
Approximate String Matching Using a Bidirectional

Index

Gregory Kucherov, Kamil Salikhov, Dekel Tsur

To cite this version:

Gregory Kucherov, Kamil Salikhov, Dekel Tsur. Approximate String Matching Using a Bidirec-
tional Index. Alexander S. Kulikov; Sergei O. Kuznetsov; Pavel Pevzner. CPM 2014, Jun 2014,
Moscow, Russia. Springer, LNCS, 8486, pp.222-231, 2014, Combinatorial Pattern Matching.
<10.1007/978-3-319-07566-2 23>. <hal-01086206>

HAL Id: hal-01086206

https://hal-upec-upem.archives-ouvertes.fr/hal-01086206

Submitted on 23 Nov 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

https://hal.archives-ouvertes.fr
https://hal-upec-upem.archives-ouvertes.fr/hal-01086206

Approximate String Matching using a

Bidirectional Index

Gregory Kucherov12, Kamil Salikhov13, and Dekel Tsur2

1 CNRS/LIGM, Université Paris-Est Marne-la-Vallée, France
2 Department of Computer Science, Ben-Gurion University of the Negev, Israel

3 Mechanics and Mathematics Department, Lomonosov Moscow State University,
Russia

Abstract. We study strategies of approximate pattern matching that
exploit bidirectional text indexes, extending and generalizing ideas of [5].
We introduce a formalism, called search schemes, to specify search strate-
gies of this type, then develop a probabilistic measure for the efficiency
of a search scheme, prove several combinatorial results on efficient search
schemes, and finally, provide experimental computations supporting the
superiority of our strategies.

1 Introduction

Approximate string matching has numerous practical applications and long been
a subject of extensive studies by algorithmic researchers. If errors are allowed
in a match between a pattern string and a text string, most of the fundamental
ideas behind exact string search algorithms become inapplicable. The Approx-
imate string matching problem comes in different variants. In this paper, we
are concerned with the indexing variant, when a static text is available for pre-
processing and storing in a data structure, before any matching query is made.

The quest for efficient approximate string matching algorithms has been
boosted by a new generation of DNA sequencing technologies, able to produce
huge quantities of short DNA reads. Those reads can then be mapped to a given
genomic sequence, which requires very fast and accurate approximate string
matching algorithms. Many algorithms and associated software programs have
been designed for this task, we refer to [9] for a survey, and many of them rely
on full-text indexes.

The classical indexing paradigm consists in building a text index in order to
quickly identify pattern occurrences, preferably within a worst-case time weakly
dependent on the text length. In the context of approximate matching, even the
case of one error turned out to be highly nontrivial and gave rise to a series of
works (see [6] and references therein). In the case of k errors, existing solutions
generally have time or space complexity that are exponential in k, see [14] for a
survey.

Some of the existing algorithms use standard text indexes, such as suffix tree
or suffix arrays. However, for large datasets occurring in modern applications,

these indexes are known to take too much memory. Suffix arrays and suffix trees
typically require at least 4 or 10 bytes per character respectively. The last years
saw the emergence of succinct or compressed full-text indexes that occupy virtu-
ally as much memory as the sequence itself and yet provide very powerful func-
tionalities [10]. For example, the FM-index [4], based on the Burrows-Wheeler
Transform [2], may occupy 2–4 bits of memory per character for DNA texts. FM-
index has now been used in many practical bioinformatics software programs,
e.g. [7, 8, 13]. Even if succinct indexes are primarily designed for exact string
search, using them for approximate matching naturally became an attractive
opportunity. This direction has been taken in several papers, see [11], as well as
in practical implementations [13].

Interestingly, succinct indexes can provide even more functionalities than
classical ones. In particular, several succinct indexes can be made bidirectional,
i.e. can perform pattern search in both directions [1, 5, 11, 12]. Lam et al. [5]
showed how a bidirectional FM-index can be used to efficiently search for strings
up to a small number (one or two) errors. The idea is to partition the pattern
into k+1 equal parts, where k is the number of errors, and then perform multiple
searches on the FM-index, where each search assumes a different distribution of
mismatches among the pattern parts. Lam et al. implemented the proposed algo-
rithm and reported that it outperforms in speed the best existing read alignment
software [5]. Related algorithmic ideas appear also in [11].

In this paper, we extend the search strategy of [5] in two main directions. We
consider the case of arbitrary k and propose to partition the pattern into more
than k+1 parts that can be of unequal size. To demonstrate the benefit of both
ideas, we first introduce a general formal framework for this kind of algorithm,
called search scheme, that allows us to easily specify them and to reason about
them (Section 2). Then, in Section 3 we perform a probabilistic analysis that
provides us with a quantitative measure of performance of a search scheme,
and give an efficient algorithm for obtaining the optimal pattern partition for a
given scheme. Furthermore, we prove several combinatorial results on the design
of efficient search schemes (Section 4). Finally, Section 5 contains comparative
analytical estimations, based on our probabilistic analysis, that demonstrate
the superiority of our search strategies for many practical parameter ranges.
We further report on large-scale experiments on genomic data supporting this
analysis.

2 Bidirectional search

In the framework of text indexing, pattern search is usually done by scanning
the pattern online and recomputing index points referring to the occurrences of
the scanned part of the pattern. With classical text indexes, such as suffix trees
or suffix arrays, the pattern is scanned left-to-right (forward search). However,
some compact indexes such as FM-index provide a search algorithm that scans
the pattern right-to-left (backward search).

Consider now approximate string matching, where k letter mismatches are
allowed between a pattern P and a text T . In this paper, we present our ideas for
the case of Hamming distance. However, they also apply to the edit distance, see
Conclusions. Both forward and backward search can be extended to approximate
search in a straightforward way, by exploring all possible mismatches along the
search, as long as their number does not exceed k and the current pattern still
occurs in the text. For the forward search, for example, the algorithm enumerates
all substrings of T with Hamming distance at most k to a prefix of P . Starting
with the empty string, the enumeration is done by extending the current string
with the corresponding letter of P , and with all other letters provided that the
number of accumulated mismatches has not yet reached k. For each extension,
its positions in T are computed using the index. Note that the set of enumerated
strings is closed under prefixes and therefore can be represented by the nodes of
a trie. Similarly to forward search, backward search enumerates all substrings of
T with Hamming distance at most k to a suffix of P .

Clearly, backward and forward search are symmetric and, once we have an
implementation of one, the other can be implemented similarly by constructing
an index for the reversed text. However, combining both forward and backward
search within one algorithm results in a more efficient search. To illustrate this,
consider the case k = 1. Partition P into two equal length parts P = P1P2. The
idea is to perform two complementary searches: forward search for occurrences of
P with a mismatch in P2 and backward search for occurrences with a mismatch
in P1. In both searches, branching is performed only after |P |/2 characters are
matched. Then, the number of strings enumerated by the two searches is much
less than the number of strings enumerated by a single standard forward search,
even though two searches are performed instead of one.

A bidirectional index of a text allows one to extend the current string S both
left and right, that is, compute the positions of both cS or Sc from the positions
of S. Note that a bidirectional index allows forward and backward searches to
alternate, which will be crucial for our purposes. Lam et al. [5] showed how the
FM-index can be made bidirectional. Other succinct bidirectional indexes were
given in [1, 11, 12]. Using a bidirectional index, such as FM-index, forward and
backward searches can be performed in time linear in the number of enumerated
strings. Therefore, our main goal is to organize the search so that the number of
enumerated strings is minimized.

Lam et al. [5] gave a new search algorithm, called bidirectional search, that
utilizes the bidirectional property of the index. Consider the case k = 2, studied
in [5]. In this case, the pattern is partitioned into three equal length parts,
P = P1P2P3. There are now 6 cases to consider according to the placement of
mismatches within the parts: 011 (i.e. one mismatch in P2 and one mismatch in
P3), 101, 110, 002, 020, and 200. The algorithm of Lam et al. [5] performs three
searches:

(1) A forward search that allows no mismatches when processing characters
of P1, and 0 to 2 accumulated mismatches when processing characters of P2 and
P3. This search handles the cases 011, 002, and 020 above.

(2) A backward search that allows no mismatches when processing characters
of P3, 0 to 1 accumulated mismatches when processing characters of P2, and 0 to
2 accumulated mismatches when processing characters of P1. This search handles
the cases 110 and 200 above.

(3) The remaining case is 101. This case is handled using a bidirectional

search. It starts with a forward search on string P ′ = P2P3 that allows no mis-
matches when processing characters of P2, and 0 to 1 accumulated mismatches
when processing the characters of P3. For each string S of length |P ′| enumerated
by the forward search whose Hamming distance from P ′ is exactly 1, a backward
search for P1 is performed by extending S to the left, allowing one additional
mismatch. In other words, the search allows 1 to 2 accumulated mismatches
when processing the characters of P1.

We now give a formal definition for the above. Suppose that pattern P is
partitioned into p parts. A search is a triplet of strings S = (π, L, U) where
π is a permutation string of length p over {1, . . . , p}, and L,U are strings of
length p over {0, . . . , k}. String π indicates the order in which the parts of P
are processed, and thus it must satisfy the following property: For every i >
1, π(i) is either (minj<i π(j)) − 1 or (maxj<i π(j)) + 1. Strings U and L give
upper and lower bounds on the number of mismatches: When the j-th part is
processed, the number of accumulated mismatches between the active strings
and the corresponding substring of P must be between L[j] and U [j]. Formally,
for a string M over integers, the weight of M is

∑

i M [i]. A search S = (π, L, U)

covers a string M if L[i+1] ≤
∑i

j=1 M [j] ≤ U [i] for all i (assuming L[p+1] = 0).
A k-mismatch search scheme S is a collection of searches such that for every
string M of weight k, there is a search in S that covers M . For example, the
2-mismatch scheme of Lam et al. consists of searches Sf = (123, 000, 022), Sb =
(321, 000, 012), and Sbd = (231, 001, 012). We denote this scheme by SLLTWWY.

In this work, we introduce two types of improvements over the search scheme
of Lam et al.

Uneven partition. In SLLTWWY, search Sf enumerates more strings than the
other two searches, as it allows 2 mismatches on the second processed part of
P , while the other two searches allow only one mismatch. If we increase the
length of P1 in the partition of P , the number of strings enumerated by Sf will
decrease, while the number of strings enumerated by the two other searches will
increase. We show that for some typical parameters of the problem, the decrease
in the former number is larger than the increase of the latter number, leading
to a more efficient search.

More parts. Another improvement can be achieved using partitions with k+2
or more parts, rather than k + 1 parts.

3 Analysis of search schemes

In this section we show how to estimate the performance of a given search scheme
S. Using this technique, we present a dynamic programming algorithm for de-
signing an optimal partition of a pattern.

3.1 Estimating the efficiency of a search scheme

To measure the efficiency of a search scheme, we estimate the number of strings
enumerated by all the searches of S. We assume that performing single steps of
forward, backward, or bidirectional searches takes the same amount of time. It
is fairly straightforward to extend the method of this section to the case when
these times are not equal. Note that the bidirectional index of Lam et al. [5]
reportedly spends slightly more time (order of 10%) on forward search than on
backward search.

For the analysis, we assume that characters of T and P are randomly chosen
uniformly and independently from the alphabet. We note that it is possible
to extend the method of this section to a non-uniform distribution. For more
complex distributions, a Monte Carlo simulation can be applied which, however,
requires much more time than the method of this section.

Let #str(S,X, σ, n) denote the expected number of strings enumerated when
performing a search S = (π, L, U) on a random text of length n and random
pattern of length m, where X is a partition of the pattern and σ is the size of the
alphabet (note that m is not a parameter for #str since the value of m is implied
from X). For a search scheme S, #str(S, X, σ, n) =

∑

S∈S #str(S,X, σ, n).

Fix S, X, σ, and n. Let Al be the set of enumerated strings of length l when
performing the search S on a random pattern of length m, partitioned by X,
and a text T̂ containing all the strings of length at most m as substrings. Select
a random order on the elements of Al, and let Al,i be the i-th element of Al. By
the linearity of the expectation,

#str(S,X, σ, n) =
∑

l≥1

nl
∑

i=1

Pr
T∈Σn

[Al,i is a substring of T],

where nl = |Al|. For any l and i, the string Al,i is a random string with uniform
distribution over Σl. Therefore, the probability that Al,i is a substring of T can

be approximated by 1− e−n/σl

using the Chen-Stein method [3]. Therefore,

#str(S,X, σ, n) ≈

m
∑

l=1

nl(1− e−n/σl

). (1)

In order to compute the values of nl, we give some definitions. Let nl,d be the
number of strings in Al of length l with Hamming distance d to the prefix of P
of length l. Let U ′ be a string obtained from U by replacing each character U [i]
of U by a run of U [i] of length xπ(i), where xj is the length of the j-th part in
the partition X. The string L′ is defined analogously. In other words, the values
L′[i], U ′[i] give a lower and upper bounds on the number of allowed mismatches
for an enumerated string of length i. The values of nl are given by the following

recurrence.

nl =

U ′[l]
∑

d=L′[l]

nl,d, nl,d =

nl−1,d + (σ − 1)nl−1,d−1 if l ≥ 1 and L′[l] ≤ d ≤ U ′[l]

1 if l = 0 and d = 0

0 otherwise

(2)

For a specific search, a closed form formula can be given for nl.

Consider equation (1). The value of the term 1− e−n/σl

is very close to 1 for
l ≤ logσ n−O(1). When l ≥ logσ n, the value of this term decreases exponentially.
Note that nl increases exponentially, but the base of the exponent of nl is σ− 1

whereas the base of 1− e−n/σl

is 1/σ. We can then approximate #str(S,X, σ, n)
with function #str′(S,X, σ, n) defined by

#str′(S,X, σ, n) =

⌈log
σ
n⌉+cσ

∑

l=1

nl(1− e−n/σl

), (3)

where cσ is a constant chosen so that ((σ − 1)/σ)cσ is sufficiently small.
If a search scheme S contains two or more searches with the same π-strings,

these searches can be merged in order to eliminate the enumeration of the
same string twice or more. It is straightforward to modify the computation of
#str(S, X, σ, n) to account for this optimization.

3.2 Computing an optimal partition

Let p be the number of parts. An optimal partition can be naively found by
enumerating all

(

m−1
p−1

)

possible partitions, and for each partition X, comput-

ing #str′(S, X, σ, n). We now describe a more efficient dynamic programming
algorithm that computes an optimal partition for a given search scheme S.

The algorithm takes advantage of the fact that the value of #str′(S,X, σ, n)
does not depend on the entire partition X, but only on the partition of a sub-
string of P of length N = ⌈logσ n⌉ + cσ induced by X. We first give some
definitions. Define S(i, j) to be the set containing every search S ∈ S such that i
appears before j in the π-string of S (we assume S(i, p+1) = S). A partition of P
is a partition of the set {1, 2, . . . ,m} into disjoint sets of the form {i, i+1, . . . , j}
which will be called intervals. A partition of a substring P [i..j] is a partition of
{i, i+ 1, . . . , j} into disjoint intervals.

The algorithm builds partial partitions of prefixes of P , incrementally from
left to right. That is, the partitions of P [1..m′′] are built from partitions of
P [1..m′] for m′ < m′′ by extending them with interval {m′ + 1, . . . ,m′′}. Con-
sider a partition X ′ of P [1..m′], m′ ≥ N , into p′ parts, and let p′2 be the left-to-
right rank of the interval in X ′ containing the position m′ −N +1. For a search
S ∈ S(p′2, p

′+1), the value of #str′(S,X, σ, n) is the same for every extension of
X ′ to a partition X of P , since #str′(S,X, σ, n) is determined by the partition of
a substring of P of length N contained in P [1..m′]. Thus, for every partial parti-
tion X ′, the algorithm computes the value of

∑

S∈S(p′

2
,p′+1)(S,X, σ, n) for some

extension of X ′ to a partition X. This value will be denoted v(X ′). Note that for
a partition X of P , v(X) = #str′(S, X, σ, n). When the algorithm extends the
partial partition X ′ to a partial partition X ′′ = X ′ ∪{m′ +1, . . . ,m′′}, it has to
compute v(X ′′). This is done by adding v(X ′′)− v(X ′) to the already computed
v(X ′). By definition, v(X ′′)−v(X ′) =

∑

S∈S(p′′

2
,p′′+1)\S(p′

2
,p′+1) #str′(S,X, σ, n),

where p′′ = p′ + 1 and p′′2 is the left-to-right rank of the interval in X ′ contain-
ing the position m′′ − N + 1. If X ′

1 and X ′
2 are partitions of P [1..m′] with

the same number of parts and these partitions induce the same partition on
P [m′ − N + 1..m′], then for every partition X ′′ of P [m′ + 1..m′′] we have
v(X ′

1 ∪ X ′′) − v(X ′
1) = v(X ′

2 ∪ X ′′) − v(X ′
2). Thus, for every p′ ≤ p and ev-

ery partition X ′ of P ′ = P [m′ −N + 1..m′], we need to store only one partition
X∗ of P [1..m′] into p′ parts that induces the partition X ′ on P ′. The partition
X∗ is chosen such that v(X∗) is minimum among all partitions of P [1..m′] into
p′ parts that induce the partition X ′ on P ′. We obtain an algorithm whose time
complexity is O(m2 + (|S|Nk +mp)

∑p
p′=1

(

N−1
p′−1

)

). Further details are omitted
due to space limitations.

4 Properties of optimal search schemes

Designing an efficient search scheme for a given set of parameters consists of
(1) choosing the number of parts, (2) choosing the searches, (3) choosing the
partition of the pattern. While it is possible to enumerate all possible choices, and
evaluate the efficiency of the resulting scheme using Section 3.1, this is generally
infeasible due to a large number of possibilities. It is therefore desirable to have
a combinatorial characterization of optimal search schemes.

The critical string of a search scheme S is the lexicographically maximal
U -string of a search in S. A search of S is critical if its U -string is equal to
the critical string of S. For example, the critical string of SLLTWWY is 022, and
Sf is the critical search. For typical parameters, critical searches of a search
scheme constitute the bottleneck. Consider a search scheme S, and assume that
the L-strings of all searches contain only zeros. Assume further that the pattern
is partitioned into equal-size parts. Let ℓ be the maximum index such that for
every search S ∈ S and every i ≤ ℓ, U [i] of S is no larger than the number
in position i in the critical string of S. From Section 3, the number of strings
enumerated by a search S ∈ S depends mostly on the prefix of the U -string of
S of length ⌈⌈logσ n⌉/(m/p)⌉. Thus, if ⌈⌈logσ n⌉/(m/p)⌉ ≤ ℓ, a critical search
enumerates an equal or greater number of strings than a non-critical search.

We now consider the problem of designing a search scheme whose critical
string is minimal. Let α(k, p) denote the lexicographically minimal critical string
of a k-mismatch search scheme that partitions the pattern into p parts. The next
theorem gives the values of α(k, k + 2) and α(k, k + 1). We omit the proof due
to space limitations.

Theorem 1. α(k, k + 1) = 013355 · · · kk for every odd k, and α(k, k + 1) =
02244 · · · kk for every even k. α(k, k + 2) = 0123 · · · (k − 1)kk for every k ≥ 1.

Table 1. Values of #str(S, X, 4, 416) for 2-mismatch search schemes (recall that 4 is
the size of the alphabet, and 416 is the length of the text). The second column gives
#str values for the 3-part search scheme with equal-size parts. The other columns give
#str values for different search schemes using an optimal partition of the pattern. For
each search scheme, the optimal value of #str is shown in the first sub-column, and
the optimal partition in the second sub-column.

m 3 equal 3 unequal 4 unequal 5 unequal

24 1197 1077 9,7,8 959 7,4,4,9 939 7,1,6,1,9
36 241 165 15,10,11 140 12,5,7,12 165 11,1,9,1,14
48 53 53 16,16,16 51 16,7,9,16 53 16,1,15,1,15

5 Case studies

In this section, we examine the efficiency of several 2-mismatch and 3-mismatch
search schemes. The search schemes were generated by a greedy algorithm. At
each step, the algorithm considers the uncovered string M of weight k such that
the lexicographically minimal U -strings of searches that covers M is maximal.
Among the searches that cover M with minimal U -string, a search that covers
the maximum number of uncovered strings of weight k is chosen. The L-string of
the search is chosen to be lexicographically maximal among all possible L-string
that do not decrease the number of uncovered strings. For each search scheme
and each choice of parameters, we obtained an optimal partition and computed
the efficiency of the scheme according to Section 3.

Results for 2 mismatches are given in Table 1 and Table 2, for 4-letter and 30-
letter alphabets respectively, and results for 3 mismatches are given in Table 3.

Our theoretical analysis indicates that an increased number of parts combined
with uneven partitioning improves over a scheme with k + 1 equal sized parts
when m/(k + 1) is smaller than logσ n (details omitted due to lack of space).
This is confirmed by the numerical results in Tables 1, 2, and 3, which show
significant improvement when m/(k + 1) is small.

For big alphabets (Table 2), we observe a larger gain in efficiency. The is due
to the fact that the values of nl (see equation (2)) increase more rapidly when
the alphabet is large, and thus a change in the size of parts can have a bigger
influence on these values.

For 3 mismatches (Table 3), we observe smaller gain. This is partly explained
by Theorem 1, as with 3 mismatches and 4 parts, the critical string starts with 01
(compared to 02 for 2 mismatches and 3 parts), therefore 4 parts provide already
a competitive search. Another interesting observation is that with 4 parts, the
optimal partition is an even one, as the U -strings in all searches in the 4-part
scheme are the same.

We implemented our method using the 2BWT library, provided by [5] (avail-
able at http://i.cs.hku.hk/2bwt-tools/) and experimentally compared different
search schemes. The experiments were done on the sequence of human chro-
mosome 14. The sequence is 88M long, with nucleotide distribution 29%, 21%,
21%, 29%. Searched patterns were obtained from Next-Generation Sequencing

Table 2. Values of #str(S, X, 30, 307) for 2-
mismatch search schemes.

m 3 equal 3 unequal 4 unequal 5 unequal

15 846 286 6,4,5 231 5,2,3,5 286 5,1,3,1,5
18 112 111 7,6,5 81 6,2,4,6 111 6,1,4,1,6
21 24 24 7,7,7 23 7,3,4,7 24 7,1,6,1,6

Table 3. Values of #str(S, X, 4, 416) for 3-
mismatch search schemes.

m 4 unequal 5 unequal

24 11222 6,6,6,6 8039 4,6,5,1,8
36 416 9,9,9,9 549 6,11,5,1,13
48 185 12,12,12,12 213 11,11,11,1,14

Table 4. Total time (in seconds) of searching for one million patterns in human chro-
mosome 14, up to 2 mismatches.

m 3 equal 3 unequal 4 equal 4 unequal

18 230 230 (100%) 6,6,6 209 (91%) 203 (88%) 5,5,1,7
21 175 161 (92%) 8,6,7 147 (84%) 150 (86%) 6,4,3,8
24 142 120 (85%) 10,7,7 117 (82%) 107 (75%) 7,4,4,9
27 119 99 (83%) 12,7,8 96 (81%) 82 (69%) 9,4,5,9
30 101 84 (83%) 12,9,9 66 (65%) 68 (67%) 10,4,6,10
33 83 70 (84%) 13,10,10 53 (64%) 58 (70%) 11,5,6,11
36 68 66 (97%) 13,11,12 49 (72%) 50 (74%) 12,5,7,12
39 56 56 (100%) 13,13,13 48 (86%) 45 (80%) 13,6,7,13
42 45 45 (100%) 14,14,14 44 (98%) 38 (84%) 14,6,8,14

reads by cutting out strings of required length. Both the sequence and the
reads were downloaded from http://gage.cbcb.umd.edu/data/. For every pat-
tern length and every search scheme, 106 patterns were searched and the average
number of enumerated strings was computed.

For the case of 2 mismatches, we implemented the 3-part and 4-part schemes
from Section 5, as well as their equal part versions for comparison. For each
pattern length, we computed an optimal partition, taking into account a non-
identical distribution of nucleotides. Results are presented in Table 4. Using
unequal parts for 3-part schemes yields a notable time decrease (8–17%) for
patterns of length between 21 and 33. Furthermore, using 4 parts leads to an
even more important improvement, showing a significantly better results for all
pattern length compared to the 3-equal-parts scheme of [5]. For pattern lengths
from 21 to 42 we observe 16–36% improvement in running time and 12–35%
improvement in the number of enumerated strings. For pattern lengths 24, 27, 39,
42, we observe that using unequal part lengths for 4-part schemes is beneficial.
Overall, the experimental results are consistent with numerical estimations of
Section 5. However, for pattern lengths 30-36, the 4-equal-parts scheme performs
better than the 4-unequal-parts one, which illustrates that the optimal partition
found for random texts may not be the best one for genomic sequences.

6 Conclusions

This paper can be seen as the first step towards an automated design of efficient
search schemes for approximate string matching, based on bidirectional indexes.

More research has to be done in order to allow an automated design of optimal
search schemes. It would be very interesting to study an approach when a search
scheme is designed simultaneously with the partition, rather than independently
as it was done in our work. The results of this paper can be extended to ap-
proximate string matching under edit distance. The estimation of nl (Section 3)
becomes more complicated though.

Acknowledgements. GK has been supported by the ABS2NGS grant of the
French government (program Investissement d’Avenir) as well as by a EU Marie-
Curie Intra-European Fellowship for Carrier Development. KS has been sup-
ported by the co-tutelle PhD fellowship of the French government. DT has been
supported by ISF grant 981/11.

References

1. D. Belazzougui, F. Cunial, J. Kärkkäinen, and V. Mäkinen. Versatile succinct rep-
resentations of the bidirectional burrows-wheeler transform. In Proc. 21st European
Symposium on Algorithms (ESA), pages 133–144, 2013.

2. M. Burrow and D. Wheeler. A block-sorting lossless data compression algorithm.
Technical report 124, Digital Equipment Corporation, California, 1994.

3. L H. Y. Chen. Poisson approximation for dependent trials. The Annals of Proba-
bility, pages 534–545, 1975.

4. P. Ferragina and G. Manzini. Opportunistic data structures with applications. In
Proc. 41st Symposium on Foundation of Computer Science (FOCS), pages 390–
398, 2000.

5. T. W. Lam, R. Li, A. Tam, S. C. K. Wong, E. Wu, and S.-M. Yiu. High through-
put short read alignment via bi-directional BWT. In Proc. IEEE International
Conference on Bioinformatics and Biomedicine (BIBM), pages 31–36, 2009.

6. T. W. Lam, W. K. Sung, and S. S. Wong. Improved approximate string matching
using compressed suffix data structures. In Proc. 16th International Symposium
on Algorithms and Computation (ISAAC), pages 339–348, 2005.

7. B. Langmead, C. Trapnell, M. Pop, and S. Salzberg. Ultrafast and memory-
efficient alignment of short DNA sequences to the human genome. Genome Biology,
10(3):R25, 2009.

8. H. Li and R. Durbin. Fast and accurate short read alignment with Burrows-Wheeler
transform. Bioinformatics, 25(14):1754–1760, 2009.

9. H. Li and N. Homer. A survey of sequence alignment algorithms for next-generation
sequencing. Briefings in Bioinformatics, 11(5):473–483, 2010.

10. G. Navarro and V. Mäkinen. Compressed full-text indexes. ACM Computing
Surveys, 39(1), 2007.

11. L.M.S. Russo, G. Navarro, A.L. Oliveira, and P. Morales. Approximate string
matching with compressed indexes. Algorithms, 2(3):1105–1136, 2009.

12. T. Schnattinger, E. Ohlebusch, and S. Gog. Bidirectional search in a string with
wavelet trees and bidirectional matching statistics. Information and Computation,
213:13–22, 2012.

13. J.T. Simpson and R. Durbin. Efficient de novo assembly of large genomes using
compressed data structures. Genome Research, 22(3):549–556, 2012.

14. W.-K. Sung. Indexed approximate string matching. In Ming-Yang Kao, editor,
Encyclopedia of Algorithms, pages 1–99. Springer US, 2008.

