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In this paper, we first study the conversion of weighted tvay»a&utomata to one-way automata. We
show that this conversion preserves the unambiguity bus doé preserve the determinism. Yet,
we prove that the conversion of an unambiguous weighteda@eautomaton into a two-way au-
tomaton leads to a deterministic two-way automaton. As @equence, we prove that unambiguous
weighted two-way automata are equivalent to determinigéiighted two-way automata in commu-
tative semirings.

1 Introduction

A classical question in automata theory concerns the esipepower of a device and especially the
difference between one-way devices and two-way devicéswlell known that two-way automata may
be reduced to one-way automata and therefore recognizante language family [14, 12].

In this paper, we deal with the weighted versions of thesedexaces. We describe the conversion
of a two-way automaton over a commutative sering into a oag-automaton. Such an algorithm has
already be stated in][1]; our construction is close, but veeraainly interested here in proving that this
conversion preserves the unambiguity of automata; it doepmeserve the determinism.

We then present a construction for the conversion of any bigunus one-way automaton into a
deterministic two-way automaton; this part does not reqthiat the semiring is commutative.

A consequence of these two procedure is that, on commutséiverings, opposite to the case of
one-way automata, unambiguous two-way automata are n@ pwoverful than deterministic ones.

2 Weighted Two-way Automata

2.1 Automata and runs

A semiringK is a set endowed with two binary associative operatignand®, such thatp is commuta-
tive and® distributes overp. The selK contains two particular elements; @nd Xk that are respectively
neutral for® and®; moreover, @ is an annihilator forz.

For every alphabef,, we assume that there exist two fresh symboBnd - that are marks at the
beginning and the end of the tapes of automata. We dénotie alphabeAU {-,-}. For every word
win A, w is the word inA— equal to- w .

One-way and two-waK-automata share a part of their definition.KAautomaton is a tuples =
(Q,AE,I, T) whereQ is a finite set of statesA is a finite alphabet, antland T are partial functions
from Q to K. The support of, I, is the set of initial states of7, and the support of, T, is the set of
final states ofzr.
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b,—|0
a,—|0

a,—|0

Figure 1: The two-way4 -automatone;.

The definition of transitions differ. In a two-wdk-automaton,E is a partial function fromQ x
(A4 x {—1,+1}) x Qinto K and the support oE, E, is the set of transitions of#. Moreover, the
intersection oE andQ x ({F} x {—1}U{-} x {1}) x Q must be empty.

Lett be a transition ifE; if t = (p,a,d,q), we denoteg (t) = p, T(t) =q, A(t) = &,
the value o is represented by a left (-1) or right (+1) arrow. For insggntt = (p

a,« |k
we drawp —— Q.

In a one-wayK-automatonE is a partial function fromQ x A x Q into K, and the support d&, E,
is the set of transitions a¥.
Lett be a transition itE; if t = (p,a,q), we denoteo (t) = p, 7(t) =q, A (t) = a
Example 1. Let @ be the two-way 4 -automaton of Figuréll, wheret” = (NU {0}, min,+) is the
tropical semiring; since the multiplication law in this sgmg is the usual sum, the weight of a path in
this automaton is the sum of the weights of its transitiortsis Automaton is deterministic (cf. Defini-
tion[9) and thus there is only one computation for each aambptord. The behaviour of this automaton
is quite easy. For each block @ it checks through a left-right reading, whether the lengtihe block
is odd; if it is, a right-left reading computes the length loé tblock; otherwise the automaton goes to the
next block ofa’.

o(t) =d. Onfigures,
,a,—1,q) andE; =Kk,

Definition 1. Let w=ws...w, be a word of A, we set w=F and w,.; = . Aconfigurationof <7 on
w is a pair (p,i) where i is in[0;n+ 1] and p is a state of7. A computation (or runp of &7 on w is a
finite sequence of configuratio§po, io), - . ., (Pk,ik)) such that :
e ig=L1lik=n+1 pisinland isinT;
o for every jin[0;k— 1], there exists;t such that
a(tj) = pj, T(tj) = pj+1, A(t)) = &;, and ij+1= ij+0(t)).
The weight of such a computation, denoted|b}; is | (po) ® ® E(tj) ® T(p«). The weight ofw in

</, denoted by(|.<7 |,w), is the addition of the weights of all the runs with lalein <7. Notice that
there may be an infinite number of computations with the saielW. The definition of the behaviour
of o in this case requires to study the definition of infinite sufkis can be done, like for one-way
K-automata witke-transitions, for instance with complete semirings or togal semirings[[11]. This
is not the purpose of this paper, since we mainly deal with-wag automata where the number of
computations is finite for every word.

Example 2. A run of the 4"-automatone; over the word abaaba is represented on Fidure 2. The weight
of this run is equal t@.
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Figure 2: A run ofe#; over the worcabaaba

Definition 2. Letp = ((po,io),---,(Pk,ik)) be arun over w. If there exists,min [1,k], with m< n such
that (Pm,im) = (Pn,in), then we say that( pm,im), - - -, (Pn,in)) is @anunmoving circuitof p. If p does not
contain any unmoving circuit, it ieduced

Lemma 1. If a two-wayK-automaton admits a rup which is not reduced, it admits a reduced run with
the same label.

Proof. We consider a shortest non reduced pua: ((po,io),---, (Pm,im);-- -5 (Pnyin),---, (t,1k)), with
(Pm;im) = (Pn;in)-
Then((po,io);---s (Pm-1,im-1), (Pn,in)s-- -, (Pk,ik)) IS @ run; by minimality ofo, this run is reduced. O

Definition 3. A one-way or two-way automato#’ is unambiguousf every word labels at most one
computation.

Unambiguous automata have obviously only reduced cormipogat

2.2 Coverings

We extend here the notion of coveringf.([13]) to two-way automata.

Definition 4. Let & = (Q,AE,l,T) and #Z = (R AF,J,U) be two weighted two-way automata. A
mapping¢ from Q into R is anorphismif,

) vpel, J(@(p)=1(p);

i) Vpe T, U(¢(p)) = T(p);

iii) vt =(p,a,6,0) €E, ¢(t) = (6(p),a ,¢(a)) € Eand F(@(t')) =E(t).

The morphism is surjective §f(Q) =R, ¢ (1) =J,¢(T)=U,andp(E) =F.

Definition 5. Let« = (Q,AE,l,T) and# = (R A,F,J,U) be two weighted two-way automat& is

a coveringof 4 if there exists a surjective morphisgnfrom <7 onto % such that

HvreU, ¢ Y cT ii)vred Apept(rnl
i) vt e F,Vpe ¢ Y(a(t),3t' € (1), 0(t') = p.
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&/ is anin-coveringof 4 is there exists a surjective morphisprfrom o7 onto % such that

hvred ¢t (rcl ii)vrey, IpedpH(nnT
i) vt € F,Vge ¢ H(t(1)),3t’ € (1), 1(t) =q.

Proposition 1. Let «# and % be two weighted two-way automata. 4f is a covering (resp. an in-
covering) of4, the corresponding morphisth induces a bijection between computationszofand %
such that every computation of and its image inZ have the same label and the same weight.

Proof. Assume thats is a covering of8. Letw be a word and lef(po,io),-- ., (Pk,ik)) be a computation
onwin /. For everyj in [0;k], we setrj = ¢ (pj); by definition of a morphisni(ro,io),. .., (rk,ik)) is
a computation onv in % with the same weight. Conversely, Igto,io),...,(rk,ik)) be a computation
in . Let po be the unique initial state i —1(ro).For everyj in [O;k— 1], let &; = ij;1 —ij; the
configuration(rj,1,rj+1) is reached from configuratiofrj,i;) through the transitiorir;, wj, d;,rj1);
inductively, we defingj..1 as the unique state in—(rj.1) such that pj,w;, j, pj+1) is a transition of
/. Then,((po,io),---,(Pk,ik)) iS @ computation omw in <. Hence, every computatigm of Z is lift up
in a unique way into a computation of whose image by is p.

The proof is similar for in-coverings. O

This proposition implies that a two-way automaton and itgecimg (esp. in-covering) are equiva-
lent; moreover, if a two-way automaton is unambiguous, svésy of its (in-)coverings.

2.3 O-Locality

Definition 6. Let < be a two-wayK-automaton. If, for each state p ef, every transition outgoing
from p has the same direction, the#iis d-local.

If Qis the set of states of a two-w&§rautomaton, we denot@.. (resp. Q) the set of statep such
that, for every transition outgoing fromp, d(t) = +1 (resp. d(t) = —1); by convention, ifp has no
outgoing transitionp is in Q... For every statg of Q,. (resp. Q.), we setd(p) = 1 (resp.d(p) = —1).

If o is ad-local automaton{Q.,Q_} is a partition ofQ.

Proposition 2. Every two-wayK-automaton admits &-local in-covering.

Proof. In this proof, we denote- = {—1,+1}. Let.«# = (R,A ,F,J,U) be a two-wayK-automaton and
let P =R\ (R UR.) be the set of states i such that there are at least two transitions with different
direction outgoing from each state. L&t andP_ be two copies oP and letQ =R, UR_UP, UP_. Let

¢ be the canonical mapping fro@ onto R: it maps every element @&, or P_ onto the corresponding
element oP. Let ¢ be the mapping from® x A x + x Qinto Rx A x + x Rdefined by (p,a,d,q) =

(¢(p),a,d,¢(a)).
Let«’ = (Q,A E,I,T) be the automaton defined by:

1=¢71J); T=¢*U)\P;
E={(pad,q) e d *F)|(p,d) e (P, UR,) x {+1}U(P-UR.) x {—1}};
Vpel, I(p)=3(¢(p), YpeT, T(p)=U(¢(p), VteE, E(t)=F(d(p)).

The automatonz’ is d-local and it is an in-covering ofy. O
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b,—|0 a«+|1
a,—>’0 _|7<_|O
b,«<| 0
q r
a—/0 a«+|1
a1
b,—|0
F,—|0

Figure 3: Thed-local two-way distance automatow, .

Example 3. The automatonz; of Figure[1 is notd-local; from state g (resp. s), there are transitions
leaving withd = 1 and other ones witld = —1. The automaton¥, of Figure[3 is ad-local in-covering
of @71. Notice that an in-covering of a deterministic automatonas necessarily deterministic.

" b,—|0 k,—|0 . .
Actually, on7/, transitions s ;'> g-ands ;|> g- do not belong to any computation, since

the label of any trnasition that would follow one of thesehsdtansitions should be the same as the label
of the transition arriving at s (a), and there is no transition outgoing from qith label a.

3 Silices

In this section, we describe the conversion of two-way aatenover commutative semirings into one-
way automata. We give sufficient conditions to get finite aragr automata.

3.1 The Slice Automaton

Definition 7. Lets/ = (Q,AE,I,T) be a two-wayK-automaton and let w= w; ...wy be a word.p =
((po,io),---(Pn,in)) be arun over w, and jifil;k+1]. Let h be the subsequence of all pdips,i;) such
that (ir,ir41) = (j,j+1) or (ir—1,ir) = (j, ] — 1). The j-thsliceof p is the vector §) of states obtained
by the projection of the first component of each pair of h.

ThesignatureS(p) of p is the sequence of its slices.

The slices we define here are not exactlyd¢hmssing sequencetefined in[14].

q
Example 4. The vector[ r ] is the second (and the seventh) slice of the run of Figure &.signature

p
P g P g
< S Y r Y p ) q ) p ) S Y r ) * (l)

a’ p a’ p

The signature of the (unique) run on the word abaaba in theraton.s7] is

p Q- p  g-
< S‘I’ b r ) p M q+ ) p M S‘I’ M r ) . (2)
0+ p 0+ p

of this run is:
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Let o = (Q,AE,I1,T) be ad-local two-wayK-automaton. To define a one-w&{+automaton from
slices we consider the sEtof subvectors of slices, that are vectons Q* with an odd length; leY be
the vectorsy in Q* with an even length.

We define inductively two partial functiors: X x Ax X - K andn : Y x AxY — K by:

n(e,ae¢) =0k,
vp,g € Q, o(p)=1=Vu,veY, 6(pua,qv) =E(p,al,q)+n(uav),
n(u.a pav) = E(p,a 1,0)+n(u,av), 3)
o(p)=-1=VvuveX, 8(pqua,v) =E(p,a,—1,q)+ O6(u,a,v),
n(qu,a pv) = E(p,a,—1,9) + 6(u,a,yv).

Since« is &-local, for every triple(u,a,v) in X x Ax X, if 8(u,a,Vv) is defined, it is uniquely defined.
For every vectopuin X, puis initial if pisinl and(g,F,u) isin n; in this case, we se¥ (pu) =

I (p) + N (&,F,u). Likewise, every vectoupin X is final if pis in T and(u,,€) is in n; in this case, we

set7 (up) =n(u,~,&)+T(p).

Example 5. For instance, with slices from automate#,

p 0
6( S >=E(p,a,1,q-)+ri( & p)
g+ p 4)
=E(p,a,1,9-) +E(r,a,—1,s;)+6(a.,a,p)
)+E

=E(p,a,L,0-)+E(r.a—1,s:)+E(q+,a L p).

p
The vector[ S, ] is initial and
0+

p
f( St ) =1(p) +E(s,,1,04). (5)
O+

Definition 8. Let «Z = (Q,A,E,|1,T) be a two-wayK-automaton. With the above notations, #iee
automatorof <7 is the infinite one-wa-automatorts’ = (X,A, 6,., 7).

Proposition 3. Let K be acommutativesemiring and letey' be ad-local two-wayK-automaton. There
is a bijection¢ between the computations.af and the computations of the slice automatonz6&uch
that, for every computatiop of o7,

—p and¢(p) have the same label and the same weight;

— the signature op is the sequence of statesgofp).

Proof. Let ¢ be the slice automaton . Let rr be a run in& with labelw. Let ¥ be the prefix
of lengthk of mand let(v(?),... . v¥) be the sequence of states @l . We show by induction otk
that from ¥, there is a unique way to retrieve the restriction of a rum#bn w to thek first letters.
Moreover, the weight oft® (including initial weight) is equal to the weight of this testion. If k =0,
n¥ is reduced to an initial slice. By Equatibh 3, the restrictaf the path in the two-way automaton is
uniquely definedv(lo) is initial with weightl (v(lo)), and for every in [1;(V(9) — 1) /2], there is a transition

v L2 {0 - the weight of this restriction is actually the initial wéigof vi© in % If k > 0, we

consider the restriction built fok — 1; this restriction corresponds to a disjoint union of pafighe
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0,—|1/2 0,—|1
1,—|1/2 1,—>\l 1«
1|3 H4,+]1
F,—]1

Figure 4: The two-wayQ-automatone.

computations and there is only one way to connect them tottitessof the slica/¥ (since.o is &-
local). The weight of the transition betweetf~2 andv(¥ is exacltly the sum of the weights of the new
transitions involved in the restriction.

Finally, from the restriction of lengtiw/, if we considen") as a final state 0¥, by an argument
similar to the initial state, we obtain that there is one anly one run in<” that corresponds to a given
runin®. O

3.2 Reduced computations and one-way automata

In unweighted (or Boolean) automata, two-way automatardesexactly the same languages as one-
way automatal [14, 12]. It is not always the case with weigldetbmata. For instance, & be the
semiring of languages of the alphaljety}. It is not difficult to design a deterministic two-waki-
automaton over the alphabg} such that the image @f' is X"y" (a first left-right traversal outputs an

for eacha, then the automaton comes back to the beginning of the watédaecond left-right traversal
outputs ay for eacha). This function is obviously not rational and can not be izl by a one-way
K-automaton.

Proposition 4. Let K be acommutativesemiring and letey’ be ad-local two-wayK-automaton. There
exists a (finite) one-wal{-automaton such that there is a bijectiogy between the reduced computa-
tions of.« and the computations @ such that, for every reduced computatjpmof <7,

—p and ¢ (p) have the same label and the same weight;

— the signature op is the sequence of statesgofp).

Proof. Let o = (Q,A,E,l,T) be a two-wayK-automaton. We consider vectors of elementQafuch
that no state of appears twice at positions with the same parity. Fok allN, we set

Vk={veQ*1|vi=vj=i#] mod2

6
={ve Q*1|vpeQ,vse[0;1,|{i |v=pandi=s mod2| <1} ©)

For everyk larger thanQ| — 1, Vi is empty. LeV = |J, Vk; we define the one-walZ-automaton with set
of stated/. It is straightforward that a run is reduced if and only if gyslice of this run is irv.

By Propositior B, the restriction of the slice automatoWtgives a finite automaton that fulfils the
proposition. O

Actually, the sufficient condition for the finiteness of thient part of the slice automaton can be
weaken. If the number of slices of a two-way automaton isdjtitis equivalent to a one-way automaton.
Unfortunately, this condition is not easy to check and isanecessary condition.

Example 6. The two- Wa@ -automatongz, computes for each word w over the alphab@tl} the value
=5 Where x= Yic[Liwl] 2| AlthoughQ is commutative, this two-way automaton is not equivaleanto
one-wayQ-automaton; s = |.<7%| is not a rational series.
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b|O

Figure 5: The unambiguous one-way distance automw@ta

b|o

Figure 6: The unambiguous one-way distance automw@ta

Example 7. Let ] be the trim part of the slice automaton of/ (Figure[8). In this particular case,
although.# is not d-local, the slice automator; of .«; (Figure[8) is also unambiguous. It has been
shown in [8] that there is no deterministic one-way distaacgomaton equivalent to these automata.

4 Unambiguity and Determinism

Since every computation in an unambiguous two-way automigtoeduced, Propositidd 4 implies the
following statement.

Proposition 5. LetKK be a commutative semiring. Every unambiguous twodfsutomaton is equiva-
lent to an unambiguous one-w&§+automaton.

A unambiguous one-way automaton can obviously be seen amaliguous two-way automaton. In
this part, we show that an unambiguous one-way automatoacataally be converted into a determinstic
two-way automaton.

4.1 From Unambiguous one-way to Deterministic two-way Autmata

Definition 9. A two-way automaton is deterministic if
i) it has at most one initial state;
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i) for every state p and every letter a, there is at most oaadition outgoing from p with label a;
iii) for every final state p, there is no transition outgoirrgrh p with labelH.

The last condition means that if a final state is reached atnldeof the word, there is no nondeter-
ministic choice between ending the computation and reati@gight mark to continue.

Theorem 1. LetK be a semiring. Every unambiguous one-viautomaton is equivalent to a deter-
ministic two-wayK-automaton.

This result is an extension of|[7], where it is proved that aarabiguous one-way automaton can be
simulated by a deterministic two-way automaton. Our predhspired by([3], where it is proven that
any rational function can be realized by a sequential twg-nansducer. Other works on the conversion
of two-way transducers to one-way transducers can be fou[&] or in [4].

Proof. Let &7 = (I,E, T) an unambiguous one-wéd-automaton with set of stat€x
We consider the mapping from A into theQ x Q Boolean matrices defined by:

vacA, vp,qeQ, p(a)pg=1<+= (p,a,0) €E. (7

The monoid generated Hyu(a) | a € A} is thetransitionmonoidM of 7. The mappingu is naturally
extended to a morphism of the mond\d onto M. Every subset of) can be interpreted as a vector in
BY; for every wordw, | u(w) is the set of states accessible from an initial state by ay#habelw and
converselyu(w)T is the set of states from which a terminal state can be reamhadath with labelv.

Since .« is unambiguous, for every pair of words, V), 1u(u) N p(v)T has at most one element
(otherwise there would exist several computations acegpt); likewise, for every letter, there exists at
most one transitionip,a,q) in .« with pin lu(u) andqgin p(v)T (otherwise there would exist several
computations acceptingay).

For every wordv = ws ... w, for everyi in [0;k], we set

Xi(w)=1p(wi...wi)  and  Yi(w) = p(Wigg... W) T.

We build a deterministic two-wal-automatonZ equivalent taer. % has the following property.
If wis accepted by, for everyi in [1;k], the state reached after the last readingvptontains the
information (X (w), Y; (w)):

~0 @ @ @D

From (X—1(w),Yi_1(w)) and (X (w),Yi(w)), the transition labeled by in the run with labelw can be
deduced: itis the only transitiofp, wi,q) with pin X;_1(w) andgin Y;(w). Likewise (Xo,Yp) determines
the initial weight and X, Yi) determines the final weight.

The sefX; can easily be deduced fro¥_; : X; = Xi_1(w;). the computation of; fromY;_; is more
subtle.

Let x andy be two elements ofl. If there existsz in M such thatx = zy, we say thak <, y; this
relation is a preorder. If there also existsuch thatx =y, we say thak andy are L-equivalent.

Let u be a factor ofw that starts inwi, 1. It obviously holdsu(wju) < p(u). If p(wu) and p(u)
are L-equivalent, there exisggn M such thatyu (wiu) = p(u). In this case, it also holdgu(w; ... wy) =
H(Wit1...Wg) and thereforeY; = yY,_;. The two-way automaton can perform these computationsesin
they lie in the transition monoid, which is finite. The autdoreincrementally computes for eagin |i; k]
the value ofu(Wi1...wj) until p(wi...wj) <p H(Wit1...wj)andp(Wi... Wji1) = U(Wit1...Wjy1). If
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it reachesj =k, thenY; = p(wiy1...w;)T, otherwise)Y; = yY_1 wherey is such thaypu(w;... wj;1) =
HU(Wis1-. W)

OnceY; is computed, the automaton must come back to positioThe automaton is in some
position j such thatu(w;...wj) <i g(wWit1...w;j); a fortiori, for everyr in [i +1;j], p(wi...w;j) <p
H(W ...wj). The automaton therefore spans every position smaller jthiil it arrives to some poirg
such thafu(w;...wj) = t(Ws...w;j). It then holdss=.

Let & be the powerset dD. The set of states o is the union of five kinds of states:

—Qo = {i} is the initial state; in this state, the automaton read tpatifrom left to right until it reached
the right markd. It then goes to the statein Q;.

- Q1 € Z; in this state, the automaton read the inmfrom right to left; after reading the suffix the
state corresponds {o(v)T. When the left mark- is reached, the automaton goes to the stiafe(w)T)

in Qo.

- Q2 C #2; these states corresponds to the péXsY;); the incoming transitions on these states cor-
respond to the transition of the one-way automaton; theywaighted by the corresponding weight.
Likewise, a state i1, may be terminal if it belongs t6” x {T }. When the automaton is in one of these
states, either it stops, or it starts to deal with a new lettes letter is read and stored in the next state
which belongs t@s.

— Q3 C Ax M x 22; the automaton stays in stat€s as long as it needs to computefrom Y_q. It
stores the current letteras well as the image in the transition monoid of the faattrat followsa and
ends at the current position. If the state stqués) that isL-larger thanu(au) and the read lettdo is
such thafu(aub) and(ub) areL-equivalent, there existssuch thatyu(aub) = p(ub); thenY; = yY_j,

the automaton storgs(au) and jump to a state iQa.

— Q4 € M? x 272; the automaton stays in a state@f while it reads from right to left the word; it
stores the image of the suffixof u which is read; it holdsu(v) > p(au) until v = u; at this point,
the automaton read the lett@and checks thati(av) = p(au); at this point, it knows botb andY; 1,
therefore, it can output the weigth of the unique transitompatible witha, X; andY;, 1, and jump to

the state(X 1 = Xif1(a), Yi-1).

F={i=icQlacA}
U{i — T eQu)
UfY 25 pu@Y €Q1|Y € Qrac Al

Uy 2l (I,Y)6Q2|Yte,kelﬁY}
U{(X ) (a,lK,X,Y) €Q3| (X,Y) e QracA}

U{(a,xX,Y) — bz, (a,xu(b),X,Y) € Qs (a,x,X,Y) € Qz,b e A u(a)xu(b) <. xu(b)}

U{@xX,Y) 2 (@)% LX,yY) € Qs | (@ X,Y) € Qs,be Ay e M,yu(@xu(b) =xu(b)}
U{(axX,Y) = (u(@x 1,X,T) € Qa | (@ % X,Y) € Qs}
UL, X,Y) 25 (x, u(@)y.X,Y) € Qa| (xy.X,Y) € Qs,a€ Ax <L u(a)y}
UL X, Y) 2255 (Xp(a),Y) € Qo | (Y. X,Y) € Quac Ax = p(a)y,
ak

A(p,q) e XxY,Ip—— g€ «}.
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O

For everyX in &, if the state(X,T) belongs toQ,, (X,T) is final with weightT,, wherep is the
unique state iXNT.

Example 8. Let #; be the unambiguous one-way automaton of Figlire 6. We nurhbestates of this
automaton: [p| = 1, [g] = 2, [p,s,q = 3 and [q,r, p] = 4. The transition monoid is generated by the
following matrices:

(8)

Q

I

=

—~

2

I
oOor o
O OO
R O OO
oOmrr OO

=

I

=

—~

NS)

I
R O OGP
o O oo
= OOk
o O oo

The following identities hold a2 =1, B2 =3, BaB = B. Itthen holdsl=, a, af =, B andaBa =,
Ba, while 3 < 1and Ba < 1. Notice thatB and Ba are uncomparable. We can apply the proof of
Theorenti Il to compute the equivalent deterministic two-wigraaton%; of Figure[1.

Corollary 1. LetK be a commutative semiring. Every unambiguous tworautomaton is equivalent
to a deterministic one.

Remark 1. This conversion can lead to a combinatorial blow-up. Fortamee, the deterministic two-
way automaton built from the unambiguous one-way autora@téFigure([8 (right)) has 27 states in its
trim part.

A lower bound on the number of states can be computed. Let hebaumber of states of the
unambiguous one-way automaton.

e QQp has one state;
e Qi has at mosp" — 1 states;

e Q. is made of pairs of subset of Q which share exactly one elerhente @ has at most 81
states;

e Q3 is made of a pair of @ endowed with a letter and an element of the transition moxibiat
may have?™ elements); hence £has at mostA|n3"12" states;

e Q4 is made of two (non empty) subsets of Q and two elements ahtistion monoid; its size is
bounded byp21+2"*
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