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émanant des établissements d’enseignement et de
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Abstract. Periodically supported beams subjected to a moving load are often used for
modeling the railway dynamics and analytical solutions have been developed for such
modeling [3, 4]. More complex models can be constructed by including supports with
damping or non-linear stiffness elements. This study deals with the dynamical modeling
of non-ballasted railways, especially railways in tunnels. The model is developed as a
dynamical system of multi-degree of freedom. Under the periodic assumption on the
reaction force of the supports, the equation of motion for a periodically supported beam
subjected to a moving load has been written. Then the Fourier transform has been used to
solve this equation in case of damped supports. Analytical solutions have been established
for the motion of the wheel and rail and also for the reaction force of the supports. The
analytical solutions have been compared with in situ experimental measurements. The
comparison shows that the theoretical results agree well with the measured results if
damped supports are included in the model.

1 INTRODUCTION

In dynamic analysis of railway tracks, the analytical models of periodically supported
beams have been often used to approximate the response of the system. In 2002, V.H.
Nguyen [2] developed an analytical model by considering the railway as a continuously
supported beam and by neglecting the mass of supports. In order to take account the
vertical displacement of non-continued supports, X.Sheng and all. [3] used Fourier series
while G. Bonnet and R. Lassoused [4] applied the superposition of Bloch waves. These
methods are difficult to use if the mechanical behaviour of railway supports is more
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Figure 1: Forces applied on a periodically supported beam

complex (ex. hyperelastic or non-linear). In this paper, we will establish a general relation
between displacements and forces of railway supports. This relation holds for periodically
supported beams with any kind of supports and platform behaviour (ballast or non-
ballast). Then we will apply this relation to the case of linear supports to find out a
response of the system and a validation with experiment results.

2 AN ANALYTICAL MODEL FOR PERIODICALLY SUPPORTED BEAM

In this study, we consider a general case of periodically supported beam. It means
that the supports have the same mechanical constitutive law and they are distributed
periodically, separated by a same length L as shown in figure 1.

The beam is subjected to moving forces Qj characterized by the distance to the first
moving force Dj (j = 1..K with K is the number of moving forces). The reaction force
of support at the coordinate x = nL (with n = −∞..∞) is denoted by Rn(t). The total
force is calculated as following:

F (x, t) =
∞∑

n=−∞

Rn(t)δ(x− nL)−
K∑
j=1

Qjδ(x+Dj − vt) (1)

For the Euler-Bernoulli beam, the vertical displacement wr(x, t) of the beam under the
force F (x, t) is solution of the following dynamic equation:

EI
∂4wr(x, t)

∂x4
+ ρS

∂2wr(x, t)

∂t2
− F (x, t) = 0 (2)

where ρ and E are density and Young’s modulus of the beam.
The solution of equations (1) and (2) with initial conditions describe the dynamics of

the beam with multi-degree of freedom. In general, these equations can not be solved
analytically. However, we can find a general solution when the response of the system is
stationary by using the following hypothesis:

Hypothesis: When the dynamic response of a periodically supported beam is station-
ary, the reaction forces of all supports are described by a same function but with a delay
equal to the time for a moving load from a support to an other.
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In other words, the reaction force repeats when a moving force passes from one to an

other support: Rn(t) = R(t− nL

v
) where R(t) is the reaction force of the support at the

origin. Thus:

F (x, t) =
∞∑

n=−∞

R(t− x

v
)δ(x− nL)−

K∑
j=1

Qjδ(x+Dj − vt) (3)

By injecting this expression of the total force in equation (2) and by taking the Fourier
transform, we obtain:

EI
∂4ŵr(x, ω)

∂x4
− ρSω2ŵr(x, ω) +

K∑
j=1

Qj

v
e−i

ω
v
(x+Dj) − R̂(ω)

∞∑
n=−∞

e−i
ω
v
xδ(x− nL) = 0 (4)

where ŵr(x, ω) and R̂(ω) are Fourier transforms of wr(x, t) and R(t) respectively.
By taking the Fourier transform of (4) with regard to the variable x, we obtain:

(EIλ4 − ρSω2)Π(λ, ω) + 2πδ(λ+
ω

v
)

K∑
j=1

Qj

v
e−i

ω
v
Dj − R̂(ω)

∞∑
n=−∞

e−i(λ+
ω
v
)nL = 0 (5)

where Π(λ, ω) is the Fourier transform of ŵr(x, ω) with regard to the variable x. The last
term of (5) is a Dirac comb which has a following propriety:

∞∑
n=−∞

e−i(λ+
ω
v )nL =

2π

L

∞∑
n=−∞

δ

(
λ+

ω

v
+

2π

L
n

)
(6)

Then from equation (5), the expression of Π(λ, ω) can be obtained:

Π(λ, ω) =
2π

EI(λ4 − k4b )

[
R̂(ω)

L

∞∑
n=−∞

δ

(
λ+

ω

v
+

2π

L
n

)
− δ

(
λ+

ω

v

) K∑
j=1

Qj

v
e−i

ω
v
Dj

]
(7)

where kb = 4

√
ρSω2

EI
.

Finally, the expression of ŵr(x, ω) is deduced by making the inverse Fourier transform
of Π(λ, ω):

ŵr(x, ω) =
R̂(ω)

LEI

∞∑
n=−∞

e−i(
ω
v
+ 2πn

L )x(
ω
v

+ 2πn
L

)4 − k4b −
K∑
j=1

Qje
−iω

v
(x+Dj)

vEI
[(

ω
v

)4 − k4b] (8)

For instance, the vertical displacement on the top of a support (x = 0) is:

ŵr(0, ω) = R̂(ω)ηE(ω)−
K∑
j=1

Qje
−iω

Dj
v

vEI
[(

ω
v

)4 − k4b] (9)
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Figure 2: Model of non-ballasted railway support where (1) is rail pad and (2) is support pad

with:

ηE(ω) =
1

LEI

∞∑
n=−∞

1(
ω
v

+ 2πn
L

)4 − k4b (10)

It is also possible to write ηE(ω) in the following way:

ηE(ω) =
1

4k3bEI

[
sin(Lkb)

cos(Lkb)− cos(Lω
v
)
− sinh(Lkb)

cosh(Lkb)− cos(Lω
v
)

]
(11)

Equation (9) is a general relationship between the vertical displacement and the re-
action force on the top of a support for a periodically supported beam under moving
forces. The final solution of the displacement and the reaction force can be found by
combining this relationship with the constitutive law of the support itself. In the next
section, we will solve this equation in case of support with linear behaviour and apply it
to a non-ballasted railway track.

3 APPLICATION IN CASE OF LINEAR BEHAVIOUR

In this section, supports with linear behavior will be considered. Damping will be taken
into account and Kelvin-Voigt viscoelastic model will used as an example (see figure 2).

Let wn(t) denote the vertical displacement of block of the support n. The reaction
force of support on the rail is given by:

Rn(t) = −η1
d(wr(nL, t)− wn(t))

dt
− k1(wr(nL, t)− wn(t)) (12)

where η1, k1 are the damping and spring coefficients of rail pad.
The displacement of a block is governed by the following equation:

M
d2wn(t)

dt2
+ (η1 + η2)

dwn(t)

dt
+ (k1 + k2)wn = η1

dwr(nL, t)

dt
+ k1wr(nL, t) (13)
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where η2, k2 are damping and spring coefficients of the equivalent elastic pad under the
block and M is mass of the block.

Making the Fourier transform of the last equation leads to the following results:

ŵn(ω) =
A(ω)

A(ω) +B(ω)
ŵr(nL, ω)

R̂n(ω) = −θ(ω)ŵr(nL, ω)
(14)

where:
A(ω) = iωη1 + k1
B(ω) = −Mω2 + iωη2 + k2

θ(ω) =
A(ω)B(ω)

A(ω) +B(ω)

(15)

We see that the hypothesis Rn(t) = R(t− nL
v

) is equivalent to the following expression:

R̂n(ω) = e−iω
nL
v R̂(ω) ∀n = −∞..∞ (16)

From equation (14), we show the last equation is satisfied if and only if:

ŵr(nL, ω) = e−iω
nL
v ŵr(0, ω) ∀n = −∞..∞ (17)

In the next section, we will prove that the response of the system under the hypothesis
satisfies equation (17).

3.1 Response of railway track and verification of hypothesis

The following solution is deduced from equations (9) and (14) (with x = 0):

ŵr(0, ω) =
−
∑K

j=1Qje
−iω

v
Dj

vEI [1 + θ(ω)ηE(ω)]
[(

ω
v

)4 − k4b] (18)

By injecting equations (9) and (14) into equation (8), we obtain:

ŵr(x, ω) = ŵr(0, ω)e−i
ω
v
x

(
1 + θ(ω)ηE(ω)− θ(ω)

LEI

∞∑
n=−∞

e−i
2πn
L
x(

ω
v

+ 2πn
L

)4 − k4b
)

(19)

By using equation (10), the following result can be obtained from the last equation:

ŵr(x, ω) = ŵr(0, ω)e−i
ω
v
x

(
1 +

θ(ω)

LEI

∞∑
n=−∞

1− e−i 2πnL x(
ω
v

+ 2πn
L

)4 − k4b
)

(20)

We see that equation (20) satisfies equation (17) when x = nL. Thus, the hypothesis
is validated.
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The motion of the rail can be calculated by taking the inverse Fourier transform of the
last equation:

wr(x, t) = wr

(
0,
x

v
− t
)

+
∞∑

n=−∞

1− e−i 2πnL x

2πLEI

∞∫
−∞

θ(ω)ŵr(0, ω)e−iω
x−vt
v(

ω
v

+ 2πn
L

)4 − k4b dω (21)

Then the reaction force and the displacement of the block can be calculated via equation
(14). In a similar way, we could find solutions for railways with other linear supports.

3.2 Vertical vibration of wheels

From equation (21), the displacement of wheel - rail contact point at x = vt can be
deduced:

ww(t) = wr(0, 0) +
∞∑

n=−∞

1− e−i 2πnL vt

2πvEI

∞∫
−∞

θ/LEI

1 + θηE

∑K
j=1Qje

−iω
Dj
v dω[(

ω
v

)4 − k4b] [(ωv + 2πn
L

)4 − k4b] (22)

This displacement is a periodical motion of frequency f = v
L

described by the second
term of equation (22). The amplitude A0 of this motion can be obtained at the middle
point between two supports (t = L

2v
).

A0 =
1

2πvEI

∞∫
−∞

∞∑
n=−∞

1− e−iπn[(
ω
v

+ 2πn
L

)4 − k4b]
∑K

j=1Qje
−iω

Dj
v

(1 + θηE)
[(

ω
v

)4 − k4b]dω (23)

Let η̃E(ω) define by:

η̃E(ω) =
∞∑

n=−∞

1− e−iπn[(
ω
v

+ 2πn
L

)4 − k4b]
The amplitude A0 of the motion of wheel can be reduced from equation (23) as following:

A0 =
1

2πvEI

∞∫
−∞

θη̃E
1 + θηE

∑K
j=1Qje

−iω
Dj
v[(

ω
v

)4 − k4b] dω (24)

where η̃E(ω) can be also written in the following form:

η̃E(ω) =
1

4k3bEI

[
sin(Lkb

2
)

cos(Lkb
2

) + cos(Lω
2v

)
−

sinh(Lkb
2

)

cosh(Lkb
2

) + cos(Lω
2v

)

]
(25)
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3.3 Approximation of the railway tracks response under the load of a train

The load by a train can be considered as a series of point load. The charges of each
wagon on the train are often equal to the limit charge. It can be approximately by a
series of identical charges (Qj = Q) at a distance from the first wheel Dj = jH (for front
wheels) and Dj = jH+D (for back wheels) where H and D are the length of each wagon
and distance between the font and the back wheel of a boogie. Using the propriety of
Dirac comb, one can write:

∞∑
j=−∞

Qje
−iω

Dj
v =

2πv

H

∞∑
n=−∞

Qδ

(
ω +

2πv

H
j

)
(26)

By injecting the last equation into equation (18) and making the inverse Fourier trans-
form, the following analytical solution can be found for the response of the railway track:

wr(0, t) =
−2QLk1k2
H(k1 + k2)

−
∑
j 6=0

ei2πj
v
H
t


Q

HEI

(
1 + e−iω

D
v

)
[(

ω
v

)4 − k4b] [1 + θηE]


ω=j 2πv

H

(27)

In the same way, we can get the displacement and the reaction force of a block by taking
the inverse Fourier transform of ŵ0(ω) and R̂(ω) which are deduced from equations (14)
and (18) as following:

w0(t) =
−2QL

Hk2
−
∑
j 6=0

ei2πj
v
H
t


Q

HEI

(
1 + e−iω

D
v

)
A[(

ω
v

)4 − k4b] [A+B + ABηE]


ω=j 2πv

H

(28)

R(t) =
2QL

H
+
∑
j 6=0

ei2πj
v
H
t


Q

HEI

(
1 + e−iω

D
v

)
θ[(

ω
v

)4 − k4b] [1 + θηE]


ω=j 2πv

H

(29)

where A(ω), B(ω) in equation (15).
These expressions show that the response of railway is a periodical motion with the

frequency f = v
H

.

3.4 Example

In this section we will compare the analytical solution with experimental results for
a non-ballasted railway. The transverse force and rotating motion are ignored. The
experiments were conducted in 2005 in the Channel tunnel. The parameters used in the
calculation are given in table 1.

The displacement of rail track is computed by using equation (21). Figure 3 shows this
displacement of the track in the length of wagon H when the first wheel is on the top of
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Table 1: Parameters of a non-ballasted railway tracks

Charge of each wheels (Q) kN 75
Train speed (v) m/s 45
Length of boogie (D) m 3
Length of wagon (H) m 18
Rail mass (ρS) kg/m 60
Rail stiffness (EI) MNm2 6.3
Block mass (M) kg 100
Sleeper length (L) m 0,6
Damping factor of rail pad (η1) MNs/m 1.0
Stiffness of rail pad (k1) MN/m 200
Damping coeff. under support (η2) MNs/m 0.35
Stiffness under support (k2) MN/m 18

a support. In other positions of the wheels, the displacement curves have similar form
but they are below this curve (the amplitude of this change calculated by equation (24)
is A0 = 0.0065 mm). It is noticeable that the curve has a symmetrical form if damping is
not included and the damping reduces the displacement at the first wheel position.

x (m)
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p
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t

(m
m

)
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no damping

Figure 3: Vertical displacement of rail

The dynamic response of rail track was measured in 2005. Sensors were positioned
under the rail at the rail-support contact point. The analytical solution and experimental
results are compared in figure 4 and show good agreement for both displacement and
reaction force if damping is included in the model.
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Figure 4: Displacement and reaction force at rail - support contact point

4 CONCLUSION

The railway response under moving trains has been studied by using a periodically
supported beam model. First a general relationship between the rail track response, the
support reaction forces and the moving loads has been established. Then the response
of displacement and reaction forces have been calculated out for a railway with linear
supports including damping. The analytical solution agrees well with the experimental
results measured in the Channel tunnel. The model can be extended to Timoshenko beam
to take into account shear forces. Extensions may also be made for including longitudinal
forces or rotating motions of rail tracks and supports.
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