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p.roblems in Adapting a
Glucose'Oxidase Electrochemical Sensor into

an Implantable Glucose*Sensing Device
DANIEL R. THEVENOT

Taking into account the analytic patterns of different types of glucose-oxidase electrochemical sensors,
the specific problems which have to be solved for such a sensor to be implantable are outlined. Of partic-
ular interest is the lifetime of enzymatic membrane and the dependence of the sensor responses to oxy-
gen concentration and hydrodynamics, DIABETES CARE 5.- 184-189, MAY-JUNE 1982.

The continuous in vivo monitoring of the glucose
concentration in blood should improve greatly
treatment of diabetes. Such an implantable glu-
cose sensor, needing neither blood withdrawal nor

addition of reagent, should lead to an implantable artificial
pancreas, i.e., a glucose-controlled insulin delivery sys-
tem.1-2

The so-called enzyme electrodes, which in a small volume
combine the enzyme reaction and electrochemical detec-
tion, present the highest selectivity and versatility for such
reagentless metabolite determinations.2"4 Among them, glu-
cose electrodes have been the most extensively studied and
have led to, at least, two commercially available devices,
i.e., Yellow Springs Instrument Model 23 A5.and Solea Ta-
cussel model ENGL 1,6 based on the research work of Clark
et al.,7'8 and Thevenot, Coulet, Gautheron et al.,9'10 respec-
tively. All of these electrodes use /3-D-glucose oxidation by
dissolved oxygen in the presence of immobilized glucose oxi-
dase (GOD, E.C. 1.1.3.4): they differ by their GOD immo-
bilization technique and by the type of electrochemical de-
tector pressed against the GOD membrane or film. This
article analyzes the contribution of the different parts of the
glucose-oxidase electrochemical sensor for the control of its
analytical patterns and discusses the specific difficulties
which have to be solved for such a sensor to be implantable.

RESULTS

Glucose-oxidase enzymatic membranes. In several commer-
cially available glucose analyzers (Beckman, Technicon,
Leeds and Northrup, Owens-Illinois) GOD is either a con-
tinuous flowthrough with sample and buffer or immobilized
on a reaction loop or cartridge.11 For such an analyzer to be-
come a reagentless specific electrode, GOD has to be immo-
bilized as a thin layer pressed against the electrochemical de-

tector. Since the pioneer work of Clark et al.7>8 and Updike
et al.12'13 on glucose electrodes, five different types of immo-
bilization procedures have been used and throughly studied
(Table 1). Although similar immobilization procedures yield
very different electrode stabilities, a few comments can be
made on the published data: (1) the higher the temperature,
the lower the stability and no long-term experiments have
been performed at 37°C, (2) GOD covalent binding, either
by copolymerization or by reaction with activated mem-
branes, yields the most stable glucose electrodes, (3) nonen-
zymatic proteins, such as albumin, gelatin, or collagen are
used by most of the authors; indeed, such a proteinaceous en-
vironment seems to enhance GOD stability.14

In fact, the stability of such GOD-membranes should be
examined from three different view points: mechanical,
chemical and enzymatic (Table 2). A poor mechanical sta-
bility, encountered, for example, with thin copolymerized
membranes, will affect the overall stability of the glucose
electrode. Further difficulties appear for an implant: biocom-
patibility of the membrane and of hydrogen peroxide genera-
tion—an inactivator of many enzymes15, encapsulation by
fibroblasts and giant cells,16 and finally, long-term stability at
37°C in human fluids or tissues.

Oxidation of glucose by dissolved oxygen is an irreversible
process (Table 3): thus, on the contrary to sensors working at
equilibrium, such as ion-selective electrodes, glucose elec-
trodes reach a steady state in the presence of glucose. This
steady state may be controlled either by the oxidation reac-
tion with high temperature dependence (6-10%/°C) or by
substrate diffusion with low temperature dependence (2-

Under such heterogeneous kinetics, the glucose electrode
consumes what it is supposed to monitor: this is a characteristic
common to Clark's oxygen sensor. Whatever, the electro-
chemical detector associated to the GOD membrane, factors
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TABLE 1
Immobilization procedure of glucose oxidase and stability of glucose electrodes

Immobilization
procedure

Solution entrapment

Polyacrylamide gel

Copolymerization

Covalently bound activated
metal

Covalently bound activated
membrane

Membrane material

Cellophane
Cellophane
Cellophane
Cellulose triacetate
Polyvinyl alcohol
Cellophane
No
Cellulose acetate

Cellophane
Cellophane
Polyacrylamide polyacrylic ac.
Albumin + glutaraldehyde
Albumin + glutaraldehyde
Albumin + glutaraldehyde
Albumin + glutaraldehyde
Collagen + glutaraldehyde
Gelatin + glutaraldehyde
Triazenylcellulose
Carbon paste
Platinum
Graphite
Glassy carbon
Teflon + albumin + formaldehyde

Collagen (acylazide)

Storage
temp. (°C)

38
25

Un.

Un.
Un.

25
4

25
Un.

25
25

Un.
Un.

37
25
4

Un.
5

4
37
4

20-30
4

Electrode
stability

2 mo
1-2 wk
60 h

Un.
3 wk
8 days
3 mo
6 mo
1 wk
10 mo
4 mo
2 mo
3 wk
2 days
6 mo
7 mo
2 wk
1-2 mo

1-2 wk
2 wk
6 mo
6 mo
30 mo

Authors

Clark et al.7-8-17

Guilbault etal.18-19

Mindt et al.20-21

Mahenc et al.22

Updike etal.12-13

Notin et al.23

Guilbault et al.18-24

Mosbach et al.25

Guilbault et al.18

Guilbault et al.28-27

Tranh Minh et al.28

Scheller et al.29-30

Wingard et al.31

Y.S.I.5-11

Thomas et al.32

Martiny et al.33

Wilson et al.34-35

Thomas et al.36-54

Updike et al.37

Thevenot et al.9-10-38

Un., unknown

TABLE 2
Stability of glucose-oxidase membranes

Factors affecting GOD membrane stability
Mechanical

Distance membrane/electrochemical detector
Permeability to glucose, oxygen, hydrogen peroxide
Rheological parameters

Chemical
Resistance towards hydrolases and proteases
Resistance to microbial degradation

Enzymatical
GOD thermal denaturation
GOD chemical denaturation
GOD washing out
Effect of microenvironment and hydrogen peroxide generation

Problems for implants
Biocompatibility

GOD membrane
Hydrogen peroxide generation

Implant encapsulation by fibroblasts and giant cells
Long-term mechanical, chemical and enzymatic stability of GOD mem-

branes at 37°C, in whole blood, lymph or tissue

TABLE 3
Heterogeneous kinetics with glucose-oxidase membranes

Equilibrium or steady state?
GOD

D glucose + O2 * gluconate + H2O2 + H+

a tpH7.0K a p p . = 1.6 x 1024

Two possibilities:
End point titration in flow-through reaction loops of glucose monitors
Steady state in glucose electrodes

Rate limiting step: two possible regimes
Mass transport:

Either external diffusion (flow rate)
Or internal one (permeability to glucose and oxygen)

Chemical reaction limited by glucose and oxygen
Problems for implants

Stability of mass transfer reactions
Blood or fluid flow rate
Possible membrane coating or encapsulation

Stability of oxygen level in blood, lymph, or tissue.
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affecting external diffusion, i.e., fluid flow rate near the
membrane, or internal diffusion, i.e., permeability to sub-
strates, should be maintained constant as well as oxygen con-
centration level in or near the membrane. In the case of im-
plantable glucose electrodes both conditions are difficult to
realize: the latter may be indirectly and partially fulfilled by
using a GOD membrane or an external membrane much
more permeable to oxygen than to glucose.40'41 Table 3 out-
lines these considerations.

Electrochemical detectors in glucose electrodes. Oxidation of
glucose in the presence of a GOD membrane may be moni-
tored by the evolution of three reaction constituents, i.e.,
oxygen depletion, gluconic acid and hydrogen peroxide for-
mation.

As shown in Table 4, detection of gluconic acid via a pH
electrode seems to be the worst method resulting in poor sen-
sitivity, selectivity and linearity of calibration curves.

Oxygen and hydrogen peroxide detection have both been
used by many different research groups.

A Clark-type oxygen electrode is insensitive to all types of
interfering substances, they are obviously very sensitive to
variations of partial pressure of oxygen within the fluid in
contact with the electrode, unless a differential system is
used, i.e., two electrodes differing only by their GOD activ-
i t y i2,i3,37,44a,44fc O n e shOuld also remember that the signal
related to glucose concentration is derived from the diminu-
tion of the initially high current of the oxygen electrode:
such systems are less sensitive, unless a well-balanced differ-
ential device is used.

Amperometric detection of enzymatically generated hy-
drogen peroxide is probably the most developed system. It
seems to be the only one present in commercially available
glucose electrodes.5'6 Starting from a very low background
current in the absence of glucose, this detector is very sensi-
tive. The lowest detection limit reaches 10 nM9'10 and a
higher linear range has been obtained for the calibration
curve, i.e., 2.3—4.5 concentration decades.9'10'18

Since hydrogen peroxide amperometric detection is very

TABLE 4
Electrochemical detectors used in glucose electrodes

Electroch. detector

pH
(gluconic ac.)

Clark (O2)
(D)

Galv. cell (D)
Pt cathode

(O2 and H2O2)
(D)

Pt Anode
(H2O2)

(D)

(D)

Pt Cath.
(I, for H2O2)

I.S.E.
(I" for H2O2)

Pt anode
(O2 replacement)

Added reactant

No

No
No
No

o2
No
No

No

No
No

No
No

No

No
No
No
No

r
+ Mo(VI)

I-
+ peroxidase
quinone
2-6 DPIP

Fe(CN)6
3-

Type

pH-pHo vs. log C

pH-pH0 vs. C
Io — I vs. C
Io — I vs. C
Io — I vs. C
Io — I vs. C
Io — I vs. C
r an vs. c
L dt J max
Io — I vs. C

Io — I vs. C
Io — I vs C

I vs. C

ran vs. c
LdtJ max
I vs. C

I vs. C
I vs. C
I vs. C
I vs. C
I vs. C

E vs. log C

I vs. C
I vs. C
I vs. C

Calibration curves

Detect
limit.

DiAcloSr?

2 x 10-3

io-4

104

2 x 10"4

2 x ID"3

or 10-3

io-4

5 x IO-4

or 5 X 10-3
3 x IO-3

5 x 10"5

io-4

5 x IO-5

5 x 10-4

or 5 x 10"3

io-5

5 x 10"4

io-8

10"7

10"4

5 x 10-4

3 x 10-4

10-3

Un.
5 x 10"4

(Nb. of cone.
decades)

Non lin.

0.5
2
2

1.7
1

0.5
Non lin.

0.7

0.5
1.3

2
1.9

2

1.5
2.3
4.5
4

1.2
0.9
0.5

1.3
Un.
1.1

Precision
(%)

Un.

Un.
Un.
2-4
Un.

2
Un.
1-5

Un.

Un.
Un.

Un.
2

5

Un.
Un.
2-4
1-3
Un.

2
Un.

6
Un.

5

Authors

Mosbach et al.25

Enfors et al.45

Clark et al.7

Updike et al.12-13-37

Notin et al.23

Than Minh et al.28

Thomas et al.42

Thomas et al.32

Gondo et al.43

Bessman et al.44

Guilbault et al.26

Clark et al.8

Y.S.I.5'46

Scheller et al.4-29-30

Martiny et al.33

Guilbault et al.18-27

Thevenot et al.9'10

Solea Tacussel6

Mell et al.47-48

Wilson et al.34-35

Guilbault et al.19

Williams et al.49

Mindt et al.20-21

Mahenc et al.22

Un., unknown; (D) differential detector; 2-6 DPIP, 2-6 dichloroindophenol.
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sensitive to naturally occurring electron donors, such as
ascorbate, urate, tyrosine, etc., two methods have been de-
veloped to increase the selectivity of the glucose electrode
towards such electrochemically interfering substances. Either
the response is compensated by a nonenzymatic detec-
tor8-io.33 o r t h e platinum anode is covered by a cellulose ace-
tate membrane with pores that will exclude ascorbate and
most other potential interfering substances in 14 times di-
luted blood samples.5

Table 4 also presents a few other electrochemical detectors
either detecting indirectly hydrogen peroxide by its reaction
with added iodine,19'34'35'47'48 or replacing oxygen by other
electron acceptors and detecting amperometricaUy their
reaction products.20~22t49 All these alternatives present no
interest for in vivo measurements since they require addition
exagenous reagents.

Because of its lower dependence on oxygen concentration
in the sample, we favor hydrogen peroxide detection in po-
tentially implantable glucose electrodes. As seen above, ei-
ther a selection or a compensation of interfering electron
donors have to be realized. Furthermore, as glucose levels in
blood, i.e., 50-1000 mg/dl or 3-55 mM, are higher than
the apparent KM or S0-5 of typical glucose oxidase mem-
branes, i.e., 4-10 mM,34'47'51 calibration curves may not be
linear. If one accepts a decrease of the electrode sensitivity,
these calibration curves can become linear in a much higher
concentration range, if an external diffusion barrier to glu-
cose is placed in front of the GOD membrane.4

the whole system, membrane plus detector, should require
minimal calibration and zero adjustment, (7) finally, the
scaling down of the glucose electrode should not modify the
geometrical, physical, and enzymatic characteristics which
control its analytical properties.

A possible strategy for solving most of these problems con-
sists in the detailed study of the properties of the GOD mem-
brane either freely stirred or mounted on the electrochemical
detector. In a previous paper, we have presented a simple de-
vice for monitoring the various hydrogen peroxide fluxes
generated by the GOD membrane or flowing through it.51

Following Wilson's34'35 or Gough's40'52 approach to such het-
erogeneous kinetics, the influence of hydrodynamics should
be carefully studied.

Last but not least one should pay special attention to the
overall stability of the glucose electrode and especially of its
GOD membrane, taking into account the relations between
GOD stability, nature of the membrane and the way GOD
has been coupled. This is obviously an acute problem if the
glucose electrode is to be implanted for more than 24-48 h.
Much improvement has been made in the last decade,53 but
still several laboratories are active in that field.

From the Laboratoire de Bioelectrochimie et d'Analyse du Mi-
lieu, UER de Sciences, Universite Paris Val de Marne, Avenue du
General de Gaulle, F. 94010 Creteil Cedex, France.

Address reprint requests to Daniel R. Thevenot at the above
address.

DISCUSSION

Taking into account the stability, selectivity, sensitivity,
and linearity of glucose-oxidase electrochemical sensors, in
vitro determinations of glucose seem relatively easy to per-
form with a 2-5% precision. If such a sensor is to be im-
planted into a blood vessel or in tissue, a large number of
problems arise and some of them are not yet solved. Indeed,
besides the general problem of implanting a physico-chemi-
cal sensor16 that generates hydrogen peroxide,15 there are
many difficulties to take into account: (1) GOD membranes
should be resistant to physical, chemical, and enzymatic
denaturation for several weeks if not months of implantation
at 37°C, (2) hydrodynamic properties of the membrane and
of the membrane-solution interface, i.e., the fluid flow rate
should not vary in the electrode vicinity, (3) electrode re-
sponse should be independent of the variations of oxygen
level inside the fluid: permeability of oxygen in the mem-
brane should be higher than for glucose, (4) electrode re-
sponse should vary linearly with glucose level in the hyper-
and hypoglycemia range, i.e., from 20 to 2000 mg/dl or
1-100 mM, and have a low temperature dependence
(2-4 %/°G), (5) if amperometric detection is used, which
can be appreciated for its simplicity, sensitivity and propor-
tionality between signal and glucose concentration in a very
large range,9'10 the electrode response should be made insen-
sitive to endogenous electroactive electron donors by using a
differencial device, i.e., a compensating electrode,8"10 (6)
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