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In this paper, we first study the conversion of weighted two-way automata to one-way automata. We
show that this conversion preserves the unambiguity but does not preserve the determinism. Yet,
we prove that the conversion of an unambiguous weighted one-way automaton into a two-way au-
tomaton leads to a deterministic two-way automaton. As a consequence, we prove that unambiguous
weighted two-way automata are equivalent to deterministicweighted two-way automata in commu-
tative semirings.

1 Introduction

A classical question in automata theory concerns the expressive power of a device and especially the
difference between one-way devices and two-way devices. Itis well known that two-way automata may
be reduced to one-way automata and therefore recognize the same language family [14, 12].

In this paper, we deal with the weighted versions of these twodevices. We describe the conversion
of a two-way automaton over a commutative sering into a one-way automaton. Such an algorithm has
already be stated in [1]; our construction is close, but we are mainly interested here in proving that this
conversion preserves the unambiguity of automata; it does not preserve the determinism.

We then present a construction for the conversion of any unambiguous one-way automaton into a
deterministic two-way automaton; this part does not require that the semiring is commutative.

A consequence of these two procedure is that, on commutativesemirings, opposite to the case of
one-way automata, unambiguous two-way automata are not more powerful than deterministic ones.

2 Weighted Two-way Automata

2.1 Automata and runs

A semiringK is a set endowed with two binary associative operations,⊕ and⊗, such that⊕ is commuta-
tive and⊗ distributes over⊕. The setK contains two particular elements, 0K and 1K that are respectively
neutral for⊕ and⊗; moreover, 0K is an annihilator for⊗.

For every alphabetA, we assume that there exist two fresh symbols⊢ and⊣ that are marks at the
beginning and the end of the tapes of automata. We denoteA⊢⊣ the alphabetA∪{⊢,⊣}. For every word
w in A, w⊢⊣ is the word inA⊢⊣ equal to⊢ w⊣.

One-way and two-wayK-automata share a part of their definition. AK-automaton is a tupleA =
(Q,A,E, I ,T) whereQ is a finite set of states,A is a finite alphabet, andI andT are partial functions
from Q to K. The support ofI , I , is the set of initial states ofA , and the support ofT, T, is the set of
final states ofA .

http://dx.doi.org/10.4204/EPTCS.??.??
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p q r s

b,→| 0
a,→| 0

a,→| 0

⊣,←| 0
b,←| 0

a,←| 1

a,←| 1

b,→| 0
⊢,→| 0

Figure 1: The two-wayN -automatonA1.

The definition of transitions differ. In a two-wayK-automaton,E is a partial function fromQ×
(A⊢⊣×{−1,+1})×Q into K and the support ofE, E, is the set of transitions ofA . Moreover, the
intersection ofE andQ× ({⊢}×{−1}∪{⊣}×{1})×Q must be empty.
Let t be a transition inE; if t = (p,a,d,q), we denoteσ(t) = p, τ(t) = q, λ (t) = a, δ (t) = d. On figures,
the value ofδ is represented by a left (-1) or right (+1) arrow. For instance, if t = (p,a,−1,q) andEt = k,

we drawp
a,←|k
−−−−→ q.

In a one-wayK-automaton,E is a partial function fromQ×A×Q into K, and the support ofE, E,
is the set of transitions ofA .
Let t be a transition inE; if t = (p,a,q), we denoteσ(t) = p, τ(t) = q, λ (t) = a.

Example 1. Let A1 be the two-wayN -automaton of Figure 1, whereN = (N∪{∞},min,+) is the
tropical semiring; since the multiplication law in this semiring is the usual sum, the weight of a path in
this automaton is the sum of the weights of its transitions. This automaton is deterministic (cf. Defini-
tion 9) and thus there is only one computation for each accepted word. The behaviour of this automaton
is quite easy. For each block of′a′ it checks through a left-right reading, whether the length of the block
is odd; if it is, a right-left reading computes the length of the block; otherwise the automaton goes to the
next block of′a′.

Definition 1. Let w= w1 . . .wn be a word of A∗, we set w0 = ⊢ and wn+1 = ⊣. A configurationof A on
w is a pair(p, i) where i is in[0;n+1] and p is a state ofA . A computation (or run)ρ of A on w is a
finite sequence of configurations((p0, i0), . . . ,(pk, ik)) such that :

• i0 = 1, ik = n+1, p0 is in I and pk is in T;

• for every j in[0;k−1], there exists tj , such that
σ(t j) = p j , τ(t j) = p j+1, λ (t j) = ai j , and ij+1 = i j +δ (t j).

The weight of such a computation, denoted by|ρ |, is I(p0)⊗
k−1
⊗

j=0
E(t j)⊗T(pk). The weight ofw in

A , denoted by〈|A |,w〉, is the addition of the weights of all the runs with labelw in A . Notice that
there may be an infinite number of computations with the same labelw. The definition of the behaviour
of A in this case requires to study the definition of infinite sums.This can be done, like for one-way
K-automata withε-transitions, for instance with complete semirings or topological semirings [11]. This
is not the purpose of this paper, since we mainly deal with two-way automata where the number of
computations is finite for every word.

Example 2. A run of theN -automatonA1 over the word abaaba is represented on Figure 2. The weight
of this run is equal to2.
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← |0

← |1
→ |0

→ |0 → |0 → |0 → |0 → |0 → |0
← |0

← |1
→ |0

→ |0

Figure 2: A run ofA1 over the wordabaaba.

Definition 2. Letρ = ((p0, i0), . . . ,(pk, ik)) be a run over w. If there exists m,n in [1,k], with m< n such
that (pm, im) = (pn, in), then we say that((pm, im), . . . ,(pn, in)) is anunmoving circuitof ρ . If ρ does not
contain any unmoving circuit, it isreduced.

Lemma 1. If a two-wayK-automaton admits a runρ which is not reduced, it admits a reduced run with
the same label.

Proof. We consider a shortest non reduced runρ = ((p0, i0), . . . ,(pm, im), . . . ,(pn, in), . . . ,(tk, ik)), with
(pm, im) = (pn, in).
Then((p0, i0), . . . ,(pm−1, im−1),(pn, in), . . . ,(pk, ik)) is a run; by minimality ofρ , this run is reduced.

Definition 3. A one-way or two-way automatonA is unambiguousif every word labels at most one
computation.

Unambiguous automata have obviously only reduced computations.

2.2 Coverings

We extend here the notion of covering (cf. [13]) to two-way automata.

Definition 4. Let A = (Q,A,E, I ,T) and B = (R,A,F,J,U) be two weighted two-way automata. A
mappingϕ from Q into R is amorphismif,
i) ∀p∈ I , J(ϕ(p)) = I(p);
ii) ∀p∈ T, U(ϕ(p)) = T(p);
iii) ∀t = (p,a,δ ,q) ∈ E, ϕ̃(t) = (ϕ(p),a,δ ,ϕ(q)) ∈ F and F(ϕ̃(t ′)) = E(t).
The morphism is surjective ifϕ(Q) = R,ϕ(I) = J, ϕ(T) =U, andϕ̃(E) = F.

Definition 5. LetA = (Q,A,E, I ,T) andB = (R,A,F,J,U) be two weighted two-way automata.A is
a coveringof B if there exists a surjective morphismϕ fromA ontoB such that

i) ∀r ∈U , ϕ−1(r)⊆ T ii) ∀r ∈ J, ∃!p∈ ϕ−1(r)∩ I

iii ) ∀t ∈ F,∀p∈ ϕ−1(σ(t)),∃!t ′ ∈ ϕ̃−1(t),σ(t ′) = p.
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A is an in-coveringof B is there exists a surjective morphismϕ from A ontoB such that

i) ∀r ∈ J, ϕ−1(r)⊆ I ii) ∀r ∈U , ∃!p∈ ϕ−1(r)∩T

iii ) ∀t ∈ F,∀q∈ ϕ−1(τ(t)),∃!t ′ ∈ ϕ̃−1(t),τ(t ′) = q.

Proposition 1. Let A and B be two weighted two-way automata. IfA is a covering (resp. an in-
covering) ofB, the corresponding morphismϕ induces a bijection between computations ofA andB

such that every computation ofA and its image inB have the same label and the same weight.

Proof. Assume thatA is a covering ofB. Letwbe a word and let((p0, i0), . . . ,(pk, ik)) be a computation
on w in A . For every j in [0;k], we setr j = ϕ(p j); by definition of a morphism((r0, i0), . . . ,(rk, ik)) is
a computation onw in B with the same weight. Conversely, let((r0, i0), . . . ,(rk, ik)) be a computation
in B. Let p0 be the unique initial state inϕ−1(r0).For every j in [0;k− 1], let δ j = i j+1− i j ; the
configuration(r j+1, r j+1) is reached from configuration(r j , i j) through the transition(r j ,w j ,δ j , r j+1);
inductively, we definep j+1 as the unique state inϕ−1(r j+1) such that(p j ,w j ,δ j , p j+1) is a transition of
A . Then,((p0, i0), . . . ,(pk, ik)) is a computation onw in A . Hence, every computationρ of B is lift up
in a unique way into a computation ofA whose image byϕ is ρ .

The proof is similar for in-coverings.

This proposition implies that a two-way automaton and its covering (resp. in-covering) are equiva-
lent; moreover, if a two-way automaton is unambiguous, so isevery of its (in-)coverings.

2.3 δ -Locality

Definition 6. Let A be a two-wayK-automaton. If, for each state p ofA , every transition outgoing
from p has the same direction, thenA is δ -local.

If Q is the set of states of a two-wayK-automaton, we denoteQ+ (resp. Q−) the set of statesp such
that, for every transitiont outgoing fromp, δ (t) = +1 (resp. δ (t) = −1); by convention, ifp has no
outgoing transition,p is in Q+. For every statep of Q+ (resp. Q−), we setδ (p) = 1 (resp.δ (p) =−1).

If A is aδ -local automaton,{Q+,Q−} is a partition ofQ.

Proposition 2. Every two-wayK-automaton admits aδ -local in-covering.

Proof. In this proof, we denote± = {−1,+1}. Let A = (R,A,F,J,U) be a two-wayK-automaton and
let P= R\ (R+∪R−) be the set of states inA such that there are at least two transitions with different
direction outgoing from each state. LetP+ andP− be two copies ofP and letQ=R+∪R−∪P+∪P−. Let
ϕ be the canonical mapping fromQ ontoR: it maps every element ofP+ or P− onto the corresponding
element ofP. Let ϕ̃ be the mapping fromQ×A⊢⊣×±×Q into R×A⊢⊣×±×Rdefined byϕ̃(p,a,d,q) =
(ϕ(p),a,d,ϕ(q)).

Let A ′ = (Q,A,E, I ,T) be the automaton defined by:

I = ϕ−1(J); T = ϕ−1(U)\P−;

E = {(p,a,d,q) ∈ ϕ̃−1(F) | (p,d) ∈ (P+∪R+)×{+1}∪ (P−∪R−)×{−1}};

∀p∈ I , I(p) = J(ϕ(p)), ∀p∈ T, T(p) =U(ϕ(p)), ∀t ∈ E, E(t) = F(ϕ̃(p)).

The automatonA ′ is δ -local and it is an in-covering ofA .
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p q r

s−

s+

b,→| 0
a,→| 0

a,→| 0

⊣,←| 0
b,←| 0

a,←| 1

a,←| 1

a,←| 1

b,→| 0
⊢,→| 0

Figure 3: Theδ -local two-way distance automatonA ′
1.

Example 3. The automatonA1 of Figure 1 is notδ -local; from state q (resp. s), there are transitions
leaving withδ = 1 and other ones withδ =−1. The automatonA ′

1 of Figure 3 is aδ -local in-covering
of A1. Notice that an in-covering of a deterministic automaton isnot necessarily deterministic.

Actually, onA ′
1, transitions s+

b,→|0
−−−−→ q− and s+

⊢,→|0
−−−−→ q− do not belong to any computation, since

the label of any trnasition that would follow one of these boths transitions should be the same as the label
of the transition arriving at s− (a), and there is no transition outgoing from q− with label a.

3 Slices

In this section, we describe the conversion of two-way automata over commutative semirings into one-
way automata. We give sufficient conditions to get finite one-way automata.

3.1 The Slice Automaton

Definition 7. Let A = (Q,A,E, I ,T) be a two-wayK-automaton and let w= w1 . . .wk be a word.ρ =
((p0, i0), . . . (pn, in)) be a run over w, and j in[1;k+1]. Let h be the subsequence of all pairs(pr , ir) such
that (ir , ir+1) = ( j, j +1) or (ir−1, ir) = ( j, j−1). The j-thsliceof ρ is the vector s( j) of states obtained
by the projection of the first component of each pair of h.
ThesignatureS(ρ) of ρ is the sequence of its slices.

The slices we define here are not exactly thecrossing sequencesdefined in [14].

Example 4. The vector

[

q
r
p

]

is the second (and the seventh) slice of the run of Figure 2. The signature

of this run is:
(

p
s
q

,
q
r
p
,

p
,

q
,

p
,

p
s
q

,
q
r
p

)

. (1)

The signature of the (unique) run on the word abaaba in the automatonA ′
1 is

(

p
s+
q+

,
q−
r
p

,
p
,

q+ ,
p
,

p
s+
q+

,
q−
r
p

)

. (2)



6 On Determinism and Unambiguity of Weighted Two-way Automata

Let A = (Q,A,E, I ,T) be aδ -local two-wayK-automaton. To define a one-wayK-automaton from
slices we consider the setX of subvectors of slices, that are vectorsv in Q∗ with an odd length; letY be
the vectorsv in Q∗ with an even length.

We define inductively two partial functionsθ : X×A×X→K andη : Y×A×Y→K by:

η(ε ,a,ε) = 0K,

∀p,q∈Q, δ (p) = 1=⇒∀u,v∈Y, θ(pu,a,qv) = E(p,a,1,q)+η(u,a,v),

η(u,a, pqv) = E(p,a,1,q)+η(u,a,v),

δ (p) =−1=⇒∀u,v∈ X, θ(pqu,a,v) = E(p,a,−1,q)+θ(u,a,v),
η(qu,a, pv) = E(p,a,−1,q)+θ(u,a,yv).

(3)

SinceA is δ -local, for every triple(u,a,v) in X×A×X, if θ(u,a,v) is defined, it is uniquely defined.
For every vectorpu in X, pu is initial if p is in I and(ε ,⊢,u) is in η; in this case, we setI (pu) =

I(p)+η(ε ,⊢,u). Likewise, every vectorup in X is final if p is in T and(u,⊣,ε) is in η ; in this case, we
setT (up) = η(u,⊣,ε)+T(p).

Example 5. For instance, with slices from automatonA1,

θ

(

p
s+
q+

,a,
q−
r
p

)

=E(p,a,1,q−)+η
(

s+
q+ ,a, r

p

)

=E(p,a,1,q−)+E(r,a,−1,s+)+θ(q+,a, p)
=E(p,a,1,q−)+E(r,a,−1,s+)+E(q+,a,1, p).

(4)

The vector

[

p
s+
q+

]

is initial and

I

(

p
s+
q+

)

= I(p)+E(s+,⊢,1,q+). (5)

Definition 8. Let A = (Q,A,E, I ,T) be a two-wayK-automaton. With the above notations, theslice
automatonof A is the infinite one-wayK-automatonC = (X,A,θ ,I ,T ).

Proposition 3. LetK be acommutativesemiring and letA be aδ -local two-wayK-automaton. There
is a bijectionϕ between the computations ofA and the computations of the slice automaton ofA such
that, for every computationρ of A ,
– ρ andϕ(ρ) have the same label and the same weight;
– the signature ofρ is the sequence of states ofϕ(ρ).

Proof. Let C be the slice automaton ofA . Let π be a run inC with label w. Let π(k) be the prefix
of length k of π and let(v(0), . . . ,v(k)) be the sequence of states ofπ(k). We show by induction onk
that fromπ(k), there is a unique way to retrieve the restriction of a run ofA on w to thek first letters.
Moreover, the weight ofπ(k) (including initial weight) is equal to the weight of this restriction. If k= 0,
π(k) is reduced to an initial slice. By Equation 3, the restriction of the path in the two-way automaton is
uniquely defined:v(0)1 is initial with weightI(v(0)1 ), and for everyr in [1;(v(0)−1)/2], there is a transition

v(0)2r
⊢,→|hr
−−−−−→ v(0)2r+1; the weight of this restriction is actually the initial weight of v(0) in C . If k > 0, we

consider the restriction built fork− 1; this restriction corresponds to a disjoint union of partsof the
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p q r

0,→| 1/2
1,→| 1/2

1,→| 1
2

0,→| 1
1,→| 1

0,←| 1
1,←| 1

⊣,←| 1

⊢,→| 1

Figure 4: The two-wayQ-automatonA2.

computations and there is only one way to connect them to the states of the slicev(k) (sinceA is δ -
local). The weight of the transition betweenv(k−1) andv(k) is exacltly the sum of the weights of the new
transitions involved in the restriction.

Finally, from the restriction of length|w|, if we considerv(|w|) as a final state ofC , by an argument
similar to the initial state, we obtain that there is one and only one run inA that corresponds to a given
run inC .

3.2 Reduced computations and one-way automata

In unweighted (or Boolean) automata, two-way automata describe exactly the same languages as one-
way automata [14, 12]. It is not always the case with weightedautomata. For instance, letK be the
semiring of languages of the alphabet{x,y}. It is not difficult to design a deterministic two-wayK-
automaton over the alphabet{a} such that the image ofan is xnyn (a first left-right traversal outputs anx
for eacha, then the automaton comes back to the beginning of the word and a second left-right traversal
outputs ay for eacha). This function is obviously not rational and can not be realized by a one-way
K-automaton.

Proposition 4. LetK be acommutativesemiring and letA be aδ -local two-wayK-automaton. There
exists a (finite) one-wayK-automatonB such that there is a bijectionϕ between the reduced computa-
tions ofA and the computations ofB such that, for every reduced computationρ of A ,
– ρ andϕ(ρ) have the same label and the same weight;
– the signature ofρ is the sequence of states ofϕ(ρ).

Proof. Let A = (Q,A,E, I ,T) be a two-wayK-automaton. We consider vectors of elements ofQ such
that no state ofQ appears twice at positions with the same parity. For allk in N, we set

Vk ={v∈Q2k+1 | vi = v j ⇒ i 6= j mod 2}

={v∈Q2k+1 | ∀p∈Q,∀s∈ [0;1], |{i | vi = p andi = s mod 2}| 6 1}
(6)

For everyk larger than|Q|−1,Vk is empty. LetV =
⋃

kVk; we define the one-wayK-automaton with set
of statesV. It is straightforward that a run is reduced if and only if every slice of this run is inV.

By Proposition 3, the restriction of the slice automaton toV gives a finite automaton that fulfils the
proposition.

Actually, the sufficient condition for the finiteness of the trim part of the slice automaton can be
weaken. If the number of slices of a two-way automaton is finite, it is equivalent to a one-way automaton.
Unfortunately, this condition is not easy to check and is nota necessary condition.

Example 6. The two-wayQ-automatonA2 computes for each word w over the alphabet{0,1} the value
x

1−x, where x= ∑i∈[1;|w|]
wi
2i . AlthoughQ is commutative, this two-way automaton is not equivalent toany

one-wayQ-automaton; s2 = |A2| is not a rational series.
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p q+

p
s+
q+

p
s−
q+

q+
r
p

q−
r
p

b | 0

a | 0

a | 0

b | 0

a | 1
a | 1

b | 0

a | 1

a | 1

a | 1

b | 0

Figure 5: The unambiguous one-way distance automataB1.

p q

p
s
q

q
r
p

b | 0

a | 0

a | 0

b | 0

a | 1

a | 1

b | 0

Figure 6: The unambiguous one-way distance automataB1.

Example 7. Let B′1 be the trim part of the slice automaton ofA ′
1 (Figure 5). In this particular case,

althoughA1 is not δ -local, the slice automatonB1 of A1 (Figure 6) is also unambiguous. It has been
shown in [8] that there is no deterministic one-way distanceautomaton equivalent to these automata.

4 Unambiguity and Determinism

Since every computation in an unambiguous two-way automaton is reduced, Proposition 4 implies the
following statement.

Proposition 5. LetK be a commutative semiring. Every unambiguous two-wayK-automaton is equiva-
lent to an unambiguous one-wayK-automaton.

A unambiguous one-way automaton can obviously be seen as a unambiguous two-way automaton. In
this part, we show that an unambiguous one-way automaton canactually be converted into a determinstic
two-way automaton.

4.1 From Unambiguous one-way to Deterministic two-way Automata

Definition 9. A two-way automaton is deterministic if
i) it has at most one initial state;
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ii) for every state p and every letter a, there is at most one transition outgoing from p with label a;
iii) for every final state p, there is no transition outgoing from p with label⊣.

The last condition means that if a final state is reached at theend of the word, there is no nondeter-
ministic choice between ending the computation and readingthe right mark to continue.

Theorem 1. LetK be a semiring. Every unambiguous one-wayK-automaton is equivalent to a deter-
ministic two-wayK-automaton.

This result is an extension of [7], where it is proved that an unambiguous one-way automaton can be
simulated by a deterministic two-way automaton. Our proof is inspired by [3], where it is proven that
any rational function can be realized by a sequential two-way transducer. Other works on the conversion
of two-way transducers to one-way transducers can be found in [5] or in [4].

Proof. Let A = (I ,E,T) an unambiguous one-wayK-automaton with set of statesQ.
We consider the mappingµ from A into theQ×Q Boolean matrices defined by:

∀a∈ A, ∀p,q∈Q, µ(a)p,q = 1⇐⇒ (p,a,q) ∈ E. (7)

The monoid generated by{µ(a) | a∈ A} is thetransitionmonoidM of A . The mappingµ is naturally
extended to a morphism of the monoidA∗ ontoM. Every subset ofQ can be interpreted as a vector in
BQ; for every wordw, Iµ(w) is the set of states accessible from an initial state by a pathwith labelw and
conversely,µ(w)T is the set of states from which a terminal state can be reachedby a path with labelw.

SinceA is unambiguous, for every pair of words(u,v), Iµ(u)∩ µ(v)T has at most one element
(otherwise there would exist several computations accepting uv); likewise, for every letter, there exists at
most one transition(p,a,q) in A with p in Iµ(u) andq in µ(v)T (otherwise there would exist several
computations acceptinguav).

For every wordw= w1 . . .wk, for everyi in [0;k], we set

Xi(w) = Iµ(w1 . . .wi) and Yi(w) = µ(wi+1 . . .wk)T.

We build a deterministic two-wayK-automatonB equivalent toA . B has the following property.
If w is accepted byB, for every i in [1;k], the state reached after the last reading ofwi contains the
information(Xi(w),Yi(w)):

X0,Y0 X1,Y1 Xk,Yk
⊢ w1 wk

From (Xi−1(w),Yi−1(w)) and(Xi(w),Yi(w)), the transition labeled bywi in the run with labelw can be
deduced: it is the only transition(p,wi ,q) with p in Xi−1(w) andq in Yi(w). Likewise(X0,Y0) determines
the initial weight and(Xk,Yk) determines the final weight.

The setXi can easily be deduced fromXi−1 : Xi =Xi−1µ(wi). the computation ofYi fromYi−1 is more
subtle.

Let x andy be two elements ofM. If there existsz in M such thatx = zy, we say thatx6L y; this
relation is a preorder. If there also existst such thattx= y, we say thatx andy are L-equivalent.

Let u be a factor ofw that starts inwi+1. It obviously holdsµ(wiu) 6L µ(u). If µ(wiu) andµ(u)
are L-equivalent, there existsy in M such thatyµ(wiu) = µ(u). In this case, it also holdsyµ(wi . . .wk) =
µ(wi+1 . . .wk) and therefore,Yi = yYi−1. The two-way automaton can perform these computations, since
they lie in the transition monoid, which is finite. The automaton incrementally computes for eachj in [i;k]
the value ofµ(wi+1 . . .w j) until µ(wi . . .w j)<L µ(wi+1 . . .w j) andµ(wi . . .w j+1)≡L µ(wi+1 . . .w j+1). If
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it reachesj = k, thenYi = µ(wi+1 . . .w j)T, otherwise,Yi = yYi−1 wherey is such thatyµ(wi . . .w j+1) =
µ(wi+1 . . .w j+1).

OnceYi is computed, the automaton must come back to positioni. The automaton is in some
position j such thatµ(wi . . .w j) <L µ(wi+1 . . .w j); a fortiori, for everyr in [i + 1; j], µ(wi . . .w j) <L

µ(wr . . .w j). The automaton therefore spans every position smaller thanj until it arrives to some points
such thatµ(wi . . .w j) = µ(ws. . .w j). It then holdss= i.

Let P be the powerset ofQ. The set of states ofB is the union of five kinds of states:
– Q0 = {i} is the initial state; in this state, the automaton read the input from left to right until it reached
the right mark⊣. It then goes to the stateT in Q1.
– Q1 ⊆P; in this state, the automaton read the inputw from right to left; after reading the suffixv, the
state corresponds toµ(v)T. When the left mark⊢ is reached, the automaton goes to the state(I ,µ(w)T)
in Q2.
– Q2 ⊆P2; these states corresponds to the pairs(Xi,Yi); the incoming transitions on these states cor-
respond to the transition of the one-way automaton; they areweighted by the corresponding weight.
Likewise, a state inQ2 may be terminal if it belongs toP×{T}. When the automaton is in one of these
states, either it stops, or it starts to deal with a new letter; this letter is read and stored in the next state
which belongs toQ3.
– Q3 ⊆ A×M×P2; the automaton stays in statesQ3 as long as it needs to computeYi from Yi−1. It
stores the current lettera as well as the image in the transition monoid of the factoru that followsa and
ends at the current position. If the state storesµ(u) that isL-larger thanµ(au) and the read letterb is
such thatµ(aub) andµ(ub) areL-equivalent, there existsy such thatyµ(aub) = µ(ub); thenYi = yYi−1,
the automaton storesµ(au) and jump to a state inQ4.
– Q4 ⊆ M2×P2; the automaton stays in a state ofQ4 while it reads from right to left the wordu; it
stores the image of the suffixv of u which is read; it holdsµ(v) >L µ(au) until v = u; at this point,
the automaton read the lettera and checks thatµ(av) = µ(au); at this point, it knows bothXi andYi+1,
therefore, it can output the weigth of the unique transitioncompatible witha, Xi andYi+1, and jump to
the state(Xi+1 = Xiµ(a),Yi+1).

F = {i
a,→
−−−→ i ∈Q0 | a∈ A}

∪{i
⊣,←
−−−→ T ∈Q1}

∪{Y
a,←
−−−→ µ(a)Y ∈Q1 |Y ∈Q1,a∈ A}

∪{Y
⊢,→|Ik
−−−−→ (I ,Y) ∈Q2 |Y ∈Q1,k∈ I ∩Y}

∪{(X,Y)
a,→
−−−→ (a,1K,X,Y) ∈Q3 | (X,Y) ∈Q2,a∈ A}

∪{(a,x,X,Y)
b,→
−−−→ (a,xµ(b),X,Y) ∈Q3 | (a,x,X,Y) ∈Q3,b∈ A,µ(a)xµ(b) <L xµ(b)}

∪{(a,x,X,Y)
b,←
−−−→ (µ(a)x,1,X,yY) ∈Q4 | (a,x,X,Y) ∈Q3,b∈ A,y∈M,yµ(a)xµ(b) = xµ(b)}

∪{(a,x,X,Y)
⊣,←
−−−→ (µ(a)x,1,X,T) ∈Q4 | (a,x,X,Y) ∈Q3}

∪{(x,y,X,Y)
a,←
−−−→ (x,µ(a)y,X,Y) ∈Q4 | (x,y,X,Y) ∈Q4,a∈ A,x<L µ(a)y}

∪{(x,y,X,Y)
a,→|k
−−−−→ (Xµ(a),Y) ∈Q2 | (x,y,X,Y) ∈Q4,a∈ A,x= µ(a)y,

∃(p,q) ∈ X×Y,∃p
a|k
−−→ q∈A }.
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For everyX in P, if the state(X,T) belongs toQ2, (X,T) is final with weightTp, wherep is the
unique state inX∩T.

Example 8. Let B1 be the unambiguous one-way automaton of Figure 6. We number the states of this
automaton: [p] = 1, [q] = 2, [p,s,q] = 3 and [q, r, p] = 4. The transition monoid is generated by the
following matrices:

α = µ(a) =









0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0









, β = µ(b) =









1 0 1 0
0 0 0 0
0 0 0 0
1 0 1 0









. (8)

The following identities hold :α2 = 1, β 2 = β , βαβ = β . It then holds1≡L α , αβ ≡L β andαβα ≡L

βα , while β <L 1 and βα <L 1. Notice thatβ and βα are uncomparable. We can apply the proof of
Theorem 1 to compute the equivalent deterministic two-way automatonD1 of Figure 7.

Corollary 1. LetK be a commutative semiring. Every unambiguous two-wayK-automaton is equivalent
to a deterministic one.

Remark 1. This conversion can lead to a combinatorial blow-up. For instance, the deterministic two-
way automaton built from the unambiguous one-way automatoB1 (Figure 6 (right)) has 27 states in its
trim part.

A lower bound on the number of states can be computed. Let n be the number of states of the
unambiguous one-way automaton.

• Q0 has one state;

• Q1 has at most2n−1 states;

• Q2 is made of pairs of subset of Q which share exactly one element, hence Q2 has at most n3n−1

states;

• Q3 is made of a pair of Q2 endowed with a letter and an element of the transition monoid(that
may have2n2

elements); hence Q3 has at most|A|n3n−12n2
states;

• Q4 is made of two (non empty) subsets of Q and two elements of the transition monoid; its size is
bounded by22n+2n2

.
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Figure 7: The deterministic two-way distance automatonD1. The transitions or states in gray are not
accessible. For sake of clearness, transitions outgoing from non accessible states are not drawn. Every
column of numbers is the set of non-zero components of a Boolean vector of size 4. The weights are
only written on transitions where it comes from the weight ofa transition (or from an initial/final weight)
of B1.
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