( ) m = 2 =/ ( )
where Z and = are disjoint unbounded contours, and Z goes from €/™/300 to e ~™/300 whereas

2ir/3 2ir/3

=’ goes from e~ oo to e oo. By plugging (4.55) into (4.54) and by using the Fubini

theorem, we obtain

1 : &
Kai(w,y) = _W 7{ dz% dwe‘”Z*Zd/”yw“’3/3/0 =2 dy |

zm f dz}’{ e s (4.56)

since Re(w — z) < 0 for all z € Z and w € Z'. Lemma 4.15 then follows after the changes
of variables z +— N1/3(z —0y)/0n and w — N1/3(w — 0n)/dn, the mere definition 5?\, =
2/g%,(0n) and an appropriate deformation of the contours. O
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We now turn to the proof of Proposition 4.14.

Proof of Proposition 4.1/. Recall that

(1) N/ 7{ 7{

Ky d

(:C y 227‘(‘ 25]\/ () ¥ ( )
4.57

The key step in the analysis is to deform the contours ™) and © into Y™ and O of Proposition
4.6, but since the later intersect in 0, we need to slightly modify them.
Let pg be fixed so that Lemma 4.7 holds true, fix p < pg and recall the definitions of

—Nl/3 7“?;1\’) +N1/3 7?’(1”5;;1\’) +Nfn(2)—N fn(w)

@) — =7, uTWw

Tes

and © =0, U6, (4.58)

as provided by Proposition 4.6. Since T.NO, = {on}, we deform them to make them disjoint.
Set
§=N"1/3 (4.59)

and from now until the end of the proof, denote (with a slight abuse of notation)

i0 . T T e
T. —{DN—|—56 RS [ 3,3}}U{DN+te 3 te[é,p]} , (4.60)
= T*’l U T*’Q (461)

~ . 21 4 o
0. = {DNM@” . fe [; ;] } U {aN et e, p]} . (4.62)

Notice in particular that this deformation provides now the control
min{\w—z]: z e Y,, weé*} >4 .
Now, let T = 1M and © = O. We can also express the Airy contours I'*° and ©°° as

I~ = T,Ur%,  with I :{aNHeif”/ﬁ”: te[,o,oo)},

res

o0
67’68 Tes

0,U0%,  with O _{aN—tei”/?’: te [p,oo)} .

It follows from Proposition 4.6-(4) and the definition of the contours that there exists d’
such that for any

(E'? E/) € {(F*,@res), (FT637@*)7 (FTesve)TeS) (F @7?25) (F?gs’@ ) ( res?Gggs)}

min{|w—z|: z €L, wGE’}}d/.
As a consequence, by using (4.57), (4.59), Lemma 4.15 and by splitting contours into their
different components, we obtain that

N2/3 N1/3

W N e g , .
KW (2, y) — Kai(z, )| < TR Tom (El Y Byt Ey+ B+ Es+ Eﬁ) (4.63)
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where, setting for convenience

_N1/3I(Z*DN) N _ 2 _Nl/BI(Z*DN) N 1 (a _on)3
Fn(z,z) =e sy TNUn(z)—fn(@n)) . Fai(z,2)=e e 9N (N (2—0) ’

Grlyw) = T NUN@IZINON) gy L NS o) e )?

we introduced

Bo= [ 1 [ ol [Fy(e2)Gx (. w) - Fale,2)Gaily. )] (4.64)
Ty O

Br= ([ [t s)iaet) ([ fontm]isur) | (4.69)
By = (/ ‘FN(x,z)‘|dz|> </é )GN(y,w)‘|dw|> , (4.66)
= ([ |pves)ist) ([ fextuie) (4.67)
Ey= </T ‘FAi(x72)"dZ’) </@$o ‘GAi(va)de’) ) (4.68)
Es = </Fm ‘FAi(%Z)‘dZ> (/(:) ’GAi(va)de’) ; (4.69)
Es = </Foo ‘FAi(maz)‘dZ> (/@m ’GAi(yaw)deO : (4.70)
Convention: In the rest of the proof, C, Cy, C1, ... stand for positive constants which are

independent on N or x,y, but which may change from one line to an other.

Step 1: Estimates for Ey. We rely on the following elementary inequality,

|€u o ev’ _ eRe(v)|€(u—fu) o 1|
Re(v) |u — v|k Re(v)+|u—v|
< e Z o < |u—vle , (4.71)
k=1 '

which holds for every u,v € C. By combining this inequality for

_ Ngx(on)

6 {(Z—ON)?’—(UJ—ON)?)}

u=N(fn(z) = fn@N)) = N(fn(w) = fn@n)) ;v
together with Lemma 4.7-(b), we obtain

|[En (2, 2)GN (y, w) — Fai(z, 2)Gai(y, )]

1/3zRe(z—0p) 1/3yRe(w—dp)
_NY/ % +N1/ 5

< AN(Jz —on|* + jw—on|Y) e

1" 1"
o N ON) Rz ) B+ NAJz—0x [~ TN Re(u -0y )+ NAfw—dy|*

provided that z,w € B(dn, p). This yields with (4.64)
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1/3xzRe(z—0pn) N ?
<A N|Z—0N|4 —-NY/ 7NN€MR6(Z DN)3+NA\szN|4’dZ’
Y*

1/3zRe(w—0pn) Ng (o
X/ eN/ TN(; 7QN( N)Re(w N )2HNA|w— DN|4\dw|

_n1/3zRe(z=0dn)  NgWi(on)
+ A e N ! SN e% RG(Z*DN)3+NA|Z*DN|4‘dZ‘
T

1/3zRe(w—2n)  Ng{(dn) 4
x /~ Niw — oyt N e o Re(wmaNPPHNAwaNt gy (4.72)

We first handle the integrals over the contour T, = T, 1 U Y, 2, see (4.61), and consider
separately the two different portions of the contour. First, let z € T, 1 and recall that z > s
by assumption. Since

) 1
— < Re(z—on) < |[z—0n] € 6 and 0=

2 NI
we have |z — 0y|* = N=%3 and the following estimates
_N1/32Re(z—3y) _w—s s
e N SN < e 26N TN :
A
eNgKT(aN) Re(z—on)3+NA|z—on|* < gKI(aN)"‘m

This immediately yields

o 1/3zRe(z—0y) N oN)
N|Z—DN|46 N1/ N 67(]1\’ N Re(z—on)3+NA|z— DN|4|dz|

T*,l

X

N1/3 3N1/3 N2/3
where 27/3N'/? accounts for the length of Y 1. Similarly

| | 1 xr—s
oSty gN(UN)JerA/S< 2m > < C e (473)

x Re(z— " r—s
67N1/3%6N9N6(DN) Re(z—DN)3+NA|Z—DN\4|dZ| < C N (4'74)
T = ON1/3
*,1
Consider now the situation where z € T, 2. In this case,
t
Re(z—bN):§ , Re(z—on)3=-13 , |z—on|t=1t!,

with N—1/3 <t < p and thus

_N1/3$R€(Z—°N) Nl/sac s 4 N1/3 1slt +N1/3 ISIt
N e

e 26N<62N

Ng (On) Re(z—on)3+NA|z—on|*

)

NN

e*N(gEQ(ON)pr)

Assuming that we chose p small enough so that g”(9) — pA > 0 and recalling that g% (dn) —
g"(0), this provides for every N large enough the inequalities
N|Z _ DN’4 _Nl/S%]\,DmeiNgN(aN) Re(z—on)3+NA|z—on |4 |dZ|
T,

< 2 /p Nt4eN1/32‘§‘1\tf “N(K ) =P gy
= N-1/3

Tr—s oo |5|u 1" T—Ss
T2y / u4625N—(9N(°N)—PA)u3du < c e 2oy | (4‘75)
1

S ]\72/36
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Similarly,

_n1/3zRe(z—2N) NN —z=s

e N SN 6NigNGN Re(z—aN)3+NA|z—aN|4|dZ| < ¢ e N ] (4.76)
T N1/3
*,2

Gathering (4.73)-(4.76), we finally obtain estimates over the whole contour T, :

zRe(z—0xn) Ng’ (o r—s
N|Z 2 ’46_N1/3TN6 9N6( N) RB(Z*DN)3+NA|Z*0N‘4|dZ| < C e_ﬂ
. N = ON2/3

)

(4.77)

_N1/3zRe(z=2N)  Ng{(n) N3 P! _z=s
/ . T ) Re(z o) N AL g5 < o5
.

N1/3

The same line of arguments also yields equivalent estimates for the integrals over o*. Namely,

1/3yRe(w—0p) Ng'l (on) _y—s
/ N]w —0N|4€N / SN e*igNG N Re(waN)3+NA|waN|4’dw‘ < c 23
0.

‘]\[2/3e ’
N1/3erC(w—UN) Ngl\ (dn) 3 4 C _y—s (478)
e SN e~ 6 Re(w—oN)°+NA|lw—oN| ]dw\ < e 20N
é =~ N1/3
Combining (4.77)-(4.78), we have shown that
C _z+y—2s
By < e Era (4.79)

Step 2: Estimates for the remaining F;’s. Using the same estimates as in Step 1, we
can prove that

C _az=s o

| vl < om0 [ |puail < gope L o)
C = C  _u=

[ Jevtwlaw < g [ fontywldu < gm0 sy

The definitions of the paths and Proposition 4.6 yield that there exists L > 0 independent
of N such that

|Re(z —en)| <L,  2€Y,UO,UTyesUBOyes.

This estimate, together with Proposition 4.6 (3b), (3c) and (5c) yields that for every z,y > s

/ ‘FN(az,z)
T'I‘ES

_ /3[,4=5 /3 Lls|
/~ Grly,w)|ldw] < ce MENTEEEN (4.83)

Tes

_ 1/37 z—s 1/3 L|s|
dz| < ce VNIRRT (4.82)

Combining (4.80)-(4.83), we readily obtain

—C1N+CyN1/3 2ty
Ey + By + E3 < Ce TN 50

We now handle
/ ’FAi(x,z)’]dz] and / ‘GAi(y,w)‘\duﬂ .
s o2
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We have

/Foo ‘FAi(x,z)‘\dz\ = /@oo ‘GAi(y,w)‘|dw|

res res

00 _N1/3zt_Ng§(7(DN)t3 00 N1/3\s\t_Ng§(7(DN)t3
= 2/ e 2N 6 dt < 2/ e N 6 dt .
p p

Let now N large enough so that

gnON)N _ N3] S

(beware that such a condition only depends on s). Then

00 N1/3\s\t_N9K1(UN) 3 2 0 " (NN N1/3 S N1/3\s\t_N9K;(DN) 3
2/ ¢ TN s Tdr < / IV QNN N sl S o dt
P P

3

X

1% 6 2(51\]
2 Nl/?’\s\t_NgKr(DN)tg e 2 N1/3\s\p_N9K](DN) 3
< 2 |—e N 6 — Ze¢ 2N 6 P
P P
p
and we hence obtain the estimate
/ ‘FAi(m,z))|dz| - / ‘GAi(y,w)‘|dw| < Ce OV (4.84)
I'22s O
We can now easily handle E4, F5 and Eg and finally obtain
B 1/3z+y
SN B < Cen NN (4.85)
k=1

Step 3: Conclusions. By combining (4.63), (4.79) and (4.85), we have shown for every
x,y =2 s and N large enough that

C’ _z+y—2s —CyN+C NI/SM
e B Oy TN

KW (2, y) — Kai(z, )| <

As a consequence,

eN2/3§5
1 1
‘ Tr (1(87€N2/35N)(K§V) B KAi)l(S»6N2/35N)) ’ < / |K§\7) (z, x) — Kai(z, x)}dx

onNC
N1/3

and (4.51) follows provided ¢ is chosen small enough. Similarly,

+ (€N2/35N — S)Cle*N(CQ*ZEC@

~X

1 K — K1 2
H (5,6N2/35N)( N Al) (5,5N2/35N)H2

E]\[2/361\7 €N2/35N (1) )
- / / (K (2, 9) — Kai(z,y)) dady

onC ? 2/3 21 —N(Cy—2eC3)
< W + (€N (5]\/' — 8) 016 2 3

where C] > 0 is independent on N. This yields (4.50) as soon as ¢ is chosen small enough
and thus completes the proof of Proposition 4.14. O
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We are finally in position to prove Theorem 3 (b).

Proof of Theorem 3 (b). First, we check that the Airy operator Ka; is trace class and Hilbert-
Schmidt on L?(s,00) for every s € R. Indeed, the representation (4.54) provides the factor-
ization Ka; = A2 of operators on L?(s,00), where A, is the integral operator having for kernel
As(z,y) = Ai(z + y — s). The fast decay as @ — +oo of the Airy function (see [52, p.394])

_2,3/2
e 3t

Ai(z) <

then show that both Ay and Kp; are Hilbert-Schmidt, and moreover that Ka; is trace class
being the product of two Hilbert-Schmidt operators.
Next, by using again the upper bound (4.86), it follows that for every € > 0

Aim L en2rss) Kailen2/ssy) = LsooKailisool, = 0,

lim Tr (1(s,sNz/s(;N)KA11(5,5N2/35N)) = Tr (15,00 Kails,00))-

N—oo

Together with Proposition 4.14, this yields

. 1
hm H1(8,8N2/35N)K§V)1(S,€N2/35N) - 1(s,oo)KAi]-(s,oo)H2 = O,

N—o0
. 1
]\}gnoo Tr (1(S,€N2/3§N)K§V)1(S,€N2/3§N)) =Tr (1(s,oo)KAi1(s,oo))

and, combined moreover with Proposition 4.13 and (4.24), we obtain

J\}E}noo H1(s,sN2/36N)KN1(5,5N2/35N) - l(s,oo)KAi]-(s,oo) H2 =0, (4.87)
J\;Lnloo Tr (1(s,aN2/35N)KN1(5,5N2/35N)) =Tr (1(3»00)KA11(5700))’ (4.88)

provided we chose € small enough. Finally, it follows from (4.15)—(4.16), (4.87)—(4.88), and
Proposition 4.1 that, for every s € R,

]\}HHOOP(NWS(SN (Zony — b)) < 5> = det (I — KAi)L?(s,oo)'

Proof of Theorem 3 (b) is therefore complete.
O

In the next section, we provide a proof for Theorem 3 (a), and thus complete the proof for
Theorem 3. We shall see that we can recover the setting of the proof of Theorem 3 (b); the
only task left is to prove the existence of appropriate contours for the saddle point analysis
which differ from the case of a right edge.

4.6 Asymptotic analysis for the left edges and proof of Theorem 3-(a)

This section is devoted to the end of the proof of Theorem 3. We precisely recall the setting
for the analysis of a left regular soft edge a; we state and prove the counterparts of Proposition
4.6 (i.e. the existence of appropriate contours for the asymptotic analysis), that is Proposition
4.16 for the case where ¢ > 0 with a = g(c), and Proposition 4.17 for the case where ¢ < 0.
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The remaining of the asymptotic analysis is omitted since we show it is essentially the same
than in Section 4.5.

Let a be a left regular soft edge; recall the definitions of g, ¢, (¢x) as provided by Propo-
sition 2.11 and set

9 1/3
ay =gn(en),  on = <_9§(7(CN)) : (4.89)
Recall moreover that
gn(en) =0 hm cy=c¢, limay=a lim oy = (—2> 1/3. (4.90)
| Neoo N—00 © Nooo g"(c)

In particular, for N large enough, —g%/(¢x) and oy are positive numbers and ¢y and ¢ have
the same sign.

4.6.1 Reduction to the right edge setting

The definition of the extremal eigenvalue Z, ), see Theorem 2, and Proposition 4.4 yield
that for every € > 0 small enough

P(NQ/BUN (ClN o f@(N)) S 8) = det (I B KN)LQ(aN—a, an—s/(N2/3ay)) + 0(1) (491)
as N — oo. We then write

det (I — KN)L2(aN—a,aN—s/(N1/3crN)) = det (I — l(s,N2/3scN)KN 1(s,N2/3€CN))L2(s,oo)

where the scaled operator K ~ has for kernel

~ 1 T Y
KN(%?J) = _NT:WKN <ClN - NT“%N’aN - NQ/%V) )

and where Ky (z,y) was introduced in (4.19) (with 0 replaced by cy). If we introduce the
map

fru(z) = an(z — cy) — log(z Zlog 1—\z) (4.92)

which differs from fy defined in (4.18) by a minus sign and by the fact that by is replaced
by ay, then we have

" N1/3

Set moreover Ky (z,y) = IN(N (y, ), then it follows by exchanging z and w in the last integral
that

N1/3x(zch)/UN7N1/3y(’w*CN)/UN*Nf;<](Z)+Nf1>t](w).

1/3
K% (2, y N j{ fdw —N1/3x(z—cN)/aN+N1/3y(w—cN)/JN—&-Nf]f](z)—Nf]f](w).
2z7r

(4.93)
Note that, as a consequence of the definition of f}; and (4.90), we have

(SR (en) = (fR)"(en) =0, (fR)P(en) = =gl (en) > 0. (4.94)
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Thus, by comparing (4.93) with (4.20) and (4.94) with (4.22), we recover the setting of the
proof of Theorem 3-(b), except that we exchanged = and y, the role of I" and © as well, and
that we replaced fx by fx. Since the Airy kernel is symmetric, see (3.1), it is enough to show
that

]\}gﬂ Hl s£N2/3aN)(K}<V - KAi)1(375N2/3gN)H2 = 07 (495)
Jim Ty (Lsen2r0y) KN — Kai) (s cn234)) = 0, (4.96)

in order to prove (3.2), as explained in the proof of Theorem 3-(b).
In the case of left regular soft edges, the analysis substantially changes whether ¢ (cf.
Prop. 2.11) is positive or not and we consider separately the two cases in the sequel.

4.6.2 The case where ¢ is positive

We first consider the case where ¢ > 0, which is always the case except if a is the leftmost edge
and v > 1, see Proposition 2.4. In particular, ¢y > 0 for all NV large enough. We then split I
into two disjoint contours I'® and I'™) in the following way: I'(®) encloses the )\;1’5 which are

larger that ¢y, while ™) encloses the )\j_l’s which are smaller that ¢y. Proposition 2.4-(e)
applied to the measure vy shows that the set {j , 1 < j<n : )\j_l < ¢y} is not empty
and thus the contour I'M) is always well-defined. If ¢y is actually larger than all the )\;1’8
as it is the case when dealing with the smallest eigenvalue when v < 1, then set I'') = T

Kg\lf) = K%; any later statement involving I'® will be considered as empty. Otherwise, I'(¥)
is well-defined and we introduce for o € {0, 1} the kernels

1/3
K( )(ZC y N / f dz% dw e—N1/3(z—cN)x/JN+N1/3(w—cN)y/UN-l—NfX/(z)—NfX/(w)
2z7r T(a) w—z

so that K%, (z,y) = Kg\?) (x,y) +K§$)(x, y). We similarly have for the associated operators that

Ky = Kg\?) + Kg\lf). Observe moreover that we can deform © in Ks\lf) (x,y) so that it encloses
the origin and I'™ since the residue we pick at z = w vanishes.
In order to establish (4.95) and (4.96), it is then enough to prove that

0
lim 1 (o250 KN Ls en2rson |, = 0. (4.97)
. 0
Jim T (1, N30 KN L (g en2/50y)) = 0 (4.98)
and
1
Jim 1 (5.2 ) (KR = Kai) g envzrny [, = 0, (4.99)
. 1
lim Ty (L s en2/50y) (KN = Kai)L(s cn2/50)) = 0. (4.100)

The exact same estimates as in the proof of the Propositions 4.13 and 4.14 show that (4.97)—
(4.100) hold true, provided we can show the existence of appropriate contours similarly as
in Proposition 4.6. More precisely, it is enough to establish the next proposition in order to
prove Theorem 3-(a), in the case where ¢ > 0.

47



Proposition 4.16. For every p > 0 small enough, there exists a contour YO independent of
N and two contours T = YW (N) and 0= @( ) which satisfy for every N large enough
the following.

(1) (a) YO encircles the )\;1 s larger than ¢y,
(b) YW encircles the )\j_l 's smaller than ¢y,

(c) © encircles the )\j_l ’s smaller than ¢y and the origin.
(2) (a) O =71, U Tq(}e)s where
T, = {cy —te™™3 £ €0, ]}
(b) ©® = 0, U C:)res where

O, = {eny +te™™3: te0,p]} .

(3) There exists K > 0 independent of N such that

(a) Re (fN(w) — fN(cN)) > K for allw e YO,

(b) Re (fn(w) — fn(en)) = K for allw € 1L,

(c) Re (fN(z) — fn(c )) < =K forall z € éms.

(4) There exists d > 0 independent of N such that

inf {|z — w| : 2e 1O, we@} >d,
inf{|z—w| ZET() we(:)res} >
inf{|z—w| zETres,we@ } d,
>d

inf {|z —w|: 2 € Vres, w E @Tes}

d,

(5) (a) The contours YO and © are disjoint, so are YO and YO, but © N T® = {cy}.
(b) The contours TD and O© lie in a compact subset of C, independent of N.
(b) The lengths of Y1) and O are uniformly bounded in N.
Although the proof uses the same type of arguments than in the proof of Proposition 4.6,
the analytical setting is not identical. Thus, although we shall provide less details than in the

proof of Proposition 4.6, we shall emphasize on the required changes. Figure 8 may help as
a visual support for the argument.

Proof. The regularity assumption yields € > 0 such that )\j_l € (0,+00) \ B(c,e) for every
1 < j < n and every N large enough. We then introduce the compact set K defined by

K= <[i%f Aln sup ] \ B(c, 5)> U {0} (4.101)

and notice that by construction {z € R: 27! € Supp(vy)} C K for every N large enough,
and also that {x € R: 27! € Supp(v)} C K. If we introduce the map
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f*(2) = a(z — ) — log(2) + 4 / log(1 — 22)(dx)

then, given any simply connected subset of C \ K, we can choose a determination of the
logarithm such that both the maps f, and f* are well-defined and holomorphic there for every
N large enough. Notice that the definition of Re f* does not depend on the determination
of the logarithm. Moreover, the proof of Lemma 4.7-(a) shows that Re f}; converges locally
uniformly on C\ K toward Re f*, and moreover Re fx (¢x) — Re f*(¢) as N — oo.

Next, we perform a qualitative analysis for Re f* and introduce the sets

Q= {z €C: Ref(2) < Ref*(c)}, Q4 = {z €C: Ref*(z) > Ref*(c)}.

Since a > 0, the asymptotic behavior Re f*(z) = aRe(z — ¢) + O(log |z|) as z — oo shows
that for every o € (0,7/2) there exisits R > 0 large enough such that

{zE(C: |z| > R, —g+a<arg(z) < g—a} CcQy (4.102)

and
3
{zG(C: |z| > R, g+a<arg(z)<§—a} CcQ_. (4.103)

Notice that the role of 2, and €2_ has been exchanged compared to the setting of a right
edge. Moreover, the arguments of the proof of Lemma 4.8 show that both €4 and 2_ have
a unique unbounded connected component.

As for the behavior of Re f* around ¢, because a = g(¢) it follows from the definition of
f* that (f*)'(2) = g(c¢) — g(z). Thus, by Proposition 2.11, we have (f*)(¢) = (f*)"(c) =0
and (f*)®)(c) = —g”(c) > 0. As a consequence, the same proofs than those of Lemmas 4.9
and 4.7-(b),(c) show there exist n > 0 and 0 < # < 7/2 small enough such that

Agpy1 C O, Aoy, C Oy, ke {-1,0,1},
where we introduced as in Section 4.4
Ak:{ZGC: 0<|z—c¢|<mn, arg(z—c)—k§‘<9}.

Notice that the role of 2_ and €4 is the same than in the right edge setting. We then
denote by 911 the connected component of Q2 which contains Agxy1, and similarly Qg
the connected component of €2, which contains Ag.

The proof of Lemma 4.10 yields that Re f* is subharmonic in C\ {0} and is superharmonic
in C\{z € R: 27! € Supp(v)}. As a consequence, it follows from the proof of Lemma 4.11
that we obtain a similar statement as in Lemma 4.11 for Re f* after having exchanged the
role of Q4 and Q_ (to furthermore convince the reader, notice that Re f*(z) —aRe(z —¢) =
—Re f(2) — bRe(z — 9) and that both the maps z — aRe(z —¢) and z — bRe(z —0) are
harmonic). Namely,

(1) If Q, is a connected component of Q_, then 2, is open and, if €2, is moreover bounded,
there exists x € Supp(v) such that 27! € Q..

(2) Let Q. be a connected component of € such that Q. ¢ R.
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(a) If Q. is bounded, then 0 € .
(b) If ©, is bounded, then its interior is connected.
(c) If 0 ¢ Q,, then the interior of €2, is connected.

Equipped with the previous observations we are now in position to provide the counterpart of
Lemma 4.12 in the present setting, namely to prove that the following statements hold true.

(A) We have Q; = Q_;, the interior of )y is connected, and for every 0 < a < /2 there
exists R > 0 such that

3
{zE(C: |z| > R, g+a<arg(z)<§—a} C Q.
(B) The interior of € is connected and, for every 0 < a < 7/2, there exists R > 0 such
that
™ ™
{ZE(C: |z| > R, —§+a<arg(z)<§—a} C Qp.

(C) We have Q9 = Q_o, the interior of )y is connected, and there exists § > 0 such that
B(O, (5) C Qo.

Let us first prove (A). Since by definition €, is a connected component of Q_, its interior
is connected by (1). Let us prove by contradiction that ; is unbounded, from which (A)
will follow by using the symmetry Re f*(Z) = Re f*(z), the inclusion (4.103) and that €_
has a unique unbounded connected component. Assume €2; is bounded. Then (1) yields the
existence of x € Supp(v) such that 7! € Q1. If 27! < ¢ (resp. 7! > ¢), it then follows from
the symmetry Re f*(Z) = Re f*(z) that ©; surrounds Q2 (resp. o) so that Qs ¢ R (resp.
Qo ¢ R) is a bounded connected component of Q; which does not contain the origin. This
yields with (2a) a contradiction and our claim follows.

Since we just proved that 1 is unbounded, the origin does not belong to . As a
consequence, (2a) and (2c) yield respectively that g is unbounded and has a connected
interior. Using moreover the inclusion (4.102) and that €4 has a unique unbounded connected
component, (B) follows.

As a byproduct of (A), Q9 is bounded. Thus Q9 contains the origin by (2a) and has a con-
nected interior by (2b). By using the symmetry Re f*(Z) = Re f*(z) and that Re f*(z) — 400
as z — 0, (C) is proved.

Finally, as a consequence of (A), (B) and (C), the existence of the contour T, resp.
T, resp. é, in Proposition 4.16 is proved by choosing T(© in the interior of Qy encircling
{z € K : 2 > ¢} and intersecting the real axis exactly twice in R \ K with finite length, resp.
by completing {c — te™™/3 : t € [0, p]} for p small enough and N large enough so that both
the points ¢ — pe’™/3 and ¢y — pe~ /3 lie in Qs into a closed contour with a path lying in the
interior of Qp but staying in {z € C: Re(z) > 0} and intersecting the real line exactly once
at the left of K with finite length, resp. by completing {cx + te*™/3 : t € [0, p|} for p small
enough and N large enough so that both the points ¢y + pe™3 and ¢y + pe~™/3 belongs
to 1 into a closed contour with a path lying in the interior of €2y and crossing the real axis
exactly once at the left of the origin with finite length, and then by using the local uniform
convergence of Re fx, — Re f* on C\ K; see the proof of Proposition 4.6 for the details. [
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Figure 8: Preparation of the saddle point analysis for a left edge with ¢ > 0. The path Tq(nlel

is close to the inner dotted path at the left of ¢. The path (:)res is close to the outer dotted
path at the left of ¢. The contour at the right of ¢ is T(©.

4.6.3 The case where ¢ is negative

Here we consider the case where ¢ is negative, which only happens if we are looking at the
leftmost edge a when v > 1, and thus ¢y < 0 for all N large enough. We recall that

N1/3 * *
Ki ) = ooy f 02 f L oo e e N ),

Note that the /\j_l’s are zeros for e/~ and that 0 is a zero for e /~. Thus, since the residue
picked at w = z vanishes, we can deform © and T is a way that I' encircles © and all the
AL y by, whereas O encircles the origin and possibly some )\

It is enough to establish the next proposition in order to obtain (4.95) and (4.96) in the
case where ¢ < 0, and thus to complete the proof of Theorem 3-(a), since the same estimates
as in the proof of Proposition 4.14 can be used after setting Kg\l,) = K% and ' =7T. The
reader may refer to Figure 9 to better visualize the results of the next proposition as well as

the proof argument.

Proposition 4.17. For every p > 0 small enough, there exist contours T = T(N) and
0= @( ) which satisfy for every N large enough the following.

(1) (a) Y encircles ©, the origin and all the )\

(
(b) © encircles the origin (and possibly some )\j ’s).
(2) (a) T =7,U7Y,es where

T, = {en — te™™3: t [0, o]}
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(b) © = O, U Oyes where

é* = {CN + teim/?’
(3) There exists K > 0 independent of N such that

(a) Re (fN(w) — fN(cN)) > K for all w € Tyes
(b) Re (fN(z) — fN(cN)) <K forall z € é,«es
(4) There exists d > 0 independent of N such that

cte0,p]}.

inf{|z—w|: ZET*,wEéres} > d
inf{|z—w|: zETres,wEé*} > d
inf{|z—w| : 2€ Yhes, WE (:)Tes} > d

(5) (a) Y and © lie in a bounded subset of C independently of N
(b) The lengths of Y and © are uniformly bounded in N.

Figure 9: Preparation of the saddle point analysis for a left edge with ¢ < 0. The path Ores
is close to the inner dotted path. The path T,.s is close to the outer dotted path. The thick

segment represents the support of the image of v by the map x +— z 1.

Proof. We use the notations, definitions and properties used in the proof of Proposition 4.16,

except for IC that we define by

.1 1
K= [%fA—n,s%p )\—1] u{0} .
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Clearly {x € R : 27! € Supp(vy)} C K for every N and moreover {z € R : z7! ¢

Supp(v)} € K. We now prove that the following facts hold true.

(A) We have ; = Q_;, the interior of Q; is connected, and there exists zp € Supp(v) and
§ > 0 such that B(x;',d) C Q.

(B) We have Q9 = Q_o, the interior of )y is connected, and for every 0 < a < 7/2 there
exists £ > 0 such that

{ZG(C: |z| > R, —g+a<arg(z)<g—a}cﬁg.

The proof will mainly use properties (1) and (2)-(a)/(b)/(c) from the proof of Proposition
4.16. Let us show (A). First, ©; has a connected interior by (1). Let us show by contradiction
that Qp is bounded. If ©; is unbounded, then by using the symmetry Re f*(Z) = Re f*(z),
the inclusion (4.103) and the uniqueness of the unbounded connected component of Q_,
it follows that Q9 is bounded without containing the origin, which contradicts (2a). Thus
)y is bounded, and has to contain some z; U with zg € Supp(v) as a consequence of (1).
Moreover, since Re f* is upper semicontinuous on an open neighborhood of ! (because it
is subharmonic on C \ {0}), there exists § > 0 such that B(xy',8) C Q1. As a consequence,
together with the symmetry Re f*(Z) = Re f*(2), (A) is proved.

Next, since 1 thus surrounds the origin, then 5 has to be unbounded by (2a) and has a
connected interior by (2c). Finally, (B) follows from the symmetry Re f*(Z) = Re f*(2), the
inclusion (4.102) and the uniqueness of the unbounded connected component of Q.

To construct T satisfying the conditions of Proposition 4.17, by (B) we can complete
{en — te® /3 .t € [0,p]}, for N large enough and p small enough so that both the points
cn — pe'™3 and ¢ — pe~ /3 lie in Qy, into a closed contour with a path lying in the interior
of €25 and intersecting the real line exactly once at the right of & with finite length, and then
use the local uniform convergence of Re fx to Re f* on C\ K, see the proof of Proposition
4.6 for the details.

To construct ©, we need to proceed more carefully since 21 actually crosses K and Re f
may not converge uniformly to Re f* there. For N large enough and p small enough so that the
points ¢y + pe™3 and ¢ +pe~/3 lie in Qy, by (A) we can complete {cy +te=™/3 : t € [0, p|}
into a closed contour with a path = lying in the interior of {21 and crossing the real axis exactly
once at xy ! with finite length. Since B (xy 1 §) € Q; we can moreover assume that = crosses
the real axis perpendicularly, namely that there exists 11 > 0 small enough such that the
segment {xy' + 41 : |n| < mi} is contained in Z. Since Q; C Q_, there exists K > 0
independent on N such that

Re f*(z) — Re f*(¢) < —4K, z €EE. (4.104)
Notice that the map z + [log|l — zz|v(dz) is upper semicontinuous on C since it is

subharmonic (see the proof of Lemma 4.10). As a consequence, if [log |1 -2z |v(dz) = —oo,
then there exists 79 € (0,71) small enough so that

'y/log 11— (gt +ino)|v(dz) < —2K—Sl;]p (aN(xgl —cn)—Re f*(cN)) —log(xp). (4.105)
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If instead [ log |1 — x/xo|v(dz) > —oco, then by upper semicontinuity there exists 79 € (0,7)
small enough to that

’y/log 11— x(zgt +ino)|v(de) < ’y/log |1 —x/xolv(dx) + K. (4.106)

Let 1 be defined as above and consider a compact tubular neighborhood T of Z\ {z Liin:
In| < no} small enough so that T lies in C\ K and Re f* — Re f*(¢) < —3K there (the latter
is possible since Re f* is upper semicontinuous on C \ {0}). Notice that by construction the
interior of 7~ contain both the points ¢y + pe™? and ¢y + pe ="/ for every N large enough,
and the points x 14 ing and Ty 1 _ing as well. Using the local uniform convergence of Re I
to Re f* on C\ K and the convergence Re f3,(¢cx) — Re f(c), we can show as in the proof of
Proposition 4.6 that for every N large enough we have

Re fx(2) —Re fy(en) < —K

for every z € T. As a consequence, for every N large enough, we can construct the path
O,es is the following way: it goes from ¢y + pe~"/3 to To L+ ino staying in 7T, then follows
the segment {z Lyin: 0<n< Mo}, and is finally completed by symmetry with respect to
the real axis. As for what is happening on {zy* + 1 : |n| < no}, since a priori Re f% does
not converge uniformly toward Re f* there, we need an extra argument to complete the proof
of Proposition 4.17. Namely, we need to show that for every N large enough, uniformly in
| < no,
Re fi(zg' +1in) — Re fi(en) < —K . (4.107)
Let us set for convenience z, = x; L4 in for any In| < mo. First, since the map = —
log |1 — x2,,| is bounded and continuous on any compact subset of R, the weak convergence
vy — v and the convergence n/N — «y yield that for any N large enough

% /log |1 — 2y, |vn(de) < 'y/log |1 — 2y, |v(de) + K. (4.108)
If we assume [log |l — z/zo|v(dz) = —oo, then for every N large enough, uniformly in
’77’ < 1o,
Re fy(zy) — Re f(ew)

_ . n
< sup (aN(g;O ' —¢n)—Ref (cN)> — log |z + N /log |1 — 2z, vn(de)
N

_ . n
< sup (aN(;pO ' —¢y)—Ref (cN)> + log(zo) + N /log 11 — 22y, | vy (da)
N
< - Ku
where for the last inequality we used (4.108) and (4.105).

Now, assume instead that [log|l—z/zo|v(dz) > —oo. By using the convergences ay — a,
¢y — ¢ and Re f}(¢cx) — Re f*(¢c), we obtain for every N large enough (and independently

on 7)
an Re(z, —en) — Re fy(en) < aRe(z, —¢) —Re f*(¢) + K.
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Combined with the inequalites (4.104), (4.108) and (4.106), we obtain that for every N large
enough and uniformly in |n| < 79

Re fy(z;) — Re fy(cw)

K +Re f*(z;) — Re f*(¢) + % /log|1 — xzp| vy (da) — 'y/log\l — xzy| v(dw)

N

< —3K—|—X[/log\l—xzn\u]v(dx)—’y/logll—xznlu(dx)

< —3K+;/log\l—xzm]y]v(dx)—7/10g|1—3:/x0|u(d$)

N

—2K—|—7/log|1—a:z,70|y(dx)—fy/log|1—x/x0|1/(dx)
< *Ka

and this completes the proof of Proposition 4.17.

5 Proof of Theorem 4: Asymptotic independence

In this section we prove Theorem 4.

Our strategy builds on an approach used by Bornemann [21]. Indeed, the asymptotic
independence for the smallest and largest eigenvalues of an N x N GUE random matrix
is established in [21] by showing that the trace class norm of the off-diagonal entries of a
two by two operator valued matrix goes to zero as N — oco. Here we obtain that proving
the asymptotic joint independence of several extremal eigenvalues leads to consider a larger
operator valued matrix. Moreover, we show that it is actually sufficient to establish that
the Hilbert-Schmidt norms of the off-diagonal entries go to zero as N — oo, instead of the
trace class norms. The latter can be provided by an asymptotic analysis for double complex
integrals as we performed in the previous section.

More generally, our method can be applied to several other determinantal point processes
for which a contour integral representation for the kernel and its asymptotic analysis are
known, e.g. the eigenvalues of an additive perturbation of a GUE matrix [25].

Conventions: In this section, we fix two finite sets I and J of indices, and real num-
bers (s;)icr and (tj)jcs as well. Assume that (a; = g(c;))ier are regular left soft edges and
(b; = g(05))jes are regular right edges. We denote by ¢; y and 0, v the sequences associated
respectively with a; and b; as specified by Proposition 2.7-(c). We moreover set

a;, N = gn(cN), bjn = gn(djN)
and
2 1/3 5 2 1/3
e T
Z gn(ein) ! Ry
where gy has been introduced in (2.6). Finally, ¢;(IN) (respectively ¢;(IN)) denotes the se-
quence associated with a; x (resp. bj ) as in Theorem 2 (see also Propositions 2.11 and 2.12).
Finally, we shall consider that the free parameter ¢ introduced in the statement of Proposi-

tion 4.2 is zero when dealing with the kernel Ky (x,y) , see Remark 4.3.
Our starting point the following proposition.
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Proposition 5.1. Consider the setting of Theorem 4. Then, for every ¢ > 0 small enough
and for every sequences (1n; N)n, (Xj,N)N of positive numbers growing with N to infinity, it
holds that

P(nz',N(az',N — ZoN)) < 8y XN (To vy — bin) <ty (3,7) € T % J)

= det (I — Ky) )+ o)

22 (User AU Uses B)
as N — oo, where
A= (N —€, 0N — Si/MiN), Bj = (bjn +tj/xjN, bjN +€).

Since the proof is very similar to the one of Proposition 4.4, we omit it.
Now, if we specify the previous proposition to n; y = N2/3JZ‘7N and x; N = N2/3(5j7N, then
we have as N — oo

N—oo

lim P(NQ/?’Ui,N(ai,N — .%'%.(N)) < s, N2/35j7N(x¢j(N) — ijv) < iy, (Z,j) el x J)

= det (I—KN)LQ( +o(1) (5.1)

Uier 40U Uje, B))
where
A= (G —e ain —si/(N*Poin)),  Bj=(bjn +1t;/(N36;n), bjn +e).

For every ¢ € I and j € J, we introduce the maps

Fin(2) = ain(z — cin) —log(z) + % S log(1— Ay) (5.2)
k=1
Fin(z) = —byx(z = 0j) +1og(2) — 1 3 loa(1 — Ms2) (5.3)
k=1

and the multiplication operators Ef and E; acting on L?(A;) and L?(B;) respectively by
Efh(z) = VinCaniNeanp oy 0 e L2(4),
Ejh(x) = e NinQin)tNaGNp ) he L3(B;).
The next proposition is the key to obtain Theorem 4.
Proposition 5.2. For every € small enough, the following holds true.

(a) For every (i,7) € J x J such that i # j, we have
. -1

Jim |15, KBS g, |, = 0. (5.4)
(b) For every (i,j) € I x I such that i # j, we have

lim ||14,B; Ky (E))"14,], =0. (5.5)

N—oo
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(¢c) For every (i,j) € I x J, we have

Jim {14, B KyE; g, |, =0 (5.6)
and
Jim ([, B Ky (E) " 1], = 0. (5.7)

Before proving Proposition 5.2, let us show how does it lead to the asymptotic joint
independence of the extremal eigenvalues:

Proof of Theorem 4. Our purpose is to show that for large IV, the determinant at the right
hand side of (5.1) converges to a product of Fredholm determinants involving the Airy kernel.
Assume that IV is large enough so that all the A;’s and B;’s are disjoint sets. Then, as shown
in [22] (see also [38, Chap. 6]), the Fredholm determinant det (I — Ky)

admits the operator matrix representation

L2 ((Uz‘el ANV (Ujes Bj))

det (I - KN)L2 ((Uiel AU (Ujes Bj))
i i,J
= det |- [Kff} (h)ETxT [K,Q] (i)elx (5.8)
K] K% .
(i,5)€TXI (3,9)eIxJ (@i61L2(Ai))@(®jEJL2(Bj))

where K% : L?(A;j) — L?(A;) denotes the integral operator
Kifh(o) = [ KnGhndy, o€ A,
j

and similarly the operators KZLJ] : L?(Bj) — L*(A), K(Z]} : L?(4;) — L*(B;) and Kf]?] :
L*(B;) — L*(B;) are defined by restricting Ky on appropriate subspaces of L?(R). Consider
now the diagonal operator

b= (D)o (Dn)

i€l jed

acting on (@,c; L*(4:)) @ (@jeJ L*(By)). Since the A4;’s and Bj’s are compact sets and
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Ky is locally trace class, the identity (4.1) then yields

2% Ko
det | T — [[ Zﬂ(m’)elﬂ [ Zﬂ(i,j)e]xJ
T gyeaxt T gyeaxa (@iezLQ(Ai))GB(@jEJL2(Bj))

K”} [K”] T
—det | T—-E [ G jyerxt LT} jyerxT g1
[Km‘ K

T G jyeaxr

T ij)ea x|

(®,crL2(A)®(®;c, L2(B)))
B E) ] B

=det | I — - - (@.g)elxJ
E.K% (E%)~! [EK” o
|: JIVI (i,j)ex1 I (@.g)exJ (@ie[LQ(Ai))@(@jeJLQ(Bj))
14 Ef Ky (E9) 11 ] [1 B KyE 1 ]

= det [ - R P e (R (5.9)
15.E Ky(E) 114 [1 B Ky E 15
[ Bi ~ J) A (i,j)eJxI Bi NZi TBj (i,j)eJxJ

L2(R)®UTI+1T)

where |I| and |J| stand for the cardinalities of I and J respectively. By using the definition
(4.2) of deta, it follows from (5.8) and (5.9) that

det (I — K

ot (1 =KN) o (e, 400U,y B)

_ HeTr(lAiE;* Ky (Ef)"'1y,) H oTr(15;E; KyE; '15))

iel jeJ

14 E Ky(E) 11 ] [1 KB ]
[A’ i Ko 9) A (g)elxI A BNTG B,
15.E, Ky (E¥) 114,
[ BB Ky (B5) ™ 14 (i,5)eTXI

w dety | T— ~ (4,9)eIxJ
]-B,L-EiKNEi 1Bj o

(Li)eIxJ ] ) p2ryer+JD)

(5.10)

Let us inspect the diagonal elements of the matrix valued operator in the Fredholm determi-

nant at the right hand side of the previous identity. In Section 4, we have precisely shown
that for every ¢ € I and j € J,

J&E)noo HlAiE;k KN(E:)_llAi - 1(si,oo)KAil(si,oo)H2 =0,

. 1 B
]\}gnoo HlBjEj KNEj ]'Bj - l(tj7oo)KAi1(tj 00)”2 =0

and

Z\}gnoo Tl"(lAiEf KN(E;()_llAi) = Tr(1(5i7oo)KAi1(si, ))7
i Te(15, B KB 1) = Tr(L, Kl )
Proposition 5.2 then yields that the Hilbert-Schmidt norms of the off diagonal entries of the

matrix valued operator in the Fredholm determinant at the right hand side of (5.10) converge
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to zero. Recalling that dets is continuous with respect to the Hilbert-Schmidt norm, we obtain
from (5.10) that

lim det (I — Ky)

N—300 L2 ((Use; AU Ujes By)

= Jetteoeatem)dety (I — 1, 00 Kail(s,00) 12(s)

el

Te(1r. ooy Kaili o
X He ( (tj,00) AL (25, ))detg(f— 1(tj,oo)KAi1(tj,oo))L2(R)
JjeJ

= [l det(7 =Kai) page, o) IT det( = Kai) 2, o).

el ]EJ

and Theorem 4 is proved. O

Now we turn to the proof of Proposition 5.2.

To do so, we shall deform the contours I' and © in the integral representation of Ky to
appropriate contours for the asymptotic analysis, as provided by the propositions 4.6, 4.16
and 4.17. The problem is that since © and I" will be associated to different critical points ¢y’s
or dy’s, it is a possibility that they intersect. This raises a problem related to the presence
of the factor (w — 2)~! in the integral representation of Ky. This problem can be avoided
by using the following alternative expression of the kernel Ky, that was established in [17];
since the proof is short, we provide it for the sake of completeness.

Lemma 5.3. For every x # y we have

o1 = Nw
= Nzz+Nyw )
Kn(z,y) (2@77) o ]{dzf dwe™ Cn(z,w) ( ) Z| |1 ( T )\iz) , (5.11)

where

C 1 Ly )\? 5.12
N(z’“’)_%_ﬁjzl 1= X2 (1= Nw)’ (5.12)

Proof. Starting from (4.5) with ¢ = 0 and following [17, Section 3.3], we obtain by integrations
by parts

1 z o1 = Nw
Nzz+Nyw ~ 2
wK(z,y) = 2277 j(){dzy{dwe —z( > H(l—/\i2>

1 N Aj
X +=-
w— 2 z — 1 — Nz
7j=1
and
1 zZ\N 1—\w
K d d Nzz+Nyw ~ ?
yKn(z,9) (2im) fg 272 we w—z(w> Zl_[l(l—)\zz>
1 N &
X(wz—i_wjz;l)\]w
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This provides

(2 — y)Kn(a,y) = (21]\7:)2 /{ 4z § dweNetvw (2)V T <11 - AAZ})

w
e i=1

and Lemma 5.3 follows.

Equipped with Lemma 5.3, we are now in position to prove Proposition 5.2.

Proof of Proposition 5.2. Since the sets of indices I and J are finite by assumption, the reg-
ularity condition provides € > 0 such that /\j_1 € (0,+00) \ B for every 1 < j < n and every
N large enough, where

5= | (B(ci,s)UB(Dj,s))

iel, jed

K= <[1nf1 , Sup ] \B> U {0},
)\n N
so that {r € R: 27! € Supp(vny)} C K for every N large enough and moreover {z € R :
x~t € Supp(v)} C K.
We start by proving (a). To do so, we essentially use the estimates from the Section 4.5.2.
For any (i,7) € J x J such that ¢ # j, we have

We then set

|15, B KNE; 15|

:// (e—Nfin(Di’N)+NLL’D7,',NKN(:L.’y)eij,N(Dj,N)_Nyaj,N>2dxdy. (5‘13)

By using Lemma 5.3 and performing the changes of variables z — N2/ 38; n(z — b; ) and
Yy N2/35j7N(y — b n), we obtain

/ / —Nfi,n(0; N)JerazNKN(x y) Nfin@iN)— NyD]N> dzdy

1 N2/35i,N€ N2/36j7]\7£ N(b b)
- 5.N5.N/ /t Ky (2,y)* dady, (5.14)
) Js 2

where

=~ (05,0,
Ky ()
N1/3
= d dw C
(2in)2(brn — by 1 2/ (N2P38, ) — 5/ (N2, ) 7{ 27{ w On(zw)
X e*Nl/g’x(Z*Di,N)/51',N+N(fi, (&)= fi,n (05, N)) Nl/ay(w 05,8)/ 85, N =N (fj,n (w)—Ff;,n (25, N)) (515)
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The main point here is that, since i # j, there exists C' > 0 independent of N, z and y such
that
N1/3
(2im)2(bin — bj N + 2/ (N?/30; x) — y/(N?/36; )

Then, as we did in Section 4.3 and 4.4, we replace the contour I' by Y(© U Y1) where the
contours T(@ and T are specified by Proposition 4.6 with dy = o; v (if T does not exist,
we just deform I to T(l)). Similarly, we deform the contour © and replace it with the contour
5) specified by Proposition 4.6 with 05 = 0, n. We then deform the contours TM and ©
around the saddle points similarly as it was done in Section 4.5.2. More precisely,

TO =7, U and 6 =0,U0,.

Tes

< CNY3, (5.16)

where we introduced
T, ={oin+ N3 ge|—7/3,7/3]}U {oin + teT /3 e [NTV3 p))
O, = {ojn + N3 . 9 e [21/3,4n/3]} U {0 n — te™™/3 . 1 € [N7YV3 ]},

with p chosen small enough so that Lemma 4.7-(b) applies for both f; xy and f; x. In addition,
Proposition 4.6 provides K > 0 independent of N such that

Re(fin(2) = fin(@in)) < —K, z€ 1 (5.17)
Re(fin(z) — fin@in)) < —K, z€ T (5.18)
Re(fin(w) — fin@jn)) = K, w € Opes. (5.19)

Note that the contours T(© and © may now intersect, and the contours TM and O as well,
since the contours are associated with different edges. This raises no problem since Cn (z, w)
is analytic on C \ K. More precisely, since by construction the contours YO, T@ and 5)
lie inside a compact subset of C\ K which does not dependent on N, there exists C' > 0
independent of N such that

ICn(z,w)| <C', 2zeTOur®  weo. (5.20)
Next, Lemma 4.7-(b) yields
Re(fin(2) — fin(0in)) < g (din) Re(z — 05, n)% /6 + Az — 05 n|*, z €T,
Re(fjn(w) = fin(05,n)) = g5 (0;,5) Re(w = 0;,5)*/6 — Ajw — 05 n %, w € O,
where A > 0 is independent of N. We moreover assume we chose p small enough so that
gn@in) = pA >0,  gx(n) — pA >0, (5.21)

for all NV large enough. Then, by using the same estimates as in Sections 4.5.1 and 4.5.2, we
obtain for every x,y > s and N large enough

)) 702N+C3N1/3 _I
|dz| < Che %N

z Re(z—0; pn)
/ e*Nl/gTZ’N+NRB(}%,N(Z)*JC@N(°@',N
1(0)

_ :C,_S —CQN+C3N1/3 .ac
—e 261,N +Cle JZ,N ,

Re(z—0;
/ e—Nl/S%N’N)*‘N Re(fi,n(2)=fi,n(0i,N))
T(1)

N)) 7 e —CoN+C3N1/3 4
e N U ldwl < grme TN+ Cre N
6

2 yRe(w—0,
/ Nl/s%dv Re(fj,n(w)—fjn (0
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for some C,C1,Ca,C5 > 0 independent on N and z,y. Combined with (5.16) and (5.20), it
follows from (5.15) that

T / / / n1/3
K (2,9)] < Ncl/ge“”)/(%w)<ys>/<26w>+c' SEVHANTEN RN (5.22)

where C’, C}, C%, C4 > 0 are independent on N and z,y. Finally, by mimicking the Step 3 of
the proof of Proposition 4.14, we obtain

. _ 2
]\}E}loo Hle‘Ei KnE; 1lBj Hz =

as soon as ¢ is small enough. We thus have proved (a).

Concerning the points (b) and (c), we proceed similarly as for the point (a) and use Lemma
5.3 and the changes of variables x N2/3Ui’N(ai7N —x) and y — Nz/gdij(y —bj n) in order
to obtain

. » ) 1 Nz/gai,NE N2/35j,N5 ~(a’ b,) )
H]-AiEi KNEj 1BjH2 = UNfsN/ /t Ky (2, y)” dzdy,
1y Js J
where
Ky (@,9)
N1/3

= — dz% dw Cn(z,w
(2im)2(a,n — bj v — x/(N?/30; n) — y/(N?/36; n)) fi“ o w(zw)
> eNl/Sx(z ¢, )/ 00, N =N (f; 5 ()=} 5 (60,8)) N 3y(w=0;,5) /85,8 =N (fj, 5 (w) = 5,5 (05,n) (5.23)

If ¢; > 0, then we replace the contour I' by the contour Y@ uT® (if Y does not exist, we
just deform I' into T(l)) specified by Proposition 4.16 with ¢y = ¢; v , and otherwise deform
" into T as in Proposition 4.17. We moreover deform the contour © to obtain the contour
© specified by Proposition 4.6 with 95 = 0; y. The same arguments than in the proof of (a)
show that

hm HlA KNE 113 H

Similarly, we have

1q 12 1 Ve NFove 0y
H]‘BzEl KN(E_]) 1AjH2 = 5/ / KN“ ! ($,y) dxdg?
i, NOi,N 85
and
1 2 1 NPaine (N*Pojne = (a;,a5) 2
114, E7 Ky (B) ™1, ||, = UNO.N/ / Ky (2,y)" dedy,
2, J» Sq Sj
where

Ky (z,y)

N1/3
= d dw C
(QiW)Q(bi,N ajN+$/(N2/35zN) _|_y/ N2/3UJN % Z% w N zZ, w
x e N300 ) /BN AN i (2)= Fiw @i)) =N (i) 73N N (e @)= Fin(5)) | (5,94)
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and

Ry (2,y)
N1/3
= dz ¢ dw Cn(z,w
(2im)%(ai,n — ajn — x/(N*30; §) +y/(N?30;n)) ji j{@ w(zw)
« eNl/sm(Z_ci,N)/O'i,N_N(fi*,N(Z)_fi*,N(ci,N))e_Nl/Sy(w_cj,N)/Uj,N+N( Sn )= v (GN) (5.25)

For the kernel (5.24), we split the contour I' into T(®) and Y™ where these contours are
specified by Proposition 4.6 for 0 = 9; v (again, if T does not exist, we just deform I" into
T(l)). We also deform © to obtain the contour © as in Proposition 4.16 or Proposition 4.17
with ¢y = ¢; n, depending on whether ¢; > 0 or not. For the kernel (5.25), we similarly split
the contour I' into Y@ and Y and take these contours as in Proposition 4.16 for ¢y = ¢; v
if ¢; > 0, and deform I'" into Y as in Proposition 4.17 otherwise. Moreover, © is replaced by
O as specified in Proposition 4.16 or Proposition 4.17 with ¢y = ¢; v depending on whether
¢j > 0 or not.

The same line of arguments than in the proof of (a) then shows that (b) and (c) hold true,
except when ¢; v < 0. Indeed, in the latter case the contour ) coming with Proposition 4.17
does cross by construction the set K at a point z ! where z¢ € Supp(v). Thus we cannot use
the bound (5.20) anymore.

To overcome this technical point, having in mind the definition (5.3) of Cy(z,w), observe
that since by construction T U T® or T lie in a compact subset of C \ K, the map z —
(1 —2X;)~! is bounded there uniformly in 1 < £ < n and N large enough. Since moreover by
construction O lies in C\ {0}, the map (z,w) — (zw) ™! is bounded on the contours uniformly
in N large enough. Observe furthermore that for every 1 < £ < n, we have

Nfx y(w) N
i — eij,[]fl](w)
1-— )\g’w
where
) RN
fi []@(w) =a;n(w —¢jn) — log(w) + N Zlog(l — Apw). (5.26)
k=1

k£l

Namely, the pole at w = Ay introduced by Cn(z,w) is actually cancelled by N ), Thus,
the items (b) and (c) of the proposition follow provided that the previous estimates continue

* *[4]
to hold, uniformly in 1 < £ < n, after the replacement of eNin by eMJiN . But this is not
hard to obtain because, as a consequence of the definitions (5.2) and (5.26), for every k € N
and compact subset B C C\ K there exists Cp, > 0 independent of N such that

«[0) ( « \(E Chk
sup anax | (£50)" () = (£ ()] < =g,

The proof of Proposition 5.2 is therefore complete. O

6 Proof of Theorem 5: Fluctuations at the hard edge

In this section, we provide a proof for Theorem 5.
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Let us fix s > 0 and o € Z. We set n = N+« and define o as in (3.7). The representation
for the gap probabilities of determinantal point processes as Fredholm determinants yields

P<N20_N Lmin 2 S) = det (I - I<]V)[/2(078/(]\720'N))7

where

Tr1 = Zi‘a+1 if av > 0,
Lmin = - .
Ti—a =T1 fa<O.

If we introduce the integral operator Ky acting on L?(0, s) with kernel

~ 1 z Y
KN(%?/) = NTO'NKN <NQUN, NQUN> ) (6-1)

then it follows from a change of variables that

P(N2on in > 5) = det (I = Kn) (6.2)
We recall that Kpe o(x,y) has been introduced in (3.6) and also define the operator E and
E~! acting on L?(0,s) by Eh(z) = 2*/2h(z) and E~'h(z) = 2~%/2h(x). Notice that when
a > 0 (resp. a < 0) the operator E (resp. E~!) is well-defined on L?(0,s), but E~! (resp.
E) is not defined on the whole space. Nevertheless, in the following these operators will
always arise premultiplied or post-multiplied by an appropriate operator so that the product
is well-defined on L?(0, s), see below.

The aim of this section is to prove the following.

Proposition 6.1.

lim sup KN(JU, y) — EKBe,aE_l(lEa y)| = 0.
N=00 (z.4)€(0,5]%(0,5]

Let us first show how Theorem 5 follows from this proposition.

Proof of Theorem 5. The relation zJ! () = aJo(x) — xJay1(x), see [33, 7.2.8 (54)], provides

_ Va1 (V) Ja(VY) = Va1 (V) Ja(VT)

K e,a\L,Y) = . 6.3
It then follows from [33, 7.14.1 (9)] that
1 /1
Kiea(e9) = | oV Ju(vii)du,

and, after the change of variables u +— wu/s, this yields the factorization Kpeo = Bg as
operators of L%(0,s) where By has for kernel By(z,y) = Jo(y/2y/s)/(2y/5). The asymptotic
behavior as £ — 0

JalE) = & (ﬁ)“ (1+0(%), ifa>0,

_ 1\« T ||
Ja(\/i):(l)<f> (1+O(1‘2)), if « <0,
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which is provided by the series representation (3.5) of J,, then shows that B, BsE~! and
KBG,QE_1 when a > 0, EB; and EKpe o when a < 0, and EI(lgeﬂE_1 are well-defined and
Hilbert-Schmidt operators. Moreover, E and KBe’aE*1 when o > 0, E7! and EKpBe,o when
a < 0, and EKBMLE_1 are trace class being products of two Hilbert-Schmidt operators.
Since [0, s] is compact, it follows from Proposition 6.1 that
Jim |10, (Ky — EKpeaE ") 10,9, = 0

and
. 7 -1
Jim T (10,9 Kn1(0s)) = Tr (1(0,5)EKBe,aE ' 1(g5))-
We then obtain from Proposition 4.1 that
lim det (I — K
Ngnoo ¢ ( N)

= det (I — EKpeoE™')

L2(0,s) L2(0,s)’

which shows together with (6.2) and (4.1) that

lim IP)(N2UN Tmin 2 S) = det (I - KBeva)LQ(O S)'

N—o0

Finally, that det (I — KBe,o)
5 is complete.

L2(0.s) = e~* has been observed in [35], and the proof of Theorem

O]

We now focus on the proof of Proposition 6.1.

6.1 The Bessel kernel

We first provide a double complex integral formula for the Bessel kernel.

Lemma 6.2. With Kpeo(z,y) defined in (3.6), for every 0 <r < R and x,y > 0 we have

1 a/2 dZ z « x z Y w
K , (4) EEREAETIE S 6.4
Bea(,y) = (2im)2 7{2 , j{,ﬂ R W Z— w) € ’ (64)

We recall that, by convention, all contours of integrations are oriented counterclockwise,
and thus the notation f\zlzr is unambiguous.

Proof. The Laurent series generating function for the Bessel functions with integer parameters
reads, see [33, 7.2.4 (25)],

e3(:=3) = Z Jo(z)2%, z € C\ {0}.
This yields for every z,r > 0 and o € Z,

|2|=r

2im z
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After the changes of variabl