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Abstract

The notion of watershed, used in morphological segmentation, has only a
digital definition. In this paper, we propose to extend this definition to the
continuous plane. Using this continuous definition, we present the watershed
differences with classical edge detectors. We then present a metric in the
plane for which the watershed is a skeleton by influence zones and show the
lower semicontinuous behaviour of the associated skeleton. This theoretical
approach suggests an algorithm for solving the eikonal equation: ‖∇f‖ = g.
Finally, we end with some new watershed algorithms, which present the
advantage of allowing the use of markers and/or anchor points, thus opening
the way towards grey-tone skeletons.

Résumé

La notion de ligne de partage des eaux, utilisée en segmentation mor-
phologique dispose uniquement d’une définition digitale. Dans cet article,
nous proposons d’étendre la définition de la ligne de partage des eaux au plan
continu. En utilisant cette définition continue, nous comparons la ligne de
partage des eaux avec les extracteurs de contours classiques, et montrons leurs
différences. Nous introduisons ensuite une métrique pour laquelle la ligne de
partage des eaux est un squelette par zones d’influence, ce qui nous permet
de montrer son comportement semi-continu. Cette approche théorique nous
suggère un nouvel algorithme pour résoudre l’équation d’eikonal : trouver
f telle que ‖∇f‖ = g. Nous terminons enfin sur de nouveaux algorithmes
de ligne de partage des eaux, présentant l’avantage de pouvoir inclure des



marqueurs et des points d’ancrages, ouvrant ainsi la voie aux squelettes à
teintes de gris.



1 Introduction

One of the most intuitive notions of morphological segmentation is the notion
of watershed [3, 13, 22, 2, 28]. The algorithms proposed in the literature have
only a formal link with the various definitions of the watershed. Intuitively,
the idea is that the watershed is a skeleton by influence zones with respect
to a special distance, but all the previous theoretical definitions are in the
general case a kind of skeleton, i.e. the previous watersheds do have barbs.

In this paper, we propose a proof of the convergence of the algorithm
of Beucher and Lantuéjoul [3]. This proof allows us to give a meaning to a
continuous definition of the watershed, and to show the very link between the
watershed and the skeleton. Using this continuous definition, we are able to
compare the watershed with the classical second order differential operators
used to detect edges. This theoretical work leads us to new algorithms, one
to solve the eikonal equation, and the other one to compute a watershed,
with the advantage of allowing the use of markers and the use of anchor
points.

2 The watershed: from discrete to contin-

uum

2.1 Classical digital algorithm

We follow here the presentation of L. Vincent [28].

In mathematical morphology, it is usual to consider that an image is a
topographical surface. It is done by considering the grey level (the image
intensity) as an altitude. Places of high variation in the intensity are then a
good set in which one can search for contour lines. It is then rather straight-
forward to estimate the variation from the gradient of the image. For the
purpose of segmentation, we are then looking for the crest lines of the gradient
image. A way of doing this operation is to apply the watershed algorithm to
the gradient image.

The idea of the watershed is to attribute an influence zone to each of the
regional minima of an image (connected plateau from which it is impossible
to reach a point of lower grey level by an always descending path). We then
define the watershed as the boundaries of those influence zones.

Numerous techniques have been proposed to compute the watershed. The
majors ones are rewied in [28, 30]. The classical idea for building the water-
shed is simple to describe in one dimension (fig. 1). We begin by piercing the
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Figure 1: Building of the watershed: one-dimensional ap-
proach

regional minima of the surface. Then, we slowly immerse the image into a
lake. The water progressively floods the basins corresponding to the various
minima (fig. 1.a). To prevent the merging of two different waters originating
from two different minima, we erect a dam (fig. 1.b). Once the surface is to-
tally immersed, the set of the dams thus built is the watershed of the image.
In one dimension, the location of the watershed is straightforward. In two
dimension (which is the case of the classical images) this characterization is
not so easy. One can say in an informal way that the watershed is the crest

lines of the image.

We give here the classical algorithm allowing the computation of the
watershed. The most powerful implantation described in the literature [30,
29, 4, 21] uses FIFO breadth-first scanning techniques for the actual flooding.

Following the ideas mentioned above, the algorithm consists in flooding
the water in the various basins, and in keeping as the watershed the set of
contact points between two different basins. In the case where this contact
is on a plateau, we keep the (geodesic) middle line of this plateau. The
watershed thus defined is of thickness one on the grid.

To compute the geodesic middle on the contact plateaus, we use the
geodesic distance.

Definition 2.1: Let A be a set, a and b two points of A. We call geodesic
distance in A dA(a, b) the lower bound of the lengths of the paths γ in A linking
a and b.
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Figure 2: Building of the watershed in 2D

In the digital case, the distance dA is deduced from the one on the
grid [20].

Let B = ∪Bi ⊂ A, where Bi are the connected components of B.

Definition 2.2: The geodesic influence zone izA(Bi) of a connected compo-
nent Bi of B in A is the set of the points of A for which the geodesic distance
to Bi is smaller than the geodesic distance to other connected components of
B.

izA(Bi) = {p ∈ A, ∀j ∈ [1, k] \ {i}, dA(p,Bi) < dA(p,Bj)}. (1)

The points of A which do not belong to any influence zone make up the
skeleton by influence zones of B in A, noted SKIZA(B):

SKIZA(B) = A \ IZA(B) (2)

where IZA(B) =
⋃

i∈[1,k] izA(Bi).



The watershed algorithm on digital images by recurrence on grey level
is [3]:

Definition 2.3: The set of the catchment basins of the numerical image I

is the set Xhmax
obtained after the following recurrence:

(i) Xhmin
= Thmin

(I)
(ii) ∀h ∈ [hmin, hmax − 1], Xh+1 = Minh+1 ∪ IZTh+1(I)(Xh).

(3)

where:
- hmin ∈ ZZ (resp. hmax) is the lowest (resp. the greatest) grey level of image
I.
- Th(I) is the threshold of the image I at height h : Th(I) = {p | I(p) ≤ h}
- Minh is the set of the regional minima of I at the height h.

The watershed of the image I is the complement of this set.

Note that this algorithm works only for step functions.

2.2 Continuous generalization

From now on, the image f is supposed to be regular enough (C2) to allow
the use of differential operators. We use classical tools of differential geom-
etry [24]. The gradient ∇f is the plane vector of the first order derivatives
of f , and the Hessian Hf is the real symmetric matrix of the second order
derivatives.

The definitions of watershed are based on the notion of path of greatest
slope. Intuitively, a path of greatest slope is a path parallel to the gradient
of f . If we begin on a point a where ∇f(a) 6= 0, we can easily follow the
gradient line backward (i.e. the grey-levels are decreasing along the line)
until we reach a point b where ∇f(b) = 0. But b is not necessarily a regional
minima of f and thus there is an ambiguity to continue the path after b. We
propose to formalize this notion by using the notion of maximal line of the
gradient. A path of greatest slope will then be an union of maximal lines of
the gradient.

Definition 2.4: A path γ : ] −∞,+∞[→ IR2 is called a maximal line of

the gradient if

∀s ∈]−∞,+∞[,
.
γ (s) = ±∇f(γ(s)) 6= 0

and lim
s→−∞

.
γ (s) = lim

s→+∞

.
γ (s) = 0 (4)

We shall say that a maximal line of the gradient is descending if

∀s ∈]−∞,+∞[,
.
γ (s) = −∇f(γ(s)) (5)



The maximal lines of the gradient are defined on ] − ∞,+∞[ for one
cannot reach a point with a zero speed. This is due to the parametrisation
(the speed at which we run on the path) we have chosen. The magnitude of
this speed is equal to the gradient modulus. We could have chosen another
parametrisation of the path, but we use it as it expresses the fact that we
cannot clearly extend a maximal line of the gradient. Note that the union of
all maximal lines of the gradient of a continuous function covers the whole
domain of the function (as an example, see fig.4).

We recall that a is a critical point if ∇f(a) = 0. We need to link the
maximal lines of the gradient if we want them to end in a regional minima.
We are going to define a partial ordering relation which will allow us to do
so.

Definition 2.5: Let a and b be two critical points of f . We shall say that b
is above a if there exists a maximal descending line of the gradient linking b

to a. We can extend this notion by saying that b is above a if there exists a
set (ai) of critical points such that a0 = b and an = a, satisfying ai is above
ai+1. We then obtain the partial ordering relation “above”.

This ordering relation allows to distinguish three kinds of critical points:

- regional minima,

- points above an unique minima

- points above several minima

The last ones should clearly belong to the definition of the watershed of a
continuous function.

Definition 2.6: We denote by P(f) the subset of the critical points a of f
which are above several regional minima of f .

Fig. 3 shows some examples of points of P(f).

We have the following convergence theorem which will be used in the
following as our definition of the continuous watershed:

Theorem 2.7: [17] Let f be a C2 function, with a compact connected domain.
Suppose that f has only isolated critical points, and that, on the critical
points, the Hessian has two non zero eigenvalues. We construct a sequence
fn of step functions which converges pointwise towards f . More precisely,
we put fn(a) = E(2nf(a))

2n
, where E(x) is the integer part of x. Then, the

watershed of f , seen as the limit of the watershed of fn, is the set of the
maximal lines of the gradient linking two points of P(f).
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Figure 3: Some examples of points of P(f)
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Figure 4: Gradient field of sin(x) sin(y) (M : maxima - m:
minima - s: saddle point)

Note that the limit function f does not have plateaus. In fact, we will
show in the next section that the choice of a line of watershed on a plateau
is arbitrary.

So the watershed lines are parallel to the gradient, which, as far as we
know, has not been pointed out by other authors. Note that we can use
theorem 2.7 as a definition of the watershed of a continuous function. One
should be very careful with the hypothesis we put on f . If Hessian Hf

has one zero eigenvalue, the watershed can have a barb (a branch with an
endpoint), which is never the case with the algorithm. As an example, one
can look at a monkey saddle (fig. 5). Two branches of the monkey saddle
belong to the contour of a basin. The other one direct itself towards a local
maximum of the image which belongs to the interior of a basin. Moreover,
the watershed of a continuous function can be thick. As an example, we



can look for what Beucher [2] calls a buttonhole (see fig. 6). Choosing a
particular line in the buttonhole is, anyway, fully arbitrary. Note that, on
the buttonhole, ∇f(a) = 0 yields Hf (a) = 0. Nevertheless, we can always
assume that the images satisfy the hypothesis of the theorem 2.7: if f does
not satisfy it, then an arbitrary small perturbation of f makes f an adequate
function (obviously the perturbation must not vanish on the critical points).
Such functions are called Morse functions [16], and are (uniformly) dense in
the set of smooth functions.

Figure 5: Monkey saddle

∇f = 0 ∇f = 0

Figure 6: Gradient field of a buttonhole

The fact that at each point of a C2 function there exist at least 2 lines of
greatest slope descending towards two minima is true only on points of P(f)
(see fig. 4).

The theorem 2.7 suggests that we can add some lines to the watershed
by adding points to P(f). If we carefully choose these new points, the result
exhibits end points and is a way to introduce the notion of grey-tone skeleton.
In the last part of this paper we give an algorithm which allows to do such
an operation.

To define the watershed as a subset of the maximal lines of the gradient
is a local notion, to which boundary conditions add a global aspect. More
precisely, we have the following proposition:



Proposition 2.8: [17] Let a be a point of the domain of f such that ∇f(a) 6=
0. Let Va be a neighbourhood of a which does not contain any critical point.
Let γ be a path containing a and parallel to the gradient of f on Va. Then
there exists a function f0, equal to f on Va, such as γ is in the watershed of
f0.

In other words, there is no local characterization of the watershed. This is
due to the C2 regularity of f . If f is less regular, there exists in some cases a
local characterization. The best example is the watershed of f(a) = d(a,X)
where X is a binary image. In this case the watershed of f is equal to
the skeleton by influence zones of X. As shown by Matheron [23], it is
locally characterized by the set of the points of non differentiability of f : the
watershed is included in this set of points but not always equal to it.

2.3 The problem of the plateaus

Real images often possess plateaus. When they belong to the interior of
a catchment basin, there is no problem. From a theoretical point of view,
it is easy to slope the plateaus towards crest lines without modifying the
watershed.

(a) Original image (b) Distance to the descending
side

(c) Distance to the ascending side

Figure 7: Distances to the sides of a ring with two elevated
points near the interior side

On the contrary, if we want a thin watershed, we have to make a choice on
the plateaus. The immersion algorithm 2.3 chooses a line by computing the
“geodesic middle” of the plateaus. The principle is to compute the geodesic
distance to the descending side of each plateau (fig. 7.b). There exists another



possibility: it is possible to compute the geodesic distance to the ascending
side of each plateau (fig. 7.c). These two possibilities give different results,
and the choice of one rather than the other is arbitrary and depends on
the application. We give here some examples illustrating the choice of the
distance.

Let us take the image of a ring, corresponding to the contours of an
object. The watershed of this image reduces the ring to the middle line, thus
creating two equal parts, which seems reasonable. Nevertheless, there are
some situations where we want the segmentation to pass through another
place.

Let us consider the figure 8.a and the figure 8.d. They are the ring image
on which we have added some new contour points through which we want
the watershed to pass. In the first case (fig. 8.a), these points are near the
exterior side, and on the second case (fig. 8.d), these points are near the
interior side. The watershed immersion algorithm floods the image of the
distance to the descending side (fig. 8.c and fig. 8.f), which do not seem a
judicious choice.

If we transform the image by computing the distance to the ascending
side (the distance to the added points), the watershed result then conforms
to the intuition on the figure 8.b. There exists no reasonable criterion which
allows a choice between the figures 8.e and 8.f: there are not enough points
to correctly place the contour.

These examples are a good illustration that the implicit choice of the
distance to the descending side is fully arbitrary, for it can be judicious to
choose the distance to the ascending side. The distance to the descending
side is nevertheless the right choice in the case where we want the watershed
to pass exactly at the middle of the plateaus.

Let us notice that the use of the distance to the descending side is un-
stable: it can add some new local minima, thus modifying the topology of
the watershed. As an example, there exists a tendency to close arcs of circle
(fig. 9). On the other side, the distance to the descending side creates new
local maxima, but this does not disturb the watershed.

3 Comparison with the edge detectors

Let f be a smooth function. Two second order differential operators are
commonly used to detect edges. The first one is the Laplacian [14] ∆f =
∂2f
∂x2+

∂2f
∂y2

and the second one is the non-linear Canny’s detector [5] which looks
for the maximum of the gradient in the direction of the gradient. The Canny’s



(a) Summits are near the exterior
side

(b) Watershed on distance to the
ascending side

(c) Watershed on distance to the
descending side

(d) Summits are near the interior
side

(e) Watershed on distance to the
ascending side

(f) Watershed on distance to the
descending side

Figure 8: plateaus’ problem: the choice of a well-placed con-
tour



(a) Example of a non closed arc of
circle

(b) The distance to the ascending
side creates a new catchment basin

Figure 9: Example of creation of a new catchment basin
through the distance to the ascending side

detector, or more exactly the extrema of the gradient in the direction of the
gradient, finds the zero crossings of Q(f) = 〈Hf∇f,∇f〉. On the other hand,
mathematical morphology uses the watershed of the norm of the gradient of
f in order to extract edges. The links between the two differential operators
are well known [25] and we focus our attention on the link between Canny’s
detector and the watershed of the gradient.

(a) Step edge (b) Pitched roof

Figure 10: Structural archetype detected by Canny’s operator

In [11] the authors exhibit a characterization of lines extracted by Canny’s
detector. Their results are useful to point out the differences between the
watershed of the gradient and the second order differential operators. There
are two archetypes of structure on which Q vanishes: the step edge and the



pitched roof. These two objects are represented on figure 10, before the
gaussian convolution which makes them smooth.

The idea behind edge detection is that an edge is a path where the change
in the intensity f is maximum in the direction normal to this path. As the
intensity is computed by the modulus of the gradient, we can write

d

dt
‖∇f(a+ t n)‖ = 〈Hf∇f, n〉 = 0 (6)

where n is the normal to the path at point a. This equation gives an implicit
differential equation for the edge path: γ̇ = Hf∇f . As we have seen before,
the union of all the paths which are solutions to this differential equation
covers the whole domain of f , and we have to make a choice to find the
edges. The watershed chooses the paths by imposing boundary conditions.
On the other hand, Canny solves the problem by estimating the normal n
from the gradient direction, i.e. by setting n = ∇f (which is true on a step
edge).

We made a comparison of the action of these operators on the image

I(x, y) = δ1χ{x>0}(x, y) + δ2χ{y>0}(x, y) (7)

where χA is the characteristical function of the set A: χA(a) = 1 if a ∈ A

and χA(a) = 0 if not. I is regularised by a gaussian kernel G and we obtain

f = G ∗ I = δ1Ψ(x) + δ2Ψ(y) (8)

where Ψ(x) = 1√
π

∫ x
−∞ e−s2ds.

Fig. 11 shows the comparison of the segmentation algorithms. We see
that Canny’s detector finds the multiple point only if δ1 = δ2 (fig. 11.f).

Fig. 12 shows the results: the second order operators cannot find the
multiple point, while the watershed of the gradient modulus can. This is due
to the geometric behavior of Canny’s detector and zeros of the Laplacian.
Both are the intersection of a function z = g(x, y) with {z = 0}. So, they
have very few multiple points. On the other hand, the watershed has multiple
points which are necessarily in P(‖∇f‖).

Several technics [7, 8, Giraudon & Deriche] have been recently developed
to detect the multiple points. They are based on second-order differential
measures and scale-space approach. In fact, we propose a simpler method:
if we are interested in finding multiple points, the classical differential crest
extractor (local maxima of the modulus of the gradient in the direction of
the gradient) has to be replaced by a watershed procedure on the image of
gradient modulus.



4 Metrical approach of the watershed

The aim of this section is to exhibit the strong link between the skeleton, one
of the notions of the binary mathematical morphology, and the watershed,
notion of the grey-level mathematical morphology.

Definition 4.1: The image distance on a C1 function f with a connected
domain Dom(f), is defined by: ∀(a, b) ∈ Dom(f)2,

df (a, b) = inf
γab

∣

∣

∣

∣

∫

γab

‖∇f(γab(s))‖ds
∣

∣

∣

∣

(9)

Note that the shortest df -path between a and b is a path of greatest slope
if it exists.

We restrain the choice of f to the C2 functions which have only isolated
critical points. df is then a distance. For technical reasons, but without
loss of generality, we suppose that the minima of f are on the same level.
Moreover, we suppose that on the critical points, the Hessian has two non
zero eigenvalues. We then have the following result:

Theorem 4.2: [17] The set of points which are at equal df -distance of two
distinct minima of f is the set of the maximal lines of the gradient linking
two points of P(f), and thus coincides with the watershed of f .

A similar result has been stated in [19, 18, Preteux&Merlet], but with a
much more complex metric used as a definition for the continuous watershed,
and this complex metric is very far from the usual euclidean distance. Note
that the watershed defined by Lantuéjoul and Beucher [3], the one defined
by Maisonneuve [13], the one defined by Preteux and Merlet, and the df -
skeleton by influence zones do have barbs if f does not verify the hypothesis
we put on it.

The advantage of our metric is to allow the statement of new results
we present hereafter. Moreover, note that if we put ‖∇f‖ = 1 a.e., df (or
f) is the usual euclidean distance function to a set, and the df -skeleton by
influence zones is the usual one.

With the results of the previous theorem, we can expect that the water-
shed has properties similar to those of the skeleton. We state one of these
properties.

We denote by M the set of minima of f and by Dom(f) the domain of
f .

Definition 4.3: We define the skeletal structure of f as the set of centers
of the maximal open df -balls contained in Dom(f)\M.



Obviously, the watershed is contained in the skeletal structure.

Theorem 4.4: [17] The mapping f → S(f), where S(f) is the skeletal
structure of f , is lower semicontinuous, if we use the C2 convergence on
the set of functions and the induced hit or miss topology [15] on the set of
watersheds.

This result shows why the watershed is very sensitive to noise, and justifies
in a way the various smoothing [9] and marking [28] techniques.

5 The eikonal equation

As a side effect, the algorithm of the watershed can be adapted to solve an
equation widely used in Shape from Shading, the eikonal equation [10]:

finding f such as ‖∇f‖ = g (10)

The idea is that, on each catchment basin of f , we have f(a) = df (a, b)+f(b),
where b is the minima of the catchment basin. As determining df (a, b) only
depends on g (see formula 9), we can generalize this result: let {bi} be a
set of points with their associated values f(bi). A continuous solution to the
eikonal equation is given by

f(a) = inf
i
{inf
γabi

∫

γabi

g(γabi(s))ds+ f(bi)} (11)

One can show [12] that the function f given by equation 11 is the unique
viscosity solution satisfying ‖∇f‖ = g on an open domain Ω, which is a
viscosity supersolution on ∂Ω.

The algorithm proposed by Vincent [28] can be adapted to compute this
solution. In fact, Vincent’s algorithm splits up in a first stage of sorting the
pixels by increasing grey level, and a second stage of flooding propagation
threshold by threshold. In our case, we can’t make the first stage, but we
can do the sorting during the flooding. This is easy to do if we use an
heapsort algorithm [1]. We then obtain a kind of algorithm similar to the
one developed by Verwer and Verbeek [27, 26].

Note that this technique can also be used to compute the watershed by
flooding from selected sources, an efficient tool to prevent the oversegmenta-
tion problem.



6 Towards grey-tone skeleton

The theorem 2.7 suggests the possibility of adding some points to P(f), and
thus some lines to the watershed. This lines will then figure the contours
inside the basins. We give a new algorithm to compute the watershed which
allows to do this.

This algorithm is based on Vincent’s one for building skeleton with anchor
points [28]. The idea is to do an homotopic thinning of each grey level of the
image. We then compute the skeleton by influence zones of the level h − 1
in the level h by homotopic thinning. This algorithm gives us a watershed.

This implementation has two advantages. The first one is that it is easy
to add anchor points : it is enough to prevent the suppression of some points.
The second one is that instead of flooding from the minima of the image, we
can flood from any marker we want.

Figure 13 shows an example of application of this new algorithm.

The main problem is the choice of the anchor points. A first idea is to use
the segmentation provided by a classical edge detector, as Canny’s one. We
then have the multiple points which cannot be found by those algorithms,
and we keep the edge lines interior to the basins.

Another idea of anchor points is to generalize the notion of binary skele-
ton. An interesting class of anchor points is the set of the centers of osculating
circles to the descending sides of plateaus. On a binary image, these points
are in the skeleton of the form. If we transform our image by computing the
distance to the descending side of the plateaus, the set of the points of the
following (hexagonal) configuration:

< <

< . <

? ?

(where a < marks a pixel the value of which is lower than the value of
the central pixel, and where ? means that this value is unimportant) contains
these centers, and is thus a good choice for the anchor points. In particular,
if we use this procedure on the distance function of a binary image, we obtain
the usual skeleton of thickness one.

Figure 14 shows various possibility of segmentation on the image of a face
sideview (fig. 14.b). The first one (fig. 14.a) is the classical Canny-Deriche
edge detector [6]. The second one (fig. 14.b) is obtained by the classical
watershed algorithm applied to the gradient image. The result is very noisy,
but contains all the useful information. The third one (fig. 14.d) is obtained
by the classical watershed algorithm applied to a geodesical reconstruction



of gradient image of size 10, which is a useful technique to suppress a lot of
unimportant local minima [9]. The fourth and last one (fig. 14.e) is obtained
by the new watershed algorithm applied to a geodesical reconstruction of
gradient image of size 10, using the Canny-Deriche edges as anchor points.

7 Conclusion

This paper is mainly devoted to the convergence and adaptation to the con-
tinus case of an algorithm defined for step functions. This gives us a mathe-
matical tool which links the watershed to the notion of line of greatest slope
(maximal line of the gradient), and to the notion of skeleton by influence
zones. The associated skeleton is then lower semicontinuous.

The watershed is compared with the classical edge detectors, and we
showed that the watershed can extract multiple points, an operation that
second order differential operators are unable to perform.

On the algorithmic side, the watershed characterization gives an original
interpretation of the eikonal equation, and opens the path towards grey-
tone skeletons. The powerful watershed-by-flooding algorithm offers efficient
adaptations to these various notions.
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Application à la Détection Automatique de Microcalcifications en Mam-
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(a) Original image
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(b) Convolution of the image with a gaussian
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(c) Gradient norm
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(d) Laplacian graph
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(e) Graph of 〈Hf∇f,∇f〉 (δ1 < δ2)
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(f) Graph of 〈Hf∇f,∇f〉 (δ1 = δ2)

Figure 11: Comparison of the segmentation algorithms



(a) Outlines found by water-
shed

(b) Solution of Q(f) = 0

Figure 12: Outlines found by the algorithms

(a) Original image and re-
sult of the new watershed
algorithm with the central
points as anchor point

(b) Watershed on the image

Figure 13: An example of application of the new watershed
algorithm



(a) Canny-Deriche edges (b) Watershed edge

(c) Original image

(d) Edges by watershed on a
geodesical reconstruction of the
gradient of size 10

(e) Edges by watershed on a
geodesical reconstruction of the
gradient of size 10, using Canny-
Deriche edges as anchor points

Figure 14: Comparison of various possibilities of segmentation


