
Incremental Checking of Well-Founded Recursive
Specifications Modulo Axioms?

Felix Schernhammer1 and José Meseguer2

1 Vienna University of Technology, Austria, felixs@logic.at
2 University of Illinois at Urbana-Champaign, USA, meseguer@uiuc.com

Abstract. We introduce the notion of well-founded recursive order-sorted equational logic
(OS) theories modulo axioms. Such theories define functions by well-founded recursion and
are inherently terminating. Moreover, for well-founded recursive theories important proper-
ties such as confluence and sufficient completeness are modular for so-called fair extensions.
This enables us to incrementally check these properties for hierarchies of such theories that
occur naturally in modular rule-based functional programs. Well-founded recursive OS the-
ories modulo axioms contain only commutativity and associativity-commutativity axioms.
In order to support arbitrary combinations of associativity, commutativity and identity ax-
ioms, we show how to eliminate identity and (under certain conditions) associativity (without
commutativity) axioms by theory transformations in the last part of the paper.

1 Introduction

Scalability is a big, unsolved challenge in formal reasoning about executable algebraic specifications.
When using such specifications as programs and reasoning about their correctness, we often need
to check basic properties such as confluence, termination, and sufficient completeness. This is quite
manageable for small specifications, but when dealing with larger specifications corresponding to
realistic programs, we can encounter severe tool performance barriers. For example, a non-built-in
specification in Maude of the natural numbers, which is the exact counterpart of Maude’s built-in
NAT module, cannot be proved terminating by the MTT tool, which performs a relatively simple
transformation to make the order-sorted specification unsorted and then invokes the AProVE tool
with a 900 second timeout. Likewise, Mu-term cannot prove the same specification terminating with
the same timeout, even though both AProVE and Mu-Term are state-of-the-art tools. In a similar
way, particularly in the presence of AC axioms, a large number of critical pairs is often generated
when checking the local confluence of specifications. For example, a small AC specification of
hereditarily finite sets with only 26 equations already generates 1027 critical pairs when using the
Maude Church-Rosser Checker [10]. Modularity is crucial.

Modular methods for termination and confluence (for a good survey up to 2002 see [24]) are
certainly helpful. However: (i) some of these methods make quite strong requirements (e.g., dis-
jointness) on the kind of modularity they allow; (ii) little seems to be known about the modularity
of sufficient completeness; and (iii) the modularity results we are aware of do not deal with sorts
and subsorts, nor (except for, e.g., [23, 19]) with rewriting modulo axioms, which are key features of
state-of-the-art rule-based languages such as ASF+SDF [30], ELAN [5], CafeOBJ [11], and Maude
[6].

Our Approach is based on the observation that in practice algebraic specifications are often
recursive function definitions based on constructor patterns, and whose right-hand sides involve
recursive calls to the same and/or previously defined functions on smaller arguments in the well-
founded subterm ordering. This includes, but goes beyond, the very common case of primitive-
recursive definitions. For example, the equations defining Ackerman’s function,

A(0, n) = s(n) A(s(m), 0) = A(m, 1)
A(s(m), s(n)) = A(m,A(s(m), n))

? The first author has been supported by the Austrian Academy of Sciences under grant number 22.361
and by the Austrian Marshall Plan Foundation in the Marshall Plan Scholarship Program under grant
number 154.265.20.3.2010. The second author has been supported by NSF Grants CNS 07-16638 and
09-04749, and CCF 09-05584.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/4832292?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

exemplify a well-founded recursive function definition based on natural number constructor patterns
which is not primitive-recursive. Such specifications define total (i.e., terminating) functions on the
set of constructor terms. Furthermore, they naturally form hierarchies, so that previously-defined
functions can be used to define more complex ones. For example, natural number exponentiation
can be recursively defined in terms of multiplication, which can in turn be recursively defined in
terms of addition.

The main goal of this work is to reduce the checking of confluence, termination, and sufficient
completeness for algebraic specifications based on well-founded recursive function definitions to
relatively simple incremental checks on the module hierarchies containing such definitions. However,
in order to be practically useful for rule-based languages, the notion of well-founded recursive
function definition needs to be generalized to support: (a) mutually recursive definitions; (b) sorts,
subsorts, and subsort overloading of function symbols; and (c) rewriting modulo axioms such as
associativity and/or commutativity and/or identity. Such a generalization is non-trivial. Support
for (a) is the least problematic, but support for (b) means that, because of subsort overloading,
a function f can never be considered to be defined once and for all: it can always be extended
to bigger sorts. For example, we can first define a + function in a NAT module, and then extend
its domain of definition in INT, RAT, and COMPLEX modules. Support for (c) is the least obvious,
because the notion of “well-founded recursive function definition” does not have a straightforward
extension to the modulo case. For example, if f is an associative-commutative (AC) function
symbol, a definition of f based on a binary constructor g and a constructor constant a might
include an equation f(g(x, y), a) = g(f(x, y), g(a, a)), which syntactically satisfies all the expected
requirements of well-founded recursive function definitions, yet is non-AC-terminating (cf. Example
5 in Section 3). A related difficulty for axioms like AC is that the usual syntactic characterizations
of classes of recursive functions (e.g., primitive recursive) are no longer adequate, because of the
much greater flexibility in the constructor patterns that can be used. For example, the definition
of the cardinality function card in the MSET-NAT module below could just as well have used an
equation card(MS,MS’)= card(MS) + card(MS’) with MS, MS’ of sort MSet, instead of the equation
card(N,MS)= s(0) + card(MS) with N of sort Nat below. This work provides a notion of well-founded
recursive function definition supporting features (a)–(b)–(c). We show in Section 3.1 that our
approach generalizes an already very general notion of many-sorted well-founded recursive function.

To make the approach scalable, the cost of each incremental check should be small. This can
be achieved by taking advantage of modular methodologies which ensure that in an immediate
submodule inclusion (Σ,E ∪ Ax) ⊂ (Σ ∪ Σ∆, (E ∪ E∆) ∪ (Ax ∪ Ax∆)), while both modules can
be arbitrarily large, the incremental additions Σ∆ to the signature, E∆ to the defining equations,
and Ax∆ to the axioms, are small. Such increments being big is a clear sign of bad software
engineering practice, since usually a more modular design can be achieved by module refactoring.
The incremental proof methods we propose are scalable precisely because they are based on checking
the typically small increments (Σ∆, E∆ ∪ Ax∆) and not the, potentially very large, theory (Σ ∪
Σ∆, (E ∪ E∆) ∪ (Ax ∪Ax∆)).

A Running Example. Throughout the paper we use the following running example in Maude.
Although small, it illustrates all the key features supported: mutual recursion, order-sortedness,
and rewriting modulo axioms.

fmod NATURAL is pr TRUTH-VALUE .
sort Nat .
op 0 : -> Nat [ctor] .
op s : Nat -> Nat [ctor] .
op _+_ : Nat Nat -> Nat [comm id: 0] .
ops even odd : Nat -> Bool .
vars N M : Nat .
eq s(N) + s(M) = s(s(N + M)) .
eq even(0) = true .
eq even(s(N)) = odd(N) .
eq odd(0) = false .
eq odd(s(N)) = even(N) .

endfm

fmod MSET-NAT is pr NATURAL .
sort MSet .
subsort Nat < MSet .
op _,_ : MSet MSet -> MSet [ctor assoc comm id: null] .
op null : -> MSet [ctor] .
op card : MSet -> Nat .
var MS : MSet .
var N : Nat .
eq card(null) = 0 .
eq card(N,MS)= s(0) + card(MS) .

endfm

fmod LIST-MSET-NAT is pr MSET-NAT .
sorts List NeList .
subsorts MSet < NeList < List .
op nil : -> List [ctor] .
op U : List -> MSet .
op _;_ : List List -> List [assoc id: nil] .
op _;_ : MSet NeList -> NeList [ctor assoc id: nil] .
var MS : MSet .
var NL : NeList .
eq U(nil) = null .
eq U(MS) = MS .
eq U(MS ; NL) = MS, U(NL) .

endfm

The NATURAL module defines the natural numbers with addition and with even and odd predi-
cates. The MSET-NAT module defines multisets of naturals and cardinality of multisets. Finally, the
LIST-MSET-NAT module forms lists of multisets of numbers and defines a multiset union operator
on such lists. Associativity, commutativity and identity axioms are specified with the assoc, comm,
and id: attributes. All constructor operators are declared with the ctor keyword. As illustrated
for _;_, an operator can be a constructor for some typing (NeList) and a defined symbol for a
looser typing: (0,0) ; nil and nil ; nil are not constructor terms.

The paper is organized as follows. Section 2 gives background on order-sorted rewriting. Sec-
tion 3 introduces well-founded recursive theories. Section 4 describes and justifies the incremental
checking methods modulo C and AC axioms. Section 5 extends the approach to other combina-
tions of A, C and I (identity) axioms. Finally, Section 6 discusses related work and presents some
conclusions. The proofs of all theorems can be found in the appendix.

2 Background on Order-sorted Term Rewriting

We summarize here material from [14, 21] on order-sorted algebra and order-sorted rewriting. For
standard notions and notations of ordinary term rewriting we refer to [3, 4]. We start with a
partially ordered set (S,≤) of sorts, where s ≤ s′ is interpreted as subsort inclusion. The connected
components of (S,≤) are the equivalence classes [s] corresponding to the least equivalence relation
≡≤ containing ≤. When a connected component [s] has a top element, we will also denote by [s]
such a top element. An order-sorted signature Σ = (S,≤, F) consists of a poset of sorts (S,≤)
and a S∗ × S-indexed family of sets F = {Fw,s}(w,s)∈S∗×S , which are function symbols with given
string of argument sorts and result sort. If f ∈ Fs1...sn,s, we declare the function symbol f as
f : s1 . . . sn −→ s. Some of these symbols f can be subsort-overloaded, i.e., they can have several
declarations related in the ≤ ordering [14].

Given an S-sorted set X = {Xs | s ∈ S} of disjoint sets of variables and an order-sorted
(OS) signature Σ = (S,≤, F), the set T (Σ,X)s of terms of sort s is the least set such that
Xs ⊆ T (Σ,X)s; if s

′ ≤ s, then T (Σ,X)s′ ⊆ T (Σ,X)s; and if f : s1 . . . sn −→ s is a declaration
for symbol f and ti ∈ T (Σ,X)si

for 1 ≤ i ≤ n, then f(t1, . . . , tn) ∈ T (Σ,X)s. The set T (Σ,X)
of order-sorted terms is T (Σ,X) = ∪s∈ST (Σ,X)s. An element of any set T (Σ,X)s is called a
well-formed term. A simple syntactic condition on Σ called preregularity [14] ensures that each
well-formed term t has always a least-sort possible among all sorts in S, which is denoted ls(t).

Furthermore, Σ is monotonic if for every two declarations f : s1 . . . sn −→ s and f : s′1 . . . s
′
n −→ s′,

s1 . . . sn >· s′1 . . . s
′
n implies s > s′, where s1, . . . , sn >· s′1, . . . , s

′
n means si ≥ s′i for all 1 ≤ i ≤ n

and si > s′i for some 1 ≤ i ≤ n. Throughout this paper we assume that all order-sorted signatures
are preregular and monotonic. Terms are viewed as labeled trees in the usual way. Positions p, q, . . .
are represented by chains of positive natural numbers used to address subterm positions of t. The
set of positions of a term t is denoted Pos(t). Positions of non-variable symbols in t are denoted
as PosΣ(t), and PosX (t) are the positions of variables. The subterm at position p of t is denoted
as t|p and t[u]p is the term t with the subterm at position p replaced by u. We write tD u, read u
is a subterm of t, if u = t|p for some p ∈ Pos(t) and tB u if tD u and t 6= u.

An order-sorted substitution σ is an S-sorted mapping σ = {σ : Xs → T (Σ,X)s}s∈S from
variables to terms. A specialization ν is an OS-substitution that maps a variable x of sort s to a
variable x′ of sort s′ ≤ s. We denote Dom(σ) and Rng(σ) the domain and range of a substitution
σ. An (order-sorted) rewrite rule is an ordered pair (l, r), written l → r, with l, r ∈ T (Σ,X),
l 6∈ X , Var(r) ⊆ Var(l) (and ls(l) ≡≤ ls(r) for order-sorted rules). If for all specializations ν,
ls(ν(l)) ≥ ls(ν(r)), then we say that the OS-rule l → r is sort-decreasing. A term t ∈ T (Σ,X)
rewrites to u (at position p ∈ Pos(t) and using the rule l → r), written t p→l→r s (or just t →R s
or even t → s if no confusion arises), if t|p = σ(l) and s = t[σ(r)]p, for some OS-substitution σ; if
l→ r is not sort-decreasing, we also require that t[σ(r)]p is a well-formed term.

An order-sorted theory (OS theory) is a triple E = (Σ,B,R) with Σ a preregular order-sorted
signature such that each connected component has a top sort, B a set of unconditional Σ-equations,
and R a set of unconditional Σ-rules. In this paper B will always be a combination of associativity
and/or commutativity and/or identity axioms for some of the operators in Σ. Moreover, associative
and commutative operators f are always typed f : s s′ −→ s for some sorts s, s′ where s′ ≤ s. By
ΣAC (resp. ΣC) we denote the subsignature of Σ where all function symbols are associative and
commutative but do not have an identity (resp. where all function symbols are commutative but
not associative and do not have an identity). Furthermore, we assume3 that in each equation u = v
in B the variables {x1, . . . , xn} = Var(u) = Var(v) have top sorts [s1], . . . , [sn].

Given an OS theory E as above, t →R/B t′ iff there exist u, v such that t =B u and u →R v
and v =B t′. We say that (Σ,B,R) is B-confluent, resp. B-terminating, if the relation →R/B is
confluent, resp. terminating. By [w]B we denote that equivalence class of terms that are B-equal to
w. We call an order-sorted signature B-preregular if the set of sorts {s ∈ S | ∃w′ ∈ [w]B s.t. w′ ∈
T (Σ,X)s} has a least upper bound, denoted ls[w]B which can be effectively computed.4 If (Σ,B,R)
is B-confluent, B-terminating, B-preregular, and sort-decreasing, then the initial algebra TΣ/R∪B ,
where the rules R are interpreted as equations, is isomorphic to the canonical term algebra CΣ/R,B ,
whose elements are B-equivalence classes in →R/B-canonical form. An order-sorted subsignature
Ω ⊆ Σ with the same poset of sorts as Σ is called a constructor subsignature iff for each ground
Σ-term t there is a ground Ω-term u such that t →∗R/B u. Terms from T (Ω,X) are called Ω-
constructor terms, or just constructor terms if Ω is clear from the context. We then say that
(Σ,B,R) is sufficiently complete with respect to Ω. Intuitively this means that the functions
defined by the rules R have been fully defined. For instance, the operators declared with the ctor
attribute in our running example define a constructor subsignature, so that the specification is
sufficiently complete. Assuming that (Σ,B,R) is B-confluent, B-terminating, B-preregular, and
sort-decreasing, and that Ω is a constructor subsignature, if for any t→ t′ in R, whenever t is an
Ω-term then t′ is also an Ω-term, we are then guaranteed that all the elements in the canonical term
algebra CΣ/R,B are B-equivalence classes of ground Ω-terms. If, in addition, any ground Ω-term t
is in →R/B-canonical form, then we call Ω a signature of free constructors modulo B.

Given an OS theory E = (Σ,B,R), we call an unsorted theory E ′ = (Σ′, B′, R′) a sound
reflection of E if there exists a mapping M from T (Σ,X) to a set of unsorted terms such that
t →R/B t′ ⇒ M(t) →+

R′/B′ M(t′) for all terms t, t′ ∈ T (Σ,X) (in that case we say that E ′ is a

3 This assumption makes the technical treatment simpler, but it does not involve loss of generality and
does not have to be specified explicitly: we can always assume that a new top sort [s] is added to each
connected component so that a binary operator f to which some axiom in B apply is overloaded for the
top sort as f : [s] [s] −→ [s]. Maude adds these “kind” sorts [s] automatically to any specification.

4 Maude automatically checks the B-preregularity of a signature Σ for any combination of associativity,
commutativity and identity axioms (see [6, Chapter 22.2.5]).

sound reflection of E w.r.t.M; cf. [25]). Given a strict order � on some domain D, the lexicographic
extension of � to n-tuples over D is defined as 〈d1, . . . , dn〉 �lex 〈d′1, . . . , d′n〉 if there exists an i ≤ n
such that dj = d′j for all j < i and di � d′i. Moreover, the multiset extension of � to multisets over
D is defined by D1 �mul D2 if D1 6= D2 and for each d ∈ D2 \D1 there exists a d′ ∈ D1 \D2 such
that d′ � d.

3 Well-founded Recursive Theories

In this section we introduce the notion of well-founded recursive OS theories modulo axioms. The
basic idea is to impose conditions on the equations of such theories, that guarantee finiteness of
rewrite derivations. These conditions are based on the notion of recursive dependency of function
symbols. Intuitively, a function symbol f recursively depends on g if there is a rule f(t1, . . . , tn)→ r
in the OS theory with root(r|p) = g for some position p of r.

Definition 1 (recursive dependency). Assume the axioms B0 of the theory E = (Σ,B0, R) are
only commutativity and associativity-commutativity axioms.5

Let G be the names of function symbols in Σ. The relation I1
E⊆ G × G is defined as f I1

E g
whenever, there is a rule l → r ∈ R and a position p ∈ Pos(r) such that root(l) = f and
root(r|p) = g. The preorder IE⊆ G×G is obtained as the reflexive and transitive closure of I1

E .

For order-sorted theories, and in particular in the presence of subsort overloaded function
symbols, it is advantageous to distinguish between subsort overloaded variants of function symbols,
because by doing so one obtains a more fine-grained notion of recursive dependency. This more
fine-grained notion is needed because recursive dependencies exclusively based on the names of
overloaded function symbols are too coarse to faithfully capture the actual dependencies involved
in order-sorted rewriting.

A straightforward approach to achieve this disambiguation of subsort overloaded function sym-
bols is to label them with the sorts of their arguments. This approach was used for instance by
Ölveczky et al. ([25][Definitions 2 and 3]) to obtain an unsorted reflection of order-sorted rewrite
systems. Unfortunately, in the presence of associativity axioms the unsorted rewrite system ob-
tained by this labeling may not reflect the original order-sorted one.

Example 1. Consider an OS theory E with sorts A < B, a function symbol f which is subsort
overloaded with typings f : AA → A, and f : B B → B, a unary function symbol s with typing
s : B → A, and a constant b of sort B. The symbol f is associative and commutative and the rules
are

f(b, x) → f(s(b), s(b))
f(b, s(x)) → f(b, x)

where the sort of the variable x is B. By labeling the function symbols according to the sorts of
their arguments in the corresponding order-sorted rewrite system, one does not obtain a sound
reflection. The labeled versions of the above rules (including specializations) are

fB,B(b, x)→ fA,A(sB(b), sB(b))
fB,A(b, x)→ fA,A(sB(b), sB(b))

fB,A(b, sB(x))→ fB,B(b, x)
fB,A(b, sA(x))→ fB,A(b, x)

In [25], additionally rules that decrease the sort labelings of function symbols are needed. Here,
these rules are

fB,B(x, y) → fA,B(x, y)
fB,B(x, y) → fB,A(x, y)
fA,B(x, y) → fA,A(x, y)
fB,A(x, y) → fA,A(x, y)

sB(x) → sA(x)

5 The subscript 0 in B0 indicates that only C and AC axioms are present. In Section 5 below also other
combinations of A, C and I axioms will be considered.

The symbols fB,B , fB,A and fA,A are considered to be associative and commutative. The following
cyclic reduction sequence cannot be reflected.

f(f(b, s(b)), b) → f(f(s(b), s(b)), b) =AC

=AC f(f(b, s(b)), s(b)) →
→ f(f(b, b), s(b)) =AC f(f(b, s(b)), b)

In fact the labeled rewrite system is terminating (which can automatically be proved by AProVE
[13]).

The reason for the inability of the labeled rewrite system to simulate correctly the order-sorted
rewriting of Example 1 is the complex interaction between sorts and structural axioms. More pre-
cisely, in the term f(f(s(b), s(b)), b) the sort of the arguments of the inner f symbol is A. However,
in the AC-equal term f(f(b, s(b)), s(b)) the two arguments of the inner f symbol have sorts B and
A. Hence, there is an increase in the sorts of the arguments caused by the associativity axiom. Note
that in the labeled version of the term f(f(s(b), s(b)), b) which is fA,B(fA,A(sB(bB), sB(bB)), bB)
no associativity equation is applicable since fA,B 6= fA,A.

The problem, therefore, is to find a C- and AC-compatible disambiguation scheme on which
we can express order-sorted recursive dependencies. The solution to this problem is to label AC
function symbols not by pairs of sorts, but by the multisets of sorts of arguments of the flattened
versions of the terms in question. Commutative (but not associative) function symbols are labeled
by unordered pairs of sorts of their arguments.

Definition 2 ((top) flattening). Let Σ be an unsorted signature containing free and AC-function
symbols and let f be an AC symbol. Then,

flat(t, f) =

8><>:
x if t = x, a variable
g(t1, . . . , tn) if t = g(t1, . . . , tn), g 6= f

f(T1 ∪ T2) if t = f(t1, t2)

where

Ti =

(
{u1, . . . , um} if flat(ti, f) = f(u1, . . . , um)

{flat(ti, f)} otherwise

Definition 3 (labeled signature, lab). Let Σ = (S,<, F) be an order-sorted signature con-
taining AC, C and free function symbols. Its associated unsorted labeled signature Σos is given
by

{fΨ | f : AB → A ∈ ΣAC ,
Ψ a finite multiset of sorts ≤ A} ∪

{f[A′,B′] | f : AB → C ∈ ΣC , [A′, B′] an unordered
pair of sorts A′ ≤ A,B′ ≤ B} ∪

{fA′1,...,A′n | f : A1 . . . An → C ∈ Σ \ (ΣC ∪ΣAC),
A′i ≤ Ai for all 1 ≤ i ≤ n}.

For a function symbol fA of Σos where A is a multiset, an unordered pair or a sequence of sorts,
we denote by erase(fA) the unlabeled function symbol f and by lab(fA) the label A.

Note that Σos is countably infinite in general if Σ is countable. Next we define a mapping from
terms over Σ to terms over the labeled signature Σos.

Definition 4 (labeling terms). Let Σ = (S,<, F) be an order-sorted signature containing AC,
C and free function symbols which is preregular modulo the AC and C axioms. The mapping

.̄ : T (Σ,V)→ T (Σos, V) is defined by

t =

x if t = x ∈ V
fls(t1),...,ls(tn)(t1, . . . , tn) if t = f(t1, . . . , tn),

f ∈ Σ \ (ΣC ∪ΣAC)
f[ls(t1),ls(t2)](t1, t2) if t = f(t1, t2), f ∈ ΣC
fΨ (λ(t1, f, Ψ), λ(t2, f, Ψ))if t = f(v1, v2), f ∈ ΣAC ,

flat(t, f) = f(u1, . . . , um),
Ψ = {ls(u1), . . . , ls(um)}

where
λ(u, f, Ψ) = fΨ (λ(u1, f, Ψ), λ(u2, f, Ψ))

if u = f(u1, u2) and u otherwise.
Note that, by definition, constants are always labeled by the empty sequence ε. Thus, for nota-

tional simplicity we omit the label of constants if no confusion arises. Slightly abusing notation, we
denote by erase the inverse mapping of .̄, which erases the labels of function symbols and is defined
for terms f(t1, . . . , tn) ∈ T (Σos, V) as erase(f)(erase(t1), . . . , erase(tn)).

Example 2. Consider the signature of E in Example 1. The labeled term f(f(s(b), s(b)), b) is

f{A,A,B}(f{A,A,B}(sB(b), sB(b)), b).

By labeling terms in equations of an OS theory, we obtain a theory transformation that maps
OS theories modulo axioms to unsorted theories modulo axioms.

Definition 5 (labeled theory). Let E = (Σ,B0, R) be an OS theory with axioms B0 including
only C and AC axioms. By E we denote the unsorted theory (Σos, B0, R) where

B0 = {lθ = rθ | l = r ∈ B0, θ a sort specialization}
R = {lθ → rθ | l→ r ∈ R, θ a sort specialization}

Example 3. Consider the module LIST-MSET-NAT of our running example of Section 1 and the
equation

(MS ; NL) ; L = MS ; (NL ; L)

that is added by the theory transformation of Section 5 below, thus eliminating the associativity
axiom for “ ;”. The sorts of the variables are MS : MSet,NL : NeList and L : List. Hence, the
labeled version of this equation (considering the identity specialization) is

(MS ;MSet,NeList NL) ;NeList,List L =
MS ;MSet,List (NL ;NeList,List L).

Thus, the various occurrences of the symbol “;” in the equation are explicitly disambiguated.
Moreover, there are 24 specializations of this equation (including the identity), because the variables
can be specialized in the following way:

MS to MSet,Nat

NL to NeList,MSet,Nat

L to List,NeList,MSet,Nat

Hence, according to Definition 5, our equation is transformed into 24 labeled equations given by

(MS ;X,Y NL) ;Y,Z L = MS ;X,Z (NL ;Y,Z L)

where X ∈ {MSet,Nat}, Y ∈ {NeList,MSet,Nat},
Z ∈ {List,NeList,MSet,Nat}.

As shown by Example 4 below, the theory transformation of Definition 5 is not a sound reflection
(w.r.t. .̄). However, it can be extended to a theory transformation that is a sound reflection (w.r.t. .̄).
This is detailed in the appendix of this report. Nevertheless, in this short version of the paper we use
labeled versions of rewrite rules exclusively to derive a “sort-aware” recursive dependency relation
(cf. Definition 8 below). For this purpose, it suffices to use the simpler theory transformation of
Definition 5. Hence, for the sake of simplicity, we use only this transformation in the rest of this
section.

Example 4. Consider the theory E = (Σ,B0, R) of Example 1. The rules of E = (Σos, B0, R) are

f{B,B}(b, x) → f{A,A}(sB(b), sB(b))
f{A,B}(b, sB(x)) → f{B,B}(b, x)

f{A,B}(b, x) → f{A,A}(sB(b), sB(b))
f{A,B}(b, sA(x)) → f{A,B}(b, x)

In the unlabeled system, we have s = f(b, f(b, b))→R f(s(b), s(b)) = t, but after labeling the cor-
responding reduction is impossible: s = f{B,B,B}(bε, f{B,B,B}(bε, bε)) 6→R f{A,A}(sB(b), sB(b)) = t.

Based on the notion of recursive dependency and the labeling of function symbols, we now
define well-founded recursive OS theories modulo axioms. These well-founded recursive theories
are guaranteed to be terminating and properties like confluence and sufficient completeness can be
verified incrementally. Left-hand sides of equations in well-founded OS theories are linear patterns,
or linear constructor terms with constructor right-hand sides in case constructors are not B0-free
(Ω ⊆ Σ is B0-free iff for each specialization lν → rν with l→ r ∈ R, lν is not an Ω-term).

Definition 6 (pattern). Let E = (Σ,B0, E) be an OS theory where Σ = D]Ω is partitioned into
defined function symbols and constructors.6 A term t is a pattern if it is linear and every proper
subterm is from T (Ω, V).

In order to obtain termination of well-founded recursive theories, arguments of functions called
recursively by other mutually recursively dependent functions have to decrease. For example, when
considering a rewrite rule f(s1, s2, s3) → C[f(t1, t2, t3)] for some context C, we demand that the
tuple 〈s1, s2, s3〉 resp. the multiset {s1, s2, s3} is greater than 〈t1, t2, t3〉 resp. {t1, t2, t3} w.r.t. some
extension of the subterm ordering to tuples or multisets that preserves well-foundedness. Whether
arguments of non-commutative functions are compared as tuples (thus using a lexicographic or-
dering lex) or multisets (thus using a multiset ordering mul or a more specialized version tup for
AC functions) is determined by a status function. This provides a maximum of flexibility, since
arguments of different functions can be compared in different ways (unless the functions are mu-
tually recursive). The idea of recursive calls to functions with smaller collections of arguments is
formalized by the notion of argument decreasing rules, where all recursive function calls are to
functions with smaller argument collections.

Definition 7 (decreasing rule). Let E = (Σ,B0, R) be an OS theory where B0 consists exclu-
sively of AC and C axioms and let stat : Σ → {lex,mul} be a status function on Σ. Moreover, let
l → r be a rule of R and g a function symbol such that root(l) and g are either both AC or none
of them is AC. We say that l→ r is g-argument decreasing if stat(root(l)) = stat(g) and for each
subterm r|p of r with root(r|p) = g there are terms l′ =B0 l and w′ =B0 r|p such that

{l′′|1, . . . , l′′|ar(root(l′′))}Btup {w′′|1, . . . , w′′|ar(root(w′′))}

if root(l′), root(w′) ∈ ΣAC where l′′ = flat(l′, root(l′)) and w′′ = flat(w′, root(w′))7; and

{l′|1, . . . , l′|ar(root(l′))}Bmul {w′|1, . . . , w′|ar(root(w′))}
6 But note that we can have f : s1, . . . , sn → s ∈ D and another f : s′

1, . . . , s
′
n → s′ ∈ Ω, as illustrated for

f = _;_ by our running example.
7 ABtup B (where B is the proper subterm relation of terms) for multisets A and B of terms means that
A = A′ ∪ C, B = B′ ∪ C, A′ 6= ∅ and there is a (possibly partial) surjective mapping φ : A′ → B′, such
that φ(a) = b implies aB b.

if root(l′), root(w′) 6∈ ΣAC and stat(root(l)) = mul; and

〈l′|1, . . . , l′|ar(root(l′))〉Blex 〈w′|1, . . . , w′|ar(root(w′))〉

if root(l′), root(w′) 6∈ ΣAC and stat(root(l)) = lex.

Note that the status function does not assign the tup extension of the subterm ordering to non-
AC function symbols, as the mul extension is more general and thus subsumes the use of the tup
extension. For AC function symbols it is crucial to compare multisets of arguments by Btup instead
of Bmul in order to obtain a well-founded decrease of argument multisets. Example 5 shows that
theories may be non-terminating even if multisets of mutually recursive functions decrease w.r.t
Bmul.

Example 5. Consider the unsorted theory E (already used in Section 1) using a defined binary
AC-function symbol f , a binary constructor g and a constructor constant a. The single rule is
f(g(x, y), a)→ g(f(x, y), g(a, a)).

We have f IE g but not g IE f . Hence, we compare the arguments of flat(f(g(x, y), a), f) =
f(g(x, y), a) and flat(f(x, y), f) = f(x, y). We have {g(x, y), a}Bmul {x, y}.

Indeed, E is not AC-terminating:

f(g(f(a, a), g(a, a)), a) →
→ g(f(f(a, a), g(a, a)), g(a, a)) =AC

=AC g(f(f(g(a, a), a), a), g(a, a)) →
→ g(f(g(f(a, a), g(a, a)), a), g(a, a))

Note however that {g(x, y), a}6 Btup{x, y}.

Now we are ready to define well-founded recursive OS theories modulo axioms. Ultimately,
our goal is to show that well-founded recursive OS theories are compatible with a recursive path
ordering that is compatible with C and AC axioms (i.e. an ACRPO). Due of the presence of
rules like c(c(x, y), z) → c(x, c(y, z)) (cf. e.g. Example 9 and Section 5 below) and commutative
function symbols, it is crucial to compare arguments of some functions lexicographically and others
by multiset orders. Moreover, for rules involving subsort-overloaded AC function symbols, sorts
may or may not be crucial and it may even be advantageous to ignore sorts of certain function
symbols (cf. Example 6 below). Hence, the notion of well-founded recursive OS theory modulo
axioms is parameterized by two status functions stat and statac. Note, however, that this does not
compromise the syntactic and easy-to-check character of well-founded recursion, since the possible
choices for these status functions are finite for each finite OS theory. However, finding working
status functions may be computationally hard. To solve this problem we show in Section 4 below
that these status functions can be computed incrementally when checking hierarchies of order-
sorted theories for being well-founded recursive. Hence, provided that the theory extensions in
such a hierarchy are small, the task of choosing suitable status functions is feasible.

Definition 8 (well-founded theories). Let E = (Σ,B0, R) be an OS theory with constructors
Ω ⊆ Σ where the structural axioms B0 are either AC or C axioms. Let stat : Σ → {lex,mul} be
a status function where stat(f) = mul for all f ∈ ΣC ∪ ΣAC and where f IE g, g IE f implies
stat(f) = stat(g) and. Let statac : ΣAC → {s, us}8 be a status function where f, g ∈ ΣAC and
f IE g, g IE f implies statac(f) = statac(g).
E is well-founded recursive iff (i) g IE h and h IE g (h, g ∈ Σ) implies that h and g are either

both AC symbols or both non-AC-symbols, and (ii) there are status function stat and statac such
that for each rule l→ r and each specialization θ the following properties hold:

1. Either l is a linear constructor term, or if not then l is a pattern in case root(l) ∈ Σ \ ΣAC
and flat(l, root(l)) is a pattern in case root(l) ∈ ΣAC .

8 The function statac determines for an AC function symbol f whether sorts are taken into account (s for
sorted) or not (us for unsorted) when comparing labeled versions fΨ , fΨ ′ of this function in the ACRPO
we are going to use to prove termination of well-founded recursive theories (cf. Theorem 1 below).

2. If l is a constructor term, then so is r.
3. For every (not necessarily proper) subterm r|p of r,

root(rθ|p) IE root(lθ)

(resp. root(r|p) IE root(l) ∈ ΣAC and statac = us) implies that

lθ → rθ is root(rθ|p) argument decreasing (w.r.t. stat)

(resp. that l→ r is root(r|p) argument decreasing).
4. Assume root(l) = root(r|p) for some p ∈ Pos(r), root(r|p) IE root(l) and statac(root(l)) = s

and consider the multiset S of arguments of root(lθ) in the term lθ as well as the multiset T
of arguments of root(r|pθ) in the term r|pθ. For every variable x ∈ T \ S, there exists a term
s ∈ S \ T , such that ls(s) > ls(x). Moreover, lab(root(lθ)) ≥mul lab(root(r|pθ)).

5. If l is a constructor term and root(l) is associative and commutative, then

root(flat(l, root(l))|p) 6IE root(l)

for all positions p ∈ PosΣ(flat(l, root(l))) with p > ε.

The status function stat in Definition 8 determines whether arguments of function symbols
are compared lexicographically or by multiset comparison. Mutually recursive function symbols
must have the same status. Moreover, arguments of commutative function symbols may only be
compared by multiset orders. Hence, the problem of finding suitable statuses for non-commutative
functions is very similar to the problem of finding suitable statuses for functions when checking
TRSs for RPOS compatibility for which efficient methods exist (cf. e.g. [28]). These methods can
be used to determine the status function when checking theories for being well-founded recursive.
The other status function statac determines whether sorts are taken into account when comparing
arguments of AC-function symbols. The reason why we make this distinction is that in the presence
of AC function symbols it is not always desirable to take sorts into account, because the labels of
AC-function symbols appearing in equations may change through instantiations.

Example 6. Consider an OS theory containing two sorts A,B with A < B, an AC function symbol
g : B,B → B, two unary function h : B → B and t : B → A and a constant a : B. Consider a rule

g(h(x), h(y))→ g(x, y).

We have
root(g(h(x), h(y))) = g{B,B}

and indeed root(g(h(x), h(y))σ) = g{B,B} for every substitution σ. On the other hand, we have e.g.
root(g(x, y)σ) = g{B,B,B} if xσ = g(a, a), yσ = y. Hence, when instantiating the rule, there may
be an increase in the multiset of sorts of the root symbol of the right-hand side compared to that
of the root symbol of the left-hand side of the rule. In this case it is preferable to consider labeled
occurrences of g as equal, since there is a decrease in the arguments of the recursive function call.
We would have statac(g) = us in this case.

On the other hand, consider a rule

g(a, a)→ g(h(a), h(a)).

We have

root(g(a, a)) = g{B,B}

root(g(h(a), h(a))) = g{A,A}.

Thus, in order to orient this rule, e.g. by an (AC)RPO, it is preferable to consider the symbols
g{B,B} and g{A,A} as different ones, so that g{B,B} can be larger in the precedence of function
symbols than g{A,A}. We would have statac(g) = s in this case.

The concrete value of statac for AC functions can be determined by checking a theory for
possible increases in the multisets of sorts (w.r.t. the multiset extension of the subsort ordering) of
the arguments in recursive calls to other (or the same) AC functions. If there are no such increases
statac of the corresponding function should be set to s, otherwise it should be set to us.

Example 7. Consider the functional Maude module NATURAL of the running example of Section 1.
It contains an identity axiom so it is outside the scope of well-founded recursive theories. However,
by the semantics-preserving theory transformation described in Section 5 below, we obtain the
following module which, considered as an OS theory modulo C, is sort-decreasing and well-founded
recursive.

fmod TR-NATURAL is pr TRUTH-VALUE .
sort Nat .
op 0 : -> Nat [ctor] .
op s : Nat -> Nat [ctor] .
op _+_ : Nat Nat -> Nat [comm] .
ops even odd : Nat -> Bool .
vars N M : Nat .
eq N + 0 = N .
eq s(N) + s(M) = s(s(N + M)) .
eq even(0) = true .
eq odd(0) = false .
eq odd(s(N)) = even(N) .
eq even(s(N)) = odd(N) .

endfm

Note that, since there is only one sort in this module, there are no non-trivial sort specializations
and thus the equations of the labeled theory are identical with those of the unlabeled one (modulo
names of function symbols; cf. Definition 5). Moreover, there are no AC axioms. Hence, the status
function statac is irrelevant. Finally, the choice of the status function stat is completely arbitrary
since the module is well-founded recursive w.r.t. every choice of the status function.

As for stat, mutually recursive AC function symbols have to agree on statac in well-founded
recursive OS theories. In the presence of AC function symbols f ∈ Σ with statac(f) = s in a
well-founded recursive OS theory E , two additional complications, compared to non-AC function
symbols or those with a statac of us, may arise, but, as we explain below, these two potential
complications do not cause any problems.

First, since Σos is infinite, there might be infinite decreasing IE chains that are not looping.
However, by Item (4) of Definition 8 we have Ψ >mul Ψ ′ whenever, fΨ IE gΨ ′ (fΨ 6= gΨ ′ and
f, g ∈ ΣAC) where < is the (well-founded) subsort ordering. Hence, there are no infinite non-
looping IE chains.

The second potential complication is that the labeling is not-stable under substitutions as
illustrated by Example 6. Item (4) of Definition 8 ensures that this stability is restored by ensuring
that the sort of every variable occurring directly under an AC function symbols in the (subterm
of the) right-hand side in question is dominated by a larger sort in the left-hand side.

The key result of this section is that well-founded recursive sort-decreasing OS theories modulo
axioms are terminating. Therefore, our notion of well-founded recursive OS-theories provides: (i)
a new formal definition that extends to the order-sorted and modulo C and AC cases the intuitive
notion of “specification of a set of well-founded recursive functions”; (ii) a machine-checkable way
of ascertaining whether a specification is indeed well-founded recursive; and (iii) a proof that such
specifications are always terminating. Furthermore, as shown in Section 4, the checking that a
specification is well-founded recursive can be made in a modular and incremental way. In practice,
of course, we will want our well-founded recursive specifications to be also confluent, and suffi-
ciently complete with respect to their constructors. These extra properties can also be checked
incrementally, as explained in Section 4.

Theorem 1. Let E = (Σ,B0, R) be a sort-decreasing well-founded recursive OS theory where the
structural axioms B0 are either AC or C axioms. Then E is B0-terminating.

Note that the sort-decreasingness requirement is essential in Theorem 1, as shown by the fol-
lowing example.

Example 8. Consider the following OS theory E without structural axioms. We have sorts s1 and
s2 where s1 < s2. Moreover, there is a unary function symbol f typed f : s2 → s2, another unary
function symbol g typed g : s2 → s1 and a constant a of sort s2. The rules are

f(a)→ f(g(a)),
g(x)→ x

where x is a variable of sort s2. This theory is well-founded recursive. For the problematic first rule
we have

f(a) = fs2(aε)

and
f(g(a)) = fs1(gs2(aε)).

Moreover, fs1 6IE fs2 and gs2 6IE fs2 .
However the theory is non-terminating as is witnessed by the cyclic reduction sequence

f(a)→ f(g(a))→ f(a).

The problem here is that E is not sort-decreasing, since ls(g(x)) = s1 6≥ s2 = ls(x) for the second
rule if x is of sort s2.

3.1 Many-Sorted Well-Founded Functions as a Special Case of Well-Founded
Theories

To further explain the generality of our notion of well-founded recursive theories we show in detail
how it captures as a special case a very general notion of well-founded recursive definition in the
many-sorted case without axioms. In a sense this is the most general comparison we can make with
previous notions, since to the best of our knowledge the notion has not been previously studied in
the order-sorted and modulo cases.

To simplify the exposition we focus on the case of recursive definitions without mutual recursion.
It is well-known that by adding extra data constructors, such as product types, several mutually
recursive functions can be expressed as a single function.

Definition 9. Let Ω be a many sorted signature of constructors. A well-founded recursive tower
is a sequence

(f1 : s11 . . . s
1
n1
→ s1, Rf1) . . . (fm : sm1 . . . smnm

→ sm, Rfm
)

consisting of fresh function symbols f1, . . . , fm not in Ω and of sets of rules Rfi , 1 ≤ i ≤ m,
defining each fi such that the rules in Rfi

are of the form

fi(t1, . . . , tni)→ C[fi(u1
1, . . . , u

1
ni

) . . . fi(uk1 , . . . , u
k
ni

)]

with t1, . . . , tni Ω-terms and where:

(i) fi(t1, . . . , tni
) is linear and the right-hand side of the rule involves only variables occurring in

f(t1, . . . , tni
).

(ii) The context C is a term in the signature Ω ∪ {f1, . . . , fi−1}.
(iii) k ≥ 0, and for each 1 ≤ j ≤ k the set {1, . . . , ni} can be split into two disjoint subsets

A]B = {1, . . . , ni} such that 1 ∈ A, and
(1) for each a ∈ A, ta D uja;
(2) for each b ∈ B, either

∗ ujb ∈ T (Ω ∪ {f1, . . . , fi−1},X), or
∗ ujb = fi(vb1, . . . , v

b
ni

) with (t1, . . . , tni
) B· (vb1, . . . v

b
ni

); and
(3) there is an a ∈ A with a < min(B) such that (t1, . . . , ta) B· (uj1, . . . , u

j
a)

where by definition (t1, . . . , tl)B· (t′1, . . . , t
′
l) iff for each 1 ≤ i ≤ l, tiDt′i, and there is a j ∈ {1, . . . , l}

such that tj B t′j.

Note that this definition includes as a special case all primitive recursive functions, where the
terms fi(u

j
1, . . . , u

j
ni

) are such that (t1, . . . , tni) B· (uj1, . . . , u
j
ni

). Note also that the equations for
Ackerman’s function in the introduction are a special instance of the above definition. In practice,
two more conditions are required of such recursive towers:

(1) disjoint patterns, that is, if fi(t1, . . . , tni
) and fi(t′1, . . . , t′ni

) are two different left-hand sides in
Rfi

, which we may assume have distinct variables, then the patterns do not unify.
(2) sufficient completeness, that is, the collection of patterns

{(t1, . . . , tni
) | ∃t′s.t. fi(t1, . . . , tni

) = t′ ∈ Rfi
}

cover the product sort si1 × . . .× sini
, in the sense that any ground term in that product is an

instance of one of the patterns.

Those are precisely the conditions of confluence and sufficient completeness that we show how
to check incrementally in Section 4. The main result is now:

Theorem 2. For any well-founded recursive tower as in Definition 9, the equational theory (Ω ∪
{f1, . . . , fm}, Rf1 ∪ . . . ∪Rfm

) is a well-founded recursive many-sorted theory.

4 Verifying Properties of OS Theories Incrementally

For well-founded recursive OS theories modulo axioms we can check important properties like ter-
mination, confluence, sort-decreasingness and sufficient completeness incrementally in the presence
of theory hierarchies that satisfy reasonable conditions. These conditions are formalized in the no-
tion of fair extension. The basic idea of fair extensions is that extending modules do not interfere
with their base modules, i.e., they do not introduce new constructors of sorts of the base module
and they do not redefine existing functions.

Definition 10 (fair extension). Assume that E1 = (Σ1, B
1
0 , R1) and E2 = (Σ1∪Σ2, B

1
0∪B2

0 , R1∪
R2) are OS theories where the Bi0s are C or AC axioms for i ∈ {1, 2}. Σ1 and Σ1 ∪ Σ2 are
order-sorted signatures. We write Σ1 = (S1, <1, F1) and Σ1 ∪ Σ2 = (S1 ∪ S2, <1 ∪ <2, F1 ∪ F2).
Furthermore, Fi is divided into constructors Ωi and defined function symbols Di for both i ∈ {1, 2}.
E2 is a fair extension of E1 iff:

1. every function symbol f from Σ1 is AC (resp. C) in E2 iff it is AC (resp. C) in E1;
2. Σ2 does not introduce subsorts of sorts of Σ1, i.e. s ∈ S1 ∧ s′ <1 ∪ <2 s for some s′ ∈ S1 ∪ S2

implies s′ <1 s;
3. Σ2 does not contain new constructors of some sort of S1, i.e. f : s1, . . . , sn → s ∈ Ω2 implies

s 6∈ S1;
4. for every rule l → r ∈ R2 and every function symbol f : s1, . . . , sn → s ∈ F1, l and the term

f(x1
s1 , . . . , x

n
sn

) do not unify in an order-sorted fashion modulo axioms (where xs denotes a
variable of sort s).

5. if f is a defined AC symbol in E1 and f IE1 g, g 6IE1 f , then g 6IE2 f .
6. if c ∈ Ω1 and there is a rule l → r from R1 such that root(l) = c, then l does not overlap

(order-sorted modulo axioms) with the left-hand side of any rule l′ → r′ of R2 in case root(l′)
is a defined symbol in Σ1 ∪Σ2, and c does not occur below the root of l′ in case root(l′) is an
associative-commutative constructor.

The first item of Definition 10 ensures that overloaded function symbols have the same set of
attached axioms. Items 2 – 4 ensure that no new subsorts and constructors of sorts of the base
module are introduced and no functions of the base module are redefined. Item 5 makes sure that
no additional mutual recursive dependency of AC symbols is introduced by the extending module,
and item 6 is needed to prevent overlaps of rules from R1 that have constructor terms as left-hand
sides with rules from R2.

In the rest of this section we denote by E1 = (Σ1, B
1
0 , R1) an OS theory modulo axioms B1

0

and by E2 = (Σ1 ∪ Σ2, B
1
0 ∪ B2

0 , R1 ∪ R2) a fair extension of E1. By E ′2 we denote the OS theory
(Σ1 ∪Σ2, B

1
0 ∪B2

0 , R2). First, we show modularity of sort-decreasingness. Then we show that the
property of being well-founded recursive itself is modular, provided that the base and extending
theory agree on the status functions.

Theorem 3 (modularity of sort-decreasingness). If E1 and E ′2 are both sort-decreasing, then so
is E2.

Theorem 4 (modularity of well-founded recursion). If E1 and E ′2 are well-founded recursive
w.r.t. to compatible functions stat1, stat1ac and stat2, stat2ac, then so is E29.

Note that we require that the status functions of the base theory and the extending theory
are compatible. In a naive mechanization of incremental checks for well-founded recursiveness this
could necessitate backtracking, i.e., modifying the status function of a base module depending on
an extending theory. To avoid this backtracking, we propose to compute the status functions incre-
mentally in a “by need” fashion. This means that a specific status is assigned to a function symbol
(resp. an AC symbol) only if this status is crucial for the theory in question to be well-founded
recursive. Otherwise, the status is left open, so that it can be set later when incrementally checking
an extending theory for well-founded recursiveness. For example, consider the theory of Example 7.
It is well-founded recursive w.r.t. every status function stat. Hence, the status of functions can later
be set arbitrarily when checking an extending module. A fully general implementation of this idea
could, for example, compute a set of status functions for which a module is well-founded recursive.
Then when checking an extending module for well-founded recursiveness one could choose suitable
status functions from this set of possible ones. Next we show that confluence is modular for fair
extensions of well-founded recursive theories.

Theorem 5 (modularity of confluence). Assume E1 and E ′2 are well-founded recursive w.r.t. to
compatible functions stat1, stat1ac and stat2, stat2ac. If E1 and E ′2 are confluent then so is E2.

Note that for sufficient completeness the adequate notion of modular check consists of checking the
property only for new defined function symbols.

Theorem 6 (modularity of sufficient completeness). Assume E1 and E ′2 are well-founded recur-
sive w.r.t. to compatible functions stat1, stat1ac and stat2, stat2ac. If E1 is sufficiently complete and
for every function f : s1, . . . , sn → s ∈ D2 \ D1 and every ground substitution σ mapping variables
to irreducible constructor terms, f(x1

s1 , . . . , x
n
sn

)σ is either E2-reducible or a constructor term (xs
denotes a variable of sort s), then E2 is sufficiently complete.

This way of incrementally checking sufficient completeness is compatible with existing auto-
mated methods to check the property. Roughly, the idea of these methods is to check whether
ground terms rooted by a defined function symbol and having only constructor terms as proper
subterms are either reducible, or constructor terms (which is possible as the root symbol might be
subsort overloaded). This is done by describing the respective languages of terms by (propositional)
tree automata and then reducing the problem to an emptiness problem for tree automata (we refer
to [15] and [16] for more details). The method is suitable for incremental checks following Theorem
6, since it can easily be adapted to consider only terms rooted by defined function symbols of the
extending theory instead of all.

Corollary 1. Assume E1 and E ′2 are well-founded recursive w.r.t. to functions stat1, stat1ac and
stat2, stat2ac that are compatible. If E1 and E ′2 are sort-decreasing and confluent and moreover, E1 is
sufficiently complete and for every function f : s1, . . . , sn → s ∈ D2\D1 and every irreducible ground
substitution σ (that maps variables only to constructor terms) f(x1

s1 , . . . , x
n
sn

)σ is E2-reducible (or a
constructor term), then E2 is sort-decreasing, well-founded recursive (thus terminating), confluent
and sufficiently complete.
9 Compatibility of two functions f1 and f2 here means that f1(a) = f2(a) whenever a ∈ Dom(f1) ∩
Dom(f2).

Example 9. Consider the running example of Section 1. In order to apply our methods to the
modules of this example, the identity axioms and those axioms specifying associativity for a non-
commutative function symbol have to be eliminated. Indeed, we can eliminate these problematic
axioms by the theory transformation presented in Section 5. This transformation yields the module
of Example 7 for the module NATURAL and the following two transformed theories for the modules
MSET-NAT and LIST-MSAT-NAT.

fmod TR-MSET-NAT is pr TR-NATURAL .
sort MSet .
subsort Nat < MSet .
op _,_ : MSet MSet -> MSet [ctor assoc comm] .
op null : -> MSet [ctor] .
op card : MSet -> Nat .
var MS : MSet .
var N : Nat .
var X : [MSet] .
eq X , null = X .
eq card(null) = 0 .
eq card(N) = s(0) + card(null) .
eq card(N,MS) = s(0) + card(MS) .

endfm

fmod TR-LIST-MSET-NAT is pr TR-MSET-NAT .
sorts List NeList .
subsorts MSet < NeList < List .
op nil : -> List [ctor] .
op _;_ : List List -> List .
op _;_ : MSet NeList -> NeList [ctor] .
op U : List -> MSet .
var MS : MSet .
var NL : NeList .
var L : List.
var Y : [List] .
eq Y ; nil = Y .
eq nil ; Y = Y .
eq (MS ; NL) ; L = MS ; (NL ; L) .
eq U(nil) = null .
eq U(MS) = MS .
eq U(MS ; NL) = MS, U(NL) .

endfm

We already established that the TR-NATURAL module is sort-decreasing and well-founded recur-
sive in Example 7. Moreover, it is non-overlapping and thus (by termination) confluent. Sufficient
completeness can automatically be verified by the Maude sufficient completeness checker (cf. e.g.
[15]). The module TR-MSET-NAT, restricted to equations explicitly defined in the module and par-
ticularly not including the ones from the TR-NATURAL module, is sort-decreasing and well-founded
recursive as well. This is seen for instance by using the status functions stat(f) = mul for all
f and statac(_,_) = us. Confluence of the equations of TR-MSET-NAT follows again from non-
overlappingness. All ground instances of card(x) are reducible. Furthermore, TR-MSET-NAT is a
fair extension of TR-NATURAL. Hence, it is sort-decreasing, well-founded recursive, confluent and
sufficiently complete.

Finally, consider the module TR-LIST-MSET-NAT restricted to equations explicitly defined in
the module and particularly not including the ones from the TR-MSET-NAT module. It is sort-
decreasing and well-founded recursive (e.g. stat(;) = lex and stat(f) = mul for all other functions
f). Furthermore, it is confluent because all critical pairs are joinable. All ground instances of
(x1;x2) are either reducible or constructor terms and all ground instances of U(x) are reducible.
As TR-LIST-MSET-NAT is a fair extension of TR-MSET-NAT it is thus sort-decreasing, well-founded
recursive (thus terminating), confluent and sufficiently complete.

5 A Variant-Based Theory Transformation

So far, our incremental methods for checking the sort-decreasingness, confluence, termination, and
sufficient completeness of order-sorted well-founded recursive specifications modulo B have been
developed for the case where B can only have commutativity and/or associativity-commutativity
axioms. But we are interested in checking the confluence, termination, and sufficient completeness
of more general order-sorted specifications E = (Σ,B,R) where B can have any combination of
associativity and/or commutativity and/or identity axioms (with some restrictions on the case of
associativity without commutativity as explained below). The extension of our method to this more
general case is accomplished by an automatic theory transformation (Σ,B,R) 7→ (Σ,B0, R̂ ∪∆)
such that: (i) B0 only involves commutativity and associativity-commutativity axioms; (ii) the
theories R ∪B and B0 ∪ R̂ ∪∆ are semantically equivalent (as inductive theories, see below); and
(iii) (Σ,B,R) is confluent, terminating, and sufficiently complete for Ω modulo B iff (Σ,B0, R̂ ∪
∆) has the same properties modulo B0. Here we summarize and extend the basic ideas of the
transformation and refer to [9] for further details.

The first key idea is to decompose B as a disjoint union B = B0 ∪ ∆ so that (Σ,B0, ∆) is
confluent and terminating modulo B0, and ∆ contains all its B0-extensions (cf. e.g. [26, Definition
10.4]). The second key idea is to generate the transformed rules R̂ by computing the most general
∆,B-variants ([7]) of the left-hand sides l for the rules l→ r in R. Given a term t, a ∆,B-variant
of t is a ∆,B-canonical form u of an instance of t by some substitution θ; more precisely, it is a pair
(u, θ). Some variants are more general than others, so that variants form a preorder in a natural
way. The set R̂ then consists of all rules l̂→ rθ such that (l̂, θ) is a maximal variant of l for l→ r

a rule in R. Our transformation (Σ,B,R) 7→ (Σ,B0, R̂ ∪ ∆) is actually the composition of two
simpler transformations of this kind:

(Σ,B,R) 7→ (Σ,B1, R̂1 ∪∆1) 7→ (Σ,B0, R̂ ∪∆)

where B1 is obtained by removing all identity axioms10 ∆1 from B, and B0 is obtained by removing
from B1 all axioms that are associative but not commutative, so that ∆ is the union of ∆1 and
such associativity axioms oriented (in one of the two directions) as rules. In this way, B0 only
contains commutativity and/or associativity-commutativity axioms. We then incrementally check
the confluence, termination, and sufficient completeness of (Σ,B,R) modulo B by checking the
same properties modulo B0 for the semantically equivalent theory (Σ,B0, R̂∪∆) according to the
methods already developed in Sections 3 and 4.

For the first transformation (Σ,B,R) 7→ (Σ,B1, R̂1 ∪∆1) we are always guaranteed that the
set of rules R̂1 is finite if R is (see [9]). However, for the second transformation (Σ,B1, R̂1 ∪
∆1) 7→ (Σ,B0, R̂∪∆), which removes associative but not commutative axioms from B1, we cannot
in general guarantee that (Σ,B0, R̂ ∪ ∆) is a finite theory. However, the use of subsorts can
make it often the case in practice that (Σ,B0, R̂ ∪ ∆) is finite. We can illustrate this interesting
phenomenon with our running example. The first transformation, removing identities, leaves the
equation U(MS ; NL) = MS, U(NL) unchanged because, since NL has sort NeList, the identity
rules for _;_ cannot be applied to any instance of MS ; NL. By orienting the associativity axiom
as a rule (L ; P); Q → L; (P ; Q), the only variant of the equation U(MS ; NL) = MS, U(NL)
is itself, since the left-hand side of the associativity rule fails to have an order-sorted unifier with
the subterm MS ; NL. Therefore, the second transformation also succeeds in our running example
(for the resulting transformed modules see Examples 7 and 9).

For well-founded recursive specifications containing operators f that are associative but not
commutative (with or without identity) we need to impose some conditions on such f and slightly
modify the version in [9] of the second transformation (Σ,B1, R̂1 ∪∆1) 7→ (Σ,B0, R̂ ∪∆). There
should be only one such operator per connected component, with only two overloadings, which
must be

10 By adding a fresh top sort to each connected component as explained in Footnote 3, we only need to add
a pair of identity rules f(x, e)→ x and f(e, x)→ x, with x of sort [s], for each connected component [s]
involving such axioms.

1. either of the form f : List List → List , f : Elt NeList → NeList [ctor], with Elt < NeList <
List ,

2. or of the form f : List List → List , f : NeList Elt → NeList [ctor], with Elt < NeList < List .

Moreover, there may be no other constructors of sort List or lower except those of sort Elt or lower.
The names Elt , NeList , and List are immaterial and are only used to respectively suggest sorts
for list elements, nonempty lists, and general lists. Furthermore, in order to make sure that the
associativity equations introduced by the second transformation have constructor patterns below
their top function symbol (so that the conditions in Section 3 apply to the transformed theory
(Σ,B0, R̂ ∪∆)), instead of introducing an associativity rule

f(f(L,P), Q)→ f(L, f(P,Q))

for case (1) (resp. f(L, f(P,Q))→ f(f(L,P), Q)) for case (2)) with L,P,Q of sort List , we intro-
duce a more restricted rule

f(f(E,NL), Q)→ f(E, f(NL,Q))

for case (1) (resp. f(Q, f(NL,E))→ f(f(Q,NL), E)) for case (2)) with E of sort Elt , NL of sort
NeList , and Q of sort List . It is then easy to check that: (i) the left-hand sides of these more re-
stricted rules have constructor patterns below and have no nontrivial overlaps with themselves; (ii)
f so defined is sufficiently complete; and (iii) the unrestricted associativity equations are inductive
theorems of the specification based on the more restricted associativity equations; that is, with
this modified second transformation the theories (Σ,B1, R̂1 ∪ ∆1) and (Σ,B0, R̂ ∪ ∆), although
no longer equivalent as OS theories, are nevertheless inductively equivalent in the sense that their
initial algebras TΣ,B1∪ bR1∪∆1

and TΣ,B0∪ bR∪∆ are isomorphic. Indeed, we have

Lemma 1. Under the above restrictions on the first typing of an associative operator f , the as-
sociativity equation f(f(L,P), Q) = f(L, f(P,Q)) is an inductive consequence of the restricted
associativity equation

f(f(E,NL), Q) = f(E, f(NL,Q))

. Likewise, under the second typing the associativity equation f(L, f(P,Q)) = f(f(L,P), Q) is an
inductive consequence of the restricted associativity equation

f(Q, f(NL,E)) = f(f(Q,NL), E))

.

In practice these restrictions are not too strong, since we can automatically ensure typings (1)
or (2) by introducing them through a parameterized module for lists. Furthermore, the restriction
of having only one typing of type (1) or (2) per connected component for each associative f can be
relaxed to allow several such typings, provided that the corresponding sorts Elt < NeList < List
and Elt ′ < NeList ′ < List ′ involved in two different typings are incomparable.

Example 10. We use our running example to illustrate the two theory transformations

(Σ,B,R) 7→ (Σ,B1, R̂1 ∪∆1) 7→ (Σ,B0, R̂ ∪∆)

The first transformation, adding identity axioms as explicit equations and computing the variants
of rules with respect to identities, gives us the modules:

fmod TR1-NATURAL is pr TRUTH-VALUE .
sort Nat .
op 0 : -> Nat [ctor] .
op s : Nat -> Nat [ctor] .
op _+_ : Nat Nat -> Nat [comm] .
ops even odd : Nat -> Bool .
vars N M : Nat .
eq N + 0 = N .

eq s(N) + s(M) = s(s(N + M)) .
eq even(0) = true .
eq odd(0) = false .
eq odd(s(N)) = even(N) .
eq even(s(N)) = odd(N) .

endfm

fmod TR1-MSET-NAT is pr TR1-NATURAL .
sort MSet .
subsort Nat < MSet .
op _,_ : MSet MSet -> MSet [ctor assoc comm] .
op null : -> MSet [ctor] .
op card : MSet -> Nat .
var MS : MSet .
var N : Nat .
var X : [MSet] .
eq X , null = X .
eq card(null) = 0 .
eq card(N)= s(0) + card(null) .
eq card(N,MS)= s(0) + card(MS) .

endfm

fmod TR1-LIST-MSET-NAT is pr TR1-MSET-NAT .
sorts List NeList .
subsorts MSet < NeList < List .
op nil : -> List [ctor] .
op _;_ : List List -> List [assoc] .
op _;_ : MSet NeList -> NeList [ctor assoc] .
op U : List -> MSet .
var MS : MSet .
var NL : NeList .
var L : List.
var Y : [List] .
eq Y ; nil = Y .
eq nil ; Y = Y .
eq U(nil) = null .
eq U(MS) = MS .
eq U(MS ; NL) = MS, U(NL) .

endfm

The way the variants of an equation with respect to the identities modulo the C and AC axioms are
computed can be illustrated by the equation card(N,MS)= s(0) + card(MS) in the original module
MSET-NAT. Since the variable MS could collapse by instantiating it to the identity element null, the
equation’s left-hand side has two most general variants: (i) itself, so that the original equation is
kept, and (ii) the term card(N), leading to the new variant equation card(N)= s(0) + card(null)
added to TR1-MSET-NAT. The result of the second stage of the theory transformation, denoted above
as (Σ,B1, R̂1 ∪∆1) 7→ (Σ,B0, R̂ ∪∆), has already been described in detail in Examples 7 and 9.
Note that, since they do not involve associative but not commutative axioms, the modules TR1-NAT
and TR1-MSET-NAT are not changed by the second transformation.

6 Related Work and Conclusions

Our work is related to modularity methods for confluence and/or termination of TRSs. A very
good survey of the literature on such methods up to 2002 can be found in [24]. One key difference
is that, to the best of our knowledge, such work does not address sorts and subsorts, nor (except
for, e.g., [23, 19]) rewriting modulo axioms. Another difference is that in some cases the modularity
conditions imposed are quite strong, requiring for example disjointness, which is relatively rare in
practical module hierarchies. Perhaps the earliest work most closely related to ours is the work on
proper extensions of term rewriting systems of [24] (cf. also [8] and [27]). The basic idea behind

proper extensions is that calls to functions f in right-hand sides of rewrite rules l → r where
root(l) and f are mutually recursive, do not involve defined function symbols from the base theory
(or from the extending theory that recursively depend on functions from the base theory) in the
arguments of the function call. Our notion of fair extensions of well-founded recursive theories is
even more restrictive in this respect, since the arguments of calls to functions in right-hand sides
have to be constructor terms if the function in question is mutually recursive with the root of the
left-hand side of the rule. Note however, that the advantage of our more restrictive definition is not
just its ability to deal with sorts and structural axioms, but also in our case general termination is
modular instead of the weaker notion of CE -termination as for proper extensions.

Our work is also related to the hierarchical termination approach of Urbain and Marché ([29,
23]), with their notion of hierarchical extension being similar to ours of fair extension. In some
ways our notion is more general, since for us function symbols can appear in both a submodule and
a supermodule, but of course our incremental conditions are in other ways stronger so as to ensure
termination, whereas in [29, 23] a modular approach to dependency pairs is developed. Furthermore
[23] covers the AC case. There is also a rich body of related work on rewriting modulo axioms, e.g.
[17, 26, 18, 2, 22, 31]. For termination modulo, related papers include, e.g., [12, 23, 9, 1].

When using well-founded recursive OS theories and fair extensions to create hierarchies of the-
ories, one can verify important properties such as sort-decreasingness, termination, confluence and
sufficient completeness incrementally. Hence, at a practical level, when developing equational pro-
grams (such as functional modules in Maude), one can follow a programming discipline ensuring
that modules are well-founded recursive and module extensions are fair extensions. Sticking to this
programming discipline then guarantees that the verification complexity of the properties in ques-
tion grows roughly linearly with the number of distinct modules. This is a significant improvement
compared to existing methods used for the verification of, e.g., termination where experiments
show that in practice the verification complexity grows rapidly with increasing size of theories (see
also [29]).

Obvious future work includes the mechanization of all the incremental checks described above
in a tool, experimentation with such a tool, and the extension of our results to conditional and
context-sensitive theories, which are also supported in Maude. Moreover, recent developments in
the termination analysis of rewrite systems modulo axioms (cf. e.g. [1]) might allow us to relax
the conditions in the notion of well-founded recursion, thus making our approach more widely
applicable.

References

1. B. Alarcón, S. Lucas, and J. Meseguer. A dependency pair framework for A∨C-termination. In P.
Ölveczky editor, Proceedings of the 8th International Workshop on Rewriting Logic and its Applica-
tions (WRLA’10), LNCS 6381, pages 35–51. Springer, 2010.

2. L. Bachmair and N. Dershowitz. Completion for rewriting modulo a congruence. Theoretical Computer
Science, 67(2&3):173–201, 1989.

3. F. Baader and T. Nipkow. Term rewriting and All That. Cambridge University Press, 1998.
4. M. Bezem, J. Klop, and R. Vrijer, editors. Term Rewriting Systems. Cambridge Tracts in Theoretical

Computer Science 55. Cambridge University Press, 2003.
5. P. Borovanský, C. Kirchner, H. Kirchner, and P.-E. Moreau. ELAN from a rewriting logic point of

view. Theoretical Computer Science, 285:155–185, 2002.
6. M. Clavel, F. Durán, S. Eker, J. Meseguer, P. Lincoln, N. Martí-Oliet and C. Talcott. All About Maude

– A High-Performance Logical Framework. LNCS 4350, 2007.
7. H. Comon-Lundh and S. Delaune. The finite variant property: how to get rid of some algebraic

properties. In J. Giesl editor, Proceedings of the 16th International Conference on Rewriting Techniques
and Applications (RTA’05), LNCS 3467, 294–307, 2005.

8. N. Dershowitz. Hierarchical termination. In N. Dershowitz and N. Lindenstrauss editors, Proceedings
of the 4th International Workshop on Conditional and Typed Rewriting Systems (CTRS-94), LNCS
968, pages 89–105. Springer, 1995.

9. F. Durán, S. Lucas, and J. Meseguer. Termination modulo combinations of equational theories. In S.
Ghilardi and R. Sebastiani editors, Proceedings of the 7th International Symposium on Frontiers of
Combining Systems (FroCoS’09), LNAI 5749, pages 246–262. Springer, 2009.

10. F. Durán and J. Meseguer. A Church-Rosser checker tool for conditional order-sorted equational Maude
specifications. In P. Ölveczky editor, Proceedings of the 8th International Workshop on Rewriting Logic
and its Applications (WRLA’10), LNCS 6381, pages 69–85. Springer, 2010.

11. K. Futatsugi and R. Diaconescu. CafeOBJ Report. World Scientific, AMAST Series, 1998.
12. J. Giesl and D. Kapur. Dependency pairs for equational rewriting. In A. Middeldorp editor, Proceedings

of the 12th International Conference on Rewriting Techniques and Applications (RTA’01), LNCS 2051,
pages 93–108. Springer, 2001.

13. J. Giesl, P. Schneider-Kamp, and R. Thiemann. AProVE 1.2: Automatic termination proofs in the
dependency pair framework. In U. Furbach and N. Shankar editors, Proceedings of the 3rd International
Joint Conference on Automated Reasoning (IJCAR’06), LNCS 4130, pages 281–286. Springer, 2006.

14. J. Goguen and J. Meseguer. Order-sorted algebra I: Equational deduction for multiple inheritance,
overloading, exceptions and partial operations. Theoretical Computer Science, 105:217–273, 1992.

15. J. Hendrix, J. Meseguer, and H. Ohsaki. A sufficient completeness checker for linear order-sorted spec-
ifications modulo axioms. In U. Furbach and N. Shankar editors, Proceedings of the 3rd International
Joint Conference on Automated Reasoning (IJCAR’06), LNCS 4130, pages 151–155. Springer, 2006.

16. J. Hendrix, H. Ohsaki, and J. Meseguer. Sufficient completeness checking with propositional tree
automata. Technical report, CS Department University of Illinois at Urbana-Champaign, 2005.
http://www.ideals.illinois.edu/handle/2142/11096.

17. G. Huet. Confluent reductions: Abstract properties and applications to term rewriting systems. Journal
of the Association for Computing Machinery, 27:797–821, 1980. Preliminary version in 18th Symposium
on Mathematical Foundations of Computer Science, 1977.

18. J.-P. Jouannaud and H. Kirchner. Completion of a set of rules modulo a set of equations. SIAM
Journal of Computing, 15(4):1055–1094, Nov. 1986.

19. J.-P. Jouannaud and Y. Toyama. Modular Church-Rosser modulo: the complete picture. International
Journal of Software and Informatics, 2(1):61–75, 2008.

20. D. Kapur and G. Sivakumar. Proving associative-communicative termination using RPO-compatible
orderings. In Selected Papers from Automated Deduction in Classical and Non-Classical Logics LNCS
1761 pages 39–61, Springer 2000.

21. C. Kirchner, H. Kirchner, and J. Meseguer. Operational semantics of OBJ3. In T. Lepistö and
A. Salomaa editors, Proceedings of the 15th International Colloquium on Automata, Languages and
Programming (ICALP’88), LNCS 317, pages 287–301. Springer, 1988.

22. C. Marché. Normalised rewriting and normalised completion. In Proceedings of the 9th Annual
Symposium on Logic in Computer Science (LICS’94), pages 394–403. IEEE, 1994.

23. C. Marché and X. Urbain. Modular and incremental proofs of AC-termination. Journal of Symbolic
Computation, 38(1):873–897, 2004.

24. E. Ohlebusch. Advanced Topics in Term Rewriting. Springer Verlag, 2002.
25. P. Ölveczky and O. Lysne. Order-sorted termination: The unsorted way. In M. Hanus and M.

Rodriguez-Artalejo editors, Proceedings of the 5th International Conference on Algebraic and Logic
Programming (ALP’96), LNCS 1139, pages 92–106. Springer, 1996.

26. G. E. Peterson and M. E. Stickel. Complete sets of reductions for some equational theories. Journal
of the ACM, 28(2):233–264, 1981.

27. M. R. K. K. Rao. Modular proofs for completeness of hierarchical term rewriting systems. Theoretical
Computer Science, 151:487–512, 1995.

28. P. Schneider-Kamp, R. Thiemann, E. Annov M. Codish and J. Giesl. Proving Termination using
Recursive Path Orders and SAT Solving. In B. Konev and F. Wolter editors, Proceedings of the 6th
International Symposium on Frontiers of Combining Systems (FroCoS’07), LNCS 4720pages 267–282,
2007.

29. X. Urbain. Modular & incremental automated termination proofs. J. Autom. Reasoning, 32(4):315–
355, 2004.

30. A. van Deursen, J. Heering, and P. Klint. Language Prototyping: An Algebraic Specification Approach.
World Scientific, 1996.

31. P. Viry. Equational rules for rewriting logic. Theoretical Computer Science, 285:487–517, 2002.

A Termination of Well-founded OS Theories modulo axioms

In order to prove termination of well-founded recursive OS theories, we transform them into un-
sorted theories by labeling function symbols as in Definition 4. However, just labeling the rules
and axioms as in Definition 5 does not yield an unsorted theory that is non-terminating whenever
the sorted theory is. Hence, we need some additional and modified rules. The basic idea of our
transformation is to transform a finite OS theory into an infinite unsorted theory. The unsorted
theory is infinite, because we explicitly instantiate rules by terms built by AC symbols.

Definition 11 (V arf). V arf (t) is the set of those variables of t that occur as immediate argument
of some function symbol f occurring in t. Formally, V arf (f(x, y)) = {x, y}, V arf (t1, x)) = {x} ∪
V arf (t1) if t1 6∈ V , V arf (x, t2)) = {x}∪V arf (t2) if t2 6∈ V , V arf (f(t1, t2)) = V arf (t1)∪V arf (t2)
if t1 6∈ V and t2 6∈ V , V ar(f)(x) = ∅ and V arf (g(t1, . . . , tk)) = V arf (t1)∪ . . .∪V arf (tk) if g 6= f .

Definition 12 (InstAC). Let E = (Σ,B0, R) be an OS theory where B0 are AC or C axioms.
Then the set of instantiated rules InstAC(l→ r) is given by

{lσ → rσ | xiσ ∈ T ({f}, V) if xi ∈ V arf (l) ∪ V arf (r)
and f ∈ ΣAC , yσ = y otherwise}.

Based on this instantiation we present the theory transformation from OS theories modulo AC
and C axioms to unsorted theories modulo AC and C axioms that is a sound reflection.

Definition 13 (transformation). Assume that E = (Σ,B0, R) is an OS theory where the struc-
tural axioms B0 are AC or C axioms. The unsorted theory Ẽ is (Σos, B̃0, R̃). B̃0 is given by

B̃0

AC
∪ B̃0

C
where

B̃0

AC
= {fΨ (fΨ (x, y), z) = fΨ (x, fΨ (y, z)),
fΨ (x, y) = fΨ (y, x) |
f : AB → A ∈ ΣAC , Ψ = {s1, . . . , sn},
si ≤ A for all 1 ≤ i ≤ n}

and

B̃0

C
= {f[C,D](x, y) = f[C,D](y, x) | f : AB → G ∈ ΣC ,
C ≤ A,D ≤ B}

R̃ is given by R̃R ∪ R̃j11 where R̃R is

{l′θ → r′θ | l→ r ∈ R, θ a specialization,
l′ → r′ ∈ InstAC(f(l, x)→ f(r, x)),
x 6∈ V ar(l) ∪ V ar(r), f ∈ ΣAC} ∪

{l′θ → r′θ | l→ r ∈ R, l′ → r′ ∈ InstAC(l→ r),
θ a specialization}.

11 The R subscript refers to the rules R of E and the j subscript stands for “jump” because the rules model
jumps from sorts to subsorts (cf. [25][Definition 4]).

and R̃j is

{lθ → rθ | l→ r ∈ InstAC(f(x1, x2)→ f(x1, x2)),
f ∈ ΣAC , θ a specialization, root(lθ) = fΨ ,

root(rθ) = fΨ ′ , Ψ >mul Ψ ′} ∪
{lθ → rθ | f ∈ ΣC , l = f(x, y), r = f(x, y),

θ a specialization, root(lθ) = f[A,B],

root(rθ) = f[A′,B′], (A,B >· A′, B′)} ∪
{lθ → rθ | f ∈ Σ \ (ΣC ∪ΣAC), l = f(x1, . . . , xn),

r = f(x1, . . . , xn), θ a specialization,
root(lθ) = fA1,...,An

, root(rθ) = fA′1,...,A′n ,

(A1, . . . , An >· A′1, . . . , A
′
n)}.

Note that in the theory Ẽ = (Σos, B̃0, R̃) obtained from E = (Σ,A,E), Σos, B̃0 as well as R̃ are
countably infinite in general if Σ,B0 and R are finite. The following lemma states the important
fact that two B0-equal terms are also B̃0-equal after they are labeled.

Lemma 2. Let E = (Σ,B0, R) be an OS theory where the structural axioms B0 are AC or C
axioms. If t =B0 t

′, then t =fB0
t′.

Proof. We prove the result by showing that t =B0 t
′ implies t =fB0

t′ if t′ is obtained from t by
substituting an instance of one side of a single equation from B0 by the corresponding instance
of the other side. The general case follows by induction on the number of equality steps. We
distinguish two cases, depending on whether the function symbol for which an equation is used
is C or AC. First, assume a commutativity equation is used say for f and let f ∈ ΣC . Let t =
C[f(t1, t2)] and t′ = C[f(t2, t1)]. t = C[f[A,B](t1, t2)] according to Definition 4 (where ls(t1) = A

and ls(t2) = B). According to Definition 13 there is an equation f[A,B](x, y) = f[A,B](y, x) ∈ B̃0.
Hence, t =fB0

C[f[A,B](t2, t1)] = t′.
Second, assume that an axiom for an AC symbol was used and the used equation was an associa-

tivity equation. Let t = C[f(f(t1, t2), t3)]p and t′ = C[f(t1, f(t2, t3))]p. We write t as C ′[f(t′1, t
′
2)]q

where q ≤ p, root(C|o) = f for each q ≤ o ≤ p and either q = ε or the function symbol right above
q is not an f (i.e. root(C ′|q′) 6= f if q = q′.i and i ∈ N). Then

t = C ′[fΨ (λ(t′1, f, Ψ), λ(t′2, f, Ψ))]q
= C ′′[fΨ (fΨ (λ(t1, f, Ψ), λ(t2, f, Ψ)), λ(t3, f, Ψ))]p

which is B̃0-equal to
C ′′[fΨ (λ(t1, f, Ψ), fΨ (λ(t2, f, Ψ), λ(t3, f, Ψ)))]p

because there is an equation

fΨ (fΨ (x, y), z) = fΨ (x, fΨ (y, z)) ∈ B̃0

according to Definition 13. Finally, we have

C ′′[fΨ (λ(t1, f, Ψ), fΨ (λ(t2, f, Ψ), λ(t3, f, Ψ)))]p = t′

because flat(t|q, f) = flat(t′|q, f).
The cases where an associativity axiom is applied in the other direction and where a commu-

tativity axiom is applied to an AC symbol are analogous.

Lemma 3. Let E = (Σ,B0, R) be a sort-decreasing OS theory where the structural axioms B0 are
AC or C axioms. Let s and s[t]p be terms of T (Σ,V), such that ls(s|p) ≥ ls(t) and either p = ε

or root(s|p′) 6= root(t) where p′ is given by p = p′.i for some i ∈ N. Then, s[t]p →∗eR/fB0
s[t]p.

Proof. Note that since root(s|p′) 6= root(t) we have s[t]p|p = t (cf. Definition 4). Hence, what needs
to be done to derive s[t]p from s[t]p, is to modify the sort-labels of function symbols above (or
potentially parallel to) p in s[t]p.

To prove the result we use induction on the number of positions o < p for which either root(s|0)
is not an AC symbol or root(s|o) 6= root(s|o.i) where i ∈ N is uniquely determined by o.i ≤ p.12 If
the number of these positions is 0, then p = ε and we are done because s[t]p|p = t. Otherwise, we
distinguish two cases, depending on whether root(s) is an AC symbol, or a C or free symbol.

If it is a free or C (but not AC) symbol, then we write s[t]p as f(t1, . . . , sj [t]q, . . . , tn) where j
and q are determined by j.q = p and j ∈ N. The induction hypothesis yields sj [t]q →∗eR/fB0

sj [t]q.
As ls(s|p) ≥ ls(t) and by monotonicity of Σ we have ls(sj) ≥ ls(sj [t]q). If ls(sj) = ls(sj [t]q), we
have

s[t]p = s[sj [t]q]j
IH→
∗eR/fB0

s[sj [t]q]j = s[sj [t]q]j = s[t]p.

Otherwise, if ls(sj) > ls(sj [t]q), we have

ls(s|1), . . . , ls(s|j), . . . , ls(s|n) >·
ls(s|1), . . . , ls(s|j [t]q), . . . , ls(s|n)

and thus there exists a rule

fls(s|1),...,ls(s|j),...,ls(s|n)(x1, . . . , xn)→
fls(s|1),...,ls(s|j [t]q),...,ls(s|n)(x1, . . . , xn)

in case root(s) is a free symbol, and a rule

f[ls(s|1),ls(s|2)](x, y)→ f[ls(s|1[t]q),ls(s|2)](x, y)

in case root(s) is commutative (assuming w.l.o.g. that j = 1 in this case) in R̃ yielding

s[t]p = s[sj [t]q]j
IH→
∗eR/fB0

s[sj [t]q]j → eR s[sj [t]q]j = s[t]p.

Next assume root(s) is an AC symbol. We write

s[t]p = C[t1, . . . , tk[t]q, . . . , tm]p1,...,pk,...,pm

where C[x1, . . . , xm]p1,...,pm
∈ T ({root(s)}, V), root(ti) 6= root(s) for all 1 ≤ i ≤ m and pk.q = p.

The induction hypothesis yields tk[t]q →∗eR/fB0
tk[t]q. As ls(s|p) ≥ ls(t) and by monotonicity of Σ

we have ls(tk) ≥ ls(tk[t]q). If ls(tk) = ls(tk[t]q), we have

s[t]p = s[tk[t]q]pk

IH→
∗eR/fB0

s[tk[t]q]pk
= s[tk[t]q]pk

= s[t]p

Otherwise, we have flat(s, root(s)) = root(s)(t1, . . . , tm) and root(flat(s, root(s))) = fΨ where

Ψ = {ls(t1), . . . , ls(tk), . . . , ls(tm)} >mul

{ls(t1), . . . , ls(tk[t]q), . . . , ls(tm)} = Ψ ′,

and root(flat(s[t]p, root(s))) = fΨ ′ . Thus, there is a rule in R̃ that is a labeled version of

C[x1, . . . , xm]→ C[x1, . . . , xm],

such that the (single) function symbol f occurring in the left-hand side is consistently labeled by
Ψ and the function symbol on the right-hand side is consistently labeled by Ψ ′. Hence, we obtain

s[t]p = s[tk[t]q]pk

IH→
∗eR/fB0

s[tk[t]q]pk
→ eR s[tk[t]q]pk

= s[t]p

12 The reason we cannot just use the plain number of such positions for the induction is that changing the
labels of nested AC symbols has to be done in one step.

Lemma 4 (sound reflection property). Let E = (Σ,B0, R) be a left-linear sort-decreasing OS
theory where the structural axioms B0 are AC or C axioms. If s→R/B0 t, then s→

+eR/fB0
t.

Proof. We write s→R/B0 t as s =B0 s
′ p→R t

′ =B0 t. Then s′|p = lσ for some l→ r ∈ R and some
substitution σ. By Lemma 2 we have s =fB0

s′. We distinguish two cases depending on whether the
function symbol immediately above p in s′ (i.e. at position p′ given by p′.i = p for some i ∈ N) is
an AC symbol or not.

If this symbol is not an AC symbol (or p is the root position), then s′ = s′[s′|p]p. We inspect
s′|p = lσ for some rule l → r ∈ R. It can be written as lθσ′, where xθ ∈ T ({f}, V) whenever
x ∈ V arf (l) ∪ V arf (r) and f is an AC symbol (cf. Definition 12) and root(xσ′) 6= f whenever
x ∈ V arf (lθ) ∪ V arf (r). Then we have, lθ → rθ ∈ InstAC(l → r) by Definition 12. Moreover,
lθσ′ = lθ σ′. Let τ be a specialization for the variables of lθ given by x : Sτ = x : S′ if ls(xσ) = S′.
Then, by Definition 13, there is a rule lθτ → lθτ ∈ R̃. With this rule we have

s′ = s′[s′|p]p = s′[lσ]p = s′[lθσ′]p =

= s′[lθ σ′]p → eR s′[rθ σ′]p = s′[t′|p]p.

By sort decreasingness of E we have ls(t′|p) ≤ ls(s′|p), hence Lemmas 3 and 2 yield s′[t′|p]p →∗eR/fB0
t.

Now consider the case where the function symbol immediately above p is an AC symbol, say f .
Then s′ can be written as s′[s′|q]q where q < p, the function symbol at the position right above q in s′

is not f (or q = ε) and root(s′|o = f) for all q ≤ o < p. Then we have s′ = s′[s′|q]q. By associativity
and commutativity of f and Lemma 2, there is a term w =B0 s′|q such that root(w) = f and
w|1 = s′|p. We can write w (i.e. erase(w)) as f(l, x)θσ′ where lθσ′ = s|p, l → r ∈ R, x 6∈ V ar(f),
yθ ∈ T ({f}, V) whenever y ∈ V arf (f(l, x)) ∪ V arf (f(r, x)) and root(yσ′) 6= f whenever y ∈
V arf (f(l, x)θ)∪V arf (f(r, x)θ). Moreover, let τ be a specialization for the variables of f(l, x)θ given
by x : Sτ = x : S′ if ls(xσ) = S′. Then, by Definition 13, there is a rule f(l, x)θτ → f(r, x)θτ ∈ R̃.
Thus, we have

s′ = s′[s′|q]q = eA s′[w]q = s′[f(l, x)θσ′]q =

= s[f(l, x)θ σ′]q → eR s′[f(r, x)θ σ′]q =fB0
s′[t′|q]q.

Note that in the last equality we need to use B̃0 to inversely apply the axioms used to derive w
from s|q, which is possible e.g. by Lemma 2. By sort decreasingness of E and monotonicity of Σ,
we have ls(t′|q) ≤ ls(s′|q), hence Lemmas 3 and 2 yield s′[t′|q]q →∗eR/fB0

t.

Corollary 2. Let E = (Σ,B0, R) be a left-linear sort-decreasing OS theory where the structural
axioms B0 are AC or C axioms. If Ẽ is B̃0-terminating, then E is B0-terminating.

Next we are going to prove that well-founded recursive OS theories are terminating, by showing
that for a given well-founded recursive theory E , Ẽ is compatible with an ACRPO as introduced
by Kapur et. al. ([20]). Note that the presence of function symbols that are commutative but not
associative is not a problem, since arguments of non associative function symbols are compared as
multisets and hence terms f(x, y) and f(y, x) are always equivalent w.r.t. to an ACRPO �ac.

First, we prove some general properties of an ACRPO �ac, which are then used in Theorem 1
below. We show that if we have sB t for two terms s and t of a particular shape, then for each pair
〈a, b〉 ∈ cands(t, f) there is a pair 〈a′, b′〉 ∈ cands(s, f) with 〈a′, b′〉 �c 〈a, b〉 (cf. [20][Definitions 12
and 17]). Note that this result is stronger than cands(s, f) �mulc cands(t, f) which is a consequence
of Lemma 1 in Kapur et. al. ([20][Lemma 1]). In the following, whenever we mention an ACRPO
�ac we mean �ac as defined in Definition 17 by Kapur et. al. ([20][Definition 17]).

Lemma 5. Let Σ be an unsorted signature and let �ac be an ACRPO w.r.t. a precedence >
on function symbols. If s B t for terms s and t, where root(s|p) < f and root(t|q) < f for all
p ∈ PosΣ(s) and all q ∈ PosΣ(t), then for each pair 〈a, b〉 ∈ cands(t, f), there is a pair 〈a′, b′〉 ∈
cands(s, f) such that 〈a′, b′〉 �c 〈a, b〉 (where �c is defined as in [20][Definition 17]).

Proof. If s is a ground term, then cands(s, f) = {〈{a}, {〈{a}, s〉}〉}. In that case t is a ground term
as well and we have cands(t, f) = {〈{a}, {〈{a}, t〉}〉}. Hence, 〈{a}, {〈{a}, s〉}〉 �c 〈{a}, {〈{a}, t〉}〉
proves the result.

Otherwise, we have

cands(s, f) = {〈{y}, {〈{y}, s〉}〉 | y ∈ V ar(s)},

where by V ar(s) we mean the multiset of variables in s and cands(s, f) is a multiset, too. We have
three possibilities for cands(t, f):

First,
cands(t, f) = {〈{x}, ∅〉}

if t is the variable x. In that case there is a pair 〈{x}, {〈{x}, s〉}〉 in cands(s, f) and we have

〈{x}, {〈{x}, s〉}〉 �c 〈{x}, ∅〉

(regardless of the used abstraction).
Second,

cands(t, f) = {〈{a}, {〈{a}, t〉}〉}

if t is a ground term. In that case for every pair 〈{x}, {〈{x}, s〉}〉 ∈ cands(s, f) we have

〈{x}, {〈{x}, s〉}〉 �c 〈{a}, {〈{a}, t〉}〉

.
Finally, if t is not a variable and not a ground term, we have

cands(t, f) = {〈{y}, {〈{y}, t〉}〉 | y ∈ V ar(t)}

As s B t, V ar(t) ⊆ V ar(s) and thus for every pair 〈{x}, {〈{x}, t〉}〉 ∈ cands(t, f) there is a pair
〈{x}, {〈{x}, s〉}〉 ∈ cands(s, f) such that we have

〈{x}, {〈{x}, t〉}〉 �c 〈{x}, {〈{x}, s〉}〉

according to [20][Definition 17] (again regardless of the used abstraction; note that s B t implies
s �ac t, since �ac is a simplification ordering).

The next lemma states a property about the extension �tup of an ordering � defined in Defi-
nition 8.

Lemma 6. Let S �tup T for multisets S, T and some ordering � and function φ. If S = S′∪(S∩T)
and T = T ′ ∪ (S ∩ T) and φ(s′) = t′ for s′ ∈ S′ and t′ ∈ T ′, then S \ {s′} �tup T \ {t′} or
S \ {s′} = T \ {t′}.

Proof. By the definition of �tup.

The following lemma is the technical key to finally proving AC-termination of rewrite deriva-
tions w.r.t. a well-founded OS theory.

Lemma 7. Let Σ be an unsorted signature and �ac be an ACRPO on T (Σ,V) where < is the
used precedence. Moreover, let

Cands1 = {〈c1 ∪ . . . ∪ cn, p1 ∪ . . . ∪ pn〉 |
〈c1, p1〉 ∈ cands(s1, f), . . . , 〈cn, pn〉 ∈ cands(sn, f)}

and

Cands2 = {〈c′1 ∪ . . . ∪ c′m, p′
1 ∪ . . . ∪ p′

m〉 |
〈c′1, p′

1〉 ∈ cands(t1, f), . . . , 〈c′m, p′
m〉 ∈ cands(tm, f)}

for multisets {s1, . . . , sn} and {t1, . . . , tm} of terms from T (Σ<f , V) each having pairwise disjoint
variables and satisfying {s1, . . . , sn}Btup {t1, . . . , tm}.13 Then Cands1 �mulc Cands2.
13 Σ<f is the set of function symbols that are smaller than f in the precedence <.

Proof. {s1, . . . , sn}Btup {t1, . . . , tm} means that

{s1, . . . , sn} = {si1 , . . . , sin′} ∪Π
{t1, . . . , tm} = {tj1 , . . . , sjm′} ∪Π

where Π = {s1, . . . , sn} ∩ {t1, . . . , tm}, n′ 6= 0 and there exists a (possibly partial) surjective
function ϕ : {si1 , . . . , sin′} → {tj1 , . . . , sjm′} such that ϕ(s) = t implies sB t.

We prove Cands1 �mulc Cands2 by induction on m′. First, assume m′ = 0, i.e. {t1, . . . , tm} =
Π ⊂ {s1, . . . , sn} (the strict subset inclusion is a consequence of n′ 6= 0). This means that for each

π′ = 〈c1 ∪ . . . ∪ cm, p1 ∪ . . . ∪ pm〉 ∈ Cands2

there is a
π = 〈c1 ∪ . . . ∪ cm ∪ cm+1 ∪ . . . ∪ cn, p1 ∪ . . . ∪ pm ∪ pm+1 ∪ . . . ∪ pn〉

from Cands1, such that π �c π′ because c1 ∪ . . . ∪ cm ∪ cm+1 ∪ . . . ∪ cn ⊃ c1 ∪ . . . ∪ cm and thus
c1 ∪ . . . ∪ cm ∪ cm+1 ∪ . . . ∪ cn �mulac c1 ∪ . . . ∪ cm. Hence, we obtain Cands1 �mulc Cands2.

Now assume m′ > 0. There exists a term s′ ∈ {si1 , . . . , sin′}, such that ϕ(s′) = t′ for some
t′ ∈ {tj1 , . . . , tjm′} and such that, additionally, s′′ 6 Bs′ for all s′′ ∈ {si1 , . . . , sin′} for which ϕ(s′′)
is defined (i.e. we choose a maximal element s′ (w.r.t B) from ϕ−1({tj1 , . . . , tjm′})). By Lemma 6,
the induction hypothesis is applicable, yielding

Cands′1 �mulc Cands′2 (1)

or
Cands′1 = Cands′2 (2)

where Cands′1 is

{〈ck1 ∪ . . . ∪ ckn−1 , pk1 ∪ . . . ∪ pkn−1〉 |
〈ck1 , pk1〉 ∈ cands(sk1 , f), . . . ,

〈ckn−1 , pkn−1〉 ∈ cands(skn−1 , f)},

Cands′2 is

{〈c′k′1 ∪ . . . ∪ c
′
k′m−1

, p′
k′1
∪ . . . ∪ p′

k′m−1
〉 |

〈c′k′1 , p
′
k′1
〉 ∈ cands(tk′1 , f), . . . ,

〈c′k′m−1
, p′
k′m−1

〉 ∈ cands(tk′m−1
, f)}

and
{sk1 , . . . , skn−1} = {s1, . . . , sn} \ {s′}

resp.
{tk′1 , . . . , tk′m−1

} = {t1, . . . , tm} \ {t′}.

With this notation we can write Cands1 and Cands2 in the following way.

Cands1 = {〈a1 ∪ a2, b1 ∪ b2〉 | 〈a1, b1〉 ∈ Cands′1,
〈a2, b2〉 ∈ cands(s′, f)}

and

Cands2 = {〈a′1 ∪ a′2, b′1 ∪ b′2〉 | 〈a′1, b′1〉 ∈ Cands′2,
〈a′2, b′2〉 ∈ cands(t′, f)}.

We are going to show that for every pair α′ from Cands2 there exists a pair α from Cands1
with α �c α′ which concludes the proof as it implies Cands1 �mulc Cands2. So consider some
arbitrary pair 〈a′1 ∪ a′2, b′1 ∪ b′2〉 where 〈a′1, b′1〉 ∈ Cands′2 and
〈a′2, b′2〉 ∈ cands(t′, f). Now we distinguish several cases, depending on the kind of pairs con-

tained in Cands′1 and cands(s′, f).

First, assume there exists a pair 〈a2, b2〉 ∈ cands(s′, f) with a2 �mulac a′2. By our induction
hypothesis, there must be a pair 〈a1, b1〉 ∈ Cands′1 with a1 = a′1 or a1 �mulac a′1 (because otherwise
Cands′1 6�mulc Cands′2) and thus a1 ∪ a2 �mulc a′1 ∪ a′2, yielding 〈a1 ∪ a2, b1 ∪ b2〉 �c 〈a′1 ∪ a′2, b′1 ∪
b′2〉. Second, assume there exists a pair 〈a1, b1〉 ∈ Cands′1 with a1 �mulac a′1. Then, by Lemma 5,
there must be a pair 〈a2, b2〉 ∈ cands(s′, f) such that a2 = a′2 or a2 �mulac a′2. Thus, we have
a1 ∪ a2 �mulac a′1 ∪ a′2, yielding 〈a1 ∪ a2, b1 ∪ b2〉 �c 〈a′1 ∪ a′2, b′1 ∪ b′2〉. Third, assume there is no pair
〈a2, b2〉 ∈ cands(s′, f) with a2 �mulac a′2 and no pair 〈a1, b1〉 ∈ Cands′1 with a1 �mulac a′1. The rest of
the proof is dedicated to deal with this final case.

By the induction hypothesis there exists a pair 〈a1, b1〉 ∈ Cands′1 such that either 〈a1, b1〉 =
〈a′1, b′1〉 or 〈a1, b1〉 �c 〈a′1, b′1〉. We deal with these two possibilities separately. Assume 〈a1, b1〉 =
〈a′1, b′1〉 first. We know that there exists a pair 〈a2, b2〉 ∈ cands(s′, f) with 〈a2, b2〉 �c 〈a′2, b′2〉 by
Lemma 5. Moreover, as a2 6�mulac a′2, we have a2 = a′2 according to [20][Definition 17]. Hence,
according to [20][Definition 17] 〈a2, b2〉 �c 〈a′2, b′2〉 means that b2 \ b′2 6= ∅ and for each pair
α′ ∈ b′2 \ b2, there is a pair α ∈ b2 \ b′2, with α �p α′. The ordering �p is the ordering � of
[20][Definition 17].

We have a1 ∪ a2 = a′1 ∪ a′2 and b1 ∪ b2 \ b′1 ∪ b′2 6= ∅, because b1 = b′1. Moreover, for every pair
α′ ∈ b′1∪b′2\b1∪b2 there is a pair α ∈ b1∪b2\b′1∪b′2 such that α �p α′, because b′1∪b′2\b1∪b2 = b′2\b2
and b1 ∪ b2 \ b′1 ∪ b′2 = b2 \ b′2, as b1 = b′1. Thus, we have 〈a1 ∪ a2, b1 ∪ b2〉 �c 〈a′1 ∪ a′2, b′1 ∪ b′2〉.

Second, assume 〈a1, b1〉 �c 〈a′1, b′1〉. Since a1 6�mulac a′1 we have a1 = a′1. Hence, 〈a1, b1〉 �c 〈a′1, b′1〉
means that b1 \ b′1 6= ∅ and for every pair α′ ∈ b′1 \ b1, there exists a pair α ∈ b1 \ b′1 such that
α �p α′. Moreover, there exists a pair 〈a2, b2〉 with a2 = a′2 and 〈a2, b2〉 �c 〈a′2, b′2〉 according to
Lemma 5.

We have a1∪a2 = a′1∪a′2. In order to prove 〈a1∪a2, b1∪b2〉 �c 〈a′1∪a′2, b′1∪b′2〉 we need to show
b1 ∪ b2 \ b′1 ∪ b′2 6= ∅ and that for every pair α′ ∈ b′1 ∪ b′2 \ b1 ∪ b2 there is a pair α ∈ b1 ∪ b2 \ b′1 ∪ b′2,
with α �p α′. We distinguish two cases to prove that

b1 ∪ b2 \ b′1 ∪ b′2 ⊇ b2 \ b′2 6= ∅ : (3)

If s′ is a ground term, then it is a small term and thus cands(s′, f) = {〈{a}, {〈{a}, s′〉}〉} (i.e.
b2 = {〈{a}, s′〉}). In that case t′ is a small term as well and cands(t′, f) = {〈{a}, {〈{a}, t′〉}〉}. Now
because of the particular choice of s′, the number of occurrences of s′ in {tk′1 , . . . , tk′m−1

} must be
less or equal than the occurrences of s′ in {sk1 , . . . , skn−1}. Hence, the number of pairs 〈{a}, s′〉 in
b′1 must be less or equal than the number of these pairs in b1. Now since the number of 〈{a}, s′〉
pairs in b1∪ b2 equals the number of these pairs in b1 + 1, while the number of these pairs in b′1∪ b′2
equals that in b′1, we have strictly more occurrences of 〈{a}, s′〉 in b1 ∪ b2 than in b′1 ∪ b′2 and thus
b1 ∪ b2 \ b′1 ∪ b′2 ⊇ {〈{a}, s′〉} = b2 \ b′2.

Otherwise, s′ is not a ground term. Then pairs in b2 are of the shape 〈{x}, s′〉 for some variable
x of s′. No term from {tk′1 , . . . , tk′m−1

} can contain any variable occurring in s′, since otherwise,
because of {sk1 , . . . , skn−1}Btup {tk′1 , . . . , tk′m−1

}, some term of {sk1 , . . . , skn−1} would have to con-
tain the same variables and that would be a contradiction to variable disjointness of terms of
{s1, . . . , sn} = {sk1 , . . . , skn−1}∪{s′}. Hence, we have b2 \b′1 = b2 and thus b1∪b2 \b′1∪b′2 ⊇ b2 \b′2.

Now, we show that for every pair α′ ∈ b′1 ∪ b′2 \ b1 ∪ b2 there is a pair α ∈ b1 ∪ b2 \ b′1 ∪ b′2,
with α �p α′. We distinguish several cases: First, assume α′ ∈ b′2 \ b1 ∪ b2. Thus, there is a pair
α ∈ b2 \ b′2, such that α �p α′. However, since b2 \ b′2 ⊆ b1∪ b2 \ b′1∪ b′2, we have α ∈ b1∪ b2 \ b′1∪ b′2.

Second, assume α′ ∈ b′1 \ b1∪ b2. We further distinguish two cases, depending on whether α′ has
the shape 〈{a}, t〉 (i.e. it goes back to a small term t) or 〈{x}, t〉 (i.e. it goes back to a non-ground
term t). Assume α′ = 〈{a}, t〉 for some term t. We know that there is a pair α ∈ b1 \ b′1 with
α �p α′. If α ∈ b1 \ b′1 ∪ b′2 we are done. Otherwise, b′2 = {α} and t = t′ (cf. [20][Definition 12]).
Moreover, we have b2 \ b′2 ⊇ {α′′} with α′′ �p α and since b1 ∪ b2 \ b′1 ∪ b′2 ⊇ b2 \ b′2 (3) we have
α′′ ∈ b1 ∪ b2 \ b′1 ∪ b′2. By transitivity of �p we get α′′ �p α′ (α′′ �p α �p α′).

Now, assume α′ = 〈{x}, t〉 for some term t and variable x ∈ t. Then, there is a pair α ∈ b1 \ b′1
with α �p α′. 〈a1, b1〉 ∈ Cands′1. Hence, x ∈ V ar(sk1) ∪ . . . ∪ V ar(skn−1) and thus x 6∈ s′, because
the terms in {s1, . . . , sn} = {sk1 , . . . , skn−1}∪{s′} are pairwise variable disjoint. This means x 6∈ t′,
as s′ B t′ and thus there is no pair 〈p1, p2〉 ∈ cands(t′, f) where α ∈ p2. Hence, α ∈ b1 \ b′1 ∪ b′2 and
α �p α′.

The final lemma justifies the use of flattened terms when comparing arguments of AC function
symbols in Definition 8.

Lemma 8. Let Σ be an unsorted signature and �ac be an ACRPO on T (Σ,V) where < is the
used precedence. Given a term t, such that all proper subterms of flat(t, f) are from T (Σ<f , V),
then we have cands(t, f) = cands(flat(t, f), f).

Proof. Let t′ = flat(t, f). We prove the result by induction on the arity of root(t′) (denoted
ar(root(t′))). If this arity is 2, then t = t′ according to Definitions 2 and 8. Otherwise, assume we
have ar(root(t′)) = k > 2. If root(t) 6= f , we have t = t′ and the result holds trivially. So assume
t = f(t1, t2). Then, if t′ = f(t′1, . . . , t

′
k) we have flat(t1, f) = f(ti′1 , . . . , t

′
il1

) and flat(t2, f) =
f(tj′1 , . . . , t

′
jl2

) such that {t′i1 , . . . , t
′
il1
, t′j1 , . . . t

′
jl2
} = {t1, . . . , tk} (here if l1 or l2 is one, then f(t′i1)

(resp. f(t′j1)) denotes t′i1 (resp. t′j1)).
By Definition 2 the arity of root(flat(ti, f)) is less than k for both i ∈ {1, 2}. Hence, the

induction hypothesis applies yielding cands(t1, f) = cands(flat(t1, f), f) which is given by

{c′i1 ∪ . . . ∪ c
′
il1
, p′i1 ∪ . . . ∪ p

′′
il1
|

〈c′i1 , p
′
i1〉 ∈ cands(t

′
i1 , f), . . . , 〈c′il1 , p

′
il1
〉 ∈ cands(t′il1 , f)}

and cands(t2, f) = cands(flat(t2, f), f) which is given by

c′j1 ∪ . . . ∪ c
′
jl2
, p′j1 ∪ . . . ∪ p

′′
jl2
|

〈c′j1 , p
′
j1〉 ∈ cands(t

′
j1 , f), . . . , 〈c′jl2 , p

′
jl2
〉 ∈ cands(t′jl2 , f)}.

By [20][Definition 12], we have

cands(t, f) = {〈c1 ∪ c2, p1 ∪ p2 | 〈c1, p1〉 ∈ cands(t1, f),
〈c2, p2〉 ∈ cands(t2, f)},

which is thus the same as

{〈(c′i1 ∪ . . . ∪ c
′
il1

) ∪ (c′j1 ∪ . . . ∪ c
′
jl2

),

(p′i1 ∪ . . . ∪ p
′
il1

) ∪ (p′j1 ∪ . . . ∪ p
′
jl2

)〉 |
〈c′i1 , p

′
i1〉 ∈ cands(t

′
i1 , f), . . . , 〈c′il1 , p

′
il1
〉 ∈ cands(t′il1 , f)

〈c′j1 , p
′
j1〉 ∈ cands(t

′
j1 , f), . . . , 〈c′jl2 , p

′
jl2
〉 ∈ cands(t′jl2 , f)}.

By associativity and commutativity of ∪ (for multisets) this further equals

{〈c′1 ∪ . . . ∪ c′k, p′1 ∪ . . . ∪ p′k | 〈c1, p1〉 ∈ cands(t′1, f), . . . ,
〈ck, pk〉 ∈ cands(t′k, f)},

which is cands(t′, f) by [20][Definition 12].

The next lemma states stability of I under AC-instantiations.

Lemma 9. Let Σ be an unsorted signature and let s, t ∈ T (Σ,V) such that root(s) = root(t) =
f ∈ ΣAC and θ be a specialization such that lab(root(sθ)) ≥mul lab(root(tθ)). Consider the multiset
S of arguments of root(sθ) in the term sθ as well as the multiset T of arguments of root(tθ) in
the term tθ. Assume that for every variable x ∈ T \ S, there exists a term s′ ∈ S \ T , such that
ls(s′) > ls(x). Moreover, let root(sθ) = fΨ and root(tθ) = fΨ ′ . Then for every substitution σ
with ls(xσ) = ls(xθ) for all x ∈ Dom(σ) we have that root(sσ) = feΨ and root(tσ) = feΨ ′ implies
Ψ̃ ≥mul Ψ̃ ′.

Proof. If there is no variable in T \S, then Ψ̃ ′\Ψ̃ = lab(root(tθ))\lab(root(sθ)) and thus Ψ̃ ≥mul Ψ̃ ′.
Otherwise, for each sort u ∈ Ψ̃ ′ \ Ψ̃ there is a sort u′ > u ∈ Ψ̃ \ Ψ̃ ′ and Ψ̃ \ Ψ̃ ′ is non-empty,

hence Ψ̃ >mul Ψ̃ ′.

Finally, we can prove finiteness of AC-rewrite derivations w.r.t. well-founded OS theories.

Theorem 1. Let E = (Σ,B0, R) be a sort-decreasing well-founded recursive OS theory where
the structural axioms B0 are either AC or C axioms. Then E is B0-terminating.

Proof. We prove that Ẽ = (Σos, B̃0, R̃) is compatible with an ACRPO as defined in [20] (which
implies termination of E by Lemma 4). Note that there is no lexicographic comparison of arguments
of non-commutative function symbol in the definition of the ACRPO in [20]. However, an inspection
of the proofs reveals that the results remain valid also in the presence of lexicographic comparisons
of arguments of non-commutative functions. This is also claimed in [20].

Assume E is well-founded recursive w.r.t. to the status functions stat and statac. The non-strict
precedence & on function symbols of Σos that we use is the smallest precedence satisfying f > g
if:

– f IE g, g 6IE f and either f or g is not an AC symbol; and
– f and g are both AC symbols, f IE g, g 6IE f and either erase(g) 6IE erase(f) or statac(f) =
statac(g) = s; and

– f is an AC symbol and there exists a rule l → r ∈ R̃ such that root(l) = f and root(l|p) = g
for some position p ∈ PosΣ(l).

Moreover, two function symbols f and g are equal if

– f IE g, g IE f ; and
– f and g are both AC symbols, erase(f) IE erase(g), erase(g) IE erase(f) and statac(f) =
statac(g) = us.

The strict part of the precedence is well-founded because Σ is finite and whenever f > g for
AC symbols f and g, then lab(f) >mul lab(g) where < is the subsort ordering of Σ.

Now, consider a rule l → r ∈ R̃ that is obtained through instantiation and labeling from an
equation l′ → r′ ∈ R. We prove that l �ac w for every (not necessarily proper) subterm w of r by
induction on the depth of w. For the base case, let w be a variable. Since l is not a variable, we
have l B w and since �ac is a simplification ordering we get l �ac w.

In the step case, by Definitions 8 and 13, root(w) = root(r′|pθ) for some specialization θ and
position p ∈ Pos(r′) and thus root(l) & root(w) by Lemma 9. In case root(l) > root(w) we have
l �ac w|1, . . . , l �ac w|ar(w) by the induction hypothesis, and thus l �ac w.

Otherwise root(l) ∼ root(w) and thus root(l) and root(w) are both AC symbols or both not
AC symbols. By Definition 8 there are terms l′ =B0 l and w′ =B0 w such that

{l′′|1, . . . , l′′|ar(root(l′′))}Btup {w′′|1, . . . , w′′|ar(root(w′′))}

(where l′′ = flat(l′, root(l′) and w′′ = flat(w′, root(w′))) or

{l′|1, . . . , l′|ar(root(l′))}Bmul {w′|1, . . . , w′|ar(root(w))}

respectively, depending on whether root(l′) and root(w′) are both AC-symbols or not, in case
stat(root(l)) = stat(root(w)) = mul or

{l′|1, . . . , l′|ar(root(l′))}Blex {w′|1, . . . , w′|ar(root(w))}

in case stat(root(l)) = stat(root(w)) = lex. By AC−compatibility of �ac it suffices to prove
l′ �ac w′. We distinguish two cases, depending on whether root(l′) and root(w′) are AC or non-
AC-symbols.

First, if they are not AC-symbols, we have

{l′|1, . . . , l′|ar(root(l′))} �mulac {w′|1, . . . , w′|ar(root(w))}

in case stat(root(l)) = stat(root(w)) = mul and

{l′|1, . . . , l′|ar(root(l′))} �lexac {w′|1, . . . , w′|ar(root(w))}

in case stat(root(l)) = stat(root(w)) = lex because by Definition 8 we have

{l′|1, . . . , l′|ar(root(l′))}Bmul {w′|1, . . . , w′|ar(root(w))}

resp.
{l′|1, . . . , l′|ar(root(l′))}Blex {w′|1, . . . , w′|ar(root(w))}

and since �ac⊇ B (�ac is a simplification ordering) we get l′ �ac w′ according to [20][Definition
17].

Second, if both root(w′) and root(l′) are AC symbols, according to [20][Definition 17], we
have to prove cands(l′, root(l′)) �mulc cands(w′, root(w′)) (cf. [20][Definitions 12 and 17]). By,
Lemma 8 this is the same as proving cands(l′′, root(l′′)) �mulc cands(w′′, root(w′′)) In the sequel
let l′′ = f(s1, . . . , sn) and w′′ = g(t1, . . . , tm) (hence root(l′′) = f and root(w′′) = g).

The multiset cands(l′′, f) is given by

{〈c1 ∪ . . . ∪ cn, p1 ∪ . . . ∪ pn〉 |〈c1, p1〉 ∈ cands(s1, f), . . . ,
〈cn, pn〉 ∈ cands(sn, f)}.

Analogously, cands(w′, g) is given by

{〈c′1 ∪ . . . ∪ c′m, p′1 ∪ . . . ∪ p′m〉 |〈c′1, p′1〉 ∈ cands(t′1, f), . . . ,
〈c′m, p′m〉 ∈ cands(t′m, f)}.

Note that f ∼ g means that cands(s, f) = cands(s, g) for all terms s.
Since l′′ and w′′ are patterns and thus linear, the terms in the sets {s1, . . . , sn} and {t1, . . . , tm}

are pairwise variable disjoint. Moreover, by Definition 8 all terms s1, . . . , sn, t1, . . . , tm contain
only function symbols smaller than f (and g) in the precedence. Hence, since {s1, . . . , sn} Btup

{t1, . . . , tm}, Lemma 7 is applicable, yielding cands(l′′, f) �mulc cands(w′′, g), and thus l′ �ac w′
according to [20][Definition 17].

Theorem 2. For any well-founded recursive tower as in Definition 9, the equational theory
(Ω ∪ {f1, . . . , fm}, Rf1 ∪ . . . ∪Rfm

) is a well-founded recursive many-sorted theory.

Proof. We prove that E = (Ω∪{f1, . . . , fm}, Rf1 ∪ . . .∪Rfm) is well-founded recursive according to
Definition 8. We use a status function stat that maps every function symbol to lex, i.e. stat(g) = lex
for all g ∈ Ω∪{f1, . . . , fm}. Since we do not have any axioms (and thus in particular no commutative
and associative function symbols), statac is irrelevant.

Since there are no mutually recursive functions, the constraints for stat in Definition 8 are
trivially satisfied.

Moreover, item 1. of Definition 8 is satisfied since left-hand sides of equations in E are linear
patterns according to Definition 9 item i. Item 2. is trivially satisfied, since left-hand sides of rules
cannot be constructor terms. Regarding item 3., note first that since we are in a many-sorted
setting, there are no non-trivial specializations. Furthermore, since we do not have any mutually
recursive functions in E , root(r|p) IE root(l) implies root(r|p) = root(l) for all rules l → r of E
and all positions p ∈ Pos(r). Hence, in order to prove that E satisfies item 3. of Definition 8 it
suffices to show that every rule l → r of E is root(l) argument decreasing. Thus, consider such a
rule. According to Definition 9 is has the shape

fi(t1, . . . , tni)→ C[fi(u1
1, . . . , u

1
ni

) . . . fi(uk1 , . . . , u
k
ni

)].

Since stat(fi) = lex, we need to show that (t1, . . . , tni) Blex (v1, . . . , vni) for every occurrence
of a term of the shape fi(v1, . . . , vni

) in r. By definition the context C does not contain terms
rooted by fi (item ii of Definition 9). Hence, consider the term fi(u

j
1, . . . , u

j
ni

) for an arbitrary
1 ≤ j ≤ k. By Definition 9 item iii.3, we have (t1, . . . , tni) Blex (uj1, . . . , u

j
ni

). Now consider the
immediate (proper) subterms of fi(u

j
1, . . . , u

j
ni

). Again, by Definition 9 items iii.1 and iii.2, these
terms are either terms over T (Ω ∪ {f1, . . . , fi−1,X) or are of the shape fi(v1, . . . , vni) such that
(t1, . . . , tni)B· (v1, . . . , vni), which on the one hand implies (t1, . . . , tni)Blex (v1, . . . , vni) and on the
other hand implies that fi(v1, . . . , vni

) does not contain a proper fi-rooted subterm. Hence, l→ r
is root(l) argument decreasing and thus item 3. of Definition 8 is satisfied.

Finally, items 4. and 5. of Definition 8 are trivially satisfied, because E does not contain struc-
tural axioms.

B Missing Proofs of Section 4

Theorem 3 (modularity of sort-decreasingness). Let E1 = (Σ1, B
1
0 , R1) and E2 = (Σ1 ∪

Σ2, B
1
0 ∪B2

0 , R1 ∪R2) be OS theories where the Bi0s are C or AC axioms for both i ∈ {1, 2}. If E1
and E ′2 = (Σ1 ∪Σ2, B

1
0 ∪B2

0 , R2) are both sort-decreasing, then so is E2.

Proof. We need to show that ls(lθ) ≥ ls(rθ) for all rules l→ r ∈ R1 ∪R2 and all specializations θ.
First, assume l→ r ∈ R1. Then because Σ2 introduces no new subsorts of sorts in Σ1 (by Definition
10), ls(lθ) ≥ ls(rθ) is implied by sort-decreasingness of E1. Second, if l → r ∈ R2, ls(lθ) ≥ ls(rθ)
by sort decreasingness of E ′2.

Theorem 4 (Modularity of well-founded recursion). Let E1 = (Σ1, B
1
0 , R1) and E2 =

(Σ1 ∪ Σ2, B
1
0 ∪ B2

0 , R1 ∪ R2) be OS theories such that E2 fairly extends E1 and the Bi0s are C or
AC axioms for both i ∈ {1, 2}. If E1 and E ′2 = (Σ1 ∪ Σ2, B

1
0 ∪ B2

0 , R2) are well-founded recursive
w.r.t. to functions stat1, stat1ac and stat2, stat2ac that are compatible, then so is E2.

Proof. We have to show that E2 = (Σ1 ∪ Σ2, B
1
0 ∪ B2

0 , R1 ∪ R2) is well-founded recursive. Let
Σ1 = (S1, <1, F1 = Ω1] D1) and Σ2 = (S2, <2, F2 = Ω2] D2). We prove well-foundedness of E2
by looking at the rule of R1 ∪ R2. First, consider a rule l → r of R1. Since the function symbols
occurring in l or the proper subterms of l resp. flat(l, root(l)) are from Ω1 if l is a free or C, resp.
an AC symbol, they are also constructors in E2 since Ω2 ⊆ Ω1 ∪Ω2 and thus l is a pattern in E2.
Hence, if r was a constructor term w.r.t. Σ1, then it is also a constructor term w.r.t. Σ1 ∪Σ2.

Moreover, consider a subterm t of r and a specialization θ where root(tθ) IE′2
root(lθ). We

distinguish three possible cases according to the whether root(tθ) IE1 root(lθ) or not and whether
statac(root(l)) is s or us.

– In case root(tθ) IE1 root(lθ) we are done, because E1 is well-founded recursive and hence
lθ → rθ is root(tθ) argument decreasing.

– If root(tθ) 6IE1 root(lθ) and statac(root(l)) = us, then either lθ → rθ is root(tθ) is argument
decreasing in which case we are done or root(t) 6IE1 root(l) and thus we have root(t) 6IE′2 root(l)
which is a contradiction to root(tθ) IE′2

root(lθ).
– Finally, assume that root(tθ) 6IE1 root(lθ) and statac(root(l)) = s (or root(l) is not an AC

symbol). There is a rule l′ → r′ ∈ R2 with root(l′θ) = root(tθ). Hence, l′ unifies in an order-
sorted way with root(t)(x1, . . . , xn) where the sort of xi = si and root(t) : s1, . . . , sn → s ∈ Σ1.
Hence, we get a contradiction to E2 being a fair extension of E1.

If root(l) is an AC constructor (for some specialization) we additionally need to show that
root(l|p) 6IE2 root(l) for all positions p ∈ PosΣ(l), p > ε. We have root(l|p) 6IE1 root(l), because E1
is well-founded recursive. If root(l|p) IE2 root(l), then there is a rule l′ → r′ in R2 such that l′ and
root(l|p)(x1

s1 , . . . , x
n
sn

) unify (order-sorted modulo axioms) where root(l|p) : s1, . . . , sn → s ∈ Σ1

and thus we derive a contradiction to E2 being a fair extension of E1.
Now consider a rule l→ r fromR2. Since E ′2 is well-founded recursive l is a pattern or constructor

term and flat(l, root(l)) is a pattern in E2.
Now consider a subterm t of r and a specialization θ where root(tθ) IE1 root(lθ). We distinguish

three possible cases, according to the whether root(tθ) IE1 root(lθ) or not and statac(root(l)) is s
or us.

– In case root(tθ) IE2′ root(lθ) we are done, because E ′2 is well-founded recursive and hence
lθ → rθ is root(tθ) argument decreasing.

– If root(tθ) 6IE2′ root(lθ) statac(root(l)) = us, then either lθ → rθ is root(tθ) argument decreas-
ing in which case we are done or root(t) 6IE′2 root(t) and thus we have root(t) 6IE1 root(l) which
is a contradiction to root(tθ) IE1 root(lθ).

– Finally, assume that root(tθ) 6IE′2 root(lθ) and statac(root(l)) = s (or root(l) is not an AC

symbol). There is a rule l′ → r′ ∈ R1 with root(r|′qθ) = root(lθ) for some position q. Hence,
l unifies in an order-sorted way with root(r′|q)(x1, . . . , xn) where the sort of xi = si and
root(r′|p) is typed root(r′|p) : s1, . . . , sn → s ∈ Σ1. Hence, we get a contradiction to E2 being a
fair extension of E1.

If root(l) is an AC constructor (for some specialization) we additionally need to show that
root(l|p) 6IE2 root(l) for all positions p ∈ PosΣ(l), p > ε. We have root(l|p) 6IE′2 root(l), since
E ′2 is well-founded recursive. If root(l|p) IE1 root(l), then there exists a rule l′ → r′ in R1 with
root(l′) = root(l|p) and thus we get a contradiction to E2 being a fair extension of E1.

Regarding Item 4 in Definition 8, rules in E2 satisfy this property because since no subsorts of
sorts present in Σ1 are introduced, the possible specializations of rules are the same as for E1 and
E2.

Finally, if h IE2 g and g IE2 h, then either h IE1 g and g IE1 h or h IE′2 g and g IE′2 h, and
thus either both symbols are AC or both are not AC.

Theorem 5 (modularity of confluence). Let E1 = (Σ1, B
1
0 , R1) and E2 = (Σ1 ∪Σ2, B

1
0 ∪

B2
0 , R1 ∪ R2) be OS theories such that E2 fairly extends E1 and the Bi0s are C or AC axioms for

both i ∈ {1, 2}. Moreover, let E1 and E ′2 = (Σ1 ∪Σ2, B
1
0 ∪ B2

0 , R2) be well-founded recursive w.r.t.
to functions stat1, stat1ac and stat2, stat2ac that are compatible. If E1 and E ′2 are confluent then so
is E2.
Proof. Since E1, E ′2 and E2 are all terminating modulo the respective axioms according to Theorems
4 and 1, confluence of either theory is equivalent to joinability of all critical pairs (modulo axioms).
To prove confluence of E2 we thus consider critical pairs of E2. If the rules used for the critical
pair are either both from R1 or both from R2, joinability follows from confluence of E1 resp. E2.
Otherwise, we distinguish two cases, depending on the type of overlap of left-hand sides of rules
the critical pair originate from.

– First, assume that a left-hand side l of some rule of R1 unifies (order-sorted modulo axioms)
with a proper (non-variable) subterm t of some lhs l′ of a rule of R2 with some unifier θ. Since
l′ is a pattern in E ′2, root(tθ) is a constructor in E ′2 and thus root(lθ) is a constructor in E1,
because root(tθ) = root(lθ) and there are no new constructors of sorts of S1 in E2 according to
Definition 10. Hence, we get a contradiction to E2 being a fair extension of E1 since root(l) is
a constructor and l overlaps the left-hand side of a rule from R2. Thus, there are no overlaps
of this kind.

– Second, assume that a left-hand side l of some rule of R2 unifies (order-sorted modulo axioms)
with a (non-variable and not necessarily proper) subterm t of some lhs l′ of a rule of R1 with
some unifier θ. Let root(tθ) : s1, . . . , sn → s be a declaration of the operator root(t) in Σ1.
Since t and l unify, also root(t)(x1

s1 , . . . , x
n
sn

) and l unify and we have a contradiction to E2
being a proper extension of E1. Hence, there are no overlaps of this kind as well.

Hence, all critical pairs of E2 are joinable and we deduce confluence from termination of E2.
Theorem 6 (modularity of sufficient completeness). Let E1 = (Σ1, B

1
0 , R1) and E2 =

(Σ1 ∪Σ2, B
1
0 ∪B2

0 , R1 ∪R2) be OS theories (Σi = Di ∪Ωi) such that E2 fairly extends E1 and the
Bi0s are C or AC axioms for both i ∈ {1, 2}. Moreover, let E1 and E ′2 = (Σ1 ∪ Σ2, B

1
0 ∪ B2

0 , R2)
be well-founded recursive w.r.t. to functions stat1, stat1ac and stat2, stat2ac that are compatible. If
E1 is sufficiently complete and for every function f : s1, . . . , sn → s ∈ D2 \ D1 and every ground
substitution σ that maps variables to irreducible constructor terms, f(x1

s1 , . . . , x
n
sn

)σ is either E2-
reducible or a constructor term (where xs is a variable of sort s), then E2 is sufficiently complete.

Proof. Assume towards a contradiction that E2 is not sufficiently complete. Then because of termi-
nation of E2 (which holds by Theorem 4 and Theorem 1), there exists a term ground t, that is not
a constructor term and is E2-irreducible. Consider a (not necessarily proper) subterm s of t, where
root(s) is a defined symbol and every proper subterm of s is a constructor term. If root(s) ∈ Σ1,
then s ∈ T (Σ1, V), because there are no constructors in Σ2 of sorts of Σ1 by Definition 10. Hence,
we obtain a contradiction to sufficient completeness of E1 by E1-irreducibility of s.

Otherwise, root(s) ∈ Σ2 \Σ1. Then s is an instance of the term root(s)(x1, . . . , xn) where xi is
a variable of sort si and root(s) is typed root(s) : s1, . . . , sn → s. Thus, we get a contradiction to
E2-irreducibility of s.

C Missing Proofs of Section 5

Lemma 6 (modularity of sufficient completeness). Under the above restrictions on the first
typing of an associative operator f , the associativity equation f(f(L,P), Q) = f(L, f(P,Q)) is an

inductive consequence of the restricted associativity equation f(f(E,NL), Q) = f(E, f(NL,Q)).
Likewise, under the second typing the associativity equation f(L, f(P,Q)) = f(f(L,P), Q) is an
inductive consequence of the restricted associativity equation f(Q, f(NL,E)) = f(f(Q,NL), E)).

Proof. The proof is by constructor-based structural induction. Without loss of generality we prove
the result for the fist typing, which has a constructor declaration f : Elt NeList → NeList [ctor]
(the proof for the second typing is entirely similar). By assumption the only constructors of type
NeList are nil , the above constructor for f , and whatever constructors may exist of sort Elt .
These latter constructors may be ignored, since the canonical form of any term of sort List
by the identity equations is either nil , or an element E, or a constructor term of the form
f(E,NL). By inducting on L get three inductive subgoals: (i) f(f(nil, P), Q) = f(nil, f(P,Q)),
(ii) f(f(E,P), Q) = f(E, f(P,Q)), and (iii) f(f(f(E,NL), P), Q) = f(f(E,NL), f(P,Q)). The
proof of (i) is trivial. The proof of (ii) is straightforward by structural induction on P . Let
us focus on proving (iii) under the induction hypotheses f(f(E,P), Q) = f(E, f(P,Q)) and
f(f(NL,P), Q) = f(NL, f(P,Q)). To begin with, (iii) can be immediately simplified with the
restricted associativity equation to: f(f(E, f(NL,P)), Q) = f(E, f(NL, f(P,Q))). But this goal
can then be discharged by applying the first and second induction hypotheses to simplify the left
term to the right term of the equation.

