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émanant des établissements d’enseignement et de
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Abstract. A parallel application is defined as the application that can
be executed on multiple processors simultaneously. In software, paral-
lelism is a useful programming technique to take advantage of the hard-
ware advancement in processors manufacturing nowadays. In real-time
systems, where tasks have to respect certain timing constraints during
execution, a single task has a shorter response time when executed in par-
allel than the sequential execution. However, the same cannot be trivially
applied to a set of parallel tasks (taskset) sharing the same processing
platform, and there is a negative intuition regarding parallelism in real-
time systems. In this work, we are interested in analyzing this statement
and providing an experimental analysis regarding the effect of parallelism
soft on real-time systems. By performing an extensive simulation of the
scheduling process of parallel taskset on multiprocessor systems using
a known scheduling algorithm called the global Earliest-Deadline First
(gEDF), we aim at providing an indication about the effects (positive or
negative) of parallelism in real-time scheduling.

Keywords: parallelism, stretching techniques, real-time systems, soft real-time
systems, scheduling simulation, global earliest deadline first.

1 Introduction

Uniprocessor platforms have been widely used in computer systems and applica-
tions for a long time. However, making processors smaller and faster has become
more challenging for manufacturers recently due to the physical constraints such
as heating and power problems. As a result, manufacturers are moving toward
building multicore and multiprocessor systems so as to overcome these physical
constrains. In the last few years, we have witnessed a dramatic increase in the
number of cores in computational systems, such as the 72-core processor of the
TILE-Gx family from Tilera, and the 192-core processor released by ClearSpeed
in 2008.

Unfortunately, there is a gap between the advancement in software and hard-
ware, and most of the currently used applications are still designed to target
uniprocessor systems as execution platforms [1]. In order to get full advantage of
multicore and multiprocessor systems, parallel programming has been employed



so as to perform computations and calculations simultaneously on multiple pro-
cessors. Lately, it has gained a higher importance although it has been used for
many years.

The concept of parallel programming is to write a code that can be executed
simultaneously on different processors. Usually, these programs are harder to be
written than the sequential ones, and they consist of dependent parts. However,
global scheduling, in which the scheduler can execute any job on any available
processor at any time instant, is more suitable for parallel programs than parti-
tioned scheduling (in which jobs are assigned first to individual processors and
are forced to execute without processor migration).

From practical implementation’s point of view, there exist certain libraries,
APIs and models created specially for parallel programming like POSIX threads[2]
and OpenMP [3]. Except these are not designed normally for real-time systems.
In embedded systems, software usually is subjected to certain timing constraints,
such as operational deadlines and the frequency of job arrivals. These constraints
affect the correctness of its results along with the correctness of the calculations,
and these systems are referred to as real-time systems.

Based on the criticality of the timing constraints, real-time systems are classi-
fied as either hard or soft. In hard real-time systems, the consequences of deadline
misses can cause catastrophic effects, while soft real-time systems can tolerate
delays in the execution of tasks, and a deadline miss only degrades the quality
of service provided by the application. Avionic and transportation systems are
examples of hard real-time systems, while communication and media systems
(such as in video surveillance) are considered as soft real-time systems.

In real-time systems, many researches focused on the sequential task model in
the case of multiprocessor systems [4]. In comparison, Few studies are conducted
on the different models of parallel tasks, such as the multi-threaded segment and
the Directed Acyclic Graph (DAG) model [5, 6]. Mainly, a parallel task model is
divided into three categories:

– rigid if the number of processors is assigned externally to the scheduler and
can’t be changed during execution,

– moldable if the number of processors is assigned by the scheduler and can’t
be changed during execution (this is the model we consider in this paper),

– malleable if the number of processors can be changed by the scheduler during
execution.

In real-time systems, it has been believed that parallelism has negative effect
on the schedulability of tasksets, as it has been stated in [7]. In that paper, the
authors proposed to stretch the parallel tasks of the Fork-join model1 as a way to
avoid parallelism, and their results encourage the execution of parallel tasks as
sequentially as possible. The reason why this was possible is that fork-join tasks

1 A fork-join model is parallel task model in which the incoming jobs are split on
arrival for service by numerous processors and joined before departure. It is the base
of the OpenMP parallel programming API.



have schedulable utilization bounds slightly greater than and arbitrarily close to
uniprocessors2.

In this work, we aim at providing a basic intuition regarding the validity of
this assumption, and we will study the effect of parallelism on the scheduling of
tasksets on multiprocessor soft real-time systems. We use experimental analyses
through extensive simulations as an indication tool towards our purpose. By
choosing soft real-time systems, we can measure the performance of parallel
tasks by calculating the tardiness of their jobs (how many time units a job needs
after its deadline to complete its execution) in such systems when executed in
parallel and sequentially, without worrying about the catastrophic effects of not
respecting the timing constraints. To the best of our knowledge, we are not aware
of similar researches or studies done regarding this assumption.

The structure of this paper is denoted as follows: Section 2 describes our
parallel task model which is used in this paper, and it also includes two stretching
transformations we propose in order to execute parallel tasks as sequentially as
possible. These transformations are necessary as comparison references to the
parallel execution. Then Section 3 contains a description about soft real-time
systems and some details and discussion about an upper bound of tardiness
found in literature. The contributions of this paper are included in Section 4,
which provides a description about the simulation process used in this work, and
the analysis of the conducted results. Finally, we conclude this paper by Section
5 which includes future work as well.

2 System model and its transformations

2.1 Parallel Task Model

In this work, we consider a taskset τ that consists of n parallel sporadic implicit-
deadline real-time tasks on a platform of m identical processors. Each task τi,
where 1 ≤ i ≤ n, is a parallel task that consists of a number of identical sequential
threads, and it is characterized by (ni, Ci, Ti), where ni is the count of the
threads belong to τi that can execute in parallel, Ci is the worst-case execution
time (WCET) of τi which equals to the total WCET of its threads, and Ti is
the minimum inter-arrival time (or simply the period) between successive jobs
of the task, which defines the sporadic task. As in an implicit-deadline task, the
deadline Di of task τi, which is defined as the time interval in which τi has to
complete its execution, is equal to the period of the task.

Let τi,j denote the jth thread of τi, where 1 ≤ j ≤ ni. All the threads of
the same task share the same period and deadline of their task. Let Ci,j be the

WCET of thread τi,j , where Ci =

ni
∑

j=1

Ci,j . In this paper, we consider identical

threads, however, the model can be generalized more by allowing non-identical
threads.

2 The remark regarding the utilization of Fork-join tasks is quoted from [7]



the utilization of thread τi,j is defined as Ui,j =
Ci,j

Ti
, and the utilization of

the parallel task τi is defined as Ui =
Ci

Ti

=

ni
∑

j=1

Ui,j .

An example of our considered parallel task is shown in Figure 1(a), in which
task τi consists of 8 threads and has a deadline and a period equal to 11.

(a) All the threads of task τi execute in
parallel.

(b) The threads of task τi execute as se-
quentially as possible without any migra-
tions or preemptions due to transforma-
tion.

(c) All the threads of task τi execute
as sequentially as possible. At most one
constrained-deadline thread results.

(d) The transformation in Subfigure 1(c)
is modified so as to get rid of the
constrained-deadline thread.

Fig. 1. An example of a parallel task τi that consists of 8 threads and it has a deadline
and period equal to 11. The rectangles represent the threads of the task, and the
numbers within them indicate their indexes.

In real-time systems, a scheduling algorithm is defined as the algorithm that
assigns priorities to the active jobs in the system, and it chooses which jobs can
execute on the available processors at time t. If active jobs are authorized to
migrate between processors, which means that a job can start its execution on
one processor and then continue on another, then the scheduling algorithm is
called global. In multiprocessor systems, few optimal algorithms3 exist for global
scheduling of tasksets. These algorithms suffer usually from high overhead costs
consist of large number of jobs migrations and preemptions. However, there
exist non-optimal algorithms that have good performance with lower costs such
as the global earliest deadline first (gEDF), which we will use in this paper. The
gEDF algorithm assigns the highest priority to the job with the earliest absolute

3 An optimal algorithm is the one that can schedule successfully any feasible taskset.
If the optimal algorithm fails in scheduling a taskset, then no other algorithm can
schedule it.



deadline. It belongs to the fixed job priority family, in which the priority of
the job is fixed during its execution but jobs of the same task have different
priorities. Also we consider a preemptive scheduling, in which a higher priority
job can interrupt the execution of a lower priority job, and the interrupted job
can start its execution on a different processor.

Based on the categories of the parallel tasks in real-time systems, our con-
sidered parallel task model rigid w.r.t. the number of threads. A given task τi
consists of ni parallel threads is defined by the model. However, the execution
behavior of the task depends on the number of available processors and the
scheduling algorithm, and it is not obligatory to execute all the parallel threads
together. So, these threads can execute either in parallel or sequentially based
on the decisions of the scheduler. When a job is activated at time t, all the ni

parallel threads are activated as well. But if there exist less than ni available
processors at time t, then the scheduler executes partial set of the threads in
parallel while the rest are executed later.

In this paper, we considered a simplified task model of parallelism, in order to
better show the effect of parallelism on the scheduling of soft real-time systems.
Our task model can be considered as a Fork-join task model, in which each task
consists of one parallel segment, and the costs of fork and join events of the
threads are included in the execution time of each thread. In the future, we aim
to extend the work to include more realistic parallel task models such as the the
multi-threaded task model and the Directed Acyclic Graphs (DAGs).

2.2 Stretching Parallel Tasks

In order to provide an analysis of the effect of parallelism on the scheduling of
soft real-time systems, we will study the scheduling of a parallel taskset τ when
executing on m identical processors using gEDF scheduling algorithm while con-
sidering some execution scenarios, that vary from parallel execution to sequential
execution. As we described earlier in Section 2.1, the threads of a parallel task
can execute either in parallel or sequentially based on the availability of proces-
sors and on the decisions of the chosen scheduling algorithm.

Hence, each parallel task τi in taskset τ can execute based on the following
execution scenarios:

– the Parallel Scenario: all the threads τi execute in parallel, and they are
activated at the same activation time of their parallel task τi (please refer
to Figure 1(a)),

– the Fully-Stretched Scenario: all the threads of τi execute as sequentially
as possible, and τi is transformed into a set of fully stretched threads and
a thread is broken into at most two pieces which execute in parallel, while
the stretched threads can be assigned dedicated processors (please refer to
Figure 1(c)). A straight-froward transformation is provided in the following
section in order to fully stretch the parallel threads.

– the Partially-Stretched Scenario: all the threads of τi execute as sequentially
as possible, without causing interruptions and migrations due to transfor-



mation (please refer to Figure 1(b)). This transformation will be explained
in more details in the following section.

The example of the proposed execution scenarios in Figure 1 might seem
unclear now. We invite the reader to consult the following detailed sections
regarding the execution scenarios while referring to the example in Figure 1.

The Parallel Scenario:
The Parallel scenario represents the default execution behavior of our parallel

task model. According to this scenario, the threads of each parallel task are
activated by the activation event of the original task, and they have its deadline
and minimum arrival time between the jobs. Hence, all the threads have the
same priority according to gEDF, and they have the same utilization. So, the
scheduling of the parallel tasks on m identical processors can be treated as
the scheduling problem of a taskset of (ni, ∀τi ∈ τ) sequential sporadic implicit-
deadline threads. An example of the parallel scenario is shown in Inset 1(a), in
which each thread of task τi has a worst-case execution time of 4 and a deadline
equal to 11.

However, the maximum tardiness of a parallel task is determined by the
maximum tardiness of all of its threads among all possible scenarios of jobs’
activation.

Fully-Stretched Scenario:
The purpose of the Fully-Stretched transformation is to avoid the parallelism

within the tasks when possible, by executing them as sequentially as possible.
So, instead of activating all the parallel threads of a certain task at the same
time (as in the Parallel scenario), this transformation determines which threads
are activated in parallel and which are delayed to be executed sequentially. The
objective is to transform the majority of the parallel threads of each task into
fully-stretched threads which have a WCET equals to the period (utilization
equals to 1). As a result, we can dedicate an entire processor for each transformed
thread, which will guarantee their scheduling by the use of partitioned scheduling
(tasks are assigned to a processor have to execute on this processor without
authorizing migrations). Hence, the rest of the threads (not fully stretched) are
the ones to be scheduled using gEDF, which will reduce their tardiness.

The Fully-Stretched Transformation is straight forward due to the simplicity
of the considered parallel model. Let us consider a parallel task τi which consists
of ni threads and each thread τi,j has a WCET of Ci,j . The Fully-Stretched
transformation will generate the following sets of modified threads τ ′i,j :

– A set of fully-stretched threads τ ′stretch: which consists of ⌊Ui⌋ threads each
has a total WCET equals to the original period, and utilization U ′

i,j = 1,
where τ ′i,j ∈ τ ′stretched. If the capacity of the processor cannot contain entire

threads (i.e. Ti

Ci,j
is not an integer), then a thread will be forced to execute

on 2 processors in order to fill the first one. As a result, the transformation
will cause at most ⌊Ui⌋ threads to migrate between processors.



– When the utilization of the parallel task is not integer, then there exist a
set of threads that cannot fill an entire processor. Let the total remaining
execution time be denoted as Crem = (Ui−⌊Ui⌋)∗Ti. The remaining threads
are divided into the following two types:
• At most, one implicit-deadline thread τ ′imp from each transformed par-

allel task is generated. This thread is created by merging the remaining
threads that did not fit into the stretched tasks without the thread that
is used to partially fill the last processor. The WCET of τ ′imp is calcu-

lated as Cimp = (⌊Crem

Ci,j
⌋ ∗ Ci,j), and it has a deadline and period equal

to the original parallel task τi.
• At most one constrained deadline4 thread τ ′cd is generated, which has

a WCET calculated as Ccd = Crem − Cimp. Its period is the same as
the original task τi, and it has a deadline calculated as Dcd = (Di −
(Ci,j − Ccd)). This thread contains the remaining execution time of the
thread that had to fill the last stretched processor. The conversion from
an implicit-deadline thread into a constrained deadline one is necessary
to prevent the sequential thread from executing in parallel since its ex-
ecution is divided between two processors.

Back to the example in Figure 1, Inset 1(c) shows an example of the Fully-
Stretched transformation when applied on task τi shown in Inset 1(a). As shown
in the figure, the original task consists of 8 threads each has a WCET equals
to 4 and a deadline equals to 11. After transformation, the fully-stretched tasks
τ ′stretch contains two threads. The first consists of threads τi,1, τ

′

i,2 and the ending
part of τi,3. While the second task consists of the beginning part of the τi,3
(complementary to the part in the previous task), threads τi,4, τi,5 and the
ending part of thread τi,6. The remaining execution time of thread τi,6 forms the
constrained deadline independent thread τ ′cd, with a deadline Di,6 = 9 as shown
in the figure. Threads τi,7 and τi,8 are merged together, in order to form a single
implicit-deadline task with a WCET equals to 8 and a deadline equals to 11.

The advantage of the Fully-Stretched Transformation is that, at most, two
threads (τ ′imp and τ ′cd) are scheduled using gEDF, and they are the ones that
may cause a tardiness during the scheduling process. While the rest of the gener-
ated threads ({τ ′stretch}) are scheduled using partitioned scheduling algorithms,
and they are guaranteed to respect their deadline each on a single processor
independently.

Partially-Stretched Scenario:
A modification to the Fully-Stretched transformation can be proposed so as to
avoid the thread migrations between processors. In this transformation, we au-
thorize the parallel threads to be stretched up to the maximum possible thread-
capacity of a processor, which can be at most the deadline of the parallel task.
Let x denote the thread-capacity of a particular processor (all identical proces-
sors have the same value), which is calculated as x = ⌊ Di

Ci,j
⌋. This means that

4 A constrained deadline real-time task has a deadline no more than its period.



each processor can contain at most x complete threads executing sequentially.
The result of the transformation is a set of ⌊Ci

x
⌋ implicit-deadline threads each

has a WCET equals to (x ∗ Ci,j). Also, at most on implicit-deadline thread
which has a WCET equals to (Ci − ((x ∗Ci,j) ∗ ⌊

Ci

x
⌋)). The resulted threads are

scheduled using gEDF on m identical multiprocessors.

As shown in the example in Figure 1, parallel task τi from Inset 1(a) is trans-
formed using the Partially-Stretched Transformation, and the result is shown in
Inset 1(b). The processor capacity of task τi is equal to 2, and the result of trans-
formation is 4 sequential implicit-deadline threads characterized by (8, 11, 11). It
is clear that the Partially-Stretched transformation does not force any threads
to migrate prior to the scheduling process, and this is the advantage of this
transformation over the Fully-Stretched Transformation.

The worst-case execution time of a task is a pessimist value, and usually the
jobs do not execute up to this value. In the case of a global work-conserving
scheduling algorithm, when a job finishes its execution earlier than expected by
the WCET, then the scheduler will not allow to leave a processor idle while there
are active jobs ready to execute, and it will allow an active job to be released
earlier. In the case of partitioned scheduling, the scheduling algorithm assigns
tasks to processors, and then migration between processors is not allowed. Hence,
if a job finishes its execution earlier than expected and there are no active jobs
waiting on this processor, the processor will stay idle even of there are active
jobs waiting on the other processors.

Also, it had been proved in [8] that fixed job priority algorithms (which in-
clude gEDF) are predictable, i.e. a schedulable taskset is guaranteed to stay
schedulable when one or more of its tasks execute for less than its worst-case
execution time. This property is another advantage of global scheduling over par-
titioned scheduling. We can conclude that the Parallel and Partially-Stretched
scenarios, which use gEDF to schedule all the threads of the taskset, behave
better than the Fully-Stretched scenario (which uses partitioned scheduling for
most of the executed tasks) in the case of lower execution time of jobs. Hence,
the processors will be efficiently used.

Advantage of stretching over parallelism in real-time systems:
The scheduling of real-time tasksets on multiprocessor systems is more compli-
cated than the uniprocessor systems. A famous problem had been shown in [9]
called the Dhall effect, in which a low utilization taskset can be non-schedulable
regardless of the number of processors in the platform. Later, it had been proved
in [10] that this problem happens when a low utilization taskset contains a high
utilization task. We will show using an example, that this problem happens in
the case of the Parallel Scenario, while the stretching scenarios solves it. The
used example is inspired from [10].

Let us consider a taskset τ that consists of 2 tasks that executes on 3 unit-
speed processors (m = 3). The first task τ1 has a deadline equal to 1, and it
consists of 3 threads each has a WCET equals to 2ǫ, where ǫ is slightly greater



(a) Parallel Scenario: All the threads of the task τ1, which
have the highest priority according to gEDF, execute on all 3
processors. While the highest utilization task τ2 is delayed and
hence it misses its deadline.

(b) Stretched Scenario: Parallel threads of task τ1 are executed
as sequentially as possible. Then, task τ2 have the chance to
execute at time 0.

Fig. 2. An example shows how stretching a parallel task helps in solving the Dhall
effect problem.

than zero. The second task τ2 has a deadline equals to 1 + ǫ, and it has a single
thread with WCET equals to 1. The utilization of each task is calculated as
U1 = 2mǫ and U2 = 1

1+ǫ
. Hence, the total system’s utilization approaches to 1

since ǫ → 0. The taskset is shown in Figure 2.

When gEDF is used, at time t = 0, the first job of task τ1 has a higher
priority than the job of task τ2, because it has an earlier absolute deadline. All
the threads of τ1 have the same priority of τ1, and according to the Parallel
Scenario, they will execute in parallel and they will occupy all the available
processors in the systems. At time t = 2ǫ, the threads finish their execution, and
then task τ2 can start its own. Unfortunately, task τ2 misses its deadline. The
scenario is shown in Inset 2(a).

However, when a stretching scenario is used (either fully-stretched or partially-
stretched transformation has the same result), the parallel threads of the low
utilization task will be forced to execute sequentially and hence they will occupy
lower number of processors. As a result, the higher utilization task (τ2 in the
example) will start its execution earlier and it will respect its deadline. Inset 2(b)
shows the effect of stretching on the Dhall effect problem, and how it solved it.



3 The effect of parallelism on the tardiness of Soft

real-time systems

In soft real-time systems, a deadline miss during the scheduling process of a
taskset does not have catastrophic effects on the correctness of the system as
in hard real-time systems. However, a deadline miss of a task will reduce the
quality of service (QoS) provided by the application. So, in order to keep the
QoS at an acceptable rate and better analyze it, it is necessary to determine an
upper bound of tardiness for each task in a system regarding a specific scheduling
algorithm.

A tardiness of a job in real-time systems is defined as its delay time, i.e. the
time difference between the deadline and the actual finish time of this job. For
a real-time task that generates a number of jobs, the tardiness of one job has
a cascaded effect on the successor jobs, since the next jobs have to wait for the
delayed one to finish its execution before they can start their own execution,
which means that they will be delayed as well. The tardiness of a task is defined
as the maximum tardiness among its generated jobs.
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Fig. 3. An example (from [11]) shows the tardiness of tasks during the scheduling of a
taskset consists of 4 tasks on 3 identical processors using gEDF.

Few researches have been done regarding the problem of identifying an upper
bound to the tardiness of sporadic sequential implicit-deadline tasks on multi-
processors when global EDF is used, such as in [11]5. In [13], an upper bound of
tardiness under preemptive and non-preemptive global EDF is proved. In this
work, we intend to present the latter tardiness bound in the case of preemptive
gEDF and discuss its usefulness in the calculations of tardiness in the case of
parallel tasks. In the future, we aim at calculating an adapted upper bound for
parallel tasks.

For the sake of explaining the upper bound of tardiness from [13], Consider
that τ is a sporadic taskset that is scheduled using gEDF on m identical proces-

5 In [12], the authors mentioned that a proof published in [11] contains an error. Until
now, we are not aware of the availability of a correction for this error.



sors. Each task τk ∈ τ is a sequential implicit-deadline task that has a WCET Ck

and a deadline Dk(equal to minimum arrival time or period). The upper bound
of tardiness of each task in τ is given in the following theorem:

Theorem 1 (from [13]). Global EDF (gEDF) ensures a tardiness bound of

Λ
∑

i=1

εi − Cmin

m−

Λ−1
∑

i=1

µi

+ Ck (1)

to every sequential task τk of a sporadic implicit-deadline task system τ with
Usum ≤ m, where:
εi (resp. µi) denotes the i

th execution cost (resp. task utilization) in non-increasing
order of the execution costs (resp. utilization) of all the tasks.

Λ =

{

Usum − 1, Usumis integral
⌊Usum⌋, otherwise

(2)

The detailed proof of Theorem 1 can be found in [13]. The used approach is
based on comparing the processors allocations using gEDF with a concrete task
system in a processor sharing 6.

As we can notice from Equation 1, the tardiness is calculated as the worst-
case execution time of each task plus a fixed value w.r.t. the global parameters of
the taskset. By analyzing this bound, we conclude that the tardiness of a taskset
is reduced if, at least, one of the following is applied:

– a decrease in the value of the highest WCET and utilization of the tasks in
the set (ε and µ),

– an increase in the WCET of tasks in τ (Cmin),
– an increase in the number of processors,
– a decrease in the total utilization of the taskset (Usum) which affects the

value of Λ from Equation 2.

In our parallelism model described in Section 2, a thread in a parallel task is
considered as a sequential task. Hence, we can apply theorem 1 on each thread
τi,j ∈ τi ∈ τ individually. The tardiness of a job of a parallel task is the maximum
tardiness among its threads, and then the tardiness of a parallel task is the
maximum tardiness among its jobs.

It is worth noticing that the upper bound of tardiness is computed for spo-
radic implicit-deadline tasks, while the fully-stretched transformation generates
at most two threads that scheduled using gEDF and may be delayed, which are

6 A processor sharing is an idle fluid schedule in which each task executes at a precisely
uniform rate given by its utilization (from [13]).



τ ′cd and τ ′imp. As a solution to this problem, and in order to use the tardiness
bound from Theorem 1, we propose a modification to the constrained dead-
line threads τ ′cd to be be executing completely using gEDF, and it is converted
to implicit-deadline threads. An example of this modification is shown in the
example in Figure 1(d).

Let the tardiness of a parallel task τk ∈ τ be denoted by xk when it executes
in the parallel scenario described above (all threads are activated in parallel).
If task τk is partially stretched, then the threads of the parallel tasks will be
stretched which will increase the utilization and execution time of threads. On
another hand, the number of threads to be scheduled using gEDF is reduced on
m processors. So, after the partially-stretched scenario, the values of Cmin, ε and
µ will increase. Also, when task τk is fully-stretched, the resulted fully-stretched
threads (their utilization equals to 1) will be assigned dedicated processors, and
at most 2 threads from each parallel task will be scheduled using gEDF only. As a
result, the total utilization of the taskset τ will be reduced and also the number
of processors on which gEDF algorithm is used, in addition to the effects of
the partially-stretched scenario. The stretching scenarios have the advantage of
reducing the number of threads that may cause a tardiness due to deadline misses
when compared to the parallel scenario. Hence, the tardiness of the parallel tasks
will be reduced as a result.

Based on these effects, we can conclude that the tardiness bound of paral-
lel tasks is not comparable with the bound after stretching. Because stretching
scenarios change the taskset in a way that can increase and decrease the tardi-
ness bound at the same time. Hence, the theoretical tardiness bound of Theo-
rem 1 cannot determine the performance of parallel and stretched tasks in the
scheduling problem using gEDF, and it cannot be used as an indication to the
performance of parallelism in real-time systems. As a result, we will use exper-
imental analysis to simulate the scheduling of the different scenarios of parallel
task execution and to give us an indication on the performance.

4 Experimental Analysis

In this section, we show the simulation results of the experiments conducted
using randomly-generated tasksets to evaluate the performance of parallel exe-
cution in comparison with the stretching execution scenarios described in Section
2. The results are obtained by simulating the scheduling of a large number of
parallel tasksets with different utilization on a platform of 16 identical processors
when global EDF is used.

The simulation process is based on an event-triggered scheduling. This means
that at each event in the interval [0, 3∗H), where H denotes the hyper period of
the scheduled taskset τ and is defined as the least common multiple of periods,
the scheduler is awakened and it decides which jobs have the highest priorities to
execute on the available processors. According to EDF, the job with the earliest
absolute deadline has the highest priority. We consider that a parallel job is
blocked either by the execution of a higher priority thread or by an earlier job



that has been delayed. During the simulation process, we calculate the tardiness
of each job of parallel tasks, in order to calculate the average tardiness of tasks in
the set, while varying three parameters: the execution behavior of parallel tasks
(either Parallel ”Par”, Fully-Stretched ”F-Str” or Partially-Stretched ”P-Str”),
the utilization of tasks within each taskset (either High ”Hi” or Low ”Lo”), this
is done by varying the number of tasks of each taskset, and finally the number
of parallel threads within each parallel task (maximum of 3 or 10 threads/task).

We used a simulation tool called YARTISS [14], which is a multiprocessor
real-time scheduling simulator developed by our research team. It contains many
scheduling algorithms and task models (including parallel tasks), and it can be
used easily for both hard and soft real-time systems.

For each system utilization from 1 to 16, we generated 50, 000 tasksets ran-
domly. The number of parallel tasks within each taskset is varied from 3 to 12
tasks/taskset. This variation affects the structure of tasks because, for a fixed
utilization, increasing the number of tasks means that the taskset’s utilization
will be distributed on a larger number of tasks, which will lower the average
utilization of tasks within the taskset. Also, we can control the percentage of
parallelism within a taskset by varying the number of parallel threads of each
task during task generation. This can help in analyzing the effect of parallelism
on scheduling as we will see below.

Regarding the generation of parallel tasksets, our task generator is based
on the Uunifast-Discard algorithm [15] for random generation of tasks. This
algorithm is proposed by Davis and Burns to generate randomly a set of tasks of
a certain total utilization on multiprocessor systems. The number of tasks and
their utilization are inputs of this algorithm. The taskset generator is described
briefly as follows:

– The algorithm takes two parameters n and U , where n is the number of
parallel tasks in the set and U is the total utilization of the taskset (U > 0).

– The Uunifast-Discard algorithm distributes the total utilization on the taskset.
A parallel task τi can have a utilization Ui greater than 1 which means that
its threads cannot be stretched completely, and it has to execute in parallel.

– The number of threads and their WCET of each parallel tasks are generated
randomly based on the utilization of the tasks. The maximum number of
threads is fixed to be either 3 or 10 threads per parallel task.

In order to limit the simulation interval and reduce the time needed to per-
form the simulation, which is based on the length of the hyper period of each
taskset, we used the limitation method proposed in [16], which relays on using a
considerate choice of periods of the tasks while generation so as to reduce their
least common multiple. Using this method, we implemented our task generator
to choose periods of tasks in the interval [1, 25200].

Analysis of experimental results

For each taskset, the average of the maximum tardiness of all tasks is computed.
The results are showed in Figure 4, which consists of 2 insets. Inset 4(a) shows
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(a) Comparison of the average tardiness of taskset when executing on
m = 16 using all execution scenarios for parallel tasks.
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(b) Comparison of the average tardiness of taskset when executing on
m = 16 focusing on the parallel and the Full-stretch execution scenar-
ios.

Fig. 4. Simulation results of average tardiness of parallel tasks by varying their ex-
ecution behavior (Parallel ”Par”, Full-stretch ”F-Str” and Partially-stretch ”P-Str”),
the utilization of tasks within tasksets (high ”Hi” and Low ”Lo”) and the maximum
number of threads within each parallel task (either 3 or 10 threads/task).

the comparison of average tardiness of tasksets for the three types of execution
behaviors, while Inset 4(b) focuses on the comparison betzeen the parallel and
the fully-stretched execution behavior.

The average tardiness is calculated by considering the schedulable tasks (their
tardiness equal to zero), so as to give us an indication on the number of deadline
misses happened during simulation. Moreover, the x-axis of the insets of Figure



4 represents the utilization of the scheduled tasksets (from 1 to 16 on a system
of 16 identical processors), while the y-axis represents the average tardiness of
the tasksets.

The rest of this section discusses the results in details.

The effect of utilization of tasksets on tardiness.
Referring to Figure 4, most of the tasksets have negligible tardiness when

tasksets have utilization less than 4. Then the tardiness increases differently
(based on the used scenario) for higher utilization. These results are quite logical,
since the number of processors in the simulation is always considered to be
m = 16. Hence, lower utilization tasksets mean lower execution demand from
processors which increases schedulability and reduces deadline misses. Starting
from Utaskset > 4, we can notice an increase in tardiness for the average tardiness
values which varies based on the execution scenario.

However, we can conclude by looking at these results, and specially when
Utaskset = 16, that the partially-stretched transformation has always the highest
tardiness values when it is compared with the other two execution scenarios (par-
allel and fully-stretched) with the same parameters. As a result, the partially-
stretched scenario can be seen as the least appealing execution scenario from
the schedulability point of view. This is expected since the partially-stretched
transformation delays the execution of part of the parallel threads of a task so
as to execute sequentially. This is done even if there are available processors
for them to execute earlier than the defined activation time specified by the
transformation. In Figure 4(a), the partially-stretched scenario (P-Str) has the
highest tardiness in both groups (high and low utilization) when the number of
threads of each parallel task has a maximum of 10 threads.

The performance of the other two scenarios (parallel and fully-stretched) is
not comparable at this point, and they are affected by the utilization of parallel
tasks and the number of threads in each task, and this will be discussed in the
next paragraph.

The effect of the number of tasks per taskset on tardiness.
The difference between the parallel and the fully-stretched execution scenarios
of parallel tasks is shown in Figure 4(b). Since the Uunifast-Discard algorithm
that we used for generating tasksets divides the total utilization of taskset on
the number of tasks per taskset, varying the number of tasks while fixing the
system’s utilization will vary the utilization assigned for each task. In our par-
allel task generator, the maximum possible number of threads depends on the
total execution time of the task (respectively, its utilization). So, lowering the
task utilization means a lower execution time which increases the probability of
generating tasks with low number of parallel threads. We can notice that the
highest tardiness of tasksets is caused from the high-utilization tasksets executed
using the parallel execution scenario (Par-Hi in Figure 4(b)), while their respec-
tive tasksets executing using the fully-stretched scenario (F-Str in Figure 4(b))



have the lowest tardiness, regardless of the number of parallel threads within
each task.

Regarding the low-utilization tasks, we can notice that the tardiness of the
tasksets depends on the number of parallel threads within each task. As shown in
Figure 4(b), the fully-stretched tasksets whose tasks consist of 3 threads (F-Str-
Lo-3) have lower but relatively close tardiness than the parallel scenario (Par-
Lo-3). However, the parallel executing tasksets whose tasks consist of 10 threads
(Par-Lo-10) are behaving better than the fully-stretched scenario (F-Str-Lo-10).

In this case, the scheduling of the parallel scenario is clearly better than
the fully-stretched scenario as shown in Figure 4(b). This can be explained by
noticing that in this case the number of parallel threads in a task is high while
its utilization is low. Since the threads inherit the deadline and period of their
original task, then the threads have low utilization as well. The parallel scenario
gives the scheduling algorithm more freedom in scheduling the parallel threads,
by activating them all at the same time, and choosing their execution order
based on the availability of processors. While the fully-stretched scenario forces
the parallel tasks to execute sequentially even if this approach is not work-
conserving and it might cause delays in the scheduling process.

From the results conducted by simulation, we have now an experimental
indication on the effect of parallelism on the scheduling of real-time systems. It
is possible now to overrule the typical assumption that parallelism has always
negative effects on scheduling. As we have shown above, the parallel scheduling
is better than its sequential alternatives when tasks have low number of parallel
threads. According to this, the scheduler can get better scheduling decisions
while parallelizing the execution of certain tasks on multiple processors than the
sequential execution. This result matches the motivation of parallelism and its
practical uses in non-real time systems.

5 Conclusion

In this paper, we were interested in studying the effect of parallelism in real-time
systems. The problem is summarized as the scheduling of sporadic implicit-
deadline parallel tasks on multiprocessors using global earliest deadline first
(gEDF) as scheduling algorithm. The parallel tasks are either executed in a
parallel scenario in which all the threads of the parallel tasks execute in parallel
as soon as possible, or in a stretching scenario, in which the threads are exe-
cuted as sequentially as possible. We proposed two stretching scenarios based on
the number of thread migrations and preemptions required by the transforma-
tion: partially and fully stretched. In the latter, threads are stretched to form
transformed threads with utilization equal to 1, but it requires higher number
of migrations and preemptions between processors and jobs.

Using extensive simulation, we showed that parallelism did not cause major
negative effects on the scheduling of real-time systems. Admitting that sequen-
tial execution of tasks has better results in general than parallelism, There are
certain cases where parallelism behaves better and has lower tardiness values



than stretching. Based on these remarks and results, we can overrule the com-
mon assumption in real-time systems against parallelism, and that tries to avoid
parallel structure in order to get better scheduling results.

In the future, we aim at extending our work, and provide theoretical analyses
to support our experimental results, by providing an upper bound of tardiness
adapted to parallel real-time tasks on multiprocessor systems. Also, we are look-
ing forward to analyze scheduling algorithms other than gEDF algorithm that
we used in this paper. Based on this, we can classify the common scheduling
algorithms in real-time systems based on their ability to schedule parallel tasks
with low tardiness bounds.

Finally, we aim at generalizing our task model of parallel tasks, so as to in-
clude more complicated structures of parallel threads, such as the multi-threaded
segment model and the Directed Acyclic Graphs. Such task models are used to
represent practical parallel programming APIs.
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