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2014PEST1104>. <tel-01128094>

HAL Id: tel-01128094

https://pastel.archives-ouvertes.fr/tel-01128094

Submitted on 9 Mar 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
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Abstract

In this thesis, we are interested in the real-time fixed-priority scheduling problem of
energy-harvesting systems.

An energy-harvesting system is a system that can collect the energy from the
environment in order to store it in an energy storage device and then to use it to supply
an electronic device. This technology is more and more used in small embedded systems
that are required to run autonomously for a very long lifespan. Wireless sensor networks
and medical implants are typical applications of this technology.

Moreover, most of devices that work with energy-harvesting have to execute many
recurrent tasks within a limited time. Thus, these energy-harvesting devices are subject
to real-time constraints where the correctness of the system depends not only on the
correctness of the results but also on the time in which they are delivered.

This thesis addresses the real-time scheduling layer of this kind of systems. More
specifically, it focuses on a specific family of real-time scheduling: the preemptive
fixed-task-priority scheduling for monoprocessor platforms. In this approach, each task
of the system is assigned a static priority. Then, at any moment, the scheduler executes
first the active task with the highest priority.

The problematic of such a scheduling approach for energy-harvesting systems is to
find efficient scheduling algorithms and their associated schedulability analysis. The
responsibility of a scheduling algorithm is to produce a valid and perpetual schedule
where all the tasks respect their timing and energy constraints. In other words, all
the deadlines must be met and the system must never run out of energy. Whereas a
schedulability analysis provides schedulability tests and conditions that guarantee the
schedulability or the unschedulability of a given task set in a given energy configuration.
Furthermore, to guarantee such schedulability, the energy storage unit capacity must be
sufficient to avoid energy wasting. Then, for each scheduling algorithm and schedulability
analysis, we must specify the minimum battery capacity that keeps the schedulability
of a given task set.

This dissertation starts with a brief state of the art of the existing real-time scheduling
theory for energy-harvesting systems including energy-aware scheduling solutions that
add more idle periods to replenish energy, and dynamic processor voltage and frequency
scaling approaches that reduce the consumption rate of the processor. In this part,
we show that in the case of energy-aware scheduling approach, the fixed-task-priority
scheduling for energy-harvesting systems was not deeply studied.

The first contribution of this thesis is the proposition of the PFPASAP scheduling
algorithm. It is an adaptation of the classical fixed-task-priority scheduling to the
energy-harvesting context. It consists of executing tasks as soon as possible whenever
the energy is sufficient to execute at least one time unit and replenishes otherwise. The
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replenishment periods are as long as needed to execute one time unit. The schedule
produced by this algorithm can be seen as the energy counter-part of the classical
fixed-task-priority work-conserving scheduling where the processor cannot be idle while
there are pending jobs and sufficient energy to execute. We prove in this dissertation
that PFPASAP is optimal in the class of fixed-task-priority scheduling algorithms but
only in the case of non-concrete systems where the first release time of tasks and the
initial energy storage unit level are known at run-time and where all the tasks consume
more energy than the replenishment during execution times. A sufficient and necessary
schedulability condition for such systems is also proposed. It consists of a response
time analysis that computes the longest response time of all tasks in the worst-case
scenario. We prove also that this scenario happens whenever all the tasks are requested
simultaneously while the energy storage unit level is at its minimum level.

Unfortunately, when we relax the assumption of tasks energy consumption profile,
by considering both tasks that consume more energy than the replenishment and the
ones that consume less than the replenishment, the PFPASAP is no longer optimal
and the worst-case scenario is no longer the synchronous release of all the tasks, which
makes the precedent schedulability test only necessary. To cope with this limitation,
we propose in a second contribution to upper bound tasks worst-case response time in
order to build sufficient schedulability conditions instead of exact ones. We propose two
upper bounds based on the construction of virtual scenarios that maximize the number
of interferences and the needed replenishment time.

Regarding the possibility of finding an optimal algorithm, we explore through this
dissertation different ideas and approaches of scheduling policies in order to build an
optimal algorithm for the general model of fixed-task-priority tasks by considering all
types of task sets and energy consumption profiles. We show through some counter
examples the difficulty of finding such an algorithm and we show that most of intuitive
scheduling algorithms are not optimal. After that, we discuss the possibility of finding
such an algorithm.

In order to better understand the scheduling problematic of fixed-priority scheduling
for energy-harvesting systems, we also try to explore the solutions of similar scheduling
problematics, especially the ones that delay executions in order to guarantee some
requirements. The thermal-aware scheduling is one of these problematics. It consists of
executing tasks such that a maximum temperature is never exceeded. This may lead to
introduce additional idle times to cool down the system in order to prevent reaching the
maximum temperature. As a first step, we propose in this thesis to adapt the solutions
proposed for energy-harvesting systems to the thermal-aware model. Thus, we adapt
the PFPASAP algorithm to respect the thermal constraints and we propose a sufficient
schedulability analysis based on worst-case response time upper bounds.

Finally, we present YARTISS : the simulation tool used to evaluate the theoretical
results presented in this dissertation.







Résumé

Dans cette thèse nous nous intéressons à la problématique de l’ordonnancement temps
réel à priorité fixe des systèmes embarqués récupérant leur énergie de l’environnement.

Ces derniers collectent l’énergie ambiante de l’environnement et la stockent dans
un réservoir d’énergie afin d’alimenter un appareil électronique. Cette technologie est
de plus en plus utilisée dans les petits systèmes embarqués qui nécessitent une longue
autonomie et une longue durée de vie. Les réseaux de capteurs et les implants médicaux
sont des applications typiques de cette technologie.

De surcroît, dans la majorité des cas, les systèmes qui opèrent avec cette technologie
doivent exécuter des tâches récurrentes dans un temps imparti. Ainsi, ces systèmes sont
soumis à des contraintes dites temps réel où le respect des contraintes temporelles est
aussi important que l’exactitude des résultats.

Cette thèse traite l’ordonnancement temps réel de ce genre de systèmes. Plus
précisément, Nous nous intéressons à une famille spécifique de l’ordonnancement temps
réel : l’ordonnancement préemptif à priorité fixe sur des plateformes monoprocesseur.
Dans cette approche, chaque tâche se voit attribuer une priorité statique qui ne change
pas tout au long de son cycle de vie. Ainsi, l’ordonnanceur exécute à tout moment la
plus prioritaire des tâches actives.

La problématique d’ordonnancement sur les systèmes qui récupèrent l’énergie de
l’environnement est de trouver des algorithmes performants ainsi que les outils d’analyses
d’ordonnançabilité associés. L’algorithme d’ordonnancement est responsable de produire
un ordonnancement perpétuel valide où toutes les contraintes temporelles et énergétiques
sont respectées. En d’autres termes, les échéances de toutes les tâches doivent être
respectées et le niveau du réservoir d’énergie ne doit jamais descendre en dessous de
son seuil minimal. Une analyse d’ordonnançabilité fournit des tests et des conditions
qui garantissent l’ordonnaçabilité d’un système de tâches donné dans une configuration
d’énergie donnée. De plus, pour garantir une telle ordonnançabilité, la capacité du
réservoir d’énergie doit être suffisante pour satisfaire sans perte la demande d’énergie
des tâches. Pour cela, on doit pouvoir calculer pour chaque algorithme et pour chaque
condition d’ordonnançabilité la taille minimale du réservoir associée.

Cette thèse commence par un bref état de l’art de la théorie existante de l’ordon-
nancement temps réel des systèmes décrits plus haut. Cela inclut deux approches : la
première consiste à introduire des temps d’inactivité supplémentaires afin de recharger,
la deuxième consiste à baisser la fréquence et/ou la tension du processeur afin de
réduire le taux de consommation. Dans cette partie, Nous montrons que dans le cas
de la première approche, l’ordonnancement à priorité fixe n’a pas été suffisamment
étudié. Les résultats de cette thèse contribuent à apporter des éléments de réponse aux
problématiques de cette famille d’ordonnancement.
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La première contribution de cette thèse est la proposition de l’algorithme d’ordonnan-
cement PFPASAP . Il s’agit d’une adaptation de l’ordonnancement préemptif classique
à priorité fixe au modèle des systèmes qui récupèrent l’énergie de l’environnement. Cela
consiste à exécuter les tâches au plus tôt dès que l’énergie est suffisante pour exécuter
au moins une unité de temps et laisser le réservoir se recharger le cas échéant. La
particularité ici est que les périodes de rechargement sont aussi longues que nécessaire
pour pouvoir exécuter une seule unité de temps. Cet ordonnancement peut aussi être vu
comme l’équivalent “énergie” de l’ordonnancement non-oisif à priorité fixe classique où le
processeur ne peut pas être en mode inactif alors qu’il reste encore des tâches en attente
et que l’énergie est suffisante pour exécuter. On prouve à travers cette dissertation que
PFPASAP est optimal dans la classe d’algorithmes à priorité fixe mais uniquement dans
le cas des systèmes dits non-concrets où la date de la première activation des tâches
et le niveau initial du réservoir d’énergie ne sont connus qu’au moment de l’exécution,
et quand toutes les tâches consomment plus d’énergie pendant leur exécution que le
système n’en collecte. Une condition d’ordonnançabilité nécessaire et suffisante pour ce
type de systèmes est également proposée. Il s’agit d’une analyse de temps de réponse
des tâches qui calcule le plus long temps de réponse possible de chaque tâche qui se
produit dans le pire scénario (l’instant critique). Nous prouvons aussi que ce scénario
correspond à l’activation synchrone de toutes les tâches quand le niveau du réservoir
d’énergie est au plus bas.

Malheureusement, si l’on relâche l’hypothèse sur le profil de consommation d’énergie
des tâches, en considérant des tâches qui consomment plus que le rechargement et
d’autres qui consomment moins, l’algorithme PFPASAP n’est plus optimal et l’activation
synchrone des tâches n’est plus le pire scénario ce qui rend la condition d’ordonnançabilité
précédemment citée seulement nécessaire. Pour contourner cet obstacle, nous proposons
dans une seconde contribution de borner le pire temps de réponse des tâches afin de
construire des conditions suffisantes au lieu des tests exacts. Nous proposons deux
bornes supérieures construites sur des scénarios virtuels qui maximisent le nombre des
interférences et le temps de rechargement nécessaire.

Concernant la possibilité de trouver un algorithme optimal, nous explorons à travers
ce manuscrit différentes idées et approches d’ordonnancement dans le but de construire
un algorithme optimal pour le modèle général des systèmes à priorité fixe en considérant
tous les types de systèmes de tâches et tous les profils de consommation d’énergie. Nous
montrons avec quelques contre exemples la difficulté de trouver un tel algorithme et
aussi que la plupart des idées intuitives n’aboutissent pas à des algorithmes optimaux.
Par la suite, nous discutons la possibilité de trouver un tel algorithme.

Dans le but de mieux comprendre la problématique d’ordonnancement à priorité
fixe des systèmes collecteurs d’énergie, nous proposons d’explorer les solutions propo-
sées pour des problématiques d’ordonnancement similaires, en particulier celles où le
retardement des exécutions est parfois nécessaire pour respecter certaines contraintes.
L’ordonnancement avec contraintes thermiques est l’une de ces problématiques. Cette
dernière consiste à exécuter les tâches de telle sorte qu’une certaine température maxi-
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male n’est jamais atteinte ou dépassée. Cette contrainte pousse le système à suspendre
les exécutions de temps en temps pour rajouter des temps de refroidissement afin
d’éviter que la température maximale ne soit atteinte. Comme première étape de ce
travail, nous proposons dans cette thèse d’adapter les solutions proposées pour les
systèmes à énergie renouvelable aux systèmes à contraintes thermiques. Ainsi, nous
adaptons l’algorithme PFPASAP afin que la contrainte thermique soit respectée. Nous
proposons également une analyse d’ordonnançabilité basée sur des bornes du pire temps
de réponse des tâches.

Pour terminer, nous présentons YARTISS : l’outil de simulation développé pendant
cette thèse pour en évaluer les résultats théoriques.





Introduction

Computing is one of the sciences that have revolutionized the world during the last
century. Humans invented electronic computers for the first time during World War II.
Using the Turing Machine model, these computers were able to perform complicated
encryption/decryption computations. A computer is a device that can be programmed
to perform a set of arithmetic or logical operations. Since a sequence of operations can
be changed, the computer can solve more than one kind of problem.

Conventionally, a computer consists of at least one processing element, typically a
Central Processing Unit (CPU) and some form of memory. The processing element
carries out arithmetic and logic operations, and a sequencing and control unit that can
change the order of operations based on stored information. The first computers were
the size of a large room, consuming as much power as several hundred modern Personal
Computers (PCs).

During the last decades, the use of computers in many applications in the modern
life has increased dramatically the demand of processing power and efficiency. The
progress of technology allowed modern computers based on integrated circuits to be
millions to billions of times more capable than the early machines, and occupy a fraction
of the space. Simple computers have become small enough to fit into mobile devices
that can be powered by small energy sources. This progress allows new applications
to emerge. Nowadays computers are capable to control even critical systems such
as nuclear operations or airplane flight control. This kind of computers are mostly
embedded in autonomous systems and can be found in many devices from MPEG Audio
Layer 3 (MP3) players to spacecrafts and from toys to industrial robots.

The most important issue of these systems is determinism which means that their
behavior has to be predictable prior deployment. These systems need predictability
not only in term of correctness or prevision of the required results but also in term
of the time that the computations take or the date at which the results are delivered.
Unfortunately, nowadays computers are not deterministic and thereby they are not
fully predictable. To cope with this limitation, the behavior of these systems is studied
assuming the worst-case scenario. Therefore, the considered systems must deliver correct
results within a bounded interval of time even in the worst-case scenario. Systems that
are expected to respect such timing constraints are called Real-Time Systems (RTS).

Furthermore, with the increase of processors speed and the miniaturization of
electronic devices, energy and heat management becomes one of the major issues to
address. In fact, the aim of small devices is to provide autonomous services for a
long lifespan like wireless sensor networks or medical implants. The challenge of such
devices is to use the environmental energy to run for a very long time by eliminating
maintenance operations, e.g. battery replacement. Many environmental energy sources
can be exploited to achieve such an autonomy, e.g. solar, vibration, wind, thermal, etc.
Each source is adapted to specific applications. For example, the solar energy can be
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used for outdoor devices and the vibration energy for industrial monitoring. Systems
that collect the energy from the environment and use it are called Energy-Harvesting
System (EHS).

Most of energy-harvesting systems have to execute recurrent tasks, e.g. data sensing
and transmission operations, and have to guarantee a bounded delay of results delivery.
In such systems, both energy and time constraints have to be respected. Indeed, when
operating with a renewable energy, the system has to manage the energy collected from
the source, the energy consumption of tasks, the capacity of the energy storage device
and the time constraints of the associated real-time system. These systems are called
Real-Time Energy-Harvesting Systems (RTEHS).

During the last decade, the real-time behavior of energy-harvesting systems has
attracted further interest. The challenge here is to find the right schedule of the real-
time tasks while respecting energy limitations and time constraints. Some scheduling
algorithms have been proposed in the literature but most of them focused on the
Earliest Deadline First (EDF ) rule which executes first the tasks with the earliest
time constraint. However, even though EDF scheduling is efficient, there exists an
other family of scheduling algorithms which is widely used in industry and not very
well studied in this context up to now, it is the fixed-priority scheduling. In this
kind of real-time scheduling, the tasks keep the same priorities all the time and the
scheduling algorithm executes tasks according to their priority. This thesis addresses
the problematic of this family of real-time scheduling algorithms. We study through
this dissertation the different aspects of fixed-priority real-time scheduling for energy-
harvesting systems. We first propose some partial solutions, namely a new scheduling
algorithm and two associated schedulability analysis. Next, we explain the difficulty of
finding optimal solutions for this problematic. Finally, we discuss the same scheduling
problematic with a similar model, namely thermal-aware scheduling.

The remainder of this dissertation is composed of two main parts. Part I presents
the necessary background of the classical real-time scheduling theory and the state of
the art of real-time energy-harvesting systems. Part II details the contributions of this
thesis.

Firstly, the state of the art part is structured as follows.
Chapter 1 introduces the classical real-time scheduling theory. In this chapter we

define the different levels and components of a real-time system and we describe the
properties and the notations used through this dissertation. Then, we review the
main task models and their properties. After that we present the different families of
scheduling algorithms and their associated schedulability and feasibility conditions.

Chapter 2 gives a brief overview of the different energy sources, their extraction
methods and the main energy storage technologies. We first explore and compare
the available technologies of energy-harvesting techniques. Then, we present a brief
state of the art of the available energy storage technologies, namely batteries and
supercapacitors, by showing their properties and the applications for which they are
suitable.



Introduction 23

Chapter 3 contains the state of the art of the different models and solutions available
for the real-time scheduling of energy-harvesting systems. In this chapter, we start by
defining and specifying the formal model of the targeted real-time energy harvesting
systems that set the scope of this thesis and then, we explain the real-time scheduling
problematic we are interested in, namely the fixed-priority scheduling. After that, we
identify the different scheduling approaches for energy-harvesting systems, then, we list
and explain the major real-time scheduling algorithms for energy-harvesting systems
that have been proposed in the literature. At the end, we compare these algorithms to
each other through simulations and we summarize the strengths and the weaknesses of
each algorithm.

Secondly, the contributions part is organized as follows.
Chapter 4 describes in detail the Preemptive Fixed-Task-Priority As Soon As

Possible (PFPASAP ) scheduling algorithm which is the first contribution of this thesis.
In this chapter we first present a theoretical study of the algorithm by proving some
properties like the optimality, and characterizing some aspects like the the worst-case
scenario, the minimum battery capacity and the schedulability condition. Next, we
compare PFPASAP to the algorithms presented in the state of the art through simulation
and we discuss its limitations.

Chapter 5 presents a schedulability analysis of the PFPASAP algorithm where some
assumptions are removed. This analysis is based on tasks response time approximation.
In this chapter, we propose two upper bounds of tasks response time and we build two
schedulability conditions with two levels of precision. Then, we validate this theoretical
result with simulations.

Chapter 6 shows the difficulty of finding an optimal algorithm for fixed-priority
energy-harvesting systems. We explain with counter examples why the algorithms
proposed up to now and the intuitive algorithms are not optimal. We try also to build
an optimal algorithm with an exponential complexity.

Chapter 7 studies the fixed-priority scheduling for thermal-aware systems which is a
very close model to energy-harvesting’s one. In this chapter we use the properties of
the PFPASAP algorithm to build an optimal algorithm for the thermal-aware model
and a schedulability analysis.

Chapter 8 presents Yet An Other Real-Time Systems Simulator (YARTISS), the
simulation tool used to perform the simulations in this dissertation. In this chapter, we
present the architecture of this simulator and we show through some examples how it
is extensible.

Finally, we conclude this dissertation by summarizing the contributions of this thesis
and discuss the remaining open problems and the possible axes of future development.
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1.1 Introduction
Nowadays electronic devices are more and more used to control critical operations

like nuclear reactions or flight commands. These devices are required to perform
computations in order to take decisions. For most of such devices, the time at which
the results of these computations are delivered is as important as their correctness.

The most important issue of these systems is determinism which means that the
behavior of the considered systems can be predicted totally or partially prior deployment.
These systems need predictability not only in term of correctness or prevision of the
required results but also in term of the time that the computations take or the date at
which the results are delivered. Systems that can guarantee such a predictability are
called Real-Time Systems (RTS).
Definition 1.1 (Real-Time Systems).
In computer science, a system is considered as Real-Time if the correctness of the
system depends not only on the logical result of the computation but also on the time
at which the result is delivered [But11]. �

Although the term of real-time is frequently used in many application fields, it
is subject to different interpretations. One can say that an application operates in
real-time if it is able to quickly react to external events. For example, one can use
real-time video streaming to refer to a video that can be produced and viewed on the
flight. This has become possible thanks to the increasing power of computers and
telecommunication media. According to this interpretation, a system is considered to
be real-time if it is fast. However, the term fast has relative meaning and does not fill
the main property that characterizes a real-time system which is time predictability.
The considered systems are often subject to environment interaction. Thus, it does not
make sense to design a real-time computing system for flight control without considering
the timing characteristics of the different critical computation activities of the aircraft.

Some people erroneously believe that it is not worth to invest in real-time research
because advances in computer hardware will take care of any real-time requirement.
Although this advance will improve processing speed, this does not guarantee that the
timing constraints of an application will be met. In fact, while the aim of fast computing
is to minimize the average response time of a given set of tasks, the aim of real-time
computing is to meet the individual timing requirements of each task worst-case scenario.
Hence, instead of being fast, a real-time system should be predictable. A safe way to
achieve predictability is to investigate and employ new methodologies at every stage of
the development of an application, from design to testing.

The main difference between a real-time and a non-real-time task is that a real-time
task is characterized by a temporal constraint: the deadline, which is the maximum
time before which the task must complete its execution. In critical applications, a result
delivered after the deadline is not only late but wrong. Regardless of the application,
a well-designed real-time system should eliminate or minimize temporal constraint
violations.
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Depending on the consequences that may occur because of a missed deadline,
real-time systems are usually classified in two families hard and soft.

In a hard real-time system no deadline misses are tolerated because the penalty or
the damage caused by missing a deadline may be catastrophic, e.g., danger for human
health or the environment. For a hard real-time system to be temporally correct, each
computation or task must successfully complete prior its deadline whatever the scenario
the system can cross. The system must be tested in the worst-case scenario. Finding
the worst-case scenario by testing all the possible scenarios may not be possible in
practice. Instead, formal analysis techniques are necessary to ensure that the considered
system is correct and predictable.

In contrast, in a soft real-time system, missing a deadline does not compromise
the safety or the integrity of the system but degrades the Quality of Service (QoS).
Therefore, the goal of a soft real-time system is to maximize the quality of service by
minimizing deadline violations. In this kind of real-time systems, formal analysis can
be applied to prove a certain quality of service instead of feasibility.

For a system to be proven temporally correct, three aspects of a real-time system
must be considered in the formal analysis:

1. Real-Time Workload: the computation performed by the real-time system that
must complete before its deadline. Usually, the workload is modeled using the
notion of recurring tasks. A recurring task requests the execution of infinite
sequential pieces of code called jobs. Each requested job is associated to a
deadline.

2. Processing Platform: the set of hardware resources where the jobs of the workload
are executed. These resources include the processor(s) (CPUs), the memories,
the caches and the interconnection between them, etc. The architecture of the
platform is very important because its performance influences directly the temporal
behavior of the system.

3. Scheduling Algorithm: if the workload is composed of one task, there is not a
scheduling problem because there is no concurrence between tasks. However,
when the system is composed of several tasks with different deadlines, many
jobs may by ready for execution at the same time and need to be executed as
soon as possible to meet their deadlines. In this case, a scheduling algorithm is
needed to decide, at any time, which jobs are executed on the processing platform.
The choice of the scheduling policy is one of the main factors that impacts the
temporal behavior of the system.
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Figure 1.1: Task and job parameters

The aim of this chapter is to present the main concepts and definitions needed to
understand the contributions of this dissertation. The remainder of this chapter is
organized as follows, Section 1.2 formally describes the common models of real-time
workload. Section 1.3 introduces briefly the processing platforms considered in this
dissertation. Then, Section 1.4 enumerates the most common scheduling algorithms for
real-time systems and some of their properties. Finally, the main formal analyses of the
temporal correctness of real-time systems are presented in Section 1.5.

1.2 Workload Model
To ensure the predictability required for real-time systems, it is primordial to specify

the parameters and the hypotheses of the considered systems. The task model or the
workload model is the first aspect to be specified for a real-time system. It consists of
setting the temporal parameters of each task, the relationship between them and the
assumptions of the model.

A task is a software entity that performs computation for a specific function, e.g.
checking sensors values or activating actuators. It consists of executing a sequence of
instructions on the processing platform. These sequence of instructions provided by the
task can be executed multiple times.

Most of real-time tasks have a cyclic structure in a way that they execute some
code and then they block waiting for a periodic or a sporadic timer. For this reason,
real-time tasks are usually modeled as a sequence of recurrent jobs. Hence, a job is
in instance of a real-time task associated to a temporal deadline relative to its arrival
time.

Since the seminal paper addressing real-time recurrent tasks, i.e. the work of Liu
and Layland in [LL73], a real-time task τi is characterized by the following parameters.

• Offset Oi: the first time where task τi is activated, it coincides with the request
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time of the first job of the task. It is also called start time or first release
time. When all the tasks composing the system are started at the same time, i.e.
∀i Oi = 0, we say that the tasks are synchronous, and asynchronous otherwise,

• Execution Time Ci: the computation time required by each job of τi. Tasks
may have variable execution times between different jobs. This is due to the
fact that the path and the duration of instructions executions depend on many
parameters like the type of the used memory (structure of caches) or the branches
resulting of conditional instructions and loops. This makes the problem of keeping
a constant execution time very difficult. Some studies have observed that effective
execution times can vary up to 87% relative to their worst-case execution time
[MW98]. This variation may compromise the global temporal predictability of
the system when dealing with hard real-time systems. To cope with this problem,
the notion of Worst Case Execution Time (WCET) was proposed, it consists of
considering only the longest possible execution time.
In order to use, the WCET, the must guarantee some sustainability properties
which means that if it works in the worst-case it must work in a more favorable
case as well. Therefore, it is safe to study the real-time system with the WCET.
The WCET is actually computed with different methods, it can be estimated
simply by getting the longest value given by empirical measurement on the targeted
platform, e.g. benchmarks, or formally by analyzing the code of the task to find
the longest path of possible branches and loops in the worst state of memory
and input data size. The computation of the exact WCET is one of the most
important and active research fields within the real-time scheduling community.
Many contributions are yielded every year to improve WCET predictability
[HP13; Now+14; BD13]. Nevertheless, in soft real-time systems, the average
execution time is sometimes used instead of WCET to make the formal analysis
less pessimistic,

• Period Ti: this parameter models the recurrent aspect of real-time tasks, it
represents the inter-arrival time between two successive jobs. According to the
considered task model, this parameter can be fully specified with a constant value,
partially with a lower bound, or not specified at all. The periodicity model has
an important impact on the complexity of the scheduling problem, this point will
be discussed in Section 1.5.2 on page 43,

• Relative Deadline Di: the time allocated to task τi to complete a job execution.
Each job has exactly Di time units to finish executing after being activated.
Exceeding this amount of time, the job violates its temporal constraint. The
deadline is the parameter that characterizes real-time systems because it models
their temporal constraints. A relative deadline is not an absolute time, it is the
difference between a job’s activation time and its absolute deadline. Relative
deadline is usually associated to tasks and absolute deadline to jobs,
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Figure 1.2: Task life cycle

• Worst Case Response Time Ri: the longest job response time of task τi, i.e.
Ri = max∀j(Ri,j), where Ri,j is the response time of the jth job of task τi, i.e.
the amount of time needed to complete its execution including potential blocking
or waiting times caused by interferences and preemptions. Formally, it is the
difference between the job’s activation time and its termination time.

Regarding jobs, Ji,j denotes the j-th job of task τi and is characterized with the
following parameters.

• Arrival time ai,j: the time at which job Ji,j becomes ready for execution, it is
also called request time or release time. This time depends on the periodicity
model of the task,

• Absolute Deadline di,j: the effective time of the job’s deadline, it can be
obtained by adding Di to its arrival time,

• Termination time fi,j: the time at which job Ji,j finishes its execution,

• Response time Ri,j: is the difference between job’s completion time and its
request time, i.e. Ri,j = fi,j − ai,j.

Figure 1.1 on page 30 illustrates these parameters.

1.2.1 Task Life Cycle
During the life span of a real-time system, multiple jobs of a task can be released.

At a given moment of a task life cycle, it can be in one of the following states:

• Ready: refers to the state in which the job has been activated but not yet
executed.
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• Running: refers to the state in which the job is being executed on the processing
platform.

• Blocked: refers to the state in which the job is stopped by the system. This can
happen in some real-time systems where there is for example shared resource with
mutual exclusion, the job is stopped until it gets the access to the resource.

• Inactive: in this state the job is not yet requested or has already finished its
execution.

Figure 1.2 on the facing page shows the transitions between these states.
In some simple real-time systems, it may be possible to completely specify the

parameters of each job prior to system run-time (i.e. the system designer has complete
knowledge of each job Ji,j). However, in systems with a large (or infinite) number of
jobs or systems that have dynamic behaviors, explicitly specifying each job, prior to
system run-time, may be impossible or unreasonable. Based on this characteristic, we
can classify task models as either completely specified or partially-specified. We now
discuss the differences between these two types of systems.

1.2.2 Completely-Specified Recurrent Task Model
A real-time system is completely specified if the exact values of the temporal

parameters and constraints of all jobs can be determined off-line or prior to system run-
time. Formally, when the arrival-time and the absolute deadline of each job are known
off-line. This implies that jobs offsets and inter-arrival times can also be determined
prior to run-time. Typically, completely-specified task models are appropriate for hard
real-time applications that have completely predictable executions. For example in an
avionic control system, the control system will process the pilot’s input command at
strict time intervals to ensure that flight control does not degrade. Completely-specified
systems are sometimes called concrete systems.

Periodic Task Model

In many real-time control applications, periodic activities represent the major
computational demand in the system. Periodic tasks typically arise from sensory data
acquisition, control loops, action planning and system monitoring. Such activities need
to be cyclically executed at specific rates which can be derived from the application
requirements. The periodic task model was proposed for the first time by Liu and
Layland in 1973 [LL73]. It allows the specification of homogeneous sets of jobs that
occur at strict intervals. A periodic task τi is specified by the temporal parameters
described earlier, i.e. (Oi,Ci,Ti,Di), where the inter-arrival time between two successive
jobs Ti is set to a constant value. The first job of task τi is released at Oi, the second
at Oi + Ti and the j-th one at Oi + (j − 1) × Ti. Then, the time of jobs arrival and
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their deadlines are fully predictable. Periodic tasks are also known as time-triggered
tasks because their jobs arrival times are determined only by time.

1.2.3 Partially-Specified Recurrent Systems
For many real-time systems, it is not possible to know beforehand how many jobs

will be generated by the system during run-time. Furthermore, completely specified
systems such as periodic task systems are not able to handle changes of real-time
workloads because of the restrictive constraint that jobs must be released at strict
periodic intervals. Thus, for systems where the arrival times between jobs could change
dynamically, e.g. packets in a network application, the periodic model may not be
suitable. To cope with the inflexibility of completely-specified systems, one may instead
consider partially-specified ones. The execution of the same partially-specified task
set for the same period of time may lead to different workload with different job
arrival times. Nevertheless, the specification of a partially-specified system includes
a set of constraints that any execution must satisfy in order to ensure predictability.
Partially-specified task systems are sometimes called non-concrete systems.

In this subsection, we will introduce more general models for partially-specified task
systems: the sporadic and the aperiodic models. These general task models can be used
to represent more complex applications than the restrictive periodic task model.

Sporadic Task Model

The sporadic task model proposed by Liu and Layland in [LL73] removes the
restrictive assumption of the periodic task model where the jobs of a task are released
at a strict periodic time interval. In addition, the offset parameter Oi is not specified
and the inter-arrival parameter is lower bounded. Then, a sporadic task τi can be
characterized by a tuple (Ci,Ti,Di) where Ci is its worst-case execution time, Di its
relative deadline and Ti is the minimum inter-arrival time between two successive jobs
of τi, i.e. ∀ (Ji,j, Ji,j+1), ai,j+1 − ai,j ≥ Ti (note that Ti denoted the exact inter-arrival
time for periodic tasks). Then, at run-time, the number of jobs released during the
same interval of time can vary according to dynamic inter-arrival time of jobs.

Aperiodic Task Model

Unlike periodic and sporadic task models that set some hypothesis on jobs inter-
arrival times, the aperiodic task model removes completely the notion of period or
inter-arrival time. The jobs can arrive at any time as well as non-predictable events.
For this reason, aperiodic task systems are also called event-triggered systems. Then, an
aperiodic task is characterized only with two parameters, namely the WCET, Ci, and
the deadline Di. Even though the aperiodic task model is the most general one, it is the
less predictable model. Indeed, when dealing with unspecified jobs inter-arrival times,
the time analysis of tasks worst-case response time is impossible because the amount
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of workload within any time interval is neither known nor bounded which prevents
the behavior of the system to be temporally predictable. Therefore, the aperiodic task
model is not suitable for hard real-time systems that need a full temporal predictability.
However, it could be very interesting to model some soft real-time applications that
aim to increase the utilization of platforms with a certain QoS or mixed systems that
are composed of periodic, sporadic and aperiodic tasks.

1.2.4 Tasks Independence
One of the most common hypotheses in real-time systems is tasks independence.

This means that the only resource on which tasks are in concurrency is the computation
units, i.e. the processors. Nevertheless, in many real-time applications, the tasks
composing the system may be directly or indirectly dependent to other tasks. Indeed,
tasks may be subject to input data dependency constraints, i.e. a task τ1 may require
the results produced by an other task τ2, and thus, τ1 cannot start executing until τ2
has not yet finished. Dependencies between tasks could be modeled with a graph of
jobs, e.g. Directed Acyclic Graphs (DAG) task model [Bar+12]. Furthermore, tasks
dependency can also come from resource sharing (other resources than the computation
units). Indeed, when some resources that cannot be accessed simultaneously are shared
between tasks, the task that holds the resource blocks the execution of other tasks.
Then, the execution duration of the waiting tasks depends on how long the task holding
the resource will keep it. Therefore, concurrency and resource sharing may lead to
indirect dependency between tasks.

In the case of several shared resources, deadlocks can occur if tasks are waiting
for each other. This leads to a concurrency issue which is one of the widely discussed
topics within the real-time systems community [But11]. The common solutions consist
of bounding the blocking time and including it in the WCET.

The remainder of this dissertation focuses only on types of systems that are pre-
dictable and can be formally verified. We study especially periodic and sporadic
independent systems for the basic model, then, other constraints and parameters will
be added in order to study real-time scheduling for energy-harvesting systems.

1.3 Processing Platform
In contrast with real-time workload which is the software part of real-time systems,

the processing platform is the computer hardware where real-time applications are
executed. It consists of a collection of physical elements that constitutes the computer
responsible of running the application such as the processor or the CPU, Input/Output
devices, the different levels of memory and caches, etc. It is crucial for real-time
applications design to consider the different components of the processing platform
because they are part of the model and their performance and architecture influence
directly the temporal behavior of the system.
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The process of determining a task worst-case execution parameters is called timing
analysis. Timing analysis must account for worst-case cache behavior, memory access
time, program structure and worst-case execution paths.

The analysis for determining the contribution of each of these factors to the worst-
case execution time depends on the specific system and the program. Other factors
that can increase the worst-case execution time are job preemptions (i.e. a job is
suspended while a different job is executing, and then, its execution is resumed at
a later time). The context switch and scheduling algorithm overhead contribute to
increase jobs response times. The total preemption cost is typically dependent on the
processor architecture and the used scheduling algorithm.

In this dissertation, we will assume that the worst-case execution time of each task
has already been determined. We will consider only monoprocessor platforms that has
a unique speed. We will assume also that jobs are preemptable with a negligible cost.

1.4 Scheduling Algorithms

The role of a real-time scheduling algorithm within a real-time application is to
determine which active jobs are executed on the processing platform at every time
instant. In other words, it determines the intervals of execution for jobs on the processing
platform. The sequence of execution intervals of a task set is known as a schedule. The
goal of a real-time scheduling algorithm is to produce a schedule that ensures that every
job is allocated processor slots (i.e. executes) to finish executing before its deadline.

In this section, we discuss the classification of real-time scheduling algorithms.

1.4.1 Online/Offline Scheduling

Scheduling real-time jobs is the responsibility of the scheduler, which can be part of
the software layer that composes the real-time operating system or part of the hardware
layer. The scheduler can be seen as a specific task that takes scheduling decisions by
following a scheduling policy or a scheduling algorithm.

If the sequence of real-time jobs is specified prior to run-time or generated by a
completely-specified task set, a scheduling algorithm can generate and store the schedule
prior to run-time. This approach is called static or offline scheduling. In contrast, for
systems that are partially-specified or have a schedule too large to be stored in the
system’s memory, an online algorithm is appropriate for this case. At time t, the online
real-time scheduling algorithm decides the set of jobs to execute at time t based on the
status of jobs released at or prior to t. An online scheduling algorithm does not have
specific information about the release of jobs after time t (i.e. future jobs arrival times
are unknown). This dissertation focuses on deterministic online real-time scheduling
algorithms.
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1.4.2 Work-Conserving/Non-work-conserving Scheduling

A real-time scheduling algorithm can produce a non-work-conserving schedule, i.e.
a schedule where the processor is inactive while at least one job is ready for execution.
This may seem as a counter-productive property, however, it can be very useful for
adaptive scheduling algorithms that may delay jobs execution to avoid future failures as
for energy-harvesting systems. In contrast, a work-conserving schedule does not allow
the processor to be inactive while ready jobs are waiting for execution.

1.4.3 Preemptive/Non-Preemptive Scheduling

When several tasks are ready to be executed at the same time on a monoprocessor
platform, two approaches can be applied: the preemptive or the non-preemptive approach.
In the non-preemptive approach, when a task starts executing, it cannot be interrupted
until it finishes its execution. With this approach, there is at most one context switch, i.e.
the scheduler replaces the execution context of the finishing job with starting one. These
context switches have a cost that has to be considered in the schedulability analysis,
although the hypothesis of an negligible cost is often considered. In a preemptive
scheduling, the scheduler can preempt a job to execute an other one. The advantages
of this approach are reducing the response time of higher priority jobs, a best use of
the processor and better rate of schedulability. With this approach, jobs are executed
concurrently on the processor. In this dissertation, we focus only on preemptive
scheduling algorithms.

1.4.4 Optimal Scheduling

The term of optimality in real-time theory is used for different properties. Here we
are interested in the optimality of scheduling algorithms form schedulability point of
view. For this sake, we use the definition proposed by Buttazzo in [But11]:

“A real-time scheduling algorithm is said to be optimal for a specific class of
algorithms if it minimizes some given cost function defined over the task set. When no
cost function is defined and the only concern is to achieve a valid schedule, then an
algorithm is said to be optimal if it always finds a valid schedule whenever there exists
a valid one. In other words, an algorithm is said to be optimal if it may fail to produce
a valid schedule for a given task sets only if no other algorithms of the same class can
do it.”

In contrast, a non optimal algorithm may fail to schedule a given task set while a
valid schedule exists.

Furthermore, the schedulability of a task set according to an optimal algorithm is a
necessary and sufficient feasibility condition for the considered class of algorithms. See
Section 1.5 on page 40 for more details.
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1.4.5 Priority Driven Scheduling Algorithms
A possible approach for an online scheduling algorithm is to assign, at any given

time t, each job Ji,j a priority Pi,j (which is assumed to be a positive integer). A
priority-driven scheduling algorithm sorts at each time t the active jobs according to
Pi,j (in non-decreasing order) and schedules the highest-priority job on the processor.

In this subsection, we describe the classical priority-driven scheduling algorithms.
These later differ in the manner that they assign a priority to jobs. In the following, we
give three classifications of priority-driven scheduling algorithms. We follow the classifi-
cation names used in [FBB06]. The three major classes of priority-driven scheduling
algorithms are Fixed-Task-Priority (FTP), Fixed-Job-Priority (FJP), and Dinamic
Priority (DP).

1.4.6 Fixed Task-Priority Scheduling Algorithms (FTP)
In fixed task-priority scheduling, each task is assigned a static or fixed priority Pi

prior to run-time and keeps the same value during run-time. Each job generated by
that task inherits the same priority value. Thus, for a real-time system with n tasks,
there are n distinct priorities (one for each task). We assume that the tasks are indexed
in a non-decreasing order of priority. Therefore, for a task set Γ={τ1, . . . , τn}, τ1 has
the highest priority and τn has the lowest one. In general, the task-priority assignment
can be determined by the system designer. However, there are three well-studied
task-priority assignment policies for sporadic task systems: Rate Monotonic (RM),
Deadline Monotonic (DM) and Audsley’s Optimal Priority Assignment (OPA).

Task Priority Assignment Policies

The tasks priority assignment has a significant effect on the schedulability of task
sets in fixed-task-priority scheduling [Dav+13]. Hence, it is important to select the
right priority assignment policy. In the following we describe briefly the main priority
assignment policies.

Rate Monotonic: For rate monotonic priority assignment policy [LL73], each task
τi is assigned a priority according to its period. The shorter the period is, the higher
the priority of the task is. Rate Monotonic is optimal for non-concrete task sets with
implicit deadlines, i.e. Oi = 0 and Di = Ti. The intuition behind this optimality is
that tasks can use all the available time because of the implicit deadlines and that high
frequency tasks cannot support a lot of interferences in contrast of low frequency tasks.
Then, in this case, assigning high priorities to high frequency tasks is the best that we
can do. This is proved in [LL73].

Deadline Monotonic: The deadline monotonic policy [LL73] assigns to each task τi
a priority according to its relative deadline parameter: the shorter the deadline is, the
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Algorithm 1.1 Optimal Priority Assignment
1: for all priority level k, lowest first do
2: for all unschedulable task τi do
3: if τi is schedulable at priority k with all other unassigned tasks assumed to

higher priorities then
4: assign τi to priority k
5: break (continue outer loop)
6: end if
7: end for
8: return unschedulable
9: end for

10: return schedulable

higher the priority of the task is. Deadline Monotonic is optimal for non-concrete task
sets with constrained deadlines [LL73], i.e. Oi = 0 and Di ≤ Ti. Intuitively this can be
explained by the fact that with constrained deadlines tasks with short deadlines can
support less interferences than ones with larger deadlines. Then, in this case, assigning
high priorities to tasks with short deadlines is the best that we can do. The detailed
proof is available in [LL73].

Optimal Priority Assignment: Note that the optimality of rate monotonic and
deadline monotonic relies on two strong assumptions, namely tasks offsets and deadlines
model. If we remove these assumptions RM and DM are no longer optimal for fixed-
priority scheduling. To cope with this problem, Audsley proposed in [Aud91; Aud01] an
optimal priority assignment OPA algorithm that provides an optimal priority assignment
for sporadic task sets with arbitrary-deadlines and concrete offsets. It consists of testing
greedily different priority assignments using a necessary schedulability test as shown in
Algorithm 1.1. This approach requires at most n(n+ 1) tests to determine a schedulable
priority assignment whenever such an ordering exists. This tests much less priority
assignment than n! that would be otherwise required, using a brute force approach that
checks every possible combination.

For a schedulability test to be OPA-Compatible [DB09], it must respect the following
rules:

1. the schedulability of a task may, according to the test, be dependent on the set of
higher priority tasks, but not on their relative priority ordering,

2. the schedulability of a task may, according to the test, be dependent on the set of
lower priority tasks, but not on their relative priority ordering,

3. when the priorities of any two tasks of adjacent priority are swapped, the task
being assigned the higher priority cannot become unschedulable according to the
test, if it was previously schedulable at the lower priority.
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1.4.7 Fixed Job-Priority Scheduling Algorithms (FJP)
For fixed job-priority scheduling, the restriction that a task’s jobs have identical

priority is removed. Instead, each job Ji,j is assigned a single priority Pi,j that does
not change during its execution. The specific FJP scheduling algorithm determines
the priority assignment for jobs. Earliest-Deadline First EDF is a well known FJP
scheduling algorithm proposed by Liu and Layland in [LL73]. It assigns a priority
to each job according to its absolute deadline. The earlier the deadline of the job is,
the higher its priority is. In other words, EDF schedules among the set of jobs with
remaining execution the job with the nearest deadline.

1.4.8 Dynamic Priority Scheduling Algorithms (DP)
The dynamic priority Scheduling algorithms classification is the most general. It

removes the restriction that a job priority does not change. A job Ji,j priority Pi,j can
now vary over time. A well-known example of DP scheduling algorithm is Least Laxity
First (LLF ). At time t, the LLF scheduling algorithm assigns a priority to each active
job according to to its laxity. The shorter the alxity of the job is, the higher the priority
of the job is. The laxity of a job Ji,j at time t is (di,j − t) − ci,j(t), where ci,j(t) is
remaining processor cost of job Ji,j at time t.

In this dissertation, we focus only on FTP scheduling for energy-harvesting systems.

1.5 Scheduling Analysis
To ensure the temporal correctness of a real-time system, it must be validated

prior to run-time using formal verification techniques. These techniques must ensure
that for all executions of the system, all jobs generated by the system will meet their
deadlines. Two fundamental analyses in formal verification for real-time systems are
considered: feasibility analysis and schedulability analysis. The feasibility analysis
determines whether there exists a valid schedule of the system where all jobs meet their
deadlines irrespective to the used scheduling algorithm. The schedulability analysis
determines whether a given scheduling algorithm will always meet all jobs deadlines.

The remainder of this section first sets some definitions then it introduces the main
feasibility and schedulability analysis techniques applied to the previously mentioned
scheduling algorithms.
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1.5.1 Definitions
In this subsection we define some properties and quantities to simplify the under-

standing of the schedulability analysis that follows.

Definition 1.2 (Valid Schedule).
The schedule S produced by scheduling algorithm A is considered as valid if and only if
all the deadlines are infinitely met. �

Definition 1.3 (Worst-Case Scenario).
The worst-case scenario of task τi is the configuration of the system that leads to the
longest response time of τi. This configuration includes tasks parameters such as first
release times and periods. �

Definition 1.4 (Task Processor Utilization).
The processor utilization of task τi denoted Ui is the ratio of time spent in the execution
of τi’s jobs. It can be obtained by Equation 1.1.

Ui = Ci
Ti

(1.1)

�

Definition 1.5 (System Processor Utilization).
The system processor utilization denoted U is the ratio of time spent in the execution
of the whole task set. It is the sum of all tasks processor utilization.

U =
n∑
i=1

Ui (1.2)

�

Definition 1.6 (Task Density).
The task density denoted Λi is an upper bound of the ratio of time spent in the execution
of task τi jobs.

Λi = Ci
min(Di, Ti)

(1.3)

�

Definition 1.7 (System Density).
The system processor density denoted Λ is an upper bound of the percentage of time
spent in the execution of the task set. It is the sum of all tasks processor densities.

Λ =
n∑
i=1

Λi (1.4)

�
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Definition 1.8 (Task Workload Function).
The workload of task τi within time interval [t1, t2] denoted Wi(t1, t2) is the amount of
processor time needed to execute the jobs of τi that are requested within time interval
[t1, t2] or are pending at time t1. �

Definition 1.9 (System Workload Function).
The workload of a set of tasks Γ within time interval [t1, t2] denoted W (t1, t2) is the
sum of workload of all tasks composing Γ within [t1, t2].

W (t1, t2) =
∑
τi∈Γ

Wi(t1, t2) (1.5)

�

Tasks workload functions depend on the used scheduling algorithms. In the literature
there are two main task workload functions usually used in schedulability and feasibility
analysis: the request bound function and the demand bound function.

Definition 1.10 (Request Bound Function (RBF)).
The request bound function of recurrent task τi denoted RBFi(t) computes the worst
cumulative workload generated by τi’s jobs that are requested during time interval [0, t[.
Lehoczky et al. [JLY89] proposed Equation 1.6 to compute RBFi(t).

RBFi(t) = max
(⌈
t−Oi

Ti

⌉
, 0
)
× Ci (1.6)

�

Definition 1.11 (Demand Bound Function (DBF)).
The demand bound function of recurrent task τi denotedDBFi(t) is the worst cumulative
workload generated by τi’s jobs that are requested and finished during time interval
[0, t]. Baruah et al. [BHR90a] proposed Equation 1.7 to compute DBFi(t).

DBFi(t) = max
(⌊
t−Oi −Di

Ti

⌋
+ 1, 0

)
× Ci (1.7)

�

Definition 1.12 (Busy-Period).
A busy-period is an interval of time [t1, t2] where the processor is continuously executing
jobs while there are waiting jobs. It starts from time t1 when the processor is idle for
the last time and ends at time t2 when all waiting jobs are finished. It is possible to
have consecutive busy-periods since it depends on the waiting jobs and not only the
processor. �

Definition 1.13 (Hyper-Period (HP)).
The hyper-period of a task set Γ is the smallest interval of time after which the global
periodic pattern of all the tasks are repeated. It is typically defined as the Least
Common Multiple (LCM) of the periods of all the tasks of the system. �
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The aim of scheduling analysis is to provide conditions and tests that help designers
to determine prior run-time whether a task set is feasible/schedulable or not. We can
distinguish three kinds of conditions: necessary conditions, sufficient conditions and
necessary and sufficient.

Definition 1.14 (Necessary Condition).
A necessary condition means that a task set that fails the test is definitely not feasible
or not schedulable. Though satisfying the condition does not mean that it is certainly
feasible, more verification is needed to conclude. �

Definition 1.15 (Sufficient Condition).
A sufficient condition means that a task set that succeeds the test is definitely feasible
or schedulable. In contrast, failing the test does not mean that task set is certainly not
feasible or not schedulable, more verification is needed to conclude. �

Definition 1.16 (Necessary and Sufficient Condition).
A sufficient and necessary condition is an exact test that tells with certainty whether
the task sets is schedulable/feasible or not. �

1.5.2 Feasibility or Schedulability

These two notions have been defined differently in the literature. Some times the
term schedulable is used to describe the property feasible and vice versa. Here, we use
the definitions proposed by Davis and Burns in [DB11].

A feasibility test is a condition that tells whether at least one valid schedule exists
for the given task set or not. This schedule may require a non-clairvoyant scheduler
or a clairvoyant scheduler which does not necessarily exist. Feasibility conditions are
independent form scheduling algorithms.

In contrast, a schedulability condition is a test that tells whether a valid schedule
can be produced by the given algorithm for the given task set or not. In this case, the
algorithm must exist.

Note that a feasibility test is more general than a schedulability one. A task set
that is schedulable according to a specific algorithm, is necessarily feasible. However,
the opposite way is not true: a task set can be feasible but not schedulable with a
given algorithm. Indeed, a schedulability test becomes a feasibility one when the used
algorithm is optimal because if a solution exists, the optimal algorithm will find it.

Many feasibility and schedulability conditions was proposed in the literature. Most
of them are applicable only for specific kinds of task sets with specific assumptions. For
example, the relationship between periods and deadlines or tasks first release times.
Therefore, it is very important for designers to check the assumptions before using a
test. In the following we list some existing tests for fixed-priority and dynamic-priority
scheduling.
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1.5.3 Schedulability Analysis for Fixed-Task-Priority
This subsection presents the classical feasibility and schedulability conditions for

fixed-task-priority scheduling.

Maximum utilization feasibility test

One of the possible ways to check the feasibility or the non feasibility of a task set is
to compare its processor utilization to the maximum one that one processor can support
or to lower bound the utilization of feasible task sets. It is impossible to schedule a
task set with a utilization higher than 1 on one processor whatever are deadlines and
offsets models because the time needed to execute the workload of any time interval
W (t1, t2) is greater than the available time, i.e. t2− t1. Therefore a necessary feasibility
condition for monoprocessor platforms can be obtained with Equation 1.8.

U ≤ 1 (1.8)

Liu and Layland bound

For task sets composed of n periodic tasks with implicit deadlines and Rate Mono-
tonic priority assignment, Liu and Layland proposed in [LL73] a sufficient schedulability
condition by lower bounding the utilization of feasible task sets. This can be obtained
by Equation 1.9.

U =
n∑
i=1

Ci
Ti
≤ n

(
21/n − 1

)
(1.9)

This test can be extended to task sets with constrained deadlines and deadline monotonic
(DM) priority assignment by comparing the bound to the density instead of the utilization
as shown in Equation 1.10.

Λ =
n∑
i=1

Ci
Di

≤ n
(
21/n − 1

)
(1.10)

However, such a test is very pessimistic because it assumes that periods are shorter
than the actual ones. The maximum achievable utilization or density with Liu and
Layland bound can be obtained by computing its limit when n tends to infinity as show
in Equation 1.11.

lim
n→∞

n
(
21/n − 1

)
= ln 2 ' 0.69 (1.11)

Hyperbolic bound

For task sets composed of n periodic tasks with implicit deadlines and Rate Mono-
tonic priority assignment, Bini et al. proposed in [BBB03] a sufficient feasibility
condition by refining Liu and Layland bound. This can be obtained by Equation 1.12.

n∏
i=1

(Ui + 1) ≤ 2 (1.12)
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We can also use this bound for task sets with constrained deadlines by using tasks
densities Λi rather than utilizations, however, it is very pessimistic.

Worst-Case Response Time Analysis

Recall that except the maximum utilization feasibility test, all the above conditions
are only sufficient. Then, a task set that fails these tests or does not fill the assumptions
is not definitely unfeasible. To cope with this problem, the Worst Case Response Time
(WCRT) analysis was proposed in the literature. Pandya et al. showed in [MPK86]
that a necessary and sufficient schedulability test can be obtained by checking if the
WCRT of each task is lower than its relative deadline, as expressed by Equation 1.13.

∀ τi ∈ Γ, WCRTi ≤ Di (1.13)

For non-concrete task sets with constrained or implicit deadlines and deadline monotonic
priority assignment, Audsley et al. proposed in [Aud+93] an algorithm to compute the
worst-case response time of tasks that can be used to build a necessary and sufficient
test. Equation 1.13 describes how to compute the WCRT of priority level-i. The
termination time of the first job of task τi which coincides with the WCRT in the
synchronous scenario can be computed with a fixed point iteration on Equation 1.14
using the iterative workload function Wm

i .

W 0
i = Ci

Wm+1
i = Ci +

∑
j<i

RBFj(Wm
i )

WCRTi = min
m>0 ∧Wm+1

i =Wm
i

(Wm
i )

(1.14)

Note that this algorithm assumes that all the tasks are requested simultaneously
which is the worst-case scenario for Liu and Layland model. This scenario is also called
the critical instant. Furthermore, this algorithm checks only the deadline of the first job.
This is sufficient because first, the test considers only constrained or implicit deadlines
which avoids the interference between the jobs of the same task, and second, the longest
response time happens necessarily in the worst-case scenario. If the first job meets its
deadline, the next ones will do also. If we remove the assumptions on deadlines model
and tasks offsets, checking the deadline of first jobs in a synchronous activation is no
longer sufficient and the test becomes only necessary.
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1.5.4 Schedulability Analysis for Dynamic-Priority
This subsection presents the classical feasibility and schedulability conditions for

fixed-job-priority and dynamic-priority scheduling.

Maximum utilization feasibility test

A task set cannot be scheduled on only one processor when its utilization ratio is
greater than 1. Therefore a necessary feasibility test can be obtained by Equation 1.15.

U ≤ 1 (1.15)

EDF utilization schedulability test

For task sets with implicit deadlines, the previous test become necessary and sufficient
for EDF scheduling [LL73].

EDF density schedulability test

For task sets with constrained deadlines, Liu [Liu00] proposed a sufficient schedu-
lability test based on the density of the system instead of its utilization as shown by
Equation 1.16.

Λ ≤ 1 (1.16)

EDF schedulability Arbitrary Deadlines

For task sets with arbitrary deadlines, Baruah et al. [BHR90b] proposed a sufficient
and necessary schedulability test given by Equation 1.17.

∀ t > 0,
∑
τi∈Γ

DBFi(t) ≤ t (1.17)

1.6 Conclusion
In this chapter we introduced the classical theory of real-time systems and the basic

state of the art needed to understand the next chapters. We first presented the main task
models and their categorizations. Second, we described briefly the processing platforms
targeted by this dissertation, namely monoprocessor platforms, and we set hardware
assumptions that will be considered along this dissertation. Finally, we presented
the main real-time scheduling algorithms, their categorizations and the corresponding
feasibility and schedulability conditions.

In the remainder of the dissertation, we focus only on preemptive fixed-task-priority
scheduling on monoprocessor platforms with additional constraints.
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2.1 Introduction
Due to the growing demand for smaller devices with longer battery life, energy

management in embedded systems has become one of the most active research areas.
Indeed, a naive use of the available energy can lead to failures or a short lifespan.
However, most of the targeted embedded applications are required to operate for long
time after deployment, for example, wireless sensor nodes. The extended lifespan of
these electronic devices is of particular importance when they have limited accessibility.
Thus, collecting energy from the ambient environment can be a very interesting solution,
which is known as Energy-Harvesting (EH). In this process, energy is drawn from the
environment and then converted and stored in order to supply the embedded electronic
devices. Compared to classical energy storage devices, the environment proves to be an
infinite source of available energy. Furthermore, the use of this kind of energy reduces
the need to replace batteries periodically which constitutes a major part of maintenance.

Many environmental sources can be exploited, including thermal, solar, mechanical,
fluid, etc. Energy sources should be chosen according to the characteristics of the
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targeted application. Self powered sensors for medical implants and remote monitoring
sensors in structures such as bridges or buildings are typical examples of possible
applications. In addition, the applications running on power-limited systems can be
subject to timing constraints. Consequently, real-time and energy-aware features are
both highly desirable and sometimes crucial for such systems.

In this chapter, we define what is an energy-harvesting system and we describe in
detail its components.

The remainder of this chapter is organized as follows: Section 2.2 introduces and
defines formally energy-harvesting systems. Section 2.3 gives an overview of the existing
energy-harvesting devices and technologies. Section 2.4 discusses the different types
of energy storage units and their usage. Section 2.5 gives some examples of actual
energy-harvesting systems. Finally, Section 2.6 summarizes and concludes the chapter.

2.2 What is an Energy-Harvesting System ?
In our daily lives, the term harvesting is usually used to refer to the process of

gathering different mature corps from the fields at the end of the growing season, or
the growing cycle. Using this word for energy may seem a little strange. In fact, in the
domain of energy, the term of Energy-Harvesting refers to the process of collecting the
ambient energy from the environment and storing it in order to supply low power and
small autonomous devices, such as wireless sensor networks, and portable electronic
equipments. This process is also known as Energy-Scavenging or Power-Harvesting.
Moreover, an Energy-Harvesting System (EHS) is an electronic device that uses an
energy-harvesting generator to supply its activity.

Usually, energy-harvesting systems are composed of three main parts as described
in Figure 2.1 on the next page: an energy harvester, an energy storage unit and a
computing unit.

The energy harvester is the part responsible of collecting the ambient energy. It
converts different kinds of environmental energy into electrical energy. Several energy
sources and harvesting techniques are possible nowadays, in Section 2.3 on the facing
page we present a non exhaustive list of energy sources and their extraction technologies.

The energy storage unit is a device used to store the harvested energy. Usually
rechargeable batteries or capacitors are used. The choice of the storage unit type and
capacity depends on the targeted application. In Section 2.4 on page 55 we list the
main energy storage units available in the industry.

The computing unit is the embedded application or the mission part of the system,
it is usually composed of data sensors, a processing unit and a data transmission device.
Most of computing units embedded in energy-harvesting systems are real-time systems.
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Figure 2.1: Energy-harvesting system components

In this dissertation, we focus on this part of energy-harvesting systems and we study
the real-time scheduling for such systems.

2.3 Energy-Harvesting Technologies
Multiple sources are available for energy harvesting, including solar power, ocean

waves, wind, vibrations, thermoelectricity, and human motions power. For example,
vibration energy can be used to supply wireless monitoring sensors that are plugged
inside the industrial machines. Prior research showed that these energy sources are not
suitable for all applications, and that the energy sources must be chosen according to
the application characteristics. In the following, we describe the main energy sources
and their harvesting technologies.

2.3.1 Radiations Energy Harvesting
Solar Energy Conversion

Light is an ambient energy source that is available almost everywhere and can be
used to supply electronic devices. Light energy harvesters convert light energy into
electricity via photovoltaic cells. In a semi-conductor that is exposed to light, a photon
with enough energy can extract an electron and create a gap. Usually, this electron
finds quickly an other gap to fill, and the energy brought by the photon is dissipated.
The principal of a photovoltaic cell is to put the free electrons in one side of the material
and the gaps in the other one instead of filling the gaps of only one side. Therefore, a
voltage difference and an electric tension appears like in a battery.
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Figure 2.2: Operating principle of a photovoltaic cell

Figure 2.3: Radio waves energy-harvesting

Figure 2.2 illustrates the operating principle of a photovoltaic cell.
The efficiency of power conversion of a photovoltaic cell is given by the ratio between

the input of photons energy and the output of the yielded energy. A solar cell of 100
cm2 can generate 1.3W if the irradiation is 1000 W/cm2 and the efficiency of such
cell is 13 % [Mat+14]. The applications of photovoltaic cells covers a large specter
of energy power, from microwatts for miniaturized applications to several kilowatts
for solar power plants. Although the efficiency of commercial photovoltaic cells is still
below 20%, there exists some prototypes that can reach 35%. The main limitation of
solar energy harvesting is its sensibility to brightness intensity and cells size.

The use of solar energy is the topic of numerous research work and an important
progress was done in this field. In [ECLEZ11] El Chaara et al propose a full review on
the evolution of existing photovoltaic cells technologies in the last 30 years.

Radio Frequency Energy Conversion

The proliferation of radio transmitters in nowadays urban landscape, including
mobile telecommunications and transmissions, leads to consider solutions where ambient
radio frequency signals can be used as an attractive source of energy for small mobile
applications. The most common method of distributing power wirelessly is to use Radio
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Figure 2.4: Electromagnetic vibration energy-harvesting method

Frequency (RF) radiation [SJ03]. It is now common to use RF energy-harvesting in
passiveRadio Frequency Identification (RFID) systems where RF energy is broadcasted
to power remote small devices or tags in a range of less than 3 meters. The RFID
systems exploit RF induction by using radio backscatter techniques which allow to
consume very small power on the RFID tag during transmissions. Figure 2.3 on the
preceding page illustrates with a simple drawing the RF energy-harvesting.

Using RF energy is interesting, however, RF energy harvesters have unfortunately
limited power and need either large reception surface or to be very close to the trans-
mitter. Yeatman [Yea04] remind that an electric field of 1 V/m permits harvesting no
more than 0.26 µW/cm2, however, a maximum electric field close to the transmitter
can generate only few Volts per meter.

2.3.2 Vibrations Energy Harvesting

Electromagnetic Conversion

Electromagnetic energy-harvesting uses a magnetic field to convert mechanical
energy to electrical energy [Yil11]. The conversion technique consists of attaching a coil
to an oscillating mass and passing them through a magnetic field, which is established by
a stationary magnet to produce electric energy. When the coil moves through a varying
magnetic flux, a voltage is induced according to Faraday’s law. Figure 2.4 illustrates
such a system. Furthermore, the induced voltage is inherently small and therefore must
be increased to become a viable source of energy [KN04]. Several techniques exist to
increase the induced voltage including using a transformer to increase the number of
turns of the coil, or increase the permanent magnetic field [TRM10]. However, each of
these parameters is limited by size constraints of the microchip as well as its material
properties. Most of the applications of electromagnetic transducers are used to harvest
vibrations energy to power wireless sensor networks. Some examples of this method
can be found in [Mit+04; Chi+00; VB+06; AC98].
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Figure 2.5: Electrostatic energy-harvesting method

Electrostatic Conversion

To exploit this source of energy, an electrostatic machine or generator is required to
leverage the static electric effect. The electrostatic machine is called so because it uses
the electrostatic laws in contrast of electromagnetic machines. An electrostatic motor
is based on the attraction and repulsion of electric charges. Electrostatic machines
are usually the dual of conventional coil-based motors. Figure 2.5 illustrates this
energy-harvesting method. Although electrostatic motors were developed since the 18th
century, their use as macro generator was not very successful because they generate a
very high voltage with small current. However, nowadays electrostatic generators are
frequently used in Microelectromechanical Systems (MEMS) where their drive voltages
are below 10 volts, and where moving, charged plates are far easier to fabricate than
coils and iron cores.

Several conversion techniques of electrostatic energy was proposed in literature from
friction machines throw nanotuble nanomotors. The energy conversion principal is
summarized in [Mit+04] and different conversion techniques are summarized in [Can63;
Men+01; Mit+04].

Piezoelectric Conversion

Piezoelectric energy-harvesting devices convert mechanical energy from any type of
vibration to electrical energy. It is the most widely used power harvesting techniques for
micro-power operations. Strain or deformation of a piezoelectric material causes charge
separation across the device, producing an electric field and consequently a voltage
drop proportional to the stress applied. Usually, piezoelectric inserts are connected to
a mechanical system with a resonance frequency that couples the micro-generator to
vibrations source, Figure 2.6 on the facing page illustrates such a configuration. The
mechanical part is an oscillating system which is typically a cantilever beam structure
with a mass at the unattached end of the lever that provides higher strain for a given
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Figure 2.6: Piezoelectric energy-harvesting principle

input force. The voltage produced varies with time and vibrations frequency which
produces an irregular current. Furthermore, piezoelectricity has the ability of some
elements such as crystals or some types of ceramics to generate an electric potential
from a mechanical stress [MVM07]. This process takes the form of separation of electric
charge within a crystal lattice. If the piezoelectric material is not short circuited, the
applied mechanical stress induces a voltage across the material.

Piezoelectric energy conversion produces relatively higher voltage and power density
levels than the electromagnetic system.

Roundy et al [RWR03] performed a comparison between piezoelectric micro-generators
and electrostatic ones. They showed that for a vibration frequency of 120Hz, piezoelec-
tric micro-generators outperforms electrostatic ones with a power density of 250µW/cm3

against 50µW/cm3. An other comparison between piezoelectric micro-generators and
electromagnetic ones was performed by Poulin et al in [PSC04] where they showed the
duality of these two technologies and that electromagnetic conversion is suitable for struc-
tures with displacement and high speed. Piezoelectric generators work even with small
motion amplitudes, their high power density makes them a suitable energy-harvesting
technology for small devices. Roundy et al [Rou+03; RW04] realized piezoelectric
micro-generator of 1cm3 that can supply an RF transmitter.

The main limitation of vibration energy-harvesting techniques is that their efficiency
depends highly on the resonance frequency. In fact, most of energy-harvesting devices
are designed to work with one or few specific frequencies. If the resonance frequency
changes, the conversion is no longer optimal and the output energy can fall brutally.
Hopefully, piezoelectric energy-harvesting is currently a very active research area and
many solutions have been proposed to solve this problem. Two main approaches have
been proposed: linear and non linear. In the linear approach the generation of energy
is optimal only for several specific resonance frequencies. The systems use frequency
tuning technique to follow the frequency changes [You+11; AS+13] and can support up
to 40% of frequency variation [AS+13]. In the opposite side, the non linear approach
modifies the classical structure of piezoelectric harvesters by replacing the mass by a
magnet and adding a permanent magnet at the limit of the beam. This lead the system
to behave in an non linear way and increases the bandwidth of optimal resonance
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Figure 2.7: Operating principle of a thermoelectric generator

frequencies [Gam11]. This solution allows the harvester to keep a minimum output
power and resist to frequency variation.

2.3.3 Thermoelectric Energy Harvesting
The difference of temperature between two points can be used to produce electrical

energy by heat transfer. Figure 2.7 illustrates the operating principle of thermoelectric
energy-harvesting method. The Carnot Cycle is used to compute the maximum theo-
retical efficiency of such a conversion. It is the ratio of the difference of temperature
relative to the highest temperature (see Equation 2.1).

efficiency = The maximum temperature − The minimum temperature

The maximum temperature
(2.1)

This measure shows the efficiency is very low in the case of a small difference of
temperature. For example, between the human body temperature, i.e. 37◦C and an
ambient temperature of 20◦C, the efficiency cannot be more than 5.5%.

Still, some micro-generators were developed and their efficiency was lower than 10%
for heat transfer from 200◦C to 20◦C and lower than 1% from 40◦C to 20◦C. Toriyama
et al realized in [TYS01] a micro-battery that can deliver few µW . Though, some ap-
plications with high energy consumption were successfully supplied with thermoelectric
generators. Douseki et al [Dou+03] developed an autonomous wireless communication
system that harvests its energy from the difference between the ambient temperature
and and cold water. For this application, the output power was 1.6 mW . Few industrial
applications that use thermoelectric energy-harvesting have been proposed. For example,
Seiko Thermo Wristwatch generates enough power to run the clock engine by absorbing
body heat through the back of the watch. An other commercial application is Thermo
Life [Sta06]. It is a small thermoelectric generator that can provide 10µA at 3 V with
only 5◦C of temperature difference. In [Ven+07], the authors present a new technology
of nanoscale thermoelectric generators and claim that it can reach a power density of
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Harvesting technology Power density
Acoustic Noise 0.003 µW/cm3 at 100Db

0.96µW/cm3 at 100Db
Radio Frequency 1 µW/cm2

Ambient Light 15 mW/cm2 (outdoor)
100 µW/cm2 (indoor)

Vibration (Electrostatic) 4 µW/cm3 (human motion in Hz)
800 µW/cm3 (machines in kHz)

Vibrations (Piezoelectric) 1.4-9 mW/cm3

Thermoelectric 10-100 µW/cm3

Table 2.1: Power density comparison of energy-harvesting methods [Yil11]

100 µW/cm3 only with a thermal gradient of 1◦C.

The above list of exploitable energy sources is not exhaustive, other energy sources
can also be exploited, these are the most investigated ones.

2.3.4 Energy Sources Comparison
Recall that the scope of this dissertation is the real-time scheduling for embedded

systems working with energy-harvesting. Real-time means predictability, thus, we
should carefully select the right energy-harvesting technique to the right application to
ensure predictability. In fact, designers should measure the worst energy consumption of
the targeted applications and ensure that the selected energy source and its harvesting
technology are capable to supply the necessary energy even in the worst case. Solar
energy for example cannot be available all the time, then, it is not suitable as main
energy source for applications with hard real-time constraints that are expected to
run for very long time but can be used as a secondary source. However, piezoelectric
energy-harvesting may be a promising harvesting method for small monitoring sensors
in manufacturing and petrochemical installations because it has a high power density
comparing to the other sources (see Table 2.1) and can resist to vibration frequency
variations by capturing a large spectrum of frequencies using tuning and non-linear
adaptation approaches.

2.4 Energy Storage Technologies
During the last decades, rechargeable batteries have made only moderate improve-

ments in terms of higher capacity and smaller size, Figure 2.8 on the following page
illustrates the progress of technology in different Information and Communication
Technologies (ICT) comparing to energy storage during the last twenty years. Research
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Figure 2.8: Improvement of the battery energy density compared to other significant
figures in the ICT panorama in the last twenty years [PS05]

has brought about a variety of chemical energy storage devices, each one offers some
advantages but none of them provides a fully satisfactory solution. Therefore, we should
select the right energy storage technology for the right application.

Energy storage devices are evaluated by means of several factors and metrics, the
following list describes the most important ones.

• Energy Density: is the amount of energy stored per unit of mass or volume, it is
expressed in Wh/m3 for Volumetric Energy density and Wh/kg for Gravimetric
Energy Density. The greater energy density is, the better it is.

• Nominal capacity: is the amount of charge expressed in Ampere-hour that can be
delivered by an energy storage unit

• Internal resistance: when the storage device delivers current, the measured voltage
output is lower than the theoretical voltage. The difference is the voltage drop
caused by the internal resistance. Therefore, the lower internal resistance is, the
better it is.

• Charge rate: a charge or discharge current of a battery is measured in C-rate. A
discharge current of 1C draws a current equal to the rated capacity. For example,
a battery rated at 1000 mAh provides 1000 mA for one hour if discharged at 1C
rate.

• Cycle life: is the number of charge-discharge cycles that the energy storage device
can achieve.
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Figure 2.9: Example of Panasonic NiCd batteries

• Nominal voltage: also called average discharge voltage, is the mid-point voltage of
the energy storage unit voltage range during charge or discharge.

• Self-discharge: is the percentage of capacity loss when the storage device is not
used.

• Fast charge time: is the shortest time needed to fully replenish the device

An ideal energy storage device should be small, light and quickly rechargeable
with a long lifespan. Different technologies of energy storage have been investigated
and commercialized, we can distinguish two main families of energy storage devices:
batteries and capacitors (or super capacitors).

2.4.1 Rechargeable Batteries

Chemistry batteries are the most widely used nowadays as energy-storage technology
for electronic devices [CC05]. Many materials have been used to develop batteries with
different characteristics. In the following we describe briefly the chemistry batteries
available in the market:

Nickel Cadmium (NiCd): is the oldest technology, research began on a sealed
NiCd battery, which recombined the internal gases generated during charge rather than
venting them. These advances led to sealed NiCd battery which is in use today. The
NiCd supports better fast charge and performs better under rigorous working conditions.
Although it supports a high number of charge-discharge cycles, a periodic full discharge
is so important that, if omitted, large crystals will form on the cell plates and the NiCd
will gradually loses its performance. This phenomena is also known as memory effect.
Furthermore, NiCd has relatively a low energy density and has a bad environmental
impact due to its toxic metals. Figure 2.9 shows an example of commercial NiCd
batteries.
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Figure 2.10: Example of Panasonic NiMH batteries

Figure 2.11: Example of Lead Acid batteries

Nickel-Metal Hydrid (NiMH): this technology is gradually replacing NiCd because
it offers 30-40% higher capacity and a higher energy density. However, both NiMH and
NiCd are affected by high self-discharge. The NiCd loses about 10% of its capacity
within the first 24 hours, after which the self-discharge settles to about 10%. Moreover,
it needs deep charging cycles and does not support high rate of charge-discharge cycles.
Figure 2.10 shows an example of commercial NiMH batteries.

Lead Acid: this kind of batteries work with flooded lead acid. This technology is
used today in automobiles batteries where batteries are all the time in vertical position.
Unlike the NiCd, lead acid batteries does not like deep charging cycles. A full discharge
causes extra strain and each discharge/charge cycle decreases the battery capacity.
This loss is very small while the battery is in good operating conditions, but increases
dramatically once the performance drops below 80% of its nominal capacity. Even
though, this technology has one of the lowest self discharge rates, it offers a low energy
density which limits its usage to stationary applications. Figure 2.11 shows an example
of car Lead Acid batteries.
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Figure 2.12: Example of Panasonic Li-ion batteries

Figure 2.13: Example of Li-polymer batteries

Lithium Ion (Li-ion): Lithium is the lightest of all metals, has the greatest electro-
chemical potential and provides the largest gravimetric energy density. Rechargeable
batteries that uses lithium metal are capable of providing both high voltage and excellent
capacity, resulting in an extraordinary high energy density. Moreover, it offers a low
self-discharge rate about half less than NiCd and NiMH. Though, it requires protection
circuits that reduces voltage and current. Li-ion is widely used to supply portable
devices like cameras and phones. Figure 2.12 shows an example of commercial Li-ion
batteries.

Lithium-ion Polymer (Li-polymer): Li-polymer batteries use different type of
electrolyte, a dry solid polymer electrolyte only. This electrolyte looks like a plastic
film that does not conduct electricity but allows an exchange of ions. The polymer
electrolyte replaces the traditional porous separator, which is soaked with electrolyte.
The dry polymer design offers simplifications with respect to fabrication, ruggedness,
safety and thin-profile geometry. There is no danger of flammability because no liquid
or gelled electrolyte is used. Unfortunately, the dry Li-polymer suffers from poor
conductivity. Internal resistance is too high and cannot deliver the current bursts
needed for modern communication devices. Figure 2.13 shows an example of commercial
Li-polymer batteries.
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Figure 2.14: Example of Maxwell ultracapacitors

Reusable Alkaline : replaces disposable household batteries; suitable for low-power
applications. Its limited cycle life is compensated by low self-discharge, making this
battery ideal for portable entertainment devices and flashlights.

2.4.2 Supercapacitors
A supercapacitor works like a regular capacitor with the exception that it offers very

high capacitance in a small size, resulting in an intermediate energy density between
regular capacitors and chemistry batteries. Moreover, the amount of energy a capacitor
can hold is measured in microfarads (1 µF = 10−6 farad). Small capacitors are measured
in nanofarads (1000 times smaller than 1 µF ) and picofarads (1 million times smaller
than 1 µF ). Supercapacitors are rated in units of 1 farad and higher. The gravimetric
energy density is 1 to 10Wh/kg [Buc11]. This energy density is high in comparison to
the electrolytic capacitor but lower than batteries, it is approximately 10% of the one
of NiMH battery. A relatively low internal resistance offers good conductivity [Buc11].
Figure 2.14 illustrates some commercial super capacitors.

The major disadvantage of super capacitors is the extremely high self-discharge
rate, however, this may not be an obstacle for small devices since a supercapacitor is
fully discharged after several days. Some supercapacitors can retain the charged energy
longer. Their capacity drops from full charge to 85% in 10 days. In 30 days, the voltage
drops to roughly 65% and to 40 % after 60 days [Buc11].

Supercapacitors have also many advantages, we list hear some of them.

• Unlimited cycle life: not subject to the wear and aging experienced by the
electrochemical battery,

• Low impedance: enhances pulse current handling by paralleling with an electro-
chemical battery,
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NiCd NiMH Lead
Acid

Li-ion Li-ion
polymer

Reusable
Alkaline

Super
capacitors

Energy Density
Gravimetric (Wh/kg)

45-80 60-120 30-50 110-160 100-130 80 1-10

Internal Resistance
(mW) (includes peripheral cir-

cuits)

100-200 200-300 <100 150-250 200-300 200-2000 1− 30

Cycle Life
to 80% of initial capacity

1500 300-500 200-300 500-
1000

300-500 50 (to 50%) 106

Fast Charge Time 1h 2-4h 8-16h 2-4h 2-4h 2-3h 1-10s
Self-discharge /Month 20% 30% 5% 10%5 10% 0.3% 40%
Nominal Voltage (V) 1.25V 1.25V 2V 3.6V 3.6V 1.5V 1-3V
Charge rate (C)

peak to best

20-1 5-0.5 5-0.2 2-1 2-1 0.5-0.2

Operating
Temperature (◦C)

-40-60 -20-60 -20-60 -20-60 0-60 0-65 -40-85

Table 2.2: Energy storage technologies comparison [Buc11]

• Rapid charging: low-impedance supercapacitors charge in seconds,

• Simple charge methods: voltage-limiting circuit compensates for selfdischarge, no
full-charge detection circuit needed.

Supercapacitors may be interesting energy storage devices for energy-harvesting sys-
tems since they are continuously charging and almost continuously supplying electronics
components which fits with their advantages and avoid their drawbacks.

Table 2.2 summarizes the differences between all the presented technologies.

2.5 Energy-Harvesting Applications
Researchers are more and more interested by energy issues in ICT1. This interest is

due to the disproportional progress between the computing part and energy part in
modern embedded systems. Research is leaded by a growing demand of miniaturized
and autonomous devices from industries and users. Therefore, several companies which
are focusing energy issues of small embedded systems have emerged. Companies like
AdaptiveEnergy, EnOcean, Cymbet and Perpetium, among others are specialized in
energy-harvesting systems. The main applications developed by these companies are
mainly concentrated on military fields (e.g. battlefield surveillance, recognition of
enemies and drones attacks, etc.), environment issues (e.g. animals movement tracking,

1Information and Communication Technologies
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Figure 2.15: Energy-Harvesting

forest fire detection, pollution monitoring, etc.), manufacturing industries (engines
monitoring, etc.) and health issues (e.g. medical implants, health monitoring, etc.).

2.6 Conclusion
In this chapter, we introduced energy-harvesting systems and their components.

After stating the notion of energy-harvesting, we presented a non-exhaustive list of
different renewable energy sources that can be exploited and their extraction methods.
We observed that energy from solar and vibration sources is the most efficiently extracted
thanks to piezoelectric and photovoltaic technologies.

After that, we investigated the different types of energy storage devices and we
compared their strengths and weaknesses. We noticed that the market of energy storage
is dominated by chemical batteries especially by Lithium-ion batteries whose recent
models offer high capacity, high energy density and long lifespan. Nevertheless, the
second family of energy storage units, which is supercapacitors, is more and more
competitive comparing to batteries. Recent supercapacitors have much higher energy
density and capacity than regular capacitors, and offer a huge cycle life with a longer
self-discharge time. These advantages allow supercapacitors to be used as a real energy
storage device instead of only short time energy buffers, which makes them more suitable
for small and autonomous devices.

For autonomous real-time applications, supercapacitors and adaptive piezoelectric
energy-harvesting seem to be the most suitable energy storage devices and energy
extraction methods since they allow a high and stable extraction of energy and a flexible
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and quick storage and use of the extracted energy.
In the next chapter, we focus on the computational part of an energy-harvesting

system and we address the real-time scheduling problem that considers the constraints
of an energy-harvesting systems.
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3.1 Introduction
The aim of embedded systems that work with environmental energy is to achieve a

set of missions autonomously for very long time. The missions of such applications are
mainly sensing operations, data processing and data transmission. These operations
are managed by the computational part of an energy-harvesting system as mentioned
in Chapter 2. Usually, energy-harvesting embedded systems are constrained by time in
order to deliver critical results on time, especially for critical embedded systems such
as medical implants or nuclear reaction monitoring devices. Therefore, it is mandatory
to guarantee the respect of time and energy constraints of these systems. Then, it is
worthy to study the real-time scheduling under renewable energy constraints for systems
that consider energy.

A naive approach consists of oversizing the capacity of the components of the system:
a very large energy harvester (e.g. a huge solar panel), an overestimated energy storage
device capacity and an oversized computation unit that guarantees the validity of the
real-time system under pessimistic schedulability analysis. However, this may be very
costly and may not fit with the desirable size especially for small applications (e.g.
medical implants).

This has motivated researchers to focus on this challenging problem. The crucial
issue associated to these systems is to find scheduling mechanisms that can manage
their performance and their activity according to the available energy along the system
lifespan in order to respect both time and energy constraints. Now, the primary concern
is that the energy collected from the environment, and that can be stored, should be
fully consumed to maximize system’s performance and avoid energy waste.

In this chapter we address the real-time scheduling problem for energy-harvesting
systems. After setting the scope of this dissertation by specifying the formal model
of the targeted real-time energy-harvesting systems in Section 3.2 and the associated
scheduling problematic in Section 3.3, we give a brief overview of the available scheduling
approaches in Section 3.4. Then, we focus only on energy-aware scheduling approach
and we explore the properties of the different classes of scheduling algorithms that
are proposed in the literature from Section 3.5 to Section 3.7. Finally, we present the
results of our experiments that compares the algorithms, and then, we summarize their
differences in Section 3.8.

3.1.1 Task Model

The task model considered here is an extension of Liu and Layland’s model, described
in Section 1.2 on page 30, that considers task energy consumption in addition to the
classical parameters. Then, we consider a real-time task set in a renewable energy
environment defined by a set of n periodic/sporadic and independent tasks {τ1, τ2, . . . ,

τn}. Each task τi is characterized by its priority Pi, its worst-case execution time Ci,
its period Ti, its relative deadline Di and its worst-case energy consumption Ei.
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Therefore, a task τi releases an infinite number of jobs separated by at least Ti time
units and each job is executed during Ci time units and consumes Ei energy units and
must finish before Di time units after being requested. Moreover, the deadlines are
constrained or implicit and the task set is priority-ordered such that task τn is the task
with the lowest priority.

3.2 General Model
An energy-harvesting system being composed of a real-time computational part

should be first described as a classical real-time system with a set of recurrent tasks, as
explained in Chapter 1, and second as a more complex system by including the energy
source and the energy storage constraints described in Chapter 2. In this section we
specify the general formal model considered by this dissertation.

3.2.1 Energy Model

We consider an embedded system connected to an energy harvesting device. An
energy-harvesting device as described in Section 2.2 on page 48 is a system that collects
the ambient energy from the environment using an energy-harvesting technique. The
collected energy is then stored in an energy storage unit with fixed capacity (e.g.
rechargeable battery or supercapacitor).

Replenishment: We suppose that the amount of energy that arrives into the storage
unit is a function of time which is either known or bounded. Recall that the profile of
energy arriving from the harvester depends on the energy source and the harvesting
technique. Most of energy sources are unpredictable or predictable with difficulty,
for example, solar energy harvesting depends on brightness intensity which cannot
be predicted accurately. For this reason, since the scope of this dissertation is hard
real-time scheduling for energy-harvesting systems, we consider only energy sources
and harvesting techniques that can provide a predictable profile of energy or that
can be lower bounded. Hopefully, such energy profiles exist especially with vibration
energy source and piezoelectric harvesting technique which seem to be suitable for small
embedded systems. It provides a nearly stable output of energy even with a deviation
of vibration frequency up to 40% form the optimal one as explained in Section 2.3.2 on
page 52.

Therefore, as a first step, we can consider a uniform or a bounded replenishment
function which means that the storage unit receives a constant amount of energy every
time unit. We denote Pr(t) the replenishment function of the battery, then, the energy
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replenished during any time interval [t1, t2] denoted as g(t1, t2) is given by Equation 3.1.

g(t1, t2) =
∫ t2

t1
.Pr(t) dt (3.1)

As mentioned above, we assume that that Pr(t) is a constant function, i.e. Pr(t) = Pr.
Then, the energy replenished during any time interval [t1, t2] is given by Equation 3.2.

g(t1, t2) = (t2 − t1)× Pr (3.2)

In the remainder of this dissertation, we use Pr instead of Pr(t) to denote the
replenishment function and we suppose that it is lesser than or equal to the battery
capacity.

Storage: The replenishment of the storage unit is performed continuously even during
jobs execution and the level of the stored energy fluctuates between two thresholds
Emin and Emax where Emax is the maximum capacity of the storage unit and Emin is
the minimum energy level that keeps the system running. The difference between these
two thresholds is the part of the battery capacity dedicated to tasks execution. This
capacity is denoted C. We suppose that C is sufficient to execute at least one time unit
of each task. This means that C must be greater or equal to the maximum instantaneous
consumption, i.e. C ≥ max∀i(Ei/Ci), otherwise some tasks cannot be executed. We
suppose also that the storage device is carefully selected to ensure regular behavior, i.e.
regular replenishment and regular discharge in order to avoid charge/discharge speed
variations and capacity losses due to numerous charge/discharge cycles. Recall that
supercapacitors can offer these requirements as mentioned in Section 2.4.2 on page 60.

For the sake of clarity, we can consider without loss of generality that Emin = 0 and
that C = Emax. The battery level at time t is denoted as E(t). Below, we use the word
“battery” to refer to the energy storage unit in order to simplify the language.

Consumption: Tasks energy cost should actually include not only dynamic and
static processor energy consumption but also the consumption of other devices that a
task can use, e.g. sensors and data transmission devices. Moreover, even if we consider
only processor consumption, the global consumption depends much more on the kind of
circuitry used by the code than on the execution duration [JM06]. For this reason we
consider that the execution time Ci and the energy consumption Ei of a task are fully
independent. For example, considering two tasks τi and τj that do not use the same
devices, then, we can have Ci < Cj and Ei > Ej . Furthermore, we consider that energy
consumption is function of time that is in reality not necessarily uniform. Actually,
since tasks can use different devices, it is difficult to predict the accurate energy profile
of tasks. Moreover, the worst energy consumption profile is not known up to now.
This is a serious issue for real-time predictability, however, including this constraint to
scheduling decisions makes it a hard problem with many parameters to consider. As a
first step and for the sake of simplicity, we consider for the scope of this dissertation



3.2. General Model 69

Emax

Energy source Battery

Pr < C

Real-time task set

Processor Sensor ...

Harvester

}
Emin

E(t) C

...τ1(C1, T1,D1, E1, P1) τn(Cn, Tn,Dn, En, Pn)

Figure 3.1: Energy-harvesting system model

that the energy consumption function is different from task to task but linear, which
means that each task has its own constant instantaneous consumption Ei/Ci.
Figure 3.1 recapitulates these descriptions.

Addressing the limitations of the model
This model seems to be too theoretical and not realistic, especially for energy assump-
tions, i.e. the replenishment function and the energy consumption profiles. In fact,
although we have considered a constant replenishment function, most Lithium batteries
have nearly a constant recharging rate in the middle part (0 to 80%), then this rate
decreases asymptotically to 0 when the battery is fully charged [Tos01]. Moreover, as
shown in Section 2.4.2 on page 60, new generation of supercapacitors are capable of
delivering a constant rate of energy all the time. Moreover, there exist some energy
extraction technologies that can now provide a nearly constant energy output from
specific energy sources, e.g. vibrations and piezoelectric techniques (see Section 2.3.2
on page 52). Note that this may not be possible for other renewable energy sources and
harvesting methods.

The second concern is tasks energy consumption profile. If the consumption function
is not constant but does not vary much during the execution of the tasks, one can
intuitively use the higher boundary as a safe limit. This is still one of the open questions
to address.

Although this model is not totally realistic, it is still interesting to study as a first
step of this research area because the scheduling problematic for energy-harvesting
systems is not easy to handle and contains numerous counter intuitive properties,
especially for fixed-priority scheduling.



70 Chapter 3. Real-time Scheduling for Energy-Harvesting Systems

3.2.2 Definitions
Here we define some new properties and we redefine some properties that we already

defined in Section 1.5.1 on page 41 to include energy requirements.

Definition 3.1 (Energy Valid Schedule).
The schedule S produced by scheduling algorithm A is considered as valid only and
only if all the deadlines are infinitely met and the battery energy level never falls below
Emin. �

Definition 3.2 (System Energy Utilization).
The system energy utilization denoted Ue is the ratio of energy to be consumed by the
execution of the task set relative to the energy that can be replenished. In the case of
constant replenishment function Pr, it can be obtained by Equation 3.3.

Ue =
n∑
i=1

Ei
Ti × Pr

(3.3)

�

Definition 3.3 (Energy-Busy-Period).
An energy-busy-period is an interval of time [t1, t2] where the system is continuously
executing jobs or replenishing energy if the battery level is not sufficient to execute
the ready job, i.e. E(t) < Ei/Ci, while there are waiting jobs. It starts from time t1
when the processor is idle for the last time and ends at time t2 when all waiting jobs
are finished. It is possible to have consecutive energy-busy-periods since it depends on
the waiting jobs and not only the processor or the replenished energy. �

Definition 3.4 (Energy-Concrete Systems).
An energy-concrete system is a system whose time and energy parameters are known
before run-time. This includes tasks periods, tasks offsets and the initial energy storage
level of the storage unit. In the opposite, if all or one of these parameters is known only
at run-time, then, the system is said energy-non-concrete. �

Definition 3.5 (Energy-Work Conserving).
A scheduling algorithm is classified as energy-work-conserving policy if whenever there
are active tasks requiring execution, the scheduling policy leaves the processor idle only
if there is no enough energy available to execute at least one time unit of the active task.
In contrast, if the scheduling policy authorizes unnecessary idle times, it is classified as
non-energy-work-conserving. �

Definition 3.6 (Consumming Task).
A task is considered as a consuming one if its energy consumption is greater than the
energy replenished during its execution time. �

Definition 3.7 (Gaining Task).
A task is considered as a gaining one if its energy consumption is lesser than or equal
to the energy replenished during its execution time. �
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3.3 Scheduling Problematic

Throughout this dissertation, we will be interested in the monoprocessor fixed-
priority real-time scheduling problem for energy-harvesting systems. In the considered
model, the system has to ensure the correctness of results and the respect of deadlines
before which results must be delivered. It has also to keep the system running by
satisfying all energy requirements.

A key consideration that affects power management in energy-harvesting systems
is that instead of minimizing the energy consumption and maximizing the achievable
lifetime, as n classical battery operated devices, the system must operate in an energy
neutral mode by consuming energy only as much as harvested.

Moreover, the classical scheduling algorithms and their associated feasibility con-
ditions are no longer suitable for the energy-harvesting model because they do not
consider energy constraints. In fact, respecting energy constraints, namely tasks energy
cost and battery capacity, leads the scheduler to add more idle periods to replenish
energy, thus, a classical Fixed-Task-Priority (FTP) scheduling algorithm works only
when the battery is overestimated and fully charged. Furthermore, the additional idle
periods delay tasks response times which makes the classical response time analysis and
feasibility conditions necessary but not sufficient for this model. Figure 3.2 on the next
page shows an example where the classical FTP scheduling algorithm leads the system to
run out of energy while a feasible schedule is possible by adding greedily replenishment
periods. It shows the time chart of the task set described in Table 3.2(a) as well as the
battery level chart. We observe that the FTP algorithm executes jobs as soon as possible
and consumes energy until the battery runs out of energy (see Figure 3.2(b)). This is
because the energy demand of the executed jobs is higher than the available energy,
i.e. the replenished and the remaining energy in the battery, during their execution.
In contrast, when more idle periods are added, the energy demand is still the same
and the available energy is greater, and therefore, a feasible schedule becomes possible
(see Figure 3.2(c)). Thus, managing jobs scheduling in energy-harvesting systems is
managing the length and the time of replenishment periods.

An other key consideration of managing the scheduling of energy-harvesting systems
is the battery capacity. The design of a system with an arbitrary battery capacity may
lead to an oversized C, which can be very costly in space, weight and money. Finding
the lowest battery capacity that preserves the schedulability of a task set is a very
important issue.

Given a feasible task set with C = ∞, the minimum battery capacity issue in
energy-harvesting systems is to find the smallest capacity denoted Cmin that keeps the
task set schedulable with the considered algorithm when the system is started with the
minimum battery level.

The exact value of Cmin is difficult to estimate because it depends on the environ-
mental characteristics and the used scheduling algorithm. One can solve the problem
partially by bounding Cmin.
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Figure 3.2: Classical FTP scheduling algorithms are not suitable
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To summarize, the problems we are interested in can be formulated by the following
questions.

1. Scheduling algorithms: How can we schedule a given fixed-priority real-time
task set on one processor so to perpetually respect tasks deadlines and satisfy
their energy demand while keeping the battery level higher than Emin ?

2. Feasibility conditions: Does a necessary and sufficient feasibility condition,
that guarantees before run-time the feasibility or the unfeasibility of a given
taskset, exist ?

3. Minimum energy storage capacity: What is the minimum battery capacity
that keeps the feasibility of a given task set ?

Through this dissertation, we will first explore some solutions and some answers
to these questions that have been proposed in the literature, and then, we explain the
contributions of this thesis.

3.4 Scheduling Approaches
In the last decades, different solutions have been proposed in the literature to deal

with energy issues. Most research focused on reducing the global energy consumption
of the system. This is due to promising autonomous embedded systems whose lifetime
was seriously limited by the capacity of batteries. Later, with the emerging energy-
harvesting technologies, researchers realized that they should not focus only on energy
consumption optimization but also on the management of renewable energy. This
kind of energy is collected from the environment with small quantities but with a
continuous supply. From this, we can identify two main families of real-time scheduling
research that address energy issues: scheduling for energy consumption optimization,
mainly represented by Central Processing Unit (CPU) frequency and voltage scaling,
and energy-aware scheduling that manages executions and replenishment to operate
perpetually.

3.4.1 Dynamic Voltage and Frequency Scaling
The Dynamic Voltage and Frequency Scaling (DVFS) approach consists of slowing

down the processor speed by reducing either the voltage or the processing frequency
or both in order to reduce the processor energy consumption [PBB98; Wei+94]. This
approach relies on the fact that the energy consumption in small embedded systems
comes mainly from processor’s dynamic energy consumption [ZMM04]. The research
interest for this approach was amplified when microprocessors manufacturers released
processors with DVFS capabilities (e.g. Intel’s SpeedStep, AMD’s Cool’n’Quiet and
PowerNow, etc.).
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Many solutions propose real-time scheduling schemes that use DVFS capabilities to
respect deadlines and to reduce the global energy consumption. When using DVFS,
tasks execution times become longer due to slower processing. Then, for real-time
scheduling, the slack-time or the available idle time can be used to reduce energy
consumption by slowing down the processor and lengthening tasks response times
[PBB98; Wei+94]. The challenges of such an approach are to select the right subset
of jobs for which are applied frequency scaling and to select the right CPU frequency
to apply for each task. Unfortunately, this was proved to be a Non-deterministic
Polynomial-time Hard (NP-Hard) problem in [ZA06], thus, works dealing with this
problem focused mainly on proposing adapted heuristics [ZQA07; ZA09]. The main
drawback of scaling the voltage and frequency is that it increases the risk of transient
errors in Complementary Metal–Oxide–Semiconductor (CMOS) logic circuits [JK95;
HS00; Zie14]. To cope with this difficulty, fault tolerance techniques have been used by
introducing redundancy. Zhu et al. in [ZA06] proposed a heuristic that uses slack-time
to perform DVFS and reserve time for rollback tasks as fault tolerance method.

The DVFS is an interesting technology to reduce the energy consumption of the
system for embedded systems equipped with processors with several CPU frequencies.
However, it increases the risk of transient faults which requires the implementation
of fault tolerance techniques and may make the gain of consumed energy not worthy.
Furthermore, even though it reduces the global energy consumption, it cannot be
used alone in an energy-harvesting system especially when the slower frequency is
not sufficient to reduce enough the consumed energy. Some adaptations for energy-
harvesting systems have been proposed, however, most of them are still supposing
negligible faults rate and a large number of CPU frequencies.

3.4.2 Energy-Aware Scheduling

In contrast to DVFS, energy-aware scheduling aims to dynamically manage the
available energy at any time, i.e. the energy collected from the environment and
drained from the battery, rather than optimizing or minimizing the global energy
consumption. It consists of selecting the right periods of execution and the right
periods for replenishment so to ensure a perpetual operation. This scheduling approach
considers only mono-frequency processors, and therefore, only two modes: active mode
where the system consumes energy and inactive mode where the system is idle and does
not consume energy or consume a negligible amount of energy. In this dissertation we
will focus only on this scheduling approach. In the remaining part of this chapter, we
explore different scheduling algorithms proposed in the literature for this scheduling
approach. For each algorithm, we specify the model for which it was designed and we
study some of its properties, e.g. optimality, minimum battery capacity, etc. After that
we test these algorithms with the model specified in Section 3.2 on page 67 in order to
compare them by simulations, and then, we summarize their strengths and weaknesses.
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3.4.3 Other Approaches
There exist other approaches to respect energy and temporal constraints. Some

of them use the concept of task reward. In this kind of approaches, each task is
characterized with a set of versions, each version represents the a different level of
precision or quality of service. The response time of a task is composed of a critical
or a mandatory part and a set of less critical or optional parts. Thus, the higher the
executed version is, the more energy is consumed and the greater the reward is. The
aim of reward-based approaches is to find the right version for each task such that the
energy budget is enough and the deadlines are met. Rusu et al. proposed in [RMM03a;
RMM03b] such a solution for systems that are powered with rechargeable batteries.

However, if we consider tasks with only one version and a processor with only one
frequency, the scheduling problem is reduced to the model described in Section 3.2 on
page 67.

3.5 Scheduling for Frame-Based Systems
The real-time scheduling for embedded systems with rechargeable batteries was

addressed for the first time by Allavena et al. in [AM01]. They studied the problem
only for the frame-based task model and they proposed a scheduling algorithm for this
model.

Frame-Based Model
The aim of Allavena and Mossé in [AM01] was to propose a solution for monoproces-

sor embedded systems with voltage and frequency scaling capabilities. In the first part
of the paper, they proposed a scheduling algorithm for monoprocessors with only one
voltage and one frequency. In this subsection, we discuss only this case to fit with the
objectives of this dissertation. Therefore, the considered model is described as follows.

Task Model

They considered a frame-based task set Γ composed of n independent tasks that
share the same period T (also called frame) and the same implicit deadline D = T .
Each task takes Ci time units and consumes Ei energy units at a constant instantaneous
rate Ei/Ci.

Energy Model

The system runs with a rechargeable battery, whose energy level at time t denoted
E(t) remains between two boundaries Emax and Emin. The battery has a capacity
C = Emax−Emin and is replenished with a constant power rate Pr even during executions.
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Due to the constant nature of consumption and replenishment rates, we can combine
them. Then, we can distinguish two groups of tasks, namely gaining tasks denoted Γg,
that consume less energy than replenished, i.e. Γg = {τi ∈ Γ, Pr − Ei/Ci ≥ 0}, and
dissipating or consuming tasks denoted Γc that consume more energy than replenished,
i.e. Γc = {τi ∈ Γ, Pr − Ei/Ci < 0}. Then, the energy gained by the group Γg in
one frame is |Γg| = ∑

τj∈Γg Pr × Cj − Ej, and the energy consumed by group Γc is
|Γc| =

∑
τj∈Γc Ej − Pr × Cj.

All the tasks are requested at time t = 0 with a fully charged battery, i.e. E(0) =
Emax and preemptions are allowed.

Algorithm Description
For the above model, the scheduling algorithm must execute all the tasks within D

time units starting with a fully charged battery and ending the frame with the same
battery level. The intuition of the proposed algorithm is to execute tasks until the
battery goes to the minimum level by running only consuming tasks, and then, replenish
as much as possible by executing gaining tasks and adding idle periods if necessary.
Thus, the battery level fluctuates between Emax and Emin and the same schedule is
repeated for each frame.

Algorithm’s rules

For the sake of clarity, we call this algorithm Frame-Based Algorithm (FBA). It is
described by Algorithm 3.1 on the facing page and respects the following rules:

1. if |Γc| > |Γg|, an idle period of length idle =
⌈
|Γc|−|Γg |

Pr

⌉
is added before the

execution of Γc.

2. if ∑n
i=1Ci + idle > D, the algorithm cannot schedule the task set and the deadline

is missed.

3. Schedule tasks of Γc until there are no more tasks in Γc or the battery is fully
discharged, i.e. E(t) = Emin. The last task being executed can be preempted.

4. Schedule tasks of Γg until the battery is fully charged. Analogously, it may be
necessary to preempt last task being executed.

5. Repeat step 3 and 4 by scheduling first the preempted task of the right group
and so on until the end of the frame workload.

Note that the algorithm can operate even if the system is launched with an empty
battery or a different initial battery level. Figure 3.3 on page 78 illustrates an example
of FBA algorithm schedule under different battery configurations.
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Algorithm 3.1 Scheduling decision of FBA Algorithm at time t
1: t← 0
2: execΓc = true

3: execΓg = false

4: loop
5: Γ′g ← subset of Γg of active tasks at time t
6: Γ′c ← subset of Γc of active tasks at time t
7: if Γ′g 6= ∅ And execΓg = true then
8: τk ← the first task of Γ′g
9: execute τk

10: if E(t) + Pr > Emax or Γ′g = ∅ then
11: execΓg = false

12: execΓ′c = true

13: end if
14: else if C ′ 6= ∅ And execC = true then
15: τk ← the first task of C ′
16: if E(t) + Pr >= Ek/Ck then
17: execute τk
18: else if Γ′g = ∅ then

19: idle
⌈
|Γc| − |Γg|

Pr

⌉
time units

20: end if
21: if E(t) + Pr − Ek/Ck <= 0 or Γ′g = ∅ then
22: execΓ′c = false

23: execΓg = true

24: end if
25: else
26: idle for one time unit
27: end if
28: t← t+ 1
29: end loop
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Figure 3.3: Example of FBA scheduling algorithm
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Complexity

The FBA algorithm is simple, all the instructions are simple and the only operation
that can be costly in time is to compute the set of active tasks which can be optimized
to a complexity of O(n) by considering that the tasks are sorted with their consumption
rate. Therefore, the global complexity of FBA is O(n).

Minimum Storage Unit Capacity

This property was not addressed in the paper proposing the algorithm but it seems
to be obvious due to the simplicity of the model and scheduling schemes. Intuitively,
by scheduling all tasks inside one frame with only one request time and one deadline
and by following the pattern of gaining-consuming or consuming-gaining tasks, in the
worst-case when the battery is empty (E(t) = Emin), the minimum battery capacity
that keeps a schedulable task set schedulable is the maximum instantaneous energy
consumption of tasks. Instead of having only one cycle of gaining-consuming tasks, we
can keep the same response time by splitting it to many small cycles which lowers the
maximum reachable battery level, and thus, the battery capacity. Furthermore, on can
also add the energy replenished during inactivity periods in order to ensure the same
energy level at the beginning of each frame.

Optimality

This question was not addressed in the paper. Though, the algorithm seems to be
optimal for the specified model. Intuitively, when all the tasks share the same period
and the same deadline the order of tasks is not important if the deadline is met. This
algorithm sorts the tasks so to schedule gaining tasks before consuming ones when the
minimum energy level is reached to replenish a maximum of energy before executing
the consuming tasks which reduces to the maximum the useless replenishment periods.
Then, if a deadline is missed, this means that the available energy in one frame is not
sufficient. In this case, no algorithm can avoid this deadline miss.

3.6 EDF-based Scheduling Algorithms

The following algorithms are adaptations of the classical Earliest Deadline First
(EDF ) algorithm described in Section 1.4.7 on page 40. These algorithms propose
different strategies to cope with the delays caused by energy-harvesting and energy-
storage constraints. In this section, we present EDF As Late As Possible (EDL), EDF
with energy guaranty (EDeg) and Lazy Scheduling Algorithm (LSA) algorithms.
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3.6.1 EDF As Late As Possible Scheduling (EDL)

The EDL algorithm was proposed by Silly in [Sil99]. It does not consider energy
constraints but schedules tasks by respecting EDF rules and delaying executions as
long as possible by anticipating all the available slack-time. It can be used in the
context of energy-harvesting systems to maximize replenishment periods.

Model

Task Model
The model associated to EDL is very close to the one described in Section 3.2 on
page 67. In order to be able to compute the exact values of slack-time, only periodic
tasks with null offsets (i.e. ∀ τi, Oi = 0) and constrained or implicit deadlines are
considered. Then, the arrival times, energy costs and deadlines are known before
run-time. The hyper-period, i.e. the least common multiple of tasks periods, is denoted
HP .

Energy Model
The slack-time computation used by EDL algorithm does not include energy constants.
Therefore, it can theoretically work with any energy source and storage models. In this
dissertation we apply EDL to the general model described in Section 3.2 on page 67
and we use it to compare the effect of delaying execution with other algorithms.

Algorithm Description

The main idea of EDL is to differ executions in order to maximize the length of
idle periods and thereby replenishment time. When a job is ready to be executed at
time t according to EDF rules, EDL computes first the available slack-time time of
the system. Then, the ready job is executed only if the slack-time is 0 and the energy
is sufficient to execute. Otherwise, it is delayed until the slack-time is fully consumed.
The computation of slack-time with EDF scheduling is described in [Sil99]. The author
proposes two approaches: a static offline approach and a dynamic online one. In this
section, we give some insights about the static approach. It consists first of identifying
in a set denoted K, the time instants when potential idle periods can begin within
the hyper-period, and second, computing the length of each of these periods in a set
denoted D. Formally:

1. K, the deadlines set is a sorted set of times at which idle times can begin within
time interval [0, HP [. It is composed of distinct deadlines of all jobs inside
[0, HP [. Then, K = { k0, k1, · · · , ki, ki+1, · · · , kq }, with ki < ki+1, k0 = 0 and
kq = HP −min1≤i≤n(xi), with xi = Ti −Di. We note that q ≤ N + 1 where N
denotes the number of jobs requested during [0, HP [.
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2. D, the idle periods lengths set contains the lengths of idle periods. D = {∆0, ∆1,
· · · , ∆i, ∆i+1, · · · , ∆q}, where ∆i is the length of the idle period that begins at
time ki. It can be calculated by Formula 3.4:

{
∆i = min1≤i≤n(xi) if i = q

∆i = max(0, Fi) if 0 ≤ i ≤ q − 1 (3.4)

with :
Fi = (HP − ki)−

n∑
j=1

⌈
HP − xj − kj

Tj

⌉
× Cj −

q∑
k=i+1

∆k

Then, EDL uses the set K to decide when to postpone executions and D to know
for how long. Figure 3.4 on the following page shows an example where K = { 0, 6, 8,
12, 15, 20, 24, 30, 32, 22 }, and D = { 2, 0, 1, 0, 2, 1, 0, 0, 3, 22 }. Then, for example
at time 32, EDL delays executions for 3 units.

Complexity

We note that the schedule of one hyper-period with EDL is achieved in O(N × n)
operations in the worst case [Sil99]. This complexity depends on the periods and
deadlines which make it pseudo-polynomial. It may be relatively high when periods are
prime integers because it maximizes the hyper-period length and thus the number of
jobs N .

Optimality

This algorithm is clearly not optimal for energy-harvesting systems because when
Emax is reached during an idle period, the surplus of energy is wasted. This wasted
energy may be necessary for a future job. Figure 3.4(c) on the next page shows a counter
example. It illustrates a situation where energy is wasted at time 8 and 15 which leads
the system to run out of energy at time 32 while the slack-time was already consumed.
However, EDL seems to be optimal if we consider an infinite battery capacity or if
we resume executions when Emax is reached. This intuition is based on the fact that
when a deadline is missed at time d, the energy balance, i.e. the difference between
the available energy until time d and energy demand of time interval [0, d[ is negative.
Since EDF is driven by deadlines, if energy is not wasted, it is impossible to schedule
the task set because there exists at least one interval where an unavoidable negative
energy balance happens.

Minimum Storage Unit Capacity

It is not easy to compute the exact battery capacity needed to schedule a feasible
task set with EDL because we need to know the wort-case scenario that needs the
highest capacity. However, one can provide a lower bound of the battery capacity by
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Figure 3.4: EDL scheduling examples
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summing the energy collected during all the idle periods of one hyper-period which is the
complementary part of the workload of one hyper-period, i.e. Emax ≥ (1−U)×HP×Pr.
However, it is still an overestimated bound.

Schedulability Conditions

Without energy constraints, EDL is equivalent to the regular EDF in term of task
sets schedulability. When energy constraints are considered, it is difficult to say whether
a task set is schedulable with EDL or not because we need to check if all deadlines are
met even in the worst-case scenario which is not known up to now. The only conditions
that we can check are processor and energy utilizations, i.e. U ≤ 1 and Ue ≤ 1 which
are only necessary conditions.

3.6.2 EDF with Energy Guarantee Scheduling (EDeg)
In [EGCC11; Che14], Chetto et al. proposed an enhancement of EDL. They

proposed an algorithm called EDeg for EDF with energy guarantee. It consists of
mixing soon and late scheduling by using clairvoyance or look-ahead calculations.

Model

Task Model
The same task model as for EDL is considered: a periodic task set with constrained or
implicit deadlines and null offsets.

Energy Model:
The replenishment function Pr(t) is not necessarily specified but must be known in order
to ensure the predictability needed for correct clairvoyance computations. Furthermore,
an ideal energy storage unit is considered, i.e. a battery or a capacitor with a linear
charging and discharging rates.

Algorithm Description

The intuition behind EDeg is to run jobs according to EDF rules, but before
authorizing a job to execute, EDeg uses the notion of slack-energy to predict eventual
future energy failures. If a future deadline miss due to energy lack is detected, the
current jobs are delayed as long as possible by consuming the available slack-time to
replenish a maximum of energy like EDL does. Furthermore, when Emax is reached
during an idle period, the algorithm resumes executions in order to avoid energy
waste. The slack-energy notion is an extension of the notion of slack-time which means
that the maximum amount of idle time that can be used to delay executions without
violating deadlines. As described in [EGCC11] the slack-energy of a job Ji,j at time
t denoted SEi,j(t) is the maximum amount of energy that can be used to execute
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Algorithm 3.2 EDeg Algorithm
1: while true do
2: while there is ready jobs do
3: while E(t) > Emin and SE(t) > 0 do
4: execute jobs according to EDF rules
5: end while
6: while E(t) < Emax and ST (t) > 0 do
7: idle the system to replenish energy
8: end while
9: end while

10: while there is no active jobs do
11: idle the system
12: end while
13: end while

continuously other jobs from time t to the request time of Ji,j while still respecting
energy requirements and deadlines. It is the difference between the energy available
during interval [t, di,j], i.e. E(t) +

∫ di,j
t Pr(t) dt, and the energy demand of Ji,j and

higher priority jobs that are requested after ai,j the request time of Ji,j and have a
deadline earlier than di,j. This energy demand is denoted Ai,j. Before running the job
that is ready to be executed at time t, EDeg computes first the system’s slack-energy of
time t denoted SE(t). The global slack-energy at time t is the minimum of slack-energy
of all jobs that are requested after time t and having a deadline earlier than the one of
the job being executed at time t. Equation 3.5 summarizes the computation of SE(t).


Ai,j = Ei +∑n

Jk,l, ai,j<ak,l≤dk,l≤di,j Ek

SEi,j(t) = E(t) +
∫ di,j
t Pr(k) dk − Ai,j

SE(t) = minJk,l, t<ak,l≤dk,l≤di,j(SEk,l)
(3.5)

Therefore, if SE(t) is positive, the ready job is authorized to execute and consume
the energy budget SE(t). Otherwise, it is delayed as much as available slack-time
without wasting energy. The system’s slack-time denoted ST (t) used by EDeg is the
same as EDL. Algorithm 3.2 summarizes the scheduling schemes of EDeg.

Figure 3.5 on the facing page illustrates a typical schedule of EDeg. For example at
time 15, EDeg decides to execute τ3 because the slack-energy of the system is positive
and sufficient to execute few time units. In fact, at time 15, job J3,2 has the earliest
deadline and is ready to execute. Furthermore, J1,4 is the only job that is requested after
J3,2 and has a deadline earlier than d3,2. Then, the slack-energy of the system at time
15 is equal to the one of J1,4, i.e. SE(15) = SE1,4(15) = E(15) +

∫ d1,4
15 Pr(t).dt− (E1) =

120 + 50 × (23 − 15) − 120 = 400 ≥ 0. With SE(15) = 400, the system can execute
jobs J3,2 and J1,4 completely. At time 20, it is no necessary to compute the slack-energy
again because there are no jobs that interfere with job J2,3. Then, the system executes
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(b) EDeg schedule

Figure 3.5: The EDeg schedule of Γ with Emax = 250

J2,3 until the battery is not sufficient to execute. At time 21, the battery level is not
enough to finish executing, thus, EDeg delays executions as long as there is available
slack-time, i.e. ST (20) = 6. Furthermore, in order to avoid energy losses due to over
charging the battery, EDeg resumes execution after only 4 units of slack-time. After
that, the same behavior is repeated until the end of hyper-period which is 30 time units
for this example. We can see that at the end of the hyper-period, the battery is fully
charged which means that the task set is schedulable with this configuration of energy.

Complexity

The complexity of EDeg comes mainly from slack-time and slack-energy computa-
tions. As shown in [Sil99], the slack-time algorithm for EDF scheduling is of O(N × n)
where n is the number of tasks and N is the maximum number of jobs requested



86 Chapter 3. Real-time Scheduling for Energy-Harvesting Systems

within a hyper-period. Moreover, the complexity of slack-energy algorithm is also of
O(N × n) as shown in [EGCC11]. Therefore, the complexity of EDeg in the worst-case
is pseudo-polynomial which might be a serious drawback in practice.

Optimality

EDeg was proved to be optimal for periodic and synchronous task sets in [Che14].
This optimality is inherited from the optimality of EDF for Liu and Layland’s model.
Since EDeg predicts future deadline misses due to energy lack and does not waste
energy when delaying executions, it takes advantage of the dynamic priority to schedule
the earliest deadline first and maximizes the supportable workload. If a deadline is
missed with EDeg, this means the energy is not sufficient which makes the task set
unschedulable by any other algorithm.

Minimum Storage Unit Capacity

Intuitively, one can say that the maximum battery capacity needed for EDeg is
the same as EDL since we can apply the same reasoning on idle periods. Then, the
same pessimistic bound can be applied, i.e. the sum of the energy that can be collected
during all idle periods of one hyper-period.

Schedulability Conditions

A schedulability test for EDeg was proposed in [Che14]. It consists of checking if
the energy available during any time interval is sufficient to satisfy the energy demand
of the same time interval. Knowing that this can be checked by comparing the energy
utilization to 1 for tasks with constrained or implicit deadlines, a task set is said
schedulable with EDeg if and only if processor and energy utilizations are lesser or
equal to one, i.e. U ≤ 1 and Ue ≤ 1. Furthermore, knowing that EDeg is optimal, this
test becomes a necessary and sufficient feasibility condition for synchronous periodic
task sets with implicit deadlines, and only necessary for task sets with constrained
deadlines.

3.6.3 Lazy Scheduling Algorithm (LSA)
The Lazy Scheduling Algorithm (LSA) is one of the main EDF-based algorithms

proposed in the literature. It was proposed for the first time by Moser et al. in
[Mos+06b] and was revisited in [Mos+06a; Mos+07]. It is an energy-driven algorithm
in contrast to classical algorithms which are time-driven. This means that scheduling
decisions are made only according to the available energy, thus, if energy is sufficient,
time will be sufficient too. This comes from the fact that all tasks consume energy
with the same rate and that tasks execution times depend on the consumption rate
authorized by the system. This algorithm is interesting to study because it has a
reasonable overhead and is optimal for the considered model.
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Model

Task Model
The task set considered by LSA is composed by n independent, preemptive and aperiodic
tasks. Each task is characterized by its energy cost Ei and its relative deadline Di.
The tasks drain energy from the storage unit with the same consumption function
denoted PD(t). This function is upper bounded by the maximum consumption rate
Pmax. Moreover, it is up to the scheduling algorithm to decide which consumption rate
to apply at time t. Knowing that LSA is energy-driven, the execution time Ci of a
task depends on its energy cost and the applied consumption rate. Then, when the
consumption rate is maximized, Ci is minimized, i.e. PD(t) = Pmax ⇒ Ci = Ei/Pmax.
Therefore, as mentioned earlier, the execution time of a task varies from one job to an
other depending on the applied consumption rate. Then, a job Ji,j that is requested at
time ai,j, starts its execution at time si,j and must finish executing at time fi,j before
its deadline di,j after the energy cost of the job has been consumed, thus, we have
ai,j ≤ si,j < fi,j ≤ di,j.

Energy Model
In [Mos+06a; Mos+07], the authors considered the solar energy as energy source. Then,
to cope with the fluctuations of the output energy that characterizes a photovoltaic
cell, they proposed to use the Energy Variability Characterization Curves (EVCC)
that bound the energy harvested in any time interval ∆: εl for the lower bound curve.
The EVCCs are extracted from actual solar energy traces to provide guarantees on the
produced energy. Therefore, the replenishment function denoted Pr(t) is lower bounded
by a known function, and the energy harvested in a certain time interval [t1, t2] denoted
g(t1, t2) is given by as:

g(t1, t2) =
∫ t2

t1
Pr(t).dt ≥ εl(t1, t2)

For the storage unit, they considered an ideal rechargeable battery of capacity C
that can be charged and discharged with a linear function. Its energy level at time
t is denoted E(t) and must stay between the two thresholds Emin and Emax with
C = Emax − Emin.

Algorithm Description

The LSA algorithm is EDF-based, thus, it schedules aperiodic jobs according to
earliest deadline first rules. The only difference is the time si,j when a job Ji,j begins
effectively its execution. This time is computed such that energy constraints are
respected, namely the energy cost and the battery capacity limit. Indeed, knowing that
all tasks have the same consumption rate, si,j is the earliest time at which the system
can start executing after a replenishment period. This execution is continuous and
includes Ji,j and a maximum of eventual higher priority jobs. This execution period
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Algorithm 3.3 LSA Algorithm
1: PD(t) = 0
2: while true do
3: t← current time
4: Ji,j the jobs with the earliest deadline at time t
5: calculate si,j
6: if t = ai,j then
7: PD(t) = 0
8: end if
9: if E(t) = Emax then
10: PD(t) = Pr(t)
11: end if
12: if t ≥ si,j then
13: PD(t) = Pmax
14: end if
15: execute Ji,j with power PD(t)
16: end while

ends when the pending workload is executed or when the deadline di,j is reached. The
execution must finish without running out of energy and without exceeding the battery
capacity C. Then, if there are no interferences within time interval [ai,j, di,j], starting
executing Ji,j at time s1

i,j = di,j − Ei/Pmax is enough. However, knowing that tasks are
aperiodic, higher priority jobs can be requested at any moment. Thus, executing as late
as possible may lead to miss deadline di,j which makes s1

i,j not safe. Then, an earlier
si,j is mandatory, a time from which job Ji,j and a maximum of higher priority jobs
can be executed before di,j without running out of energy. We call this time s∗i,j, it is
the time from which we can execute and consume all the energy available in interval
[ai,j, di,j]. Equation 3.6 shows how to compute s∗i,j.

s∗i,j = di,j −
E(ai,j) + g(ai,j, di,j)

Pmax
(3.6)

Moreover, if Emax is reached before s∗i,j, some energy may be wasted. This energy
is included in s∗i,j but actually wasted which may lead to a lack of energy before
di,j. Therefore, an earlier time is needed for safe executions. Equation 3.7 shows the
relationship between s′i,j, the time from which starting executing does not lead to a
waste of energy, and the other parameters.

g(ai,j, s′i,j)− C = g(ai,j, di,j) + (s′i,j − di,j)Pmax (3.7)

Therefore, the optimal starting time si,j is the maximum between s′i,j and s∗i,j, i.e.
si,j = max(s′i,j, s∗i,j).

The pseudo-code of LSA algorithm is described by Algorithm 3.3. It is based on
the following rules.
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• Rule 1: EDF scheduling is used with PD(t) = Pmax when t ≥ si,j;

• Rule 2: if Emax is reached, jobs are run with PD(t) = Pr(t) in order to avoid
energy waste

Complexity

The LSA algorithm has the same complexity as EDF since it adds only the
computation of si,j of one job and some verifications, which can be done in O(1). The
most costly operation is to select the job to execute. This operation can be done in
O(n) in the worst-case where n is the number of tasks. Therefore, the complexity of
LSA is O(n).

Optimality

In [Mos+07], the LSA algorithm was proved to be optimal for the specific model
described earlier in this section. In fact, the LSA algorithm can miss deadlines only in
two possible situations: when the time is not sufficient to satisfy the workload or when
the available energy is not sufficient to satisfy the demand of energy.

• A deadline cannot be respected if the time is not sufficient to assign the available
energy with the maximum consumption rate Pmax. In this case, unprocessed
energy remains in the storage unit and we have E(di,j) > Emin.

• A deadline violation occurs also because the required energy is simply not available
at the deadline. In this case, the battery is exhausted before deadline, i.e.
E(di,j) ≤ Emin.

These are the insights of LSA optimality, the complete and detailed proof is available
in [Mos+07].

Note that the optimality of LSA relies strongly on the assumption of having
the same consumption function PD(t) for all the tasks. Then, if we apply different
consumption rates to each task, the computation of the starting time si,j is no longer
exact. In fact, if we suppose that each task has its own consumption rate denoted Pi(t),
considering max1≤i≤n(Pi(t)) as Pmax leads to a later starting time si,j than the optimal
one. Furthermore, considering min1≤i≤n(Pi(t)) as Pmax leads to an earlier starting time
than the optimal one which may lead to avoidable energy failures or deadline misses.
Figure 3.6 on the following page shows a LSA schedule of a task set with different
consumption rates where a deadline is missed while a valid schedule is possible. We can
see in Figure 3.6(b) on the next page that s1,1 of job J1,1 is computed at time 0 with
Pmax = max1≤i≤n(Pi(t)) which gives s1,1 = 3− 0+3×(3−0)

5 = 2. This value of s1,1 leads to
a deadline miss because the energy demand is overestimated, and therefore, s1,1 is over
delayed. We can see that the consumption rate used to compute si,j is very important
because it influences the earliness or the tardiness of execution starting time. LSA
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Figure 3.6: LSA optimality counter example
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computes precisely si,j only if all tasks consume energy with the same rate. Otherwise,
it is impossible or at least difficult to find the optimal consumption rate to use when
tasks consume energy with different rates.

Minimum Storage Unit Capacity

When a task set is schedulable with LSA, it is possible to optimize the battery
capacity while keeping the task set schedulable. In [Mos+06b], the authors shows
how to compute the minimum battery capacity needed to keep the schedulability of
the task set with LSA. It consists of the maximum difference between the energy
demand and the energy available in a sliding time interval ∆. The energy demand
of any interval of time ∆ according to LSA, which is EDF-based algorithm, can be
obtained by applying the demand bound function (see Definition 1.11 on page 42) on
periodic tasks. Then, the system energy demand of time interval ∆ denoted A(∆) can
be obtained by Equation 3.8.

A(∆) =
n∑
i=1

dbfi(∆) (3.8)

Moreover, the energy that can be harvested in any time interval ∆ is lower bounded
by EVCCs, i.e. εl(∆). Therefore, the minimum battery capacity needed to schedule a
periodic task set according to LSA rules denoted Cmin is given by Formula 3.9.

Cmin = max
∀ ∆≥0

(0, A(∆)− εl(∆)) (3.9)

More detailed explanations and proofs are available in [Mos+06b]. Note that in the
absence of a worst-case situation, computing Cmin in practice requires checking A(∆)
and εl of all possible ∆ intervals which is a serious limitation.

Schedulability Conditions

A schedulability test of LSA was also proposed in [Mos+06b]. Knowing that LSA
is EDF-based, it is obvious that the accepted workload is maximized. Then, if a task
set is schedulable with EDF without considering energy constraints, then, it remains
only to check whether the energy provided by εl is sufficient to satisfy the workload
energy demand. In [Mos+06b] the authors built an admittance test by comparing the
energy demand A(∆) of time window ∆ to the available energy that can be stored in
the same time interval, Formula 3.10 describes formally the condition a task set must
satisfy to be schedulable wih LSA.

A(∆) ≤ min
∀ ∆≥0

(εl(∆) + C, Pmax ×∆) (3.10)

Again, this test requires to check all the possible ∆ intervals which is difficult to do
in practice.
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3.7 Fixed-Priority Scheduling
Most of available research addressing real-time scheduling for energy-harvesting

systems focuses mainly on EDF-based solutions because of the optimility of EDF for
Liu and Layland’s model. Nevertheless, some fixed-task-priority algorithms have been
proposed in the literature that we describe in this section.

3.7.1 The PFPALAP Scheduling Algorithm
Preemptive Fixed-Priority As Late As Possible (PFPALAP ) is a fixed-priority schedul-

ing policy that delays jobs executions as long as possible, i.e. as long as available
slack-time, in order to replenish the battery as much as possible before authorizing
executions. We studied the properties of this algorithm in [CAM12].

Model

The model applied to this algorithm is the same as for EDL algorithm which
is described in Section 3.6.1 on page 80. Since the exact computation of slack-time
requires exact knowledge about jobs arrival times and deadlines, only periodic tasks with
constrained or implicit deadlines are considered. Moreover, the slack-time computation
for fixed-priority does not consider energy constraints, thus, the energy model is not
necessarily specified. Therefore, we can adopt the general model described in Section 3.2
on page 67.

Algorithm Description

The Preemptive Fixed-Task-Priority As Late As Possible (PFPALAP ) algorithm
is the fixed-task-priority counter-part of EDL. Its main operation is the dynamic
computation of slack-time. The slack-time algorithm used for PFPALAP is the one
proposed by Davis et al. in [DTB93]. Each priority level has its own slack-time at time
t denoted STi(t). For priority level-i, it consists of computing the length of idle periods
that can be merged in once within the time window starting from time t and ending at
the next deadline of level-i. Algorithm 3.4 on the facing page shows how to compute
STi(t).

Notations:

• di(t): the next absolute deadline of priority level-i after time t,

• ai(t): the next activation time of priority level-i,

• ci(t): the remaining execution time at time t of the current job of priority level-i,

• idle(t1, t2): the amount of time the processor is idle within an interval of time,

• Wm
i (t): the recurrent workload function.
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Algorithm 3.4 Slack-time of priority level-i at time t
1: STi(t)← 0
2: Wm+1

i (t)← 0
3: repeat
4: Wm

i (t)← Wm+1
i (t)

5: Wm+1
i (t)← t+ STi(t) +

∑
∀j≤i

(
cj(t) +

⌈
(Wm

i (t)− aj(t))0

Tj

⌉
× Cj

)
6: if Wm

i (t) = Wm+1
i (t) then

7: idle(t, di(t))← min((di(t)−Wm
i (t))0,min

∀j≤i

(⌈
Wm
i (t)− aj(t)

Tj

⌉
× Tj + aj(t)−Wm

i (t)
)

8: STi(t)← STi(t) + idle(t, di(t))
9: Wm+1

i (t)← Wm+1
i (t) + idle+ ε

10: end if
11:
12: until Wm+1

i (t) ≤ di(t)
13: return STi(t)

Algorithm 3.5 PFPALAP Algorithm
1: t← 0
2: loop
3: if ST (t) ≥ 0 then
4: τk ← the highest priority active task at time t
5: execute τk
6: else
7: idle the system to replenish energy
8: end if
9: t← t+ 1

10: end loop

Moreover, the global slack-time of the system at time t denoted ST (t) is the
minimum slack-time among all priority levels, i.e. ST (t) = min1≤i≤n(STi(t)). Then,
before authorizing tasks to be executed according to their priorities, PFPALAP computes
ST (t), and if it is positive, executions are delayed until ST (t) is totally consumed.
Otherwise, it executes jobs as the classical FTP scheduler. Algorithm 3.5 shows how
does PFPALAP take scheduling decisions at time t.

Complexity

The complexity of PFPALAP in the worst-case scenario is the same as the slack-
time computation algorithm, which has a complexity of O(m × n) where m is the
number of iterations and n is the number of tasks. We note that the number of
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Figure 3.7: PFPALAP optimality counter example

iterations m depends on the periods and deadlines of the tasks and is bounded by
max1≤i≤n(Ti)/max1≤i≤n(Di). Thus, the complexity of PFPALAP is pseudo-polynomial.

Optimality

The idea behind PFPALAP is that delaying executions as la late as possible maximizes
the energy replenished before starting executions which seems to be beneficial for the
task set schedulability, especially when the battery capacity is sufficient. Unfortunately,
this is one of the counter intuitive ideas in fixed-priority scheduling for energy-harvesting
systems. In fact, a counter example can be built by constructing a schedule where
a negative energy balance, i.e. difference between available energy and jobs energy
demand from time 0 to the absolute deadline of the current job, happens to a lower
priority job Ji,j . When this job suffers many interferences from higher priority jobs that
are requested after Ji,j and having deadlines later than Ji,j, the late scheduling may
anticipate the executions of all higher priority jobs which may lead to an energy failure
or a negative energy balance.

Figure 3.7 shows such a counter example. In Figure 3.7(b), the as late as possible
schedule is respected, however, at time 13, the energy is not sufficient to finish executing
τ2 and the algorithm delays executions further which leads to a deadline miss. This is due
to the fact that the energy balance at time 12 is negative, i.e. Pr×(d2,1−0)−2×E1−E2 =
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−1, and that the slack-time computation does not take into account tasks energy cost.
Furthermore, by executing τ2 earlier, the task set becomes feasible. Therefore, PFPALAP
cannot be optimal.

Minimum Storage Unit Capacity

For the same reasons as EDL algorithm, it is difficult to estimate the minimum
battery capacity needed to keep a schedulable task set schedulable. Indeed, the worst-
case scenario that maximizes the needed energy storage capacity is not known up to
now.

Schedulability Conditions

Without energy constraints, PFPALAP has the same schedulability as the classical
FTP algorithm. However, when energy constraints are considered, it is difficult to
check the schedulability of a task set with PFPALAP algorithm without simulating the
schedule for at least a hyper-period. This is due to the fact that it is difficult to find
the worst-case scenario that leads to the worst response times of tasks.

3.7.2 Preemptive Fixed-Priority with Slack-Time Algorithm

Among several heuristics proposed by Chetto et al. in [CMM11], the Preemptive
Fixed-Priority with Slack-Time (PFPST ) algorithm was the most pertinent and the
one with the highest schedulability rate. It alternates classical FTP schedule with the
one of PFPALAP when battery boundaries are reached.

Model

The model considered in [CMM11] for Preemptive Fixed-Task-Priority with Slack-
Time (PFPST ) is the same as the one described in Section 3.2 on page 67.

Algorithm Description

The behavior of PFPST algorithm is simple, it schedules jobs according to their
priorities as soon as possible when the battery level is higher than Emin. Then, it delays
executions as long as available slack-time in order to replenish a maximum of energy
before resuming executions. The slack-time algorithm is the same as the one used for
PFPALAP . Moreover, executions are resumed when Emax is reached during an idle
period in order to avoid energy losses. Algorithm 3.6 on the next page summarizes the
scheduling schemes of PFPALAP .
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Algorithm 3.6 PFPST Algorithm
1: while true do
2: while there is ready jobs do
3: while E(t) > Emin do
4: execute jobs according to fixed-priority rules
5: end while
6: while E(t) < Emax and ST (t) > 0 do
7: idle the system to replenish energy
8: end while
9: end while

10: while there is no active jobs do
11: idle the system
12: end while
13: end while

Complexity

The complexity of PFPST in the worst-case is the same as PFPALAP because both
use the same slack-time algorithm which is pseudo-polynomial [DTB93]. However, in
average, PFPST behaves better than PFPALAP because it does not need to compute
slack-time every time as PFPALAP does.

Optimality

Unfortunately, PFPST is not optimal because it suffers the same problem as
PFPALAP . Since the computation of slack-time does not consider energy constraints,
the same counter example can be used to prove its non optimality. Figure 3.8 on the
facing page shows the schedule of the task set described in Figure 3.7(a) on page 94
according to PFPST rules. We can see that the same negative energy balance occurs at
time 13 while it is possible to avoid it as shown in Figure 3.8(b) on the facing page.

Minimum Storage Unit Capacity

Since PFPST behaves in the worst case like PFPALAP , the minimum battery
capacity problem is the same for both algorithms. Therefore, the exact minimum
battery capacity is not known up to now.

Schedulability Conditions

The PFPST algorithm provides a better schedulability rate than PFPALAP because
it avoids energy losses due to overcharging the battery. Unfortunately, it is not easy
to provide a schedulability condition without simulating the schedule for at least one
hyper-period because, again, the worst-case scenario is not known.
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Figure 3.8: PFPST optimality counter example

3.7.3 Other Scheduling Heuristics
Other scheduling heuristics have been proposed in [CMM11], however, the simulations

presented in [CMM11] showed that most of them are not pertinent. In this section we
describe some of them briefly.

EHFP1: All jobs are executed as soon as possible according to the fixed-priority
(FTP) rules until Emin is reached or there are no more tasks ready to be executed. If
Emin is reached when there is at least one ready task, the processor is switched to idle
mode for x time units where x is a parameter of the heuristic. During that period, the
energy storage unit replenishes. The simulations showed that the longer x is, the worse
schedulability is, and that the best values of x are less than 10.

EHFP2: All jobs are executed as soon as possible according to FTP. When Emin
is reached, the processor is switched to idle mode until the battery level reaches a
threshold level called Eth and given as a parameter of the heuristic. By varying Eth,
simulations showed that this heuristic is similar to EHFP1.

EHFP5 : For this heuristic, there are two threshold parameters, namely Emin
th and

Emax
th . All tasks execute as soon as possible according to FTP scheduling. When the

battery level reaches Emin
th , executions are suspended as long as available slack-time and

the threshold Emax
th is not exceeded. Simulations showed that this heuristic increases

the number of preemptions and does not improve the schedulability rate.
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3.8 Performance Evaluation and Comparison
We described the main scheduling algorithms available in the state of the art. In

this section we evaluate these algorithms through simulations over some metrics in
order to show their strengths and weaknesses.

3.8.1 Simulation configuration
In this subsection, we describe the configuration of the experiments, namely the

task sets generation, the parameters and the assumptions.

Competitors

• the EDL algorithm described in Section 3.6.1 on page 80,

• the EDeg algorithm described in Section 3.6.2 on page 83,

• the LSA algorithm described in Section 3.6.3 on page 86,

• the FBA algorithm described in Section 3.5 on page 75,

• the PFPALAP algorithm described in Section 3.7.1 on page 92 with deadline
monotonic tasks priority ordering,

• the PFPST algorithm described in Section 3.7.2 on page 95 with deadline mono-
tonic tasks priority ordering.

Task Models
As mentioned in the above sections, each algorithm is designed for a specific task model.
In order to compare them against each other we evaluate them over different task
models and assumptions. For this experiment, we select three main models:

• the frame-based model described in Section 3.5 on page 75,

• the periodic task model with implicit deadlines described in Section 3.2 on page 67,

• the periodic task model with constrained deadlines.

For each task model, we run simulations over four energy configurations that cover
the main assumptions that make the evaluated algorithms optimal:

• the same consumption rate for all tasks with an infinite battery capacity, i.e.
Ei/Ci=Constant and Emax =∞,

• the same consumption rate for all tasks with an arbitrary limited battery capacity,
i.e. Ei/Ci=Constant and Emax=Constant,
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• variable consumption rates with an infinite battery capacity, i.e. Ei/Ci = f(τi)
and Emax =∞,

• variable consumption rates with a limited battery capacity, i.e. Ei/Ci = f(τi)
and Emax=Constant.

Assumptions
This experiment considers the following hypothesis and assumptions:

• in order to focus only on the impact of energy on task sets schedulability, we
consider only time feasible task sets,

• since actual machines cannot handle continuous values, we consider that time
and energy are discretized and that the granularity is small enough to avoid
decimal values, i.e. time and energy are integers and all scheduling operations are
performed before or after one time unit,

• knowing that most of the evaluated algorithms require constant or at least known
replenishment functions, we consider only constant charging functions Pr(t) = Pr
in order to make the comparison possible,

• tasks consume energy linearly, i.e. a task consumes Ei/Ci energy units for each
execution time unit.

Task set generation
For each task model, we generate randomly a sample of 15000 task sets using an
adapted version of the U-Unifast Discard algorithm proposed in [BB05]. This algorithm
is coupled with the hyper-period limitation technique proposed in [MG01]. In order
to cover most of possible task sets, we generate them according to their processor and
energy utilizations, i.e. U and Ue. Indeed, we vary U and Ue within interval [0.2, 1]
with steps of 0.05. Then, we obtain 50 distinct task sets for each couple (U,Ue).

Tasks are generated by considering a battery capacity of 200 units and a constant
energy replenishment rate Pr = 15 units.

Metrics
In this experiment we compare the selected algorithms over the following metrics.

• Failure rate: is the percentage of non feasible task sets among all the tested
ones. Then, the greater the failure rate is, the lower the algorithm performance
are. This metric helps to confirm the optimality or the non optimality of some
algorithms.

• Preemption rate: for one simulation, it is the number of preemption events. A
preemption event occurs when a job is stopped before finishing its execution. All
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of the events that occur at the same instant are considered as once. Therefore,
the number of possible events is bounded by the number of time units composing
the simulation, i.e. the simulation duration. For several simulations, this metric is
computed only for feasible task sets and represents the ratio of the average number
of preemptions relative to all possible events. Then, the greater the number of
preemptions is, the greater the context switch is. Note that this leads to increase
the overhead cost and decreases the performance. The shown results represent the
percentage of the average number of preemption events among the total number
of events.

• Average Energy Level: represents the average energy level of the battery or
capacitor at any instant during the simulation. It is the average of the energy level
observed for all scheduling events. The best algorithm relative to this criterion is
the one that maximizes the average energy level. This means that the algorithm
makes the system less energy constrained.

The task sets are launched synchronously with an empty battery, i.e. ∀ τi, Oi = 0
and E(t) = Emin which seems to be the closest to the actual worst-case scenario of all
the evaluated algorithms.

3.8.2 Results analysis
Figure 3.9 on the next page shows the performances of the tested algorithms on

the frame-based task model. As expected most of EDF-based algorithms dominates
fixed-priority ones. We can see also that FBA and EDeg have the lower failure rates.
This was expected because in frame-based model, all tasks share the same period and
the same deadline. Thus, ordering tasks according to deadlines or periods does not
change the schedule since the used breakdown rule is to give the priority to jobs with
lower energy consumption rate. Note that this rule is not respected when considering
only deadlines as PFPALAP and PFPST do. Furthermore, we observe that LSA is
not optimal for this model especially when the energy consumption rate varies from
one task to an other. This is due to the fact that LSA considers only the maximum
consumption rate to compute the latest time to execute a job.

Figures 3.10 on page 103 and 3.11 on page 104 show the performances of the
algorithms on the periodic model in different energy and deadline configurations. Then,
we can see that FBA behaves badly when tasks have different periods and different
deadlines. Again, when tasks consumption rates can vary, LSA can take wrong decisions
by overestimating the latest time form which starting executing a job does not lead
to a deadline miss. Note that the constrained deadlines increase the rate of unfeasible
task sets for all algorithms which is expected because constrained deadlines let shorter
time to jobs to finish their executions than implicit deadlines.

Globally, EDeg is the algorithm with the lower failure rate and preemptions rate over
the tested task models with a good average battery level. This is due to its anticipation
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Figure 3.9: Frame-base task model

of future deadline misses with the slack-energy notion. The global performances of the
remaining algorithms are summarized in the following points.

• EDL: has a high failure rate when the battery capacity is limited but seems to
behave better when the stage unit is infinite. This was expected because EDL does
not take into account energy when computing slack-time. The simulations show
that EDL has relatively a high preemption rate and average energy level comparing
to other algorithms which is due to long idle periods and the interferences within
execution windows,

• LSA: shows good performances only when all the tasks share the same energy
consumption rate,

• FBA: shows good performances only for frame-based task sets,
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Figure 3.10: Periodic task model with implicit deadlines

• PFPALAP : behaves like EDL but with a higher level of failure and preemptions
because it is a fixed-priority algorithm,

• PFPST : behaves a little better than PFPALAP but has the same weaknesses,
namely a high failure and preemption rates which are due the slack-time compu-
tation that does not consider energy constraints.

3.8.3 Comparison summary

Table 3.1 on page 98 summarizes the properties of the discussed algorithms.



104 Chapter 3. Real-time Scheduling for Energy-Harvesting Systems

 0

 20

 40

 60

 80

 100

E
D
L

E
D
e
g

L
S
A

F
B
A

P
F
P
_
A
L
A
P

P
F
P
_
S
T

%

Algorithms

Failure rate
Average energy level

Preemptions rate

(a) Ei/Ci=Constant with Emax =∞

 0

 20

 40

 60

 80

 100

E
D
L

E
D
e
g

L
S
A

F
B
A

P
F
P
_
A
L
A
P

P
F
P
_
S
T

%

Algorithms

Scenario :600000_15

Failures
Average energy level

Preemptions

(b) Ei/Ci = f(τi) with Emax =∞

 0

 20

 40

 60

 80

 100

E
D
L

E
D
e
g

L
S
A

F
B
A

P
F
P
_
A
L
A
P

P
F
P
_
S
T

%

Algorithms

Failure rate
Average energy level

Preemptions rate

(c) Ei/Ci=Constant with Emax = 200
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Figure 3.11: Periodic task model with constrained deadlines

3.9 Conclusion

In this chapter we introduced the problematic of real-time scheduling for energy-
harvesting systems. We first described the theoretical model we are interested in and we
expressed the problematics linked to this model, namely, finding algorithms, feasibility
conditions and the minimum energy storage unit capacity. Second, we discussed
the two main scheduling approaches for energy-harvesting systems, namely, real-time
scheduling with DVFS and energy-aware scheduling. Third, we detailed this later and
we enumerated the main scheduling algorithms available in the literature, namely EDL,
EDeg, LSA, FBA, PFPALAP and PFPST . Finally we evaluated and compared these
algorithms with simulations that showed that EDeg is the best algorithm that keeps its
optimality in different task models, i.e. frame-based and periodic, and different energy
configurations, i.e. constant and variable tasks energy consumption rates and battery
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capacity size.
We note that most of the proposed solutions are EDF-based because of its optimality

for systems without energy constraints. Furthermore, the EDF scheduling for energy-
harvesting systems was the most studied in the past. However, real-time scheduling
for energy harvesting systems with fixed-task-priority, which are as important as EDF
scheduling, was not deeply studied. The algorithms available in the literature are not
very efficient and can be widely improved. The aim of this dissertation is to contribute
to cover this research area by studying the possibility of adapting some EDF solutions
to fixed-priority and by proposing new scheduling algorithms and feasibility conditions
that can solve the problematics identified in this chapter.
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4.1 Introduction
As noticed in the state of the art, the fixed-priority scheduling for energy-harvesting

was not very well studied compared to dynamic-priority or EDF-based scheduling. In
fact only few fixed-priority algorithms are available in the literature. In reality, even
though the earliest deadline first scheduling has proved its optimality for classical
real-time systems, it is still not very popular in industry. However, fixed-priority
scheduling is widely used in industry because of its simplicity. Therefore, fixed-priority
is as important as EDF-scheduling and it is worthy to study this type of scheduling for
energy-harvesting systems.

As mentioned in Section 3.3 on page 71, one of the studied problematics is to find
fixed-priority scheduling algorithms that respect tasks deadlines and energy-harvesting
systems constraints.
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The main fixed-priority algorithms available in the literature, namely PFPALAP
and PFPST which are described in Section 3.7 on page 92, are not optimal and have a
great complexity.

This chapter focuses on optimal fixed-priority solution of the considered problem.
We propose the Preemptive Fixed-Task-Priority As Soon As Possible (PFPASAP )
algorithm and we prove its optimality for energy-non-concrete task sets that are
composed only of tasks that consume more energy than the replenished during their
execution. The work presented in this chapter is the result of a collaboration with Dr.
Y. Abdeddaïm and was first published in [ACM13a].

The remaining part of the chapter is organized as follows. We recall the model in
Section 4.2. In Section 4.3 we introduce the PFPASAP algorithm, and then, we study
some of its properties, namely its worst-case scenario, its optimality and its optimal
priority assignment. A feasibility condition based on PFPASAP is also proposed. In
Section 4.4, we evaluate the performances of PFPASAP by simulations and we compare
them with the ones the algorithms presented in the state of the art. Finally, we conclude
in Section 4.5.

4.2 Model
The model considered in this chapter is similar to the one described in Section 3.2

on page 67. The difference here is that we consider only energy-non-concrete task sets
which means that tasks offsets and the initial energy level of the battery are known
only at run time.

Task Model
We consider a non-concrete real-time sporadic task set in a renewable energy environment
defined by a set of n periodic and independent tasks. Each task τi is characterized by
its priority Pi, its worst-case execution time Ci, its minimum inter-arrival time Ti, its
relative deadline Di and its worst-case energy consumption Ei. Since the considered
task set is non-concrete, the offsets denoted as Oi are known only at run-time.

Energy Model
The energy model considered in this chapter is exactly the same as the one described
in Section 3.2 on page 67. An energy storage with capacity C and a harvester that
replenishes the battery continuously with a constant rate Pr. The energy level of
the storage unit at time t denoted E(t) fluctuates between two thresholds Emax the
maximum level and Emin the minimum level such that C = Emax−Emin. Knowing that
the considered systems are energy-non-concrete, we assume that the initial level of the
storage unit is Emin. Furthermore, we suppose that Pr ≤ C to avoid energy losses. Note
that this is not sufficient to avoid energy losses but it is necessary. Moreover, in this
chapter we suppose that tasks consume more energy than harvested during a period
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Figure 4.1: The effect of the parameter x on schedulability

of executions, i.e. ∀i, Ei ≥ Ci × Pr. We first study the scheduling problem with only
consuming tasks, then, we consider the gaining ones in the next chapter.

4.3 Theoretical Study of PFPASAP
4.3.1 As Soon As Possible Preemptive Fixed-Priority

In [CMM11], a set of scheduling heuristics for energy-harvesting systems have been
proposed. These heuristics are fixed-priority and take into account tasks energy cost
and the battery capacity limit during scheduling operations. One of these heuristics
caught our attention. With this heuristic, tasks are executed according to their priority
such that whenever there is not enough energy in the battery to execute, jobs executions
are suspended to replenish energy for a fixed amount of time x. The authors performed
some experiments to evaluate the relevance of this policy by studying the impact of
varying the parameter x on the schedulability rate of the policy. They varied x from
x = 4 to x = 100 and the best value for their task sets sample was between 4 and 6.
However, they did not evaluate the algorithm for the smallest possible value of x, i.e.
x = 1. Figure 4.1 shows the results of the same experiment performed in [CMM11] but
by varying x starting from 1. We can see that the lowest failure rate is reached when
x = 1. Adding to this the good performances of this policy comparing to the other
ones, this policy becomes very interesting to study deeply, especially its optimality.

In this section we study the case where x = 1 that we call As Soon As Possible
Preemptive Fixed-Priority Algorithm (PFPASAP ).

Algorithm 4.1 on the following page shows how PFPASAP takes decisions at time t.
It schedules jobs as soon as possible when there is enough energy to execute at least
one time unit, otherwise, it delays jobs executions by adding idle periods in order to
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Algorithm 4.1 PFPASAP Algorithm
1: t← 0
2: loop
3: A← set of active tasks at time t
4: if A 6= ∅ then
5: τk ← the highest priority task of A
6: if E(t) + Pr − Emin ≥ Ek/Ck then
7: execute τk for one time unit
8: end if
9: end if
10: t← t+ 1
11: end loop

- Ci Ei Ti Di Pi
τ1 2 14 10 5 1
τ2 3 12 18 13 2
(a) task set Γ with Pr = 3
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(b) PFPASAP time chart for task set Γ with Emax = 10

Figure 4.2: PFPASAP schedule

replenish the necessary energy. The replenishment periods are as long as needed to
satisfy the energy demand of the execution of at least one time unit.

Figure 4.2(b) illustrates an example of PFPASAP schedule of the task set described
in Table 4.2(a). In this example Emax = 10, Emin = 0 and Pr = 3. At time t = 0 the
battery is empty, therefore, task τ1 cannot be executed. Then, the battery is replenished
until time t = 2, in other words until there is enough energy to execute one time unit
of τ1, i.e. until E(t) ≥ E1/C1. After that, the algorithm follows the same scheduling
schemes for the rest of the schedule.

Below, we first characterize the worst-case scenario of PFPASAP , then we discuss
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its optimality and finally, we build a necessary and sufficient feasibility condition for
the considered family of task sets.

4.3.2 Worst-Case Scenario
The aim of this section is to characterize the worst-case scenario that a task set can

encounter during its execution with PFPASAP algorithm. First, we recall the notion of
processor demand or workload function for fixed-priority scheduling, then we extend it
to include tasks energy consumption.

Definition 4.1 (Processor Demand).
The processor demand of the ith priority level at time t denoted as Wpi(t), is the
amount of time necessary to execute jobs of priority levels 1, . . . , i− 1, i requested in
the interval of time [0, t[. It can be obtained by formula 4.1.

Wpi(t) =
∑
j≤i

RBFj(t) =
∑
j≤i

⌈
t−Oj

Tj

⌉
× Cj (4.1)

�

Now we introduce the notion of replenishment demand.

Definition 4.2 (Replenishment Demand).
The replenishment demand of the ith priority level at instant t denoted Wei(t), is the
amount of energy to be replenished to execute jobs of priority levels 1, . . . , i − 1, i
requested in the interval of time [0, t[. It can be calculated by Equation 4.2.

Wei(t) =
∑
j≤i

⌈
t−Oj

Tj

⌉
× Ej − E(0) (4.2)

�

The intuition behind Formula 4.2 is derived from the notion of processor demand.
It is the difference between the energy demand of jobs requested inside interval [0, t[
and the initial battery level. The initial battery level E(0) is removed to fit with the
exact amount of energy to be replenished. Therefore, if Wei(t) is negative, then, the
energy stored in the battery is sufficient and more replenishment is not needed.

Definition 4.3 (Time Demand).
The time demand of the ith priority level at time t denoted Wi(t), is the minimum
amount of time necessary to satisfy both of the replenishment and processor demands
within time interval [0, t[. This can be obtained by Equation 4.3.

Wi(t) = max

(⌈
Wei(t)
Pr

⌉
,Wpi(t)

)
(4.3)

�
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The fraction dWei(t)/Pre gives the number of replenishment time units to charge
the replenishment demand Wei(t).

Definition 4.4 (PFPASAP Response Time).
The response time of the first job of τi according to PFPASAP denoted Ri is the
termination time of the execution of the ith priority level minus the first release time of
the same priority level, i.e. Oi. The termination time of the first job of τi denoted fi,1
is the smallest solution of the system of equations 4.4.{

Wi(t) = t

t ≥ Oi
(4.4)

�

Now, we can use these definitions to characterize the worst-case scenario which is
expected to be the synchronous activation of all the tasks when the battery is at its
minimum level. This intuition is justified by the comparison of all possible activation
scenarios as shown in Figure 4.3 on the facing page.

Figure 4.3(a) illustrates the case where all the tasks are requested simultaneously.
If at least one higher priority task is requested later, the response time of lower priority
tasks decreases as shown in Figure 4.3(b). Then, if higher priority tasks are requested
earlier, the response time of lower priority tasks cannot be longer than the one reached
in the synchronous scenario as shown in Figures 4.3(c). Moreover, when the initial
battery level is higher than Emin, the response time of all tasks cannot be longer because
the amount of energy available in the battery can directly be used to execute instead
of adding more replenishment units that lengthen tasks response times. This case is
illustrated by Figure 4.3(d).

Thus, we propose Theorem 4.1.

Theorem 4.1.
Let Γ denote an energy-non-concrete task set composed of n priority-ordered tasks with
constrained or implicit deadlines. The PFPASAP worst-case scenario for any task of Γ
occurs whenever this task is requested simultaneously with requests of all higher priority
tasks and the battery is at the minimum level Emin.

Proof. We compare jobs response times in the scenario described by Theorem 4.1 with
all other possible ones. As mentioned in Definition 4.4, the response time of the first job
of a task is equal to its termination time minus its offset (first release time). The main
key of the proof is to argue with different termination times and offsets by comparing
their possible values in different cases of activation scenario and initial battery level.

Let {τ1, τ2, . . . , τn} be a set of n priority-ordered tasks where τn is the task with the
lowest priority. Let Ssi denote the scenario where task τi and all higher priority tasks
are requested simultaneously at the lower battery level Emin. The worst-case scenario
for a task τi is the one which maximizes its response time, i.e. the scenario which delays
the termination time of the first job of the ith priority level.
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Figure 4.3: PFPASAP worst-case scenario
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If Ssi is not the worst-case scenario, then, there must be an other scenario that leads
to a greater response time for the ith priority level.

Firstly, we consider the scenario where E(0) > Emin. In this case there is some
amount of energy available at time t = 0. We denote this scenario as S ′i, its replenishment
demand as We

S′i
i and its response time RS′i

i . Then, if E(0) > 0, we have:

E(0) > 0 ⇒ ∑
j≤i

⌈
t−Oj
Tj

⌉
× Ej − E(0) < ∑

j≤i

⌈
t−Oj
Tj

⌉
× Ej

⇒ We
S′i
i (t) < We

Ssi
i (t)

⇒ We
S′
i
i (t)
Pr

≤ We
Ss
i
i (t)
Pr

⇒
⌈
We

S′
i
i (t)
Pr

⌉
≤
⌈
We

Ss
i
i (t)
Pr

⌉

⇒ max
(⌈

We
S′
i
i (t)
Pr

⌉
, Wpi(t)

)
≤ max

(⌈
We

Ss
i
i (t)
Pr

⌉
, Wp

Ssi
i (t)

)

⇒ W
S′i
i (t) ≤ W

Ssi
i (t)

⇒ R
S′i
i ≤ R

Ssi
i

Therefore, the system needs less replenishment demand than the scenario where
E(0) = 0, i.e. E(0) = Emin, and PFPASAP introduces shorter or equal replenish-
ment periods and leads to shorter or equal response time for all the tasks. This is in
contradictory with our hypothesis, thus, such a scenario cannot lead to longer response
times.

Secondly, we consider the scenario with different offsets. Let us denote Sai as the
scenario where E(0) = Emin = 0 and tasks can have different offsets. Let ts denote the
termination time of the first job of task τi in the synchronous scenario Ssi and let ta
denote the termination time of the same job in the asynchronous scenario Sai . Scenario
Sai is worse than scenario Ssi implies that ta > ts.

We know that:

ts = W s
i (ts) = max

(⌈
Wei(ts)
Pr

⌉
,Wpi(ts)

)
(4.5)

and dWei(ts)/Pre ≥ Wpi(ts) because in our model E(0) = 0 and ∀ i, Ei ≥ Ci × Pr.
This reveals the fact that in the considered model, we must have replenishment periods
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which increase job response time. Then,

ts = W s
i (ts) =



∑
j≤i

⌈
ts
Tj

⌉
× Ej

Pr


(4.6)

Similarly,

ta = W a
i (ta) =



∑
j≤i

⌈
ta −Oj

Tj

⌉
× Ej

Pr


(4.7)

Knowing that W a
i (t) is strictly increasing in the interval [0, ta] and ta = W a

i (ta), we
obtain:

ts < ta ⇒ ts < W a
i (ts) (4.8)

By replacing ts with W s
i (ts) we obtain



∑
j≤i

⌈
ts
Tj

⌉
× Ej

Pr


<



∑
j≤i

⌈
ts −Oj

Tj

⌉
× Ej

Pr


(4.9)

Finally, we have

∑
j≤i

⌈
ts
Tj

⌉
× Ej <

∑
j≤i

⌈
ts −Oj

Tj

⌉
× Ej (4.10)

We know that ts ≥ ts −Oj because Oj ≥ 0. Therefore

∑
j≤i

⌈
ts
Pr

⌉
× Ej ≥

∑
j≤i

⌈
ts −Oj

Pr

⌉
× Ej (4.11)

Inequality 4.10 is in contradiction with inequality 4.11. Thus, we prove that ts ≥ ta.
Knowing that Ri = fi,1 −Oi, we also have Rs

i ≥ Ra
i because ts − 0 ≥ ta −Oi.

Therefore, we prove that the synchronous activation of all tasks when the battery
reaches the minimum level is the worst-case scenario that a task set can undergo with
PFPASAP algorithm.
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4.3.3 Optimality
In this section we discuss the optimality of PFPASAP for the model described in

Section 4.2 on page 110.

Theorem 4.2.
The PFPASAP algorithm is optimal for the scheduling problem of fixed-priority energy-
non-concrete task sets with constrained or implicit deadlines. As defined in Section 1.4.4
on page 37, this optimality means that if PFPASAP fails to schedule a given task set,
then, no other fixed-priority algorithm can.

Proof. Let Γ denote an energy-non-concrete task set. We suppose that Γ is feasible
using a fixed-priority assignment, but not schedulable with PFPASAP using the same
priority assignment. This means that there exists at least one task denoted τk that
misses its first deadline in the worst-case scenario given in theorem 4.1 on page 114.
Indeed, it is sufficient to consider only the first job because all tasks have constrained
or implicit deadlines, which avoid jobs to overlap (unless not feasible systems), and are
requested in the worst-case scenario, which maximizes the interferences and the length
of eventual replenishment periods. According to PFPASAP rules, a deadline miss occurs
in the worst-case scenario for the kth priority level only if the energy needed to execute
priority levels higher or equal than k is greater than the energy that can be replenished
from t = 0 to the first deadline of τk, Inequality 4.12 summarizes that.

Dk × Pr <
∑
j≤k

⌈
Dk

Tj

⌉
× Ej (4.12)

If PFPASAP is not optimal, then, there must exist an other fixed-priority schedule for
Γ that makes it feasible. Let us suppose that such a schedule exists. This implies
that there exists at least one task that is executed even if the energy is not sufficient.
This is impossible because the system cannot execute without energy, therefore, such a
schedule cannot exist. Then we prove that PFPASAP is optimal for energy-non-concrete
fixed-priority task sets with constrained or implicit deadlines.

Discussion

Note that the optimality of PFPASAP relies on the hypotheses set in Section 4.2 on
page 110, mainly the assumptions about task consumption and replenishment functions.
If we relax some of them PFPASAP may lose its optimality.

Indeed, if we accept tasks that consume energy less than replenished, i.e. gaining
tasks, the worst-case scenario is no longer the same which can lead PFPASAP to lose its
optimality. Figure 4.4(c) on the next page illustrates such a case. We can see that task
τ2, which is a consuming task is delayed three times, the first one at time 0, the second
at time 2 to replenish the battery, and the third time at time 3 to execute τ1 which is a
gaining task. This delay leads to a final response time of 7 time units. However, In
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(c) Synchronous requests

Figure 4.4: PFPASAP worst-case scenario counter example with gaining tasks

Figure 4.4, we can see that the synchronous request of τ1 and τ2 leads to a response
time of only 6 units. This proves that when we mix gaining and consuming tasks, the
synchronous activation is no longer the worst-case scenario and PFPASAP is no longer
optimal.

Moreover, when we consider the energy cost of mode switching from active to idle
or the opposite way, PFPASAP loses also its optimality and behaves badly as shown in
[BA14].

In a more realistic model, the replenishment function is not constant. Therefore
Equation 4.12 on the facing page is no longer applicable. Thus, we cannot conclude about
PFPASAP optimality. Finally, we have counter examples that prove the non-optimality
of PFPASAP for concrete task sets. We discuss this point in the next chapter.

4.3.4 Priority Assignment
As mentioned in Section 1.4.6 on page 38, the priorities assigned to tasks are very

important in fixed-priority driven scheduling because they are by definition fixed offline
which may reduce schedulability if the priorities are not well assigned.

In the classical theory of fixed-priority real-time scheduling, deadline monotonic was
proved to be optimal for non-concrete task sets with constrained or implicit deadlines.
In this section, we extend this property for energy-non-concrete task sets whose tasks
consume more energy than the one replenish during execution time.
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Theorem 4.3.
Deadline monotonic is an optimal priority assignment for energy-non-concrete task sets
when all the tasks have constrained or implicit deadlines and consume energy more than
it is replenished during their execution, i.e. when ∀ i, Di ≤ Ti and Ei > Ci × Pr.

The idea behind Theorem 4.3 is that DM can schedule any task set that is schedulable
with an other priority ordering. This means that every valid priority assignment can be
transformed into deadline monotonic priority ordering.

Proof. When the task set is composed of only consuming tasks, i.e. ∀ i, Ei > Ci × Pr,
the time demand of a priority level-i in the worst-case scenario is the time necessary to
replenish the energy demand or the replenishment demand because all tasks need more
time than their execution time to replenish the needed energy. Then, the maximum
in the right hand side of Equation 4.3 on page 113 is dWei(t)/Pre. Therefore, by
considering a synchronous release of all the tasks, i.e. ∀ i, Oi = 0, and a minimum
initial battery level E(0) = Emin = 0, the new time demand is obtained by Equation 4.13.

Wi(t) = max

(⌈
Wei(t)
Pr

⌉
,Wpi(t)

)
=
⌈
Wei(t)
Pr

⌉
=



∑
j≤i

⌈
t

Tj

⌉
Ej

Pr


(4.13)

Now, to prove Theorem 4.3 we assume two tasks at adjacent priorities τA and τB with
DA ≤ DB ≤ TB.

Given that τA is schedulable at the lower priority level than τB, we swap priorities
of τA and τB and we observe the impact of this change on the schedulability of τA and
τB. Then, if τB remains schedulable, this means that deadline priority assignment is
optimal as we can keep swapping task priorities from any schedulable priority ordering
to get a DM ordering.

1. Assume that τA is schedulable at lower priority than τB. Then, the response
time of the first job of τA in the worst-case scenario, denoted RA, is given by
Equation 4.14 where X is the response time of the task with the lower priority
task, in this case the one of τA.

X = RA =



⌈
RA

TA

⌉
EA +

⌈
RA

TB

⌉
EB +

∑
j<A ∧ j 6=B

⌈
RA

Tj

⌉
Ej

Pr


(4.14)

Knowing that τA is schedulable, then, we have RA ≤ DA. Furthermore, in
this case, for such value of X, we have respectively dRA/TAeEA = EA and
dRA/TBeEB = EB because respectively RA ≤ DA ≤ TA, from the fact that we
are computing the response time of the first job of τA, and RA ≤ DA ≤ DB ≤ TB,
from the fact that deadlines are constrained or implicit.
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2. Now, we swap priorities of τA and τB. We consider that the response time of τB
is given by Equation 4.15.

X = RB =



⌈
RA

TA

⌉
EA +

⌈
RA

TB

⌉
EB +

∑
j<B ∧ j 6=A

⌈
RA

Tj

⌉
Ej

Pr


(4.15)

Now, we compare Equations 4.14 on the facing page and 4.15. Thus, we observe
that they are the same equation and so the value of X must also be the same when
τB is at a lower priority than τA. Therefore, τB is schedulable because DB ≥ DA.

3. It is obvious that τA is also schedulable because it is at a higher priority level
now.

Then, we show that DM schedules any system that is schedulable with any other priority
assignment by swapping adjacent task priorities until we obtain a deadline monotonic
priority assignment without loss of schedulability.

Note that this proof relies on the assumptions set on tasks offsets and energy
consumption. If we relax one of them, the proof is no longer correct because the
worst-case scenario PFPASAP is no longer the same and the used formulas are no longer
valid.

4.3.5 Schedulability Condition

A simple way to build a necessary and sufficient feasibility condition for energy-
non-concrete task sets is to check if the given task set is schedulable with PFPASAP
in the worst-case scenario, in other words, to check if the first job of each task meets
its deadline when it is requested simultaneously with the higher priority tasks while
the battery is at its minimum level. It consists of computing the worst-case response
time according to PFPASAP rules for each task and to compare it to its deadline.
Algorithm 4.2 on the following page explains how to do this. It is an extension of the
classical response time algorithm that considers energy replenishment periods.

The complexity of Algorithm 4.2 is O(m× n) where m is the number of iterations
and n is the number of tasks. We note that the number of iterations m depends on
the periods and deadlines of the tasks (see line 6 of Algorithm 4.2) and is bounded by
max∀i(Di)/min∀i(Ti). Thus, the complexity of Algorithm 4.2 is pseudo-polynomial. We
can reduce this complexity by computing estimations for response times rather than
the exact values. However, the schedulability test we propose will not be necessary but
will remain sufficient.
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Algorithm 4.2 Feasibility Test
1: for i = 1→ n do
2: Wm+1

i ← ε

3: repeat
4: Wm

i ← Wm+1
i

5: Wm+1
i ← max

(⌈
Wei(Wm

i )
Pr

⌉
,Wpi(Wm

i )
)

6: if Wm+1
i > Di then

7: return False

8: end if
9: until Wm+1

i = Wm
i

10: end for
11: return True

4.3.6 Battery Capacity
The algorithm PFPASAP replenishes the minimum amount of energy needed for

only one execution unit, in this case the minimum battery capacity needed to keep
the task set schedulable with PFPASAP is the maximum amount of energy that can
be consumed during one time unit, i.e. the maximum instantaneous consumption. In
our model all the tasks consume energy linearly. Furthermore, the minimum battery
capacity must also take into account the eventual energy losses due to the capacity
of the battery. Therefore, the minimum battery capacity Cmin that keeps the task set
schedulable is bounded by max(max∀i(Ei/Ci), Pr).

When launching the system with the minimum battery level, this capacity allows
PFPASAP to keep the same schedule as the case where C ≥ Cmin and thereby it keeps
the same response times and the schedulability of the system. Running the task set
with a storage unit with a capacity lower than Cmin may either lead to energy losses in
the case where C < Pr which may increase tasks response time and may compromise
the schedulability of the task set or may make the executions impossible if C is lesser
than tasks consumption rate.

4.4 Performance Evaluation
We proved that PFPASAP is optimal for energy-non-concrete task sets. In this

section we study empirically the behavior of PFPASAP and we compare it to other
algorithms by simulations.

4.4.1 Competitors
We compare PFPASAP to other fixed-priority algorithms that are proposed in the

literature for energy-harvesting systems. We selected the following competitors.
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• PFPALAP : the fixed-priority scheduling policy described in Section 3.7.1 on
page 92. PFPALAP is not optimal but can be used as a reference for comparison
since there is no many algorithms in the state of the art.

• PFPST : the fixed-priority scheduling policy described in Section 3.7.2 on page 95.
We selected PFPST which is not optimal but has the lowest failure rate according
to the experiment presented in Section 3.8 on page 99.

4.4.2 Simulation
In this section, we describe the configuration of the experiments, namely the task

sets generation, the parameters and the set assumptions.
To perform such an experiment we used a simulator named YARTISS that we

present in Chapter 8.

Task Sets Generation

For these simulations we used an adapted version of the UUniFast-Discard algorithm
[BB05] coupled with a technique for hyper-period limitation [MG01] to generate task
sets. The generated task sets respect the following hypotheses:

• All task sets are time feasible without considering energy parameters and con-
straints.

• Time and energy are discretized, this means that they are integers and all
scheduling operations are performed before or after one time unit,

• The charging rate Pr is constant, i.e. a constant amount of energy is added to
the battery level in every time unit,

• Tasks consume energy linearly, i.e. a task consumes Ei/Ci energy units for each
execution time unit,

• All task sets are composed of consuming tasks, in other words, all tasks consume
energy more than what we can replenish during execution times, i.e. ∀ i, Ei >
Ci × Pr.

In order to represent most of the possible task sets, we generate them according to
their processor and energy utilizations, i.e. U and Ue. We vary U and Ue in the interval
[0.2, 1] to obtain a couple of (U,Ue) for each 0.05 unit of U and Ue. Then, we obtain 50
distinct task sets for each couple (U,Ue).

In this experiment, all task sets are simulated in the worst-case scenario described
in Section 4.3.2 on page 113.
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Simulation Configuration

In order to evaluate the behavior of the compared algorithms, we vary some param-
eters, namely the battery capacity C and the number of tasks per task set. Firstly, we
vary C in six energy scenarios to analyze its effect on the failure rate. Secondly, we
vary the number of tasks per task set in several distinct simulations to observe the the
scheduling overhead of each algorithm.

We set the remaining parameters to the same values that we used for task sets
generation in order to fit with the considered assumptions. For these experiments, we
set these parameters as follows, Pr = 15 and Emin = 0. Furthermore, task sets are run
for 2600 time units which corresponds to the longest hyper-period. Thus, if a task set
does not miss any deadline during the simulation time, then, the task set is said to
be empirically feasible. We use Deadline Monotonic (DM) policy to assign priorities
because of its optimality for the considered model as shown in Section 4.3.4 on page 119.

Several statistical metrics are computed during simulations. These metrics give
information about algorithms behavior. For our experiments we selected the following
metrics: failure rate, preemption count, average overhead, average idle-period, average
busy-period and average energy level.

Metrics

Failure Rate: the percentage of unfeasible task sets among all the tested ones. The
greater the failure rate is, the lower the algorithm performance is.

Preemption Count: for one simulation, it represents the number of preemption
events. A preemption event occurs when a job is suspended while it is still not finished.
All the events that occur at the same instant (e.g. job request, a deadline, etc.) are
considered as once. Therefore, the number of possible events is bounded by the number
of time units composing the simulation, i.e. the simulation duration. For several
simulations, this metric is computed only for feasible task sets and represents the ratio
of the average number of preemptions relative to the number of all possible events. The
greater the number of preemptions is, the greater the context switch is. A large number
of preemptions increases the overhead cost and decreases performance, which makes
the algorithm unusable in practice.

Average Overhead: it is the amount of time spent while handling a scheduling
event, in other words, the spent by the scheduling algorithm to take a decision. For one
simulation, this metric represents the average overhead of all of the scheduling events.
Its exact value is difficult to compute and must be computed on a real platform. We
simply calculate an estimation by distributing the real simulation time (in milliseconds)
on the number of scheduling events. The simulation tool that we use is event-based.
Therefore, only the events processing consumes processor time. Thus, it gives us an
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acceptable estimation of the average overhead. The greater the average overhead is, the
greater the timing constraints violation risk is.

Average Idle-Period and Average Busy-Period: represents respectively the av-
erage duration of periods when the processor is idle and the average duration of
continuous processor activity. For several simulations, we compute the ratio of the
average idle-period/average busy-period duration relative to the simulation duration.

The relevance of these two metrics is closely linked to the number of preemptions
caused by replenishment periods. The longer the idle/busy periods are, the lesser the
number of replenishment preemptions is and the higher the algorithm performance are.
Therefore, the longer the idle-periods are, the higher the average energy level is and
the lesser energy-constrained the system is. Moreover, grouping idle-periods together is
better for batteries that do not support a high rate of charge/discharge cycles.

Average Energy Level: represents the average energy level of the battery at any
instant during the simulation. It is the average of the energy level of all scheduling
events. The best algorithms relative to this criterion are ones that maximize the average
energy level. This means that the algorithm makes the system less energy constrained.

4.4.3 Results Analysis
The Variation of Emax

Figure 4.5 on the following page presents the results of the comparison of the
selected algorithms. In the following part, we analyze the effect of Emax variation on
the performances of each algorithm for each metric:

Failure Rate: Increasing Emax reduces the failure rate of all the evaluated algorithms.
This result was expected because the more Emax is increased the less the system is
energy-constrained. We also observe that PFPALAP has the highest failure rate for
all values of Emax. Both PFPASAP and PFPST have a lower failure while PFPASAP
demonstrates the lowest one. To explain why PFPST fails to schedule some task sets
which are schedulable with PFPASAP we have to examine its behavior closely. When the
battery is at its minimum level, PFPST suspends the system as long as possible before
the next execution while PFPASAP suspends the system only for one time unit. In this
case PFPST may uselessly postpone executions and may accumulate an unbearable
energy load for a future time. This can lead the system to replenish more time than the
available slack-time and may lead to miss deadlines. PFPALAP suffers from the same
problem than PFPST because it postpones execution as long as possible regardless
to the battery level. When all jobs are postponed to the maximum and the system
incurs a long execution period, it is impossible to introduce more replenishment times.
Therefore, deadline misses may occur. Figure 3.7 on page 94 illustrates this phenomenon.
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Figure 4.5: Comparison between PFPALAP , PFPST and PFPASAP
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At time 8 a long busy period begins and the system has already consumed all the
slack-time. The energy replenished during the former idle periods is not sufficient and
the system runs out of energy. This lack of energy is due to the anticipated execution
of job J1,2. The PFPASAP algorithm prevents from this situation by starting executing
jobs immediately.

As shown in Section 4.3.3 on page 118, PFPASAP is optimal for energy-non-concrete
task sets, the simulations show that it has the lowest failure rate in all scenarios. All
the task sets that are schedulable with PFPALAP and PFPST are still schedulable with
PFPASAP but this is not true in the opposite way. However, the difference in the failure
rate between PFPST and PFPASAP is relatively small, the study of the other metrics
might be crucial.

Preemption Rate: The simulations show that increasing Emax helps to stabilize
the number of preemptions. However PFPASAP demonstrates a very high number of
preemptions regardless to Emax values. By construction, PFPASAP executes for one
time unit then preempts tasks to check again if there is enough energy, while PFPST
consumes all the slack-time available to replenish energy and avoid preemptions due to
a lack of energy. PFPALAP does the same for each job activation.

Average Overhead: We observe that for every value of Emax, PFPALAP and PFPST
have much higher average overhead than PFPASAP . This is due to the pseudo-
polynomial complexity of the slack-time algorithm [DTB93]. PFPALAP computes
slack-time whenever a job is requested and PFPST does the same but only if there is
not enough energy while PFPASAP only needs to order the activated jobs.

Average Idle-Period and Busy-Period: These two metrics are closely linked to
the number of preemptions. The longer the idle or busy periods are, the lower the
number of preemptions is. We observe that PFPASAP has a high number of preemptions
because it has short idle and busy periods. PFPST consumes all available slack-time
to replenish energy, then, executes tasks while the battery level is sufficient. This
maximizes the duration of both of the idle and the busy periods.

Average Energy Level: regardless to Emax values, PFPALAP has the highest average
energy level and PFPASAP has the lowest one. Knowing that this metric is calculated
only for feasible task sets, this result was expected because PFPALAP replenishes energy
during long periods (idle periods) which increase the average battery level.

Varying task set Criminality

The aim of this experiment is to study the effect of the task set cardinal on the
average overhead. The results are presented by Figure 4.6 on the next page and confirm
our previous observations. Both of PFPALAP and PFPST have a very large overhead
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- PFPALAP PFPST PFPASAP
worst-case scenario - - synchronous activations

Optimality bad bad good
Failure rate bad good good

Average overhead bad bad good
preemptions neutral good bad

Average idle-period neutral good bad
Average busy-period neutral good bad
Average energy level neutral good bad

Table 4.1: PFPALAP vs PFPST vs PFPASAP

relative to PFPASAP . This is explained by the complexity of the slack-time computation
algorithm.

Table 4.1 summarizes the performance of the evaluated algorithms.
PFPASAP is optimal for energy-non-concrete task sets and so has the lowest failure

rate compared to the other algorithms. Moreover, it needs less battery capacity to
operate. However, it increases the number of preemptions and context switches, which
could be a serious limitation in practice. PFPST is not optimal but the simulations
show that its failure rate is very close to the one of PFPASAP . Furthermore, it
maximizes the average energy level and reduces the number of preemptions. The pseudo-
polynomial complexity of stack-time calculation is the main drawback of PFPST , then,
it cannot be used for systems with a large number of tasks. However, one can imagine
using a slack-time approximation algorithm rather than an exact computation [Dav93].
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Regarding PFPALAP , in addition to its non-optimality, simulations demonstrate very
bad performance for all metrics.

4.5 Conclusion
In this chapter we studied deeply the PFPASAP scheduling algorithm. We firstly

described in detail its scheduling schemes. Secondly, we presented and proved some of
its properties. We proved that the synchronous release of all tasks when the battery
is at the minimum level is the worst-case scenario that leads to the longest response
time of all tasks. Then, we used this property to prove the optimality of PFPASAP for
energy-non-concrete task sets that consume energy more than the replenishment during
their executions. We also proposed a bound of the minimum battery capacity that
keeps the schedulability of task set with PFPASAP . Thirdly, we built a schedulability
condition based on PFPASAP algorithm. This condition is necessary and sufficient for
energy-non-concrete task sets. Finally, we presented the results of empirical comparison
of PFPASAP with other algorithms. This experiments showed that PFPASAP dominates
the other algorithms in term of schedulability rate and average overhead. The results
showed also that PFPASAP suffers from high number of preemptions due to its greedy
behavior. Then, we conclude that the PFPASAP is a scheduling algorithm that behaves
theoretically well but has a serious limitation in practice. Finally, we can conclude that
PFPASAP is optimal but not applicable for platforms that does not support a high
preemption and context switch rates. However, its optimality make it the reference
algorithm for fixed-priority energy-harvesting systems.

We will show in the next chapter that PFPASAP loses its optimility when we relax
some energy assumptions, the worst-case scenario and the schedulability test are no
longer valid. Removing these assumptions makes the problem more complex and push
us to study more scheduling algorithms and to look for more schedulability conditions.
This is the topic of the next chapters.
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5.1 Introduction
Previously, we provided schedulability analysis for PFPASAP that was restricted

to systems where all tasks were consuming tasks (see Section 4.3.5 on page 121).
We proved that PFPASAP is optimal with respect to all fixed-priority algorithms for
energy-non-concrete periodic task sets, compliant with that restricted model.

In this chapter, we consider real-time task sets comprising two types of tasks:
(i) consuming tasks that have a rate of energy consumption that is higher than the
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replenishment rate, and (ii) gaining tasks that have a rate of energy consumption that
is no more than the replenishment rate. Recall that the results presented in Chapter 4
were obtained considering only consuming tasks. We show that for this more general
model, the critical instant leading to the worst-case response time of a task does not
necessarily correspond to a synchronous release with all higher priority tasks, and so
the analysis presented in Section 4.3 on page 111 is not applicable. For the more
general model, we derive two response time upper bounds providing sufficient scheduling
tests. We also prove that Deadline Monotonic priority assignment [LW82] is an optimal
priority assignment policy with respect to these sufficient schedulability tests. The
work presented in this chapter is the result of a collaboration with Prof. Rob Davis
and mainly contains materials previously published in [Abd+14].

The remainder of the chapter is organized as follows. In Section 5.2 we recapitulate
the system model, terminology and notation used in the this chapter. In Section 5.3
we introduce sufficient schedulability analysis for the more general task model with
both consuming and gaining tasks. Section 5.4 provides a performance evaluation
investigating the effectiveness and the tightness of these schedulability tests. Section
5.5 concludes the chapter.

5.2 Models and Notations

The model considered in this chapter is close to the one described in Section 3.2
on page 67. The deference here is that we relax some assumptions on tasks energy
consumption and offsets. The considered model includes also concrete task sets.

Task Model
In addition to the notations presented in Chapter 4, the worst-case power consumption
(i.e. energy used per unit of execution time) of a task τi is given by Pci. Thus the
worst-case energy consumption equates to executing for the worst-case execution time,
at the maximum rate of power consumption (i.e. Ei = Pci × Ci). The set of tasks
Γ is separated into two distinct subsets Γc and Γg. The first one Γc contains the
consuming tasks, the ones that consume more energy than is replenished during their
execution, whereas Γg is composed by the gaining tasks, that consume no more energy
than is replenished during their execution. We have Γc = {τi ∈ Γ, Ei > Pr × Ci} and
Γg = {τi ∈ Γ, 0 ≤ Ei ≤ Pr × Ci}.

Energy Model
The energy model considered in this chapter is exactly the same as the one described
in Section 3.2 on page 67.
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5.3 Schedulability Analysis
In this section, we provide sufficient schedulability tests for systems with both

consuming and gaining tasks. First we show that the critical instant for such task sets
does not necessarily correspond to synchronous release. Lack of information about the
actual worst-case scenario makes the schedulability analysis problem much more difficult.
We address this problem by using the concept of priority level-i energy-busy-period.
(see Definition 3.3 on page 70). The worst-case response time of task τi must necessarily
occur within such a busy-period. We derive two upper bounds on the maximum length
of this busy-period, which we then use to obtain upper bounds on the worst-case
response time of the task. We use a similar approach to also derive response time lower
bounds.

5.3.1 Worst-case scenario

When we consider only consuming tasks or only gaining tasks, the worst-case scenario
(critical instant) occurs when all higher priority tasks are released simultaneously and
the battery is at its minimum level. For the case when we have only gaining tasks, the
response time analysis is the same as the classical formulation, since there are no delays
due to energy considerations.

For the case where we have only consuming tasks, launching the tasks simultane-
ously with the battery at its minimum level maximizes the idle periods needed for
energy replenishment. This increases the time required to complete the execution of
higher priority tasks, which leads to the longest response time for each task, given by
Equation 4.3 on page 113 as proved in Section 4.3.5 on page 121.

In contrast, when we consider a task set composed of both gaining and consuming
tasks the worst-case scenario is not the same for all the tasks, it depends on the
composition of the subset of higher priority tasks. If that subset contains both gaining
and consuming tasks, then the worst-case scenario is not necessarily the synchronous
activation of all the tasks with the minimum battery level.

Figure 5.1 on the following page illustrates a situation where the response time of
task τ2 is longer (R2 = 7) when a gaining task of higher priority is requested later, than
it is with synchronous release (R2 = 6). This is due to the fact that in the former case,
task τ2 suffers two replenishment delays (at time t = 0 and t = 2), whereas in the later
case it suffers only one replenishment delay (at time t = 4). This happens because task
τ1 is a gaining task and there is a net increase in energy as it executes.

5.3.2 Sequences and Energy-busy-periods

We now introduce terminology and concepts that we use in proving key properties
about scheduling systems with energy constraints.
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Figure 5.1: Worst-case scenario counter example

Definition 5.1 (Execution Unit).
We use the term execution unit to refer to a non-divisible unit of execution of a job.
An execution-unit has the same length as the basic time unit used to describe task
execution times, and is of the same length for all tasks. �

Definition 5.2 (Replenishment Unit).
We use the term replenishment unit to refer to the minimum indivisible unit of idling
time used to replenish energy. �

Execution-units and replenishment-units are of the same duration.

Definition 5.3 (Execution Sequence).
An execution sequence is a vector X of execution units from 1 to LX , where LX is
the number of execution units in the sequence. Each element X[m] of the sequence
indicates the task that the execution unit belongs to. A sequence does not contain
replenishment units, and so LX does not necessarily represent the number of time units
needed to execute the sequence. �

We denote the energy required by execution unit X[m] by EX [m]. Further we use
E∗X [m] to denote the total energy required by execution units from the start of the
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sequence up to and including execution unit X[m]. Thus:

E∗X [m] =
∑

q=1...m
EX [q] (5.1)

The minimum number of replenishment units IX [m] required to provide sufficient
energy to execute X[m] at the end of the subsequence X[1] to X[m] is given by:

IX [m] = max
(

0,
⌈
E∗X [m]− E(0)

Pr

⌉
−m

)
(5.2)

where E(0) is the energy available at the start of the sequence.
We note that an earlier execution unit X[k] may require more prior replenishment

units than a later one X[m] due to the presence of execution units of gaining tasks
between X[k] and X[m], (i.e. IX [k] > IX [m] where m > k). We use I∗X [m] to denote
the minimum number of replenishment units required to execute all of the subsequence
X[1] to X[m] in order.

I∗X [m] = max
k=1...m

(IX [k]) (5.3)

The elapsed time required to execute sequence X is given by LX + I∗X [LX ].

Lemma 5.1.
For a fixed sequence X of execution units, the elapsed time for the sequence is maximised
when the initial energy available is minimised, i.e. E(0) = 0.

Proof. Follows directly from Equation 5.2 and the formula for the elapsed time to
execute the sequence: LX + I∗X [LX ].

Lemma 5.2.
Any sequence containing only execution units of consuming tasks requires the same
elapsed time to execute irrespective of the order of its execution units provided that
the set of execution units and the initial energy are the same. Similarly, any sequence
containing only execution units of gaining tasks requires the same elapsed time to execute
irrespective of the order of its execution units provided that the set of execution units is
the same.

Proof. Case (i) sequence X contains solely execution units of consuming tasks. Since
all execution units consume energy, then for every element X[m], we have EX [m] > Pr
and so E∗X [m+ 1] > E∗X [m] + Pr hence the maximum number of prior replenishment
units is required by the last element in the sequence and is given by:

I∗X [LX ] = IX [LX ] =
⌈
E∗X [LX ]− E(0)

Pr

⌉
(5.4)

Since the total energy E∗X [LX ] required by all elements in the sequence is independent
of the order of the elements, the elapsed time I∗X [LX ] + LX required to execute the
sequence is also independent of the order of the elements.
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Case (ii) sequence X contains solely execution units of gaining tasks. Since all
execution units gain energy, no replenishment units are required and the elapsed time
for the sequence equates to its length LX irrespective of the order of the elements.

Lemma 5.3.
Under PFPASAP scheduling, for a schedulable task τi, the worst-case response time Ri

of the task equates to the longest possible priority level−i energy busy-period. Further,
there exists a busy-period of this length that includes a single job of task τi, begins at
the release of this job and ends with the final execution unit of the job.

Proof. As task τi has the lowest priority of any task executing in such a priority
level−i energy busy-period, under PFPASAP scheduling the busy-period necessarily
ends with the final execution unit of that task. This is the case because if there were
any outstanding higher priority tasks, they would execute in preference to task τi.

As task τi has a constrained deadline and is schedulable (by the Lemma), it can only
have one job starting from the release time in the busy-period, otherwise the completion
of the previous job of task τi would have to take place after the release of the final job
of the task implying (as Di ≤ Ti) that the previous job was unschedulable.

Let X be the sequence of execution units representing all execution in the busy-
period. If the job of task τi was not released at the start of the busy-period, then we
can move its release time back to the start of the busy-period. Since task τi has the
lowest priority of any task in the busy-period, such a change cannot make any difference
to the actual order of execution as represented by sequence X and so has no impact on
the elapsed time required to execute the sequence. Such a change can therefore only
increase the worst-case response time of the job.

Lemma 5.3 proves that the worst-case response time for a task τi occurs in a priority
level−i energy busy-period starting with the release of that task. However, as shown in
Figure 5.1 on page 134, synchronous release of all higher priority tasks may not result in
the worst-case response time for task τi. In general, we do not know what scenario, or
pattern of releases of higher priority tasks will result in the worst-case response time for
task τi; however, we can derive further information about possible worst-case scenarios.

Lemma 5.4.
The maximum possible number of jobs of a higher priority task τh causing interference
in the longest priority level−i busy-period (characterising the worst-case response time
of task τi ) is given by dw/The where w is the length of the busy-period.

Proof. Lemma 5.3 shows that the busy-period starts (at time t = 0) with the release of
task τi, hence at t = 0, there can be no jobs of higher priority tasks with outstanding
execution, other than those also released at t = 0, otherwise the busy-period would
have started earlier. It follows that the maximum number of higher priority jobs of task
τh in the busy-period is given by dw/The.
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5.3.3 Response Time Upper Bounds
We do not know up to know the precise pattern of releases of higher priority jobs

that leads to the worst-case response time for task τi, we cannot determine the exact
worst-case response time. Instead, we derive an upper bound RUB1

i and then a tighter
upper bound RUB2

i on the exact worst-case response time Ri, where RUB1
i ≥ RUB2

i ≥ Ri.
These upper bounds provide sufficient schedulability tests UB1 and UB2 respectively,
where UB2 dominates UB1.

The process we use to obtain these upper bounds is similar to the classic formulation
of response time analysis presented in Section 1.5 on page 40. We aim to find the smallest
interval w, for which an upper bound on the response time of task τi, considering the
maximum possible interference from higher priority tasks released in that interval,
equates to the length of the interval. The value of w then provides an upper bound on
the worst-case response time of task τi.

We require a function F (w) that upper bounds the length of the longest priority
level−i energy busy-period formed by a single job of task τi and jobs of higher priority
tasks released during an interval of length w. Provided that F (w) is a monotonically
non-decreasing function of w, then we may obtain an upper bound on the worst-case
response time of task τi corresponding to the smallest value of w > 0 that satisfies:

w = F (w) (5.5)

Equation 5.5 may be solved using fixed point iteration starting with w = Ci and ending
on convergence or when w > Di in which case the task is deemed unschedulable.

5.3.4 Upper Bound RUB1

We now derive a simple upper bound RUB1
i on the worst-case response time of task

τi. First we prove a Lemma used in its derivation.

Lemma 5.5.
Let X be some arbitrary sequence of execution units of tasks of priority i or higher, and
Y be the equivalent sequence re-ordered such that all execution units of consuming tasks
come before all execution units of gaining tasks. The elapsed time required to complete
sequence Y is no shorter than that required to complete sequence X.

Proof. We may obtain sequence Y from sequence X by an iterative process of choosing
the first execution unit belonging to any gaining task (at position g) and swapping it
with that of the last execution unit of any consuming task (at position k) provided
that g < k. Repeating this process until all consuming execution units come before all
gaining execution units transforms sequence X into sequence Y . Let the new sequences
produced by this process be X1 = X,X2, X3 . . . Xn = Y . Note at most LX/2 swaps
are required. We now show that each swap transforming sequence Xp into sequence
Xs where s = p+ 1, results in an elapsed time for sequence Xs that is no shorter than
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that for Xp, and hence by induction that the elapsed time for sequence Y is no shorter
than that for sequence X. Let Xp[g] and Xp[k] be the elements being swapped where
g < k. Since Xp[g] is an execution unit of a gaining task and Xp[k] is an execution unit
of a consuming task, the energy required for these execution units has the relationship
EXp [g] < EXp [k]. Recall that E∗Xp [m] is the energy required to execute all execution
units in the subsequence from Xp[1] to Xp[m]. It follows that:

∀m, 1 ≤ m < g E∗Xs [m] = E∗Xp [m]

∀m, g ≤ m < k E∗Xs [m] = E∗Xp [m] + EXs [k]− EXp [g]

∀m, k ≤ m E∗Xs [m] = E∗Xp [m]

⇒ E∗Xs [m] ≥ E∗Xp [m]

Hence the minimum number of replenishment units required to execute the subse-
quences from the 1st to the m−th element of Xp and Xs have the following relationship:
I∗Xs [m] ≥ I∗Xp [m] (see Equations 5.2 on page 135 and 5.3 on page 135). Since the number
of execution units in each sequence (Xs and Xp) is the same (i.e. LXp = LXs), we have:
LXs + I∗Xs [m] ≥ LXp + I∗Xp [m]. Thus the elapsed time required to execute sequence Xs

is no shorter than that required for sequence Xp. Induction over at most LX/2 steps
proves that the elapsed time required to complete sequence Y is no shorter than that
required for sequence X.

Theorem 5.1.
An upper bound on the worst-case response time for task τi for a set of jobs released in
a window of length w can be obtained by assuming that there is one job of task τi and
dw/The jobs of each higher priority task τh. Further, the upper bound is obtained from
a sequence Z of the execution units of these jobs where all the consuming execution
units are before all the gaining execution units.

Proof. Let X be the sequence of execution units that results in the longest priority
level-i energy busy-period under PFPASAP scheduling, and hence the longest response
time for task τi), for a set of jobs released in a window of length w. The elapsed time
for the sequence is given by LX + I∗X [LX ] where LX is the length of the sequence and
I∗X [LX ] is the total number of replenishment units required. Lemma 5.5 on the previous
page shows that the elapsed time required to execute a sequence Y is no shorter than
that required to execute sequence X, where sequence Y comprises the execution units
in X re-ordered such that all execution units of consuming tasks are placed before
execution units of gaining tasks. Note that at this point we do not know how many
jobs of higher priority tasks are present in sequence X and therefore also in sequence
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Y ; however, by Lemma 5.4 on page 136 we know that the maximum number of jobs
of a higher priority task τh that could be present is dw/The. Hence we add execution
units to sequence Y as necessary to account for any shortfall in the number of jobs in
X below this value, thus forming sequence Z. (Consuming execution units are added
at the start of the sequence and gaining execution units at the end). We note that
such additional execution units cannot reduce the elapsed time required to execute
the sequence since all execution units of both consuming and gaining tasks require a
positive amount of energy. Sequence Z (as described in the Theorem) therefore requires
an elapsed time to execute that is no smaller than that of sequence X.

We use Theorem 5.1 on the preceding page to formulate the workload function
WUB1
i (w) WUB1

i (w) for upper bound RUB1
i . We assume that the initially available

energy is zero, the number of jobs of task τi and each higher priority task released in an
interval of length w is given by dw/The, and that all execution units of consuming jobs
are executed before all execution units of gaining tasks. We note that the number of
jobs considered equates to synchronous release of all the tasks, with re-release as soon
as possible. This is equivalent to the critical instant for classical tasks without energy
considerations. Although this is not necessarily the worst-case scenario for tasks that
require energy (see Figure 5.1 on page 134 for a counter example), it is the worst-case
scenario with respect to how our upper bounds are computed. The workload function
for RUB1

i is given by:

WUB1
i (w) =



∑
j≤i ∧ τj∈Γc

⌈
w

Tj

⌉
× Ej

Pr


+

∑
j≤i ∧ τj∈Γg

⌈
w

Tj

⌉
× Cj (5.6)

where the first term represents the total time to complete the execution units of
consuming tasks, which are in effect energy-bound, and the second term is the time
taken to complete the execution units of gaining tasks, which are processing time bound.

Observe that WUB1
i (w) is a monotonically non-decreasing function of w since all

terms are positive and w only appears in the numerator of ceiling functions. Further
WUB1
i (w) ≥ Ci since dCi/Tie = 1 and if task τi is a consuming task then Ei/Pr ≥ Ci,

hence Ci serves as a valid initial value for fixed point iteration.
We note that in the case where all tasks are gaining tasks and so energy is not a

consideration, Equation 5.6 reduces to the exact analysis for classical tasks. Further, in
the case where all tasks are consuming tasks Equation 5.6 reduces to the analysis for
that case given by Equation 4.3 on page 113.

5.3.5 Upper Bound RUB2

We can refine the first upper bound by considering a more realistic scenario. More
precisely, the idea is to take into consideration the fact that some gaining jobs cannot
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Figure 5.2: Dummy schedule used in the construction of UB2

be executed after some consuming ones, because of their respective deadlines and
releases, which define sub-intervals in which they are forced to run when the system is
schedulable.

This idea is illustrated in Figure 5.2, which shows three jobs of a consuming task
and three jobs of a gaining task. We know that provided the tasks are schedulable, job 1
of the gaining task must run before job 3 of the consuming task. This information can
be used to compute a tighter upper bound on the maximum time needed to complete
all of the jobs in the interval.

We now derive our second upper bound RUB2
i . The workload function WUB2

i (w) for
RUB2
i is derived from a dummy schedule and the sequence of execution units obtained

from it. Construction of the dummy schedule is as illustrated in Figure 5.2. The dummy
schedule is measured in time units and covers the interval [0, w). It has a timeline for
each task of priority i and higher, with one job of task τi and dw/The jobs of each higher
priority task τh. Jobs of consuming tasks (including task τi if it is one) are placed in the
dummy schedule starting with a release at t = 0, with subsequent releases as soon as
possible. These jobs are assumed to execute immediately. For gaining tasks (including
task τi if it is one) we first align the release of the last job at time w − Ci this job is
assumed to execute immediately. Previous jobs of the gaining task are then released
as late as possible respecting the release time of the subsequent job, and assumed to
execute as late as possible i.e. just prior to their deadlines. Thus jobs of gaining tasks
are added from the end of the dummy schedule working backwards in time, and jobs
of consuming tasks are added from the start of the dummy schedule working forwards
in time. Note that there may be overlaps between the schedules where more than one
task appears to execute at the same time. This is shown in Figure 5.2: intervals [4, 5]
and [9, 10].

From the dummy schedule, we derive a sequence Z of execution units. This sequence
is composed by starting at the beginning of the dummy schedule with an empty sequence
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and appending all gaining tasks with execution in that time unit onto the sequence,
followed by all consuming tasks with execution in the same time unit. This process is
then repeated for all subsequent time units until all execution units have been collected.
Note ties between execution units of two or more gaining tasks or two or more consuming
tasks may be broken arbitrarily; however, all execution units of gaining tasks associated
with some time unit t are placed into the sequence ahead of all execution units of
consuming tasks associated with the same time unit. All execution units associated
with a later time unit e.g. t+ 1 appear later in the sequence than those associated with
an earlier time unit t (We note that clashes may safely be resolved by giving preference
to gaining tasks, since those execution units must necessarily take place by that time
otherwise a deadline will be missed. Execution units of consuming tasks could and
would have been executed earlier in any real schedule that meets all deadlines).

Finally, the workload functionWUB2
i (w) is computed giving the elapsed time required

to execute sequence Z, assuming that the initial energy is at its minimum. This can be
done via simulation, limited to at most a length of time Di.

Theorem 5.2.
An upper bound on the worst-case response time for task τi for a set of jobs released in a
window of length w, where no higher priority jobs miss their deadlines, can be obtained
by assuming that there is one job of task τi and dw/The jobs of each higher priority task
τh, with the upper bound equating to the maximum time required to execute a sequence
Z of the execution units of these jobs constructed according to the rules and dummy
schedule construction described previously.

Proof. Let X be the sequence of execution units that results in the longest priority
level−i energy busy-period under PFPASAP scheduling (and hence response time for
task τi) for a set of jobs released in a window of length w where all higher priority
tasks meet their deadlines. For each task τh, let Nh be the number of jobs in sequence
X. Consider a sequence Y formed by constructing a dummy schedule of length w

including Nh jobs of each task τh and one job of task τi and applying the rules stated
above for ordering execution units (Recall from Lemma 5.3 on page 136 that there is
only one job of task τi in the busy-period, and hence in sequence X). Sequence Y and
sequence X contain an identical set of execution units. Since no deadlines are missed
when sequence X is executed, and the dummy schedule used to construct sequence Y
places execution units of gaining jobs as late as possible without missing a deadline, in
relation to the execution units of consuming jobs which are placed as early as possible
without invalidating minimum inter-arrival constraints. It follows that sequence Y can
be obtained from sequence X by a process of swapping earlier gaining execution units
for later consuming execution units (Note that re-ordering of sub-sequences consisting
of solely gaining execution units or solely consuming execution units may also be needed
to obtain precisely the same sequence; however, Lemma 5.2 on page 135 shows that this
re-ordering among execution units of the same type has no effect on the elapsed time
required to execute the complete sequence). Finally, we compare sequence Z obtained
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as described in the Theorem, and sequence Y . If sequence Y contains the maximum
number of jobs dw/The of each task that may be released in a window of length w, then
it is identical to sequence Z. Otherwise, sequence Z may be obtained from sequence Y
by adding execution units for any missing jobs where dw/The > Nh. Since all execution
units require energy, addition of execution units into the sequence at any point cannot
decrease the elapsed time required to execute the sequence. Hence the elapsed time
required to execute sequence Z is no shorter than that required to execute sequence
X.

Theorem 5.2 on the previous page shows that WUB2
i (w) provides a valid upper

bound on the worst-case response time for task τi considering all jobs released in a
window of length w. In order to use WUB2

i (w) in a fixed point iteration to determine
an upper bound on the worst-case response time of task τi we must also show that
WUB2
i (w) is a monotonic non-decreasing function of w, and that WUB2

i (w) > Ci, so
that we may use Ci as an initial value. The latter is trivially the case since a single job
of task τi is always included in the workload and takes at least time Ci to execute.

Theorem 5.3.
WUB2
i (w) is a monotonically non-decreasing function of w.

Proof. Consider increasing the length of the window from some arbitrary value w to
w + v, comparing the dummy schedules used to derive WUB2

i (w) and WUB2
i (i, w + v)

there are two effects: (i) all execution units of gaining jobs move to a later time e.g.
t + v rather than t, (ii) new execution units of gaining jobs may be added near the
start of the schedule and new execution units of consuming jobs may be added near the
end of the schedule. Consider sequence X formed in deriving WUB2

i (w) and sequence
Y formed in deriving WUB2

i (i, w + v) but omitting all of the execution units of the
new jobs from (ii). Sequences X and Y contain the same set of elements. Since all
execution units of gaining jobs are v time units later in the dummy schedule used to
construct sequence Y , it follows that sequence Y can be formed from sequence X by
swapping later gaining execution units in X for earlier consuming execution elements,
and as necessary re-ordering sub-sequences containing solely gaining or solely consuming
execution units (Lemma 5.2 on page 135). Hence the elapsed time required to execute
sequence Y is no shorter than that required for sequence X. Consider a further sequence
Z, if there were no additional jobs from (ii) then sequence Z is identical to sequence
Y , otherwise it may be obtained from sequence Y by adding execution units for the
missing jobs. Since all execution units require energy, addition of execution units into a
sequence at any point cannot decrease the elapsed time required to execute the sequence.
Hence the elapsed time required to execute sequence Z is no shorter than that required
to execute sequence X.

We now return to the assumption in Theorem 5.2 on the previous page that
all deadlines of higher priority tasks are met. This might seem to imply that task
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schedulability must be checked highest priority first; however, this is not necessarily
the case. Consider what happens if we test task schedulability lowest priority first. We
tentatively test the schedulability of task τi on the assumption that all higher priority
tasks will later be found to be schedulable. If task τi is deemed schedulable (caveat this
assumption), then we go on to check higher priority tasks. If some higher priority task
τh is subsequently found to be unschedulable, then this undermines the validity of our
schedulability test for task τi; however, this is now of no consequence, since the task
set is in any case unschedulable due to task τh. If instead, all higher priority tasks are
found to be schedulable, then the schedulability test for task τi is validated (We note
that the schedulability or otherwise of a lower priority task τi has no impact on the
schedulability of any higher priority task τh).

Theorem 5.4.
Schedulability test UB2 dominates test UB1 i.e RUB1

i ≥ RUB2
i .

Proof. We prove the theorem by showing that WUB2
i (w) ≤ WUB1

i (w). Consider the
sequence Y representing WUB1

i (w) and the sequence X representing WUB2
i (w). The

sequences contain the same elements; however, in sequence Y all of the consuming
execution units are before all of the gaining execution units, hence by Lemma 5.5 on
page 137, the elapsed time required to complete sequence Y is no shorter than that
required to complete sequence X.

5.3.6 Battery Capacity
We now return to a consideration of the minimum battery capacity Cmin (we note

CUBimin the minimum battery capacity for UBi). For the sufficient test UB1 to be valid, we
require that. CUB1

min ≥ max(max∀i(Pi)−Pr, Pr). This small battery capacity is sufficient,
since in computing an upper bound on the worst-case response time, UB1 assumes that
all consuming execution units come before all gaining execution units. The minimum
battery capacity needed to execute this sequence without impinging on the elapsed
time required is simply enough to execute the most costly unit of execution in terms of
energy, which equates to max∀i(Pi)−Pr or max∀i(Ei/Ci)−Pr. In addition, the battery
capacity cannot be less then Pr, the maximum amount of energy replenished during
one time unit.

By comparison, for the sufficient schedulability test UB2 to be valid, it suffices to have
a minimum battery capacity Cmin that equates to at least the total net energy required
to execute all of the consuming jobs in the longest possible priority level-n energy busy
period. Such a store of energy upper bounds that which can ever usefully be deployed
to execute consuming jobs in any possible busy period. Having a larger battery capacity
than this is equivalent in terms of task response times to having infinite battery capacity
Note that by the total net energy required by consuming jobs, we mean the energy
they consume less the energy generated while they actually execute. Since the longest
possible level-n energy-busy-period cannot be greater than the longest task deadline,
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otherwise the system would be unschedulable, we can upper bound the battery capacity
required as follows: CUB2

min ≥ max
(∑
∀i

⌈max∀j(Dj)
Ti

⌉
×max (Ei − Ci × Pr, 0) , Pr

)
.

5.3.7 Response Time Lower Bound
In this section, we derive an analytical lower bound RLB1

i ≤ Ri on the worst-case
response time of task τi. To obtain the lower bound, we analyse a specific scenario that
corresponds to the synchronous release of task τi along with all higher priority tasks,
which are then assumed to be re-released as soon as possible. Further, we assume that
the initial energy is a minimum i.e. E(0) = 0. Although this is not necessarily the
worst-case scenario, it is a valid scenario and hence suffices to provide a valid lower
bound on the longest priority level−i energy-busy-period and hence the worst-case
response time of task τi.

We obtain the lower bound response time RLB1
i via fixed point iteration, using

a workload function WLB1
i (w) that is monotonically non-decreasing in w and lower

bounds the elapsed time needed to execute all jobs of tasks of priority i or higher
released in an interval of length w starting with a synchronous release.

Lemma 5.6.
Let X be some arbitrary sequence of execution units of tasks of priority i or higher, and
Y be the equivalent sequence re-ordered such that all execution units of consuming tasks
come after all execution units of gaining tasks. The elapsed time required to complete
sequence X is no shorter than that required to complete sequence Y .

Proof. Follows by applying similar reasoning to the proof of Lemma 5.5 on page 137.

Theorem 5.5.
A lower bound on the worst-case response time for task τi assuming synchronous release
with all higher priority tasks resulting in a priority level−i energy busy-period of at least
length w, can be obtained by assuming that there is one job of task τi and dw/The jobs
of each higher priority task τh in the busy-period. Further the lower bound equates to
the time required to execute a sequence Z of the execution units of these jobs where all
the consuming execution units are after all the gaining execution units, and the initial
energy is a minimum.

Proof. By the theorem, the busy-period is at least w long, hence under PFPASAP
scheduling all dw/The jobs of each higher priority task τh released during the interval
[0, w) must complete before the single job of task τi. Let X be the sequence of execution
units of all of the jobs under PFPASAP scheduling. The elapsed time required to execute
sequence X lower bounds the worst-case response time of task τi. Further, let Z be
(as per the theorem) the same set of execution units as sequence X re-ordered such
that all the consuming execution units are after all the gaining execution units. By
Lemma 5.6, the elapsed time to execute sequence Z is no longer than that required to
execute sequence X.
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We use Theorem 5.5 on the preceding page to formulate our lower bound workload
function WLB1

i (w). We assume that the initially available energy is zero, the number of
jobs of task τi and each higher priority task τh released in an interval of length w is
given by dw/The and that all execution units of consuming jobs are executed after all
execution units of gaining tasks.
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Finally, in order to use the workload function WLB1
i (w) in a fixed point iteration to

determine the lower bound RLB1
i on the worst-case response time of task τi, we must

show that WLB1
i (w) is a monotonically non-decreasing function of w.

Theorem 5.6.
WLB1
i (w) is a monotonically non-decreasing function of w.

Proof. Consider the formula forWLB1
i (w). Since w appears only in the ceiling functions,

it follows thatXg
i , X

c
i and Y

g
i are all non-decreasing functions of w. Further, (Xg

i Pr−Y
g
i )

represents the net energy increase while all the gaining jobs execute. Since every
execution unit of a gaining task is by definition energy positive, this quantity is also a
non-decreasing function of w. Thus Y c

i − (Xg
i Pr − Y

g
i ) may decrease with increasing

w. The largest possible decrease is obtained when Y c
i remains at the same value, while

(Xg
i Pr − Y

g
i ) increases, hence d(Xg

i Pr − Y
g
i )/Pre decreases. However, such a decrease is

always at least compensated for by the increasing value of the first term in Equation 5.7,
i.e. Xg

i . This happens because the additional energy made available by each execution
unit of an additional gaining job is no more than that available from a replenishment
unit. Hence d(Xg

i Pr − Y
g
i )/Pre cannot decrease by more than Xg

i increases. We note
that monotonicity can also easily be seen by considering the sequence Z (in Theorem 5.5
on the preceding page) which can only take a longer elapsed time to execute with the
addition of further jobs, since all execution units require a positive amount of energy.

We note that a tighter lower bound can be obtained via the simple expedient of
simulating the actual schedule of execution starting from synchronous release of task τi
and all higher priority tasks. We return to this point in Section 5.4 on page 147.
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5.3.8 Priority Assignment

The DM priority assignment is optimal for fixed-priority preemptive scheduling
of constrained deadline tasks conforming to the classical task model where energy is
not considered. In Section 4.3.4 on page 119, we extended the optimality of DM to
energy-non-concrete task sets that are composed of only consuming tasks. However,
when we relax the assumption on tasks energy consumption, i.e. gaining tasks are
accepted, the proof provided in Section 4.3.4 is no longer valid. In this section, we show
that DM priority assignment is also optimal with respect to our sufficient schedulability
tests UB1 and UB2, for energy-constrained systems with both consuming and gaining
tasks. This does not mean that DM is optimal for energy-work-conserving scheduling
in the general case, but only with respect to the necessary schedulability conditions
based on UB1 and UB2.

Definition 5.4 (Optimal Priority Assignment Policy).
A priority assignment policy P is said to be optimal with respect to a schedulability
test S, if for every task set τ where there exists some priority assignment Q such that
the task set is schedulable according to test S, then τ is also schedulable according to
test S with the priority ordering given by policy P . �

Theorem 5.7.
Deadline Monotonic (DM) priority assignment is an optimal priority assignment policy
with respect to sufficient schedulability test S (UB1 or UB2) for task sets comprising
any arbitrary combination of consuming and gaining tasks.

Proof. To prove the theorem, we show that any task set Γ that is schedulable according
to test S (UB1 or UB2) under some priority ordering Q remains schedulable according
to test S under deadline monotonic priority order P . We do this by transforming
priority order Q into priority order P by swapping the priorities of tasks that are
adjacent to each other in the priority order, but out of DM order. We show that on
every swap the task set remains schedulable according to test S. Let τA and τB be
two tasks in τ which are at adjacent priorities under the initial, schedulable priority
ordering, with DA > DB and τA at a higher priority k than τB, which has a priority
i = k + 1 (i.e. the tasks are out of DM order). Let the upper bound response time
of task τB according to schedulability test S be RUB

i in the initial priority order. We
now swap the priorities of the tasks, so that τB has the higher priority. We consider the
following groups of tasks:

(i) hp(k): these tasks have higher priorities than either τA or τB and so their upper
bound response times, according to test S (UB1 or UB2), are unchanged by the swap.

(ii) lp(i): these tasks have lower priorities than either τA or τB and so their upper
bound response times, according to test S (UB1 or UB2), are unchanged by the swap,
since interference from higher priority tasks does not, according to the test, depend on
the relative priority order of those tasks.
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(iii) task τB: now has a higher priority than τA, and so is only subject to interference
from tasks in hp(k), rather than hp(k) ∪ τA, hence τB remains schedulable.

(iv) task τA: is now at priority i with τB at higher priority. From the previous
schedulable priority ordering, we have RUB

i ≤ DB ≤ TB and DB < DA ≤ TA, hence
w = RUB

i was computed by test S by including exactly one job of τA, one job of τB and
dw/The jobs of each higher priority task τh ∈ hp(k). We observe that the computation
of the busy-period length w by test S (UB1 or UB2) depends only on this set of jobs
and not on their relative priorities. We now consider w = RUB

i as a possible value for
the response time of task τA under the new priority ordering. As RUB

i ≤ TB, then there
is only one job of task τB released in an interval of length w, along with dw/The jobs of
each higher priority task τh ∈ hp(k), and the single job of task τA. Therefore, according
to test S, RUB

i is also the upper bound response time for task τA when it is at priority
i. Since RUB

i ≤ DB < DA, it follows that task τA is schedulable at priority i.

Recall the exact test for PFPASAP scheduling with only consuming tasks presented in
Equation 4.3 on page 113 which is based on exact response time analysis (see Equation 4.3
on page 113). We note that the UB1 and UB2 tests reduce to Equation 4.3 on page 113
when there are only consuming tasks, and hence it follows from Theorem 5.7 on the
preceding page that DM priority assignment is also optimal in that case. Similarly, if
all tasks are gaining tasks, then the UB1 and UB2 tests reduce to the classical exact
test (Equation 1.14 on page 45) for FTP without energy considerations. DM priority
assignment is again optimal in that case [LW82].

We note that it remains an open question whether Deadline Monotonic priority
assignment is optimal with respect to an exact analysis for constrained deadline task
sets with both consuming and gaining tasks scheduled by PFPASAP .

5.4 Performance Evaluation
In this section, we present the results of an empirical investigation, examining the

effectiveness of the sufficient schedulability tests presented in this chapter.

5.4.1 Taskset generation
To perform these experiments, we randomly generated approximately 40000 task

sets, varying the processor utilization, the energy utilization, and the percentage of
gaining tasks.

We varied U and Ue in the range [0.05, 1] in steps of 0.05. The proportion of gaining
tasks was varied from 0% to 100% in steps of 10% for each pair of values (U,Ue), hence
we obtained 100 distinct task sets for each pair (U,Ue). Each tasks set comprised 10
tasks.

The task parameters were randomly generated as follows: task processor utilization
(Ui = Ci/Ti) using the UUnifast Discard algorithm [BB05], task energy utilization
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Figure 5.3: Percentage of task sets schedulable

(Uei = Ei/Ti × Pr) using an adapted version of UUnifast Discard to control the type of
task generated (gaining or consuming), and periods randomly generated between 2 and
25200 time units with a hyper-period limitation technique [MG01].Task deadlines were
implicit and the rate of energy replenishment Pr i was set to 15,

5.4.2 Schedulability tests investigated
We investigated the performance of the following schedulability tests.

• UTZ: the exact test for FTP ignoring energy constraints. This was used to
provide a schedulability bound, considering only processing time.

• SIM : is an empirical necessary test based on simulating the schedule of PFPASAP
over more than twice the hyper-period, starting with synchronous release and
the minimum energy level. This is not guaranteed to reveal the real worst-case
scenario, but can be used as a reference for comparison.

• UB1: the sufficient test presented in Section 5.3.4 on page 137.

• UB2: the sufficient test presented in Section 5.3.5 on page 139.

• LB1: the necessary test presented in Section 5.3.7 on page 144.

Figure 5.3 shows how the percentage of task sets that are deemed schedulable by
each of the tests varies with processor utilization. The UTZ test has notionally the
highest performance since it ignores energy considerations. When energy is considered,
UTZ, LB1 and SIM provide necessary tests, upper bounding the number of task
sets that could possibly be schedulable. An exact test considering energy would fall
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somewhere between SIM and UB2. We observe that the results confirm that UB2
provides a tighter bound than UB1, with a larger improvement at higher utilization
levels.

Weighted Schedulability we present a further set of experiments showing how
schedulability depends on different parameters, including energy utilization and the
proportion of gaining tasks, via the Weighted Schedulability Measure [BBA10]. As
well as processor utilization, task set schedulability is dependent on a number of other
key parameters, including: energy utilization, and the percentage of gaining tasks.
Evaluating all possible combinations of these parameters is not possible, instead, the
evaluation in this section varies one parameter at a time, with the results presented in
terms of the weighted schedulability measure [BBA10].

The figures in this section show the weighted schedulability measure Wy(p) for each
schedulability test y as a function of parameter p. For each value of p, this measure
combines results for all of the task sets Γ generated for all of a set of equally spaced
utilization levels (5% to 100% in steps of 5%).

Let Sy(Γ, p) be the binary result (1 or 0) of schedulability test y for a task set Γ
with parameter value p:

Wy(p) =
(∑
∀Γ
UΓ × Sy(Γ, p)

)
/
∑
∀Γ
UΓ (5.8)

where UΓ is the processor utilization of taskset Γ. The weighted schedulability mea-
sure reduces what would otherwise be a 3-dimensional plot to 2 dimensions [BBA10].
Weighting the individual schedulability results by task set utilization reflects the higher
value placed on being able to schedule higher utilization task sets.

Figure 5.4 on the next page shows how the weighted schedulability measure for
each schedulability test depends on task set energy utilization. The UTZ test ignores
energy constraints and hence exhibits minimal variation due to the uniform distribution
of Ue and U . The tests that consider energy (LB1, SIM , UB2, UB1) all show the
same pattern of behaviour as the classical schedulability tests do against processor
utilization, i.e. schedulability reduces at high levels of utilization (energy utilization in
this case). We note that the performance of the simple sufficient test UB1 degrades
with increasing energy utilization because in this case the overestimation of worst-case
response times is greater.

Figure 5.5 on the following page shows the impact of task set composition. When
the task sets comprise only gaining tasks, then all of the tests give precisely the same
performance. This is because no energy replenishment is needed, and in this case all of
the tests reduce to the exact test for fixed-priority preemptive scheduling with no energy
constraints. Similarly, for task sets comprising only consuming tasks, the worst-case
scenario is the synchronous release with the battery level set to the minimum [ACM13a].
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This is captured by all of the tests that consider energy (LB1, SIM , UB2, UB1), hence
they all have the same performance.

Between these two extremes, the closer the task sets are to an equal mix of consuming
and gaining tasks, the more opportunity there is for consuming tasks to make use of the
net energy gain from gaining tasks, and hence the more UB1 and UB2 diverge from
(SIM) and LB1. Here, UB2 is less impacted since it takes some account of the net
energy gain due to gaining jobs that execute ahead of consuming jobs.
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Figure 5.6 shows the impact of constrained deadlines on performance. In this
experiment we vary the deadlines from heavily constrained where Di − Ci is 10%
of Ti − Ci to 100% of Ti − Ci (i.e. implicit deadlines). We observe that all of the
schedulability tests are influenced by the tightness of deadlines to a similar degree, with
heavily constrained deadlines having significant impact on schedulability in all cases.

5.5 Conclusions
In this chapter, we addressed the problem of schedulability conditions in real-time

energy-harvesting systems, where the respect of both time and energy constraints have
to be guaranteed. In such systems, tasks can be classified as gaining or consuming tasks
depending on whether or not the system has a net gain or loss of energy when the task
executes. In Chapter 4 we showed that the energy work-conserving scheduling policy
PFPASAP is optimal among all fixed-priority algorithms for the case where all tasks
are consuming tasks.

The major contributions of this chapter are as follows. We showed that under
PFPASAP scheduling algorithm, the critical instant (worst-case scenario) for task sets
with both consuming and gaining tasks is not necessarily synchronous release with all
other tasks. While we did not identify the specific worst-case scenario for this more
general model, we were able to prove a number of properties that it must have. We
used these properties to derive two upper bounds on task response times, thus forming
two sufficient schedulability tests. In a similar way, we also derived a lower bound
response time, and hence a necessary schedulability test. We proved that Deadline
Monotonic is the optimal priority assignment policy for PFPASAP with respect to
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our sufficient tests. Finally, we evaluated the performance of the sufficient tests in
comparison with a number of necessary tests, including an exact test for fixed-priority
preemptive scheduling ignoring energy constraints, and an empirical test based on
simulating the schedule for more than a hyperperiod. We found that our tighter upper
bound (sufficient schedulability test UB2) provides good performance over a wide range
of values of different parameters e.g. energy utilization, proportion of gaining tasks etc.
(explored using the weighted schedulability measure).
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6.1 Introduction
In the precedent chapters we saw that finding efficient scheduling algorithms for

fixed-priority energy-harvesting systems is one of the challenges of this research area. In
Chapter 4, we presented PFPASAP which is an optimal scheduling algorithm. Moreover,
the optimality of this algorithm relies on two main assumptions: the considered task sets
are energy-non-concrete (see Definition 3.4 on page 70), and all the tasks consume more
energy than it is replenished. Unfortunately, removing one of these two assumptions leads
PFPASAP to lose its optimality. This is due to the fact that without these assumptions,
the worst-case scenario of PFPASAP is no longer the synchronous activation with
the minimum battery capacity. Moreover, without these assumptions, the worst-case
scenario is unknown up to now. There exist some counter examples that prove the
non-optimality of PFPASAP (see Figures 6.2 on page 157 and 5.1 on page 134).

The challenge now is to understand why does PFPASAP lose its optimality and
we try to study deeply the fixed-priority scheduling for energy-harvesting systems by
attempting to build an optimal algorithm or otherwise to prove the nonexistence of
such an algorithm.

In this chapter, we explore different intuitive ideas of scheduling algorithms and we
explain why they are not optimal through counter examples. Then, we show the difficulty
of finding an optimal algorithm or proving the nonexistence of such an algorithm with
a reasonable complexity.
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The remainder of this chapter is organized as follows. In section 6.2 we define and
prove some properties of fixed-priority scheduling for energy-harvesting systems. After
that, we explore in Section 6.3 different ideas of scheduling algorithms and we discuss
the existence of an optimal algorithm. Finally, we conclude the chapter with Section
6.4.

6.2 Definitions and Notations
In order to facilitate the understanding of the next sections, we first redefine and

prove some properties.

6.2.1 Model and Notations
In this chapter we consider the model described in Section 3.2 on page 67. Fur-

thermore, in addition to the notations set in Section 1.2 on page 30, we consider the
following ones.

• si,j: the starting time of job Ji,j,

• ai(t): the next activation time of task τi after time t,

• ci(t): the remaining execution time of the current job of task τi at time t. It is
equal to 0 if the job is already finished,

• ei(t): the remaining energy cost of the current job of task τi at time t. It is equal
to 0 if the job has finished its execution,

• di(t): the absolute deadline of the current job of task τi at time t, it does not
exist if the job is not yet activated,

• si(t): the execution starting time of the current job of task τi at time t, it is
undefined if the job is not yet activated.

6.2.2 Definitions
Definition 6.1 (Energy Demand).
The energy demand of priority level-i of time interval [t1, t2[ denoted Wei(t1, t2) is
the amount of energy to be consumed by the execution of the jobs of priority levels
1, . . . , i− 1, i that are requested within interval [t1, t2[ or are pending at time t1. It can
be obtained by Equation 6.1.

Wei(t1, t2) =
∑
j≤i

ej(t1) +
⌈
t2 − aj(t1)

Tj

⌉
× Ej (6.1)

�
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The intuition behind Equation 6.1 on the facing page is derived from the notion of
processor demand. It represents the sum of the cost of energy of all the jobs of priority
equal or higher than i that are requested during the time interval [t1, t2[. The energy
demand of time interval [0, t[ is just noted Wei(t) and can be obtained by Equation 6.2.

Wei(t) = Wei(0, t) =
∑
j≤i

⌈
t−Oj

Tj

⌉
× Ej (6.2)

Definition 6.2 (Energy Budget).
The energy budget of the system during time interval [t1, t2] denoted Bu(t1, t2) is the
amount of energy available until time t2, i.e. the battery level at time t1 plus the energy
replenished during time interval [t1, t2]. It can be computed by Equation 6.3.

Bu(t1, t2) = E(t1) +
∫ t2

t1
Pr(t) dt (6.3)

�

Definition 6.3 (Energy Balance).
The energy balance of a job Ji,j at time t denoted Bai(t) is the difference between the
energy budget between time t and the deadline of Ji,j, and the energy demand of the
same priority level and the same time interval. It can be obtained by Equation 6.4.

Bai(t) = Bu(t, di,j)−Wei(t, di,j) (6.4)

�

We notice that if the time t does not coincide with a request time of task τi and the
previous job has already finished its execution, we must include the execution of the
lower priority jobs between time t and the next request time of priority level-i, i.e. ai(t),
because they consume energy before time ai(t) and can change the energy balance at
time di,j as illustrated in Figure 6.1 on the following page. However, these lower priority
executions units depend on the used scheduling algorithm, i.e. energy-work-conserving
or not. This limitation is discussed in Section 6.3 on page 159.

6.2.3 Energy-Work-Conserving
Without taking into account energy constraints, the work-conserving property in

real-time scheduling means that the scheduling algorithm does not add idle times when
there is at least one job ready to execute. However, when we consider energy-harvesting
constraints, scheduling algorithms may add necessary idle periods to replenish energy.
Then, this notion is extended to energy-work-conserving in Definition 3.5 on page 70 to
include replenishment time.

Furthermore, as described in Definition 3.3 on page 70, in the energy-harvesting
context, a scheduling algorithm is considered as energy-work-conserving if it schedules
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Figure 6.1: Energy balance of J2,1 at time t=8

jobs as soon as they are ready to execute and the energy is sufficient to execute at least
one time unit.

This definition means that scheduling algorithms do not replenish energy more than
needed, otherwise, the algorithm is considered as non-energy-work-conserving.

Unfortunately, PFPASAP , which is an energy-work-conserving algorithm, loses its
optimality when we consider tasks with offsets or an initial battery level higher than
Emin. Figure 6.2 on the facing page illustrates a counter example. We can see in
Figure 6.2(b) on the next page that the lower priority task τ2 is executed before τ1
following the energy-work-conserving principle, i.e. as soon as the energy is sufficient
to execute, it consumes the energy needed for the higher priority task τ1 which needs
more time than its deadline to replenish the required energy. We can see that in such a
situation, executing as early as possible can lead to a deadline miss while delaying the
execution of lower priority tasks can avoid missing deadlines as shown in Figure 6.2(c)
on the facing page. Following this intuition, we propose Lemma 6.1.

Lemma 6.1.
The energy-work-conserving scheduling is not optimal for the scheduling problem of
fixed-priority energy-harvesting systems.

Proof. To prove this property we have just to find an example where a valid energy-
work-conserving schedule is not possible while a valid schedule exists.
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Figure 6.2: PFPASAP is not optimal

Let us consider a task set denoted Γ composed of two tasks τ1 and τ2 with the
following configuration:

D2 = 2× C2 + C1
D1 = C1
O1 > O2
C1 + C2 = O1 +D1

E2 =
∫ O1

0
Pr(t).dt

E1 + E2 > E(0) +
∫ O1+D1

0
Pr(t).dt

E1 + E2 ≤ E(0) +
∫ D2

0
Pr(t).dt

T1 = T2

(6.5)

We can see that it is possible to finish executing τ1 before O2 according to an
energy-work-conserving scheduling. However, it is not possible to schedule both τ1 and
τ2 inside time interval [0, O1 + D1] because the available energy is not sufficient (see
Condition 6.5). Thus, more delay is needed to harvest more energy. Then, executing τ1
before τ2 and delaying τ2 leads to miss the deadline of τ2. Moreover, delaying τ1 leads
to add idle times while there is an active job and enough energy to execute immediately
which violates the property of energy-work-conserving scheduling. In this case, it is
impossible to produce a valid schedule with an energy-work-conserving scheduling. Then,
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we prove that energy-work-conserving fixed-priority scheduling cannot be optimal.

6.2.4 Energy-Lookahead Scheduling
In the classical real-time scheduling theory, a lookahead algorithm is an algorithm

that is able to predict future job requests, for example in sporadic or periodic task
models. However, in energy-harvesting model there is a new parameter subject to
fluctuations: the incoming energy or the replenishment function. Therefore, we need to
redefine the term of lookahead.

Definition 6.4 (Energy-Lookahead).
A energy-lookahead scheduling algorithm attempts to foresee the effects of a scheduling
decision to evaluate the schedulability of future jobs. The aim of lookahead is to chose
the best scheduling decision that does not lead to avoidable deadline misses. The
clairvoyance includes the battery replenishment function as well as tasks inter arrival
times. In the opposite, if the algorithm does not consider the future state of the system,
then, it is said non-energy-lookahead. �

This means that the algorithm has knowledge a priori of the future state of the
system, namely jobs activation times and energy replenishment function. The lookahead
or clairvoyance consists of computations or scheduling simulation performed over a
future interval of time that we call the lookahead window.

Definition 6.5 (Lookahead Window).
The lookahead or clairvoyance window for a priority level-i at time t is the shortest
time interval [t, t+L[ such that the scheduling decision of priority level-i at time t does
not impact the scheduling decisions of time interval [t+ L,∞). �

Using this definition, we propose Conjecture 6.1.

Conjecture 6.1.
No non-energy-lookahead scheduling algorithm is optimal for fixed-priority energy-
harvesting systems.

Insight. From Lemma 6.1 on page 156 we know that non-work-conserving scheduling
is needed for an optimal algorithm. This means that additional delays are needed
to ensure meeting deadlines and energy requirements. It is obvious that the optimal
length of these delays depends on the available energy and the potential interferences,
which means that the replenishment function and the request times of higher priority
jobs are needed to compute the right delay for each job. Therefore, delaying execution
without any knowledge about the future incoming energy and the future activation
times of higher priority jobs may lead to too short or too long idle periods which can
compromise the respect of deadlines.
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- Oi Ci Ei Ti Di Pi
τ1 28 2 38 80 40 1
τ2 7 2 32 16 8 2
τ3 3 2 14 80 70 3
τ3 0 1 12 68 44 4

Table 6.1: Task set Γ with Pr = 3, Emax = 100, Emin = 0 and E0 = 6
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Figure 6.3: A feasible schedule of task set Γ

6.3 Algorithms
From Lemma 6.1 and Conjecture 6.1, we can consider that an optimal algorithm

for fixed-priority energy-harvesting systems must be non-work-conserving and energy-
lookahead. In this section we explore some scheduling algorithms and heuristics that
attempt to be optimal. We start by showing a counter example that is feasible with
fixed-priority scheduling but is not schedulable with all the fixed-priority algorithms
presented until now in this dissertation. Then, we discuss the possibility of finding or
building an optimal algorithm.

The task set described in Table 6.1 shows many situations that make the fixed-
priority scheduling for energy-harvesting systems difficult. In the following we explain
why each scheduling algorithm fails to schedule this task set in this configuration while
a feasible schedule exists: Figure 6.3 shows the beginning of such a schedule, and we
know that is feasible because there is no deadline miss within twice the hyper-period.

PFPASAP : the first intuitive scheduling algorithm for fixed-priority energy-harvesting
systems is to use the classical FTP algorithm and add replenishment periods when Emin
is reached. The PFPASAP policy behaves so. As described in Chapter 4, it schedules
tasks as soon as possible when the energy is sufficient and replenishes otherwise. The
replenishment periods are as long as needed to execute one time unit of the higher
priority job ready to execute (see Algorithm 4.1 on page 112).
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Figure 6.4: PFPASAP counter example
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Figure 6.5: PFPALAP counter example

Again, PFPASAP is not optimal because executing as soon as possible maximizes
the energy demand within a short interval of time which can lead to a lack of energy
and then a deadline miss. As we can see in Figure 6.4, jobs of lower priority than J2,1,
namely J3,1 and J4,1, are executed at early as possible and consume the energy needed
for a higher priority job that is requested few instant later, i.e. J2,1. Job J2,1 misses its
deadline while the lower priority jobs, namely J3,1 and J4,1, can be delayed to avoid
this situation.

PFPALAP : the second intuitive idea is to schedule jobs prior to their deadlines in
order to permit a maximum replenishment of energy before executing. The PFPALAP
algorithm was proposed based on this intuition. As described in Section 3.7.1 on page 92,
it postpones jobs executions as long as possible all the time. Whenever there is available
slack-time, executions are delayed (see Algorithm 3.5 on page 93).

Unfortunately, this is one of the counter intuitive ideas of fixed-priority scheduling
for energy-harvesting systems. In fact, the PFPALAP algorithm is not optimal also
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Figure 6.6: PFPST counter example

even with an unlimited battery capacity because the computation of slack-time does
not consider energy constraints. As we can see in Figure 6.5 on the preceding page,
a deadline miss can occur while a feasible schedule exists (Figure 6.3 on page 159).
A deadline miss occurs at time 31 when the energy balance of time interval [23, 31]
is negative even though there is available slack-time. The energy available until the
deadline of job J2,2 is lesser than the energy demand of the same time interval. This
negative energy balance is due to the fact that delaying job too much J2,2 leads the
system to anticipate the execution of the higher priority job J1,1 which increases the
energy demand of time interval [23, 31] and leads to an insufficient energy to finish
executing J2,2 before its deadline. This phenomena is due to the fact that the slack-time
computation used for this algorithm does not consider the energy requirements of the
system.

PFPST : after PFPASAP and PFPALAP one can propose a hybrid algorithm that can
behave sometimes as PFPASAP and sometimes as PFPALAP . The PFPST algorithm
was built following this intuition. It executes jobs as soon as possible whenever the
energy is sufficient to execute and replenishes otherwise. The replenishment periods are
as long as the available slack-time (see Algorithm 3.6 on page 96).

Even though this algorithm improves the schedulability rate comparing to PFPALAP ,
it is still not optimal because of the same reasons than PFPALAP and PFPASAP .
Figure 6.6 shows a counter example.

Fixed-Task-Priority Clairvoyant as soon as possible (FPCasap): the com-
putation of slack-time in PFPALAP and PFPST algorithms is considered as time
clairvoyance or time lookahead because it uses the arrival times of future jobs. However,
the energy constraints were not considered, this is why the precedent algorithms fail to
schedule some feasible task sets.

Thus, one can add energy clairvoyance to compute the right retardations that lead to
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Algorithm 6.1 FPCasap Algorithm
1: t← 0
2: loop
3: A← set of active jobs at time t
4: if A 6= ∅ then
5: Ji,j ← the highest priority job of A
6: di(t)← the next absolute deadline of Ji,j
7: if ResponseT imePFPASAP (t+ 1, Ji,j, E(t+ 1)) > di(t) then
8: execute Ji,j for one time unit at time t
9: else
10: if ClairvoyancePFPASAP (t, Ji,j, di(t), E(t)) then
11: execute Ji,j for one time unit at time t
12: else
13: suspend the system for one time unit
14: end if
15: end if
16: end if
17: t← t+ 1
18: end loop

a valid schedule. Following this idea, the As Soon As Possible Clairvoyant Fixed-Priority
Algorithm (FPCasap) was proposed in [ACM13b]. Before authorizing a job to execute,
it simulates the PFPASAP schedule of the current and the future jobs in a clairvoyance
window or a looakahead window.

The FPCasap algorithm inherits the behavior of PFPASAP and adds clairvoyance
capabilities. It schedules jobs as soon as possible whenever the two following conditions
are met:

• there is enough energy available in the storage unit to execute at least one time
unit,

• the execution of the current job does not lead to a deadline miss of jobs of higher
priority which are requested during the clairvoyance window.

If these conditions are not satisfied, then, the algorithm suspends all executions for one
time unit and then it tries again.

Algorithm 6.1 shows how FPCasap takes scheduling decisions at time t when a job
of priority level-i is ready to be executed. The FPCasap algorithm checks first if the
execution of jobs of priority level higher or equal than i meet theirs deadlines. Then, it
checks if it is possible to delay the current job by comparing its response time at time
t + 1 with its deadline (line 7). After that, it repeats the process for higher priority
jobs. This prevent delaying the current job uselessly because in the case where it is
impossible to delay, if a deadline miss occurs in a higher priority level in the clairvoyance
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Figure 6.7: FPCasap counter example

window, the deadline miss cannot be avoided and the system is not schedulable with
FPCasap. The length of the clairvoyance window for a job is not proved but can be
intuitively defined as the interval of time starting from time t to the absolute deadline
di(t) because the current job of level-i cannot be delayed more than its deadline.

Unfortunately, FPCasap is not optimal because when a future deadline is detected
with the clairvoyance algorithm, all the jobs are delayed until the deadline miss dis-
appears and it is too much in certain cases. This delay is from the left to the right
following the time increasing axis. When the energy balance is negative at the end of
the clairvoyance window, delaying a lower priority job for an unbounded period can
lead to a deadline miss when a higher priority job is also delayed to a later time than
the deadline of the lower priority job. Computing the response time at time t+ 1 of
the ready job according to PFPASAP algorithm is not sufficient because it does not
reflect the real response time of the job. Figure 6.7 illustrates a counter example where
such a situation occurs. We can see that at time 0 when job J4,1 is ready to execute,
the PFPASAP lookahead schedule detects a deadline miss in a higher priority level
in the looakahead window, i.e. the deadline of job J2,1 (see Figure 6.4 on page 160),
then, it postpones execution for one time unit and then checks again at time 1, 2 and 3
and the same decision is taken. However, from time 3 to time 51, job J4,1 cannot be
executed because of the higher priority interferences and the required replenishments.
This example teaches us that when the energy balance is negative, in this case in time
interval [0, 44], it is impossible to schedule all the jobs that are requested inside this
interval. Thus, the only way is to delay some jobs out of this interval. Moreover, we
can see that all the jobs cannot be pushed out of this interval, only the ones that are
requested inside the interval and have deadlines outside the interval. We can see that
FPCasap takes the wrong decision by delaying the lower priority jobs, in this case J4,1,
instead of higher priority jobs.
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Algorithm 6.2 FPLSA Algorithm
1: t← 0
2: while true do
3: Ji,j the ready job with the higher priority at time t
4: calculate si,j
5: if t ≥ si,j or E(t) + Pr > Emax then
6: execute job Ji,j
7: else
8: idle the system
9: end if

10: t← t+ 1
11: end while

Fixed-Task-Priority Lazy Scheduling Algorithm (FPLSA): one of the possible
ways to find optimal fixed-priority algorithms is to try to adapt the behavior of some
optimal algorithms for EDF scheduling. One can use the concept of the LSA presented
in Section 3.6.3 on page 86. It consists of computing the latest time from which
jobs can be executed continuously. This algorithm was proved to be optimal for task
sets that consume energy with the same rate. To adapt LSA algorithm to fixed-
priority scheduling, we assume that all tasks consume energy with the same rate, i.e.
∀ τi, Ei/Ci = r. Furthermore, we keep the same scheduling schemes and we use
fixed-priority scheduling instead of EDF ones. Therefore, the algorithm becomes as
described in Algorithm 6.2 and we call it FPLSA.

The latest job starting time denoted si,j is computed by Equation 6.6.
si,j = max(s′i,j, s∗i,j)

s∗i,j = di,j −
E(ai,j) + g(ai,j, di,j)

r
g(ai,j, s′i,j)− C = g(ai,j, di,j) + (s′i,j − di,j)× r

(6.6)

Unfortunately, this algorithm is not optimal even if we consider the same consumption
rate for all tasks. We can see in Figure 6.8 on the facing page that the computation
of the starting time si,j is not adapted to fixed-priority scheduling. In fact, si,j is the
latest time from which we can execute continuously until the deadline di,j. This works
for EDF scheduling because in EDF all higher priority jobs have their request times
and deadlines inside interval [t, di,j]. However, this is not the case in fixed-priority
scheduling which can lead to too long delays. In Figure 6.8 on the next page, we can see
that the delay computed at time 3 for job J3,1 is much longer than the delay computed
for job J4,4 at time 0 which led this later to miss its deadline.

Fixed-Task-Priority As Late As Possible with energy guaranty (FPLeg):
the counter examples of the precedent algorithms show that even with energy and
time clairvoyance the above algorithms are still not optimal. In fact, the priorities of
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Figure 6.8: FPLSA counter example

tasks complicates the computation of the clairvoyance. The precedent examples show
that in the case when the energy balance is negative in a certain interval of time, it is
necessary to reduce the energy demand by pushing some jobs out of the interval. Then,
the difficulty now is to find the subset of jobs to delay and calculate the lengths of
their delays. We showed that delaying all the jobs at the maximum without considering
energy like PFPALAP , delaying all the lower priority jobs when a future deadline miss is
detected as FPCasap and delaying jobs to satisfy only energy constraints like FPLSA
are not the right decisions to reduce safely the energy demand within a time interval. In
fact, the potential jobs to be pushed out of the interval are the ones that are requested
inside the interval and have their deadlines outside. These kind of jobs can be delayed
by anticipating the execution of lower priority jobs. By doing so, the higher priority jobs
to be pushed out need more replenishment time since the energy balance is negative.
This leads to push them out of the interval and permits lower priority jobs to have
more energy to execute which can help them to meet their deadlines.

The anticipation of lower priority jobs can be done by introducing a kind of virtual
deadlines that coincide with request time of the jobs to be pushed out of the considered
time interval. Then, once the virtual deadlines are set, we delay all the jobs at the
maximum using the new virtual deadlines in the slack-time computation algorithm.
Following this intuition we propose the FPLeg algorithm for Fixed-Priority as Late as
possible with energy guaranty which is inspired from the EDeg algorithm presented in
Section 3.6.2 on page 83.

The idea behind this algorithm is to use the same scheduling schemes as PFPALAP
but by using virtual deadlines that consider energy constraints.

Definition 6.6 (Virtual deadline).
The virtual deadline of a job Ji,j denoted vdij is the earliest time that makes its energy
balance positive. This time can be the effective deadline of the job or the request time of
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Algorithm 6.3 FPLeg Algorithm
1: t← 0
2: loop
3: A← set of active tasks at time t
4: if A 6= ∅ then
5: τk ← the highest priority task of A
6: if E(t) ≥ Ek/Ck and Slack.T ime(t) ≤ 0 then
7: execute τk for one time unit
8: else
9: replenish until time t+ max(1, Slack.T ime.with.virtual.deadlines(t))
10: end if
11: end if
12: t← t+ 1
13: end loop

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70
0

10

20

30

40

50
E
max

E
min

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70

τ
1

deadline_missed

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70

τ
2

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70

τ
3

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70

τ
4

Figure 6.9: FPLeg counter example

one of the higher priority jobs described above. It must satisfy the following conditions:{
vdi,j ≤ di,j
Bu(t, vdi,j) ≥ 0

�

By analyzing the counter example of PFPALAP shown by Figure 6.5 on page 160,
we can see that if the energy balance was positive at time 31, the schedule would be
valid and the slack-time time would be correctly calculated. Therefore, using virtual
deadlines that makes the energy balance positive may be an interesting idea to build
an optimal algorithm. Then, FPLeg behaves as described in Algorithm 6.3.

Figure 6.9 illustrates the scheduling schemes of FPLeg algorithm. We can see that
the virtual deadline of job J4,1 was shifted from time 44 to time 28 where the energy
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balance is positive, i.e. the battery level at time 28 is 0, and then, the as late as possible
schedule produced in time interval [0, 28] is valid. However, we notice that this does
not solve completely the problem of late scheduling. In fact, using virtual deadlines
improves schedulability but there exist some cases where it anticipates the execution of
some lower priority jobs that consume the energy needed for other higher priority jobs.
This is illustrated by Figure 6.9 on the facing page at time 46. Even though the energy
balance was positive at time 28, the missed deadline (time 47) is due to the anticipated
execution of job J3,1 which can be delayed further. Unfortunately, this proves that
FPLeg is not optimal and that the fixed-priority scheduling for energy-harvesting
systems is subject to many counter intuitive ideas.

Fixed-Task-Priority lookahead (FPlh): The use of virtual deadlines in FPLeg
was a good idea because it helps reducing the energy demand when the energy balance
is negative. However, the above counter example shows that having a positive energy
balance is not sufficient to check whether the current virtual deadline is the right one or
not. Combining the idea of lookahead of FPCasap with the idea of virtual deadlines
can be an interesting intuition to achieve an optimal algorithm.

In the following we propose a new algorithm called FPlh for Fixed-Priority lookahead
that combines the ideas of virtual deadlines and lookahead. The lookahead computation
checks if all future deadlines are met during a bounded window by using the notion of
virtual deadlines that guarantees positive energy balances. Therefore, the definition of
the virtual deadline should take into account the future higher priority jobs. Moreover,
the looakahead computation consists not only of calculating the energy balance of
the current job Ji,j but also the one of higher priority jobs that are included in the
lookahead window. For this reason, we need to generalize the energy balance formula
to compute the energy balance of any job at any moment.

Definition 6.7 (Energy Balance).
The energy balance of priority level-i at time interval [t1, t2[ denoted Bai(t1, t2) is the
difference between the energy budget and the energy demand during [t1, t2[. It can be
computed with Equation 6.7.



A =
∑
j>i

(DBFj(0, ai(t1))× Ej

B = (RBFj(0, ai(t1))−DBFj(0,−ai(t1)))× (Ej − ej(ai(t1)))
Bai(t1, t2) = Bu(t1, t2)−Wei(t1, t2)

= Bu(0, t2)−Wei(0, t2)− A+B

(6.7)

where :

• A: is the energy demand of lower priority jobs within time interval [0, ai(t1)[, i.e.
finished jobs (see Figure 6.1 on page 156),



168 Chapter 6. Optimal Algorithm Investigation

• B: is the energy demand of lower priority jobs that are probably not yet finished
at time ai(t1). To compute this value we need to simulate the execution with
PFPALAP algorithm.

�

Now, we redefine the virtual deadline to include the lookahead computation.

Definition 6.8 (Virtual Deadline).
The virtual deadline vdi,j of a job Ji,j is an early deadline that makes the energy balance
Ba(t, vdi,j) positive and does not cause negative energy balances for jobs of higher
priority tasks withing the lookahead window that ends at time L. It must respect the
following conditions:

• vdi,j ≤ di,j

• Bai(t, vdi,j) ≥ 0

• ∀ Jk,l ∈ C, Bak(ak,l, dk,l) ≥ 0 where C = {Jk,l, k < i and ak,l > ai,j and dk,l ≤ L}

�

The FPlh algorithm is an extension of FPLeg algorithm described above. It
postpones executions whenever there is available slack-time like PFPALAP but the
slack-time computation is done using the virtual deadlines. Note that the virtual
deadline vdi,j coincides with a request time of a higher priority job that is activated
before the deadline of Ji,j and has an absolute deadline later than the one of Ji,j.

For a job Ji,j at time t, we know that the higher priority jobs that have an absolute
deadline earlier than di,j cannot be delayed outside the time interval [t, di(t)]. Thus,
the only jobs that can be pushed totally or partially out of this interval are those that
have a deadline later than di,j. The virtual deadline of Ji,j can be the request time of
one of these jobs. To find the right virtual deadline, we test all of them starting with
the earliest one. This test consists of checking two conditions:

• whether the energy balance of the considered job at this time is positive or not,

• whether there is future deadline misses within the lookahead window.

The length of the lookahead window is one of the problems of lookahead scheduling,
it is at least bounded but should be specified carefully. For this algorithm, we consider
that the lookahead window begins at time t and ends at time L which is the latest
deadline of higher priority jobs that are requested before time di,j and have their
deadlines after di,j. We choose this length because the jobs to delay cannot be delayed
longer than the length of the lookahead window.

The lookahead function consists of checking the energy balance of all the jobs that
are requested within the lookahead window as described in Algorithm 6.5 on the next
page.
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Algorithm 6.4 FPlh Algorithm
1: t← 0
2: loop
3: A← set of active tasks at time t
4: if A 6= ∅ then
5: τk ← the highest priority task of A
6: if E(t)−Emin ≥ Ek/Ck and Slack.T ime.with.virtual.deadlines(t) ≤ 0 then
7: execute τk for one time unit
8: t← t+ 1
9: else

10: replenish until slack-time time unit
11: t← t+ max(1, Slack.T ime.with.virtual.deadlines(t))
12: end if
13: end if
14: end loop

Algorithm 6.5 Lookahead(Bai(t), t, τi, L) Algorithm
1: C = {Jk,l, k < i and ak,l > t and dk,l ≤ L}
2: for Jk,l ∈ C do
3: if Bak(t, dk,l) < 0 then
4: return False

5: end if
6: end for
7: return True

These rules allow us to be sure that the selected virtual deadlines prevent negative
energy balances and future deadline misses, and lead to a correct energy-aware slack-time
computation that can give the correct retardations. Figure 6.3 on page 159 shows the
correct schedule of the task set that was not feasible with all the precedent algorithms.
We can see that the virtual deadline of job J4,1 was shifted to time 3 which makes the
energy balance in time interval [0, 3] positive and ensure that all higher priority jobs
included in the lookahead window [0, 70] meet their deadlines in contrast to FPLeg.

After all the precedent intuitions and counter intuitive ideas, we think that this
algorithm is optimal or at least dominates than the other algorithms. However, its
main issue is its complexity. In fact, the length of the lookahead window and the
relationship between jobs deadlines are the main factors that increase the complexity of
FPlh. Therefore, the following questions arise:

1. Does the use of virtual deadlines change the set of jobs to check with lookahead
computations ?

• Using earlier deadlines can decrease the number of jobs to check because the
interval to study is shortened. For example, when a valid virtual deadline is
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Figure 6.10: A FPlh schedule

found for the higher priority job with latest deadline, the lookahead window
becomes shorter.

• Using real deadlines may lead to a negative energy balance for a higher
priority job, as shown in the counter example of PFPALAP . Furthermore,
computing virtual deadlines by only checking the energy balance of the
current job can lead to a wrong virtual deadline as shown in the counter
example of FPLeg.

• Then, the virtual deadline computation for a job of priority level-i needs to
compute the energy balance Bai(t, di(t)) and the energy balances of higher
priority jobs within the lookahead window as shown in Definition 6.8 on
page 168. Moreover, since a part of the energy demand of lower priority
jobs that have already began their execution before the request time of the
job whose virtual deadline is being computed is necessary as shown with
vertical lines pattern in Figure 6.1 on page 156. Their virtual deadlines
are also needed to compute the energy balance of a higher priority job.
This means that to compute the virtual deadline of one job, we need both
virtual deadlines of higher and lower priority jobs which leads to a kind of
cross dependency between the virtual deadlines of different priority levels.
Figure 6.11 on the next page illustrates such a situation. We can see that
to compute the virtual deadline of job J4,1 at time 8, we need the one of
J2,1 because it is inside the lookahead window. Moreover, to compute the
virtual deadline of job J2,1 at time 20, we need the real schedule of jobs
J4,1 and J5,1 which depend on their virtual deadlines. Therefore, there is
an interdependence between virtual deadlines computation which makes
calculating them one by one impossible. A combination of virtual deadlines
is the set of virtual deadlines of the jobs that are included in the lookahead
window. Since each job may have several potential virtual deadlines, finding
the right one means finding the right virtual deadlines of all the other jobs.
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Figure 6.11: Interdependency between virtual deadlines

Then, to find such correct virtual deadlines, we have to pick one combination
and test if it works. We do this until we find a correct combination. In
the worst-case we have MN combinations to test which is an exponential
complexity, where M is the maximum number of potential virtual deadlines
of a job and N is the maximum number of jobs that we can have inside a
lookahead window.

2. Are the virtual deadlines necessary to compute the energy balance ?

• The energy demand of higher priority levels is calculated only with requests
times, i.e. with request bound function, thus, virtual deadlines of higher
priority levels cannot change the final energy demand.

• The energy demand of lower priority jobs that have already finished their
execution is calculated only with deadlines, i.e. with demand bound function
denoted A in Equation 6.4 on page 155. Then, the use of virtual deadlines
of higher priority levels cannot change the final energy demand because they
are earlier than the real deadlines.

• The energy demand of lower priority jobs that have not yet finished, denoted
B in Equation 6.7 on page 167 depends on the executions done before time
ai(t1) with PFPALAP policy which is based on deadlines. Using virtual
deadlines for these jobs can change the final energy demand.

Therefore, virtual deadlines of lower priority jobs are needed for the energy balance
computation.
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3. Assuming that computing virtual deadlines is an NP-hard problem, are they
necessary for an optimal algorithm ?

• If yes, the scheduling problem for fixed-priority energy-harvesting systems is
also NP-Hard also,

• Otherwise, it is an open problem.

These insights confirm that the fixed-priority scheduling for energy-harvesting
systems is not easy to handle. Moreover, the only algorithm we have up to now that
could be optimal has an exponential complexity. Therefore, finding an optimal algorithm
with a reasonable complexity or proving that the fixed-priority problem scheduling for
energy-harvesting systems is an NP-Hard problem is still an open problem.

6.4 Conclusion
In this chapter we explored the possibility of the existence of an optimal scheduling

algorithm for energy-harvesting systems. We started by proving that such an algorithm
must be both non-energy-work-conserving and lookahead (or clairvoyant). Then, we
listed some ideas of scheduling algorithms that seem intuitively optimal and we showed
with counter examples why they are not. We showed that the computation of the
needed delays, i.e. replenishment periods, must consider jobs deadlines and energy cost
as well as the replenished energy. Moreover, we showed also that deciding which job
to delay is the main problem of building an optimal algorithm. We know now that
considering a late or a lazy scheduling and having a positive energy balance at the
deadline of a job is not sufficient. The maximum delay for a job must ensure not only a
positive energy balance but also the respect of all deadlines in a bounded lookahead
window. This idea is very interesting, however, the exact lookahead computation seems
to be complicated and have an exponential complexity. This complexity seems to be
difficult to reduce because the computation of the maximum delay of one job, i.e. the
computation of the virtual deadline, depends on the maximum delay of the other jobs
inside the lookahead window. There is a kind of cross dependency between jobs which
complicates the computations. The only investigated solution here is to perform a brute
force search for the right combination of jobs delays or virtual deadlines which has an
exponential complexity. The conclusion of this chapter is that the correct late scheduling
that respects the energy constraints needs earlier deadlines and that the computation
of these deadlines has an exponential complexity. Moreover, if an optimal algorithm
requires these deadlines, then, the scheduling problem of fixed-priority energy-harvesting
systems is a hard problem. Otherwise, we should find an other way to compute the
right delays, this is still an open problem.
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7.1 Introduction
The main purpose of real-time systems is to guarantee predictable timing behavior

for controlled devices. Therefore, the correctness of the results provided by such systems
depends not only on the logical correctness of the output but also on the time at which
it is yielded. Several formal models of real-time behavior have been proposed up to
now (e.g. task models such as sporadic, periodic, aperiodic, Directed Acyclic Graphs
(DAG), etc.) as mentioned in Section 1.2 on page 30 and 3.2 on page 67. Prior research
in real-time systems have also addressed a wide array of hardware architectures (e.g.
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monoprocessor, multiprocessors, memory caches, etc). However, for a new generation of
real-time systems applications, e.g. medical implants, the physical environment poses
additional design challenges.

One such new challenge is the necessity of managing the energy and the thermal
behavior of systems. As technology scales, chips power consumption and power density
are increasing rapidly. Indeed, the miniaturization of small embedded systems has
allowed new real-time applications. Implantable Medical Devices (IMDs) are an
example of these new embedded systems where managing the thermal aspect is essential.
IMDs are increasingly being used in medical treatments (e.g. pacemakers for heart
diseases or neural implants to restore hearing/vision). However, recent studies [Kim+07;
Laz05] have shown that the heat generated by IMDs due to the processor activity is non-
negligible. Thus, designing thermal aware IMDs becomes critical as medical research
has shown that a temperature increase of even 1◦C can damage tissues [LaM+89] and
may cause death in extreme cases [Rug+03].

Therefore, thermal-aware real-time systems must respect not only timing constraints,
expressed with deadlines, but also thermal constraints which are expressed as a max-
imum temperature not to be exceeded. For fixed-priority real-time scheduling on
monoprocessor platforms, considering this constraint requires the schedulers to add
cooling periods. This additional idle times must be taken into account by scheduling
algorithms and included in schedulability analysis.

Thermal-aware system design presents challenges similar to the design of energy-
harvesting systems. The later collects the environmental energy to store it and use
it to supply real-time systems. The similarities with thermal-aware systems come
from the fact that the scheduling for energy-harvesting system has to consider battery
replenishment times which are analogous to the cooling periods required in thermal-aware
systems. Intuitively, the real-time scheduling problem of energy-harvesting systems
seems to be close to the one of thermal-aware systems. Therefore, it is interesting to
explore the possible similarities between these two models.

As a first step, we apply some results of energy-harvesting systems to the thermal-
aware model. In this chapter we use the Preemptive Fixed-Task-Priority As Soon
As Possible (PFPASAP ) scheduling algorithm presented in Section 4.3 on page 111,
which was proved to be optimal for energy-non-concrete fixed-priority energy-harvesting
systems, to build a thermal-aware scheduling approach and a schedulability analysis
based on upper and lower bounds of tasks worst-case response-time.

The work presented in this chapter is the result of a collaboration with Prof.
Nathan Fisher from Wayne State University and mainly contains materials published
in [CFM15].

The remainder of this chapter is organized as follows. Section 7.2 gives a brief state
of the art about thermal-aware real-time systems. Section 7.3 specifies and describes the
model and the scope of this chapter. Section 7.4 describes the thermal-aware version
of PFPASAP scheduling algorithm and proves its optimality for thermal-non-concrete
systems. Section 7.5 details an approximate response-time analysis based on upper and
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lower bounds of tasks worst-case response time. Section 7.6 shows some simulation
results to evaluate the effectiveness of the proposed schedulability analysis. Finally,
Section 7.7 concludes this chapter.

7.2 Related Work

In this section we give a brief overview of prior research related to thermal-aware
real-time scheduling. As for the energy-aware real-time systems, most works addressing
this problem consider Dynamic Voltage and Frequency Scaling (DVFS) strategies.
DVFS consists of scaling down the DVFS speed, and thereby lengthening task execution
times as described in Section 3.4 on page 73, to reduce energy consumption and reduce
the peak temperature [CWT09; WAB10; WB06; WB08].

Among existing works, the proposed techniques can be divided into reactive and
proactive approaches. The difference between these two approaches is that reactive
schemes adapt to the temperature of the system when it reaches the maximum temper-
ature or a specific trigger by switching the Central Processing Unit (CPU) speed or
by changing scheduling decisions. In this scope, Wang et al. proposed a schedulability
analysis for speed scaling scheme for frame-based task model in [WB08], and they
completed this with a worst-case response time analysis for First In First Out (FIFO)
and fixed-priority scheduling in [WB06; WB08]. In contrast, proactive approaches set
the configuration of the system judiciously beforehand (CPU speed and scheduling
decisions) so that the maximum temperature is never reached [CWT09; QZ09; Qua+08].
In this scope, Chen et al. proposed in [CHK07; CWT09] a proactive EDF-based
scheduling approach that changes the processor speed proactively by requests issued by
the scheduler.

There exists also some works that address this scheduling problem without DVFS
schemes by considering processors with only one frequency. In this scope, Ahmed
et al. proposed in [Ahm+11] a technique that computes proactively the length of
execution and cooling intervals so that a certain temperature is never reached. This idea
was extended in [Het+12] to support unpredictable ambient temperature fluctuations.
Rehan et al. proposed in [RPK13; RPK14] a kind of thermal utilization of the system
(using a fluid schedule) and leveraged it to obtain a necessary and sufficient conditions
for systems thermal feasibility.

All the mentioned work have the following limitations:
1) Except for works cited in the previous paragraph [Ahm+11; RPK13; RPK14;

Het+12], all the proposed solutions rely on speed scaling to manage energy and
temperature. These approaches cannot be applied to systems without DVFS capabilities.

2) Most of the scheduling solutions proposed in the literature are EDF-based.
Knowing that static fixed-priority scheduling is highly used in industry, it deserves more
attention and effort.
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Figure 7.1: Thermal model

7.3 Models

7.3.1 Task Model
We consider a classical non-concrete real-time task set defined by a set of n sporadic

and independent tasks {τ1, τ2, . . . , τn}. Each task τi is characterized by its priority Pi,
its worst-case execution time Ci, its minimum inter-arrival time Ti, its deadline Di and
its first release time Oi. Deadlines are constrained or implicit, i.e. ∀ i, Di ≤ Ti.

7.3.2 Thermal Model
In our model, the temperature of the system fluctuates due to heat dissipation when

real-time tasks are executed on the CPU. The temperature must stay between two
thresholds TA and Tmax where Tmax is the maximum tolerated temperature and TA
is the ambient temperature. The temperature of the system at time t is denoted as
T (t). The only way to cool down the system is to temporarily suspend task execution.
Furthermore, we consider that the system may be in one of two states at any given
time: active (i.e. heating) during which tasks may execute, or inactive (i.e. cooling)
during which tasks are not permitted to execute.

Heating Model

The thermal behavior of a processor can be modeled using theResistanceCapacitance
circuit (RC) [Ska+04] shown in Figure 7.1. In this model, the heating is characterized by
the electrical current denoted P (t) passing through a thermal resistance R. The thermal
capacitance is denoted C. Using this model, the derivative of the system temperature
function with respect to time can be calculated with Fourier’s law [WAB10] given by
Equation 7.1.

T ′(t) = P (t)
C
− T (t)− TA

R× C
(7.1)

The current passing through the resistance can be separated into two parts: the
dynamic part PD(t) that evolves linearly with the processor frequency, denoted s,
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and the part corresponding to the energy leakage PL(t) which is a function of the
temperature.

P (t) = PD(t) + PL(t) (7.2)
PD(t) = β0s

α (7.3)
PL(t) = β1T (t) + β2 (7.4)

Equations 7.2 to 7.4 give the formula to compute P (t), where α, β0, β1 and β2 are sys-
tem specific constants [WAB10]. We consider only a monoprocessor with active/inactive
modes; thus, during active periods, PD(t) is constant.

Let us denote a = β0sα

C
, b = 1

R×C −
β1
C

and scale T (t) to be T (t)− Rβ2−TA
Rβ1−1 to shift

TA to 0.
We can now recognize in Equation 7.1 on the facing page a classical linear differential

equation:
T ′(t) = a− b× T (t) (7.5)

Then, the solution is given by:

T (t) = a

b
+
(
T (t0)− a

b

)
× e−b(t−t0) (7.6)

The heating function only depends on time and constants and is not task specific.
Recall that the parameters a and b are processor specific constants. Typical settings
for these two variables are b ≈ 0.228, and a > 1 with α ≈ 3 (see [Ahm+11]).

Cooling Model

During the cooling phases, the processor is inactive. We assume for simplicity that
the frequency s is 0. However, this can easily be generalized to allow some fixed power
dissipation during inactive phases. Then, a = 0 and the formula 7.6 becomes:

T (t) = T (t0)× e−b(t−t0) (7.7)

Again, the cooling function only depends on time and is not task specific, i.e. all
tasks consume energy and heat the system following the same pattern. Figure 7.2 on
the following page shows the curves of cooling and heating functions. We can see that
the cooling function slows down rapidly because of its reverse exponential part. This
means that cooling for several short intervals is better for temperature and thereby for
tasks response time than few and long ones.

Moreover, we assume that heating is greater than cooling. In other words, tempera-
ture cannot decrease while executing.

As we consider non-concrete task sets, we extend the definition to include the
thermal aspect of the model.
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Definition 7.1 (Thermal-Concrete Systems).
A thermal-concrete system is a system whose time and thermal parameters are known
before run-time. This includes tasks periods, tasks offsets and the initial temperature
of the system. In the opposite, if one or all of these parameters are known only at
run-time, then, the system is said thermal-non-concrete. �

Therefore, we consider a thermal-non-concrete system where the initial temperature
of the system, the offsets and the exact inter-arrivals times are known only at run-time.
In the considered model, the system has to respect all deadlines and thermal constraints.
The temperature must never exceed its threshold Tmax. Thus, a task set is feasible
if and only if there is a schedule where all the deadlines are met and the maximum
temperature Tmax is never exceeded.

7.4 The PFPASAP algorithm
In Chapter 4, we presented the energy-harvesting version of PFPASAP scheduling

algorithm. This algorithm is a fixed-priority one which takes into account tasks energy
cost and the battery capacity during scheduling operations for energy-harvesting systems.
Tasks are executed according to their priority whenever the available energy is enough to
execute. Otherwise, the algorithm suspends executions to replenish the battery. These
replenishment periods are as long as needed to execute at least one time unit. We proved
that this algorithm is optimal for energy-non-concrete fixed-priority energy-harvesting
systems. In this section we adapt this algorithm to thermal-aware systems and we
explore its optimality for the model described in Section 7.3 on page 176.
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With the thermal constraints, the behavior of PFPASAP becomes as follows: it
executes jobs whenever the temperature is below Tmax enough to execute at least one
time unit without exceeding it, then, it idles the system to cool down as long as needed
to resume executions.

Below, we will first address the PFPASAP worst-case scenario, then we will discuss
its optimality.

7.4.1 Worst-case scenario
The aim of this section is to prove that the worst-case scenario for thermal-non-

concrete fixed-priority thermal-aware systems is still the synchronous activation of tasks
but with T (0) = Tmax.

Figure 7.3(a) on the following page illustrates the case where all the tasks are
requested simultaneously. If at least one higher priority task is requested later, the
response time of lower priority tasks decreases as illustrated in Figure 7.3(c) on the
next page. Then, if higher priority tasks are requested earlier, the response time of
lower priority tasks cannot be larger than the one in the synchronous scenario as shown
in Figures 7.3(d) on the following page. Furthermore, if the initial temperature of the
system is less than Tmax, then, less cooling time is needed which leads to a shorter
response time for all tasks.

Theorem 7.1.
Let Γ denote a non-concrete task set composed of n priority-ordered tasks with constraint
or implicit deadlines. The PFPASAP worst-case scenario for any task of Γ occurs
whenever this task is requested simultaneously with requests of all higher priority tasks
and the system temperature is at the maximum level Tmax.

To prove this theorem we compare jobs response times in the scenario proposed by
the theorem with all other possible ones. The response time of a job is the difference
between its termination time and its offset or request time.

Proof. Let {τ1, τ2, . . . , τn} be a set of n priority-ordered tasks where τn is the task with
the lowest priority. Let Ssi denote the scenario where task τi and all higher priority tasks
are requested simultaneously at the highest temperature level Tmax. The worst-case
scenario for a task τi is the one that maximizes its response time, i.e. the scenario that
maximizes the termination time of the first job of the ith priority level.

If Ssi is not the worst scenario, there must exist an other one leading to a greater
response time for the ith priority level.

Firstly, we consider the scenario where T (0) < Tmax. In this case the system is not
heated at the maximum. Therefore, the system may need less cooling periods than the
scenario where T (0) = Tmax, and PFPASAP introduces shorter or equal cooling periods
and leads to a shorter response time for all the tasks. This is in contradiction with our
hypothesis, thus, such a scenario cannot lead to longer response times.
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Figure 7.3: Worst-case scenario
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Secondly, we consider the scenario with different offsets. Let us denote Sai as
the scenario where T (0) = Tmax and all tasks have different offsets. In this case we
distinguish two possibilities:

1. At least one task of higher priority level than τi is requested later: knowing that
all the tasks consume energy and heat the system following the same pattern, i.e.
by considering that the heating comes only from processor energy consumption,
and that heating is greater than cooling, task τi will undergo less higher priority
interferences, and then, it may need less cooling to finish executing. Therefore,
the final response time of τi is lesser than or equal to the one given by scenario
Ssi which is a contradiction. Thus, such a scenario cannot lead to longer response
times.

2. At least one task of higher priority than τi is requested earlier: when τi is requested
later than a higher priority task, it undergoes less interference from this task
because, first, a part of it was executed before τi request time, and second, the
increase of temperature due to the higher priority task execution cannot be higher
than Tmax, and finally, if τi is requested much later than the higher priority tasks,
we just shift the landscape and will have case 1. Then, this scenario cannot be
worse than Ssi .

Therefore, in all possible situations, the response-time of a task τi is lesser or equal to
the one led by a synchronous activation of all higher priority tasks when the temperature
is at the maximum level.

7.4.2 The optimality of PFPASAP
We proved in Section 4.3.3 on page 118 that the PFPASAP algorithm is optimal

for the fixed-priority scheduling problem of energy-non-concrete energy-harvesting
systems which is close to the same scheduling problem of thermal-aware systems. In
this subsection we extend the optimility of PFPASAP to thermal-non-concrete systems.

Theorem 7.2.
The PFPASAP scheduling algorithm is optimal for fixed-priority thermal-non-concrete
task sets with constrained or implicit deadlines. As defined in Section 1.4.4 on page 37,
this optimality means that if PFPASAP fails to schedule a given task set, then, no other
fixed-priority algorithm can.

Proof. Let Γ denote a thermal-non-concrete task set. We suppose that Γ is feasible
using a fixed-priority assignment, but not schedulable with PFPASAP using the same
priority assignment. This means that at least one task denoted as τk misses its deadline
in the worst-case scenario (see Theorem 7.1 on page 179). Indeed, it is sufficient to
consider only the first job and an initial temperature T (0) = Tmax because we are
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dealing only with constrained or implicit deadlines. The jobs of the same task cannot
overlap unless for unfeasible tasks.

According to PFPASAP schemes, a deadline miss can occur in the worst-case scenario
only in two cases: 1) the workload is greater than the available time, 2) the workload
plus the accumulated cooling time is greater than the available time.

1) If the workload from the critical instant (time 0) to the first deadline of τk is alone
greater than time interval [0, Di], then, it is obvious that it is impossible to schedule
the first job of τk and higher priority jobs without missing Dk, this is not possible even
without thermal constrains because the available time is not sufficient to schedule all
the workload within [0, Dk]. Then, in this case the task set cannot be feasible with any
algorithm and the supposed algorithm cannot exist.

2) If a deadline is missed with PFPASAP even though the workload is lesser than the
available time, then, this means that the sum of workload of time interval [0, Dk] and
the needed cooling time is greater than the available time, i.e Dk time units. We know
that the cooling periods produced by PFPASAP are as long as needed to execute one
time unit which means that they are as short as possible. Furthermore, we know that
the cooling function is exponentially decreasing (see Equation 7.7 on page 177), then,
the shorter cooling periods are, the shorter the total needed cooling time is. This is true
because the longer cooling is, the less efficient it is, as we mentioned in Section 7.3 on
page 176. More formally, cooling down the system x times for one time unit is greater
than the one of only one cooling period of length x time units because e−bx ≤ xe−b for
all x ≥ 1. Thus, Equation 7.7 on page 177) implies Inequality 7.8.

T (0)− T (0)× e−b×x ≥ T (0)− x× T (0)× e−b(1−0) (7.8)

Therefore, any other schedule than the one of PFPASAP has necessarily cooling periods
of same length or longer, then, the response time of τk produced by the supposed
algorithm is necessarily greater than Dk. Thus, in this case, no other algorithm can
schedule this task set.

Then we prove that PFPASAP is optimal for non-concrete fixed-priority thermal-
constrained task sets with constrained or implicit deadlines.
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7.5 Response-Time Analysis

This section provides a response-time analysis for the schedule produced by the
optimal algorithm PFPASAP in the worst-case scenario, i.e. the synchronous release of
all the tasks when T (0) = Tmax. We discuss the difficulty of an exact analysis and then
we propose an approximate one.

7.5.1 Exact Analysis

The exact analysis provides the exact response time of all tasks. Thus, it must
estimate accurately the length of all cooling and heating periods.

However, this cannot be easily achievable with a generic equation. Due to the
discrete time, all cooling periods are not of the same length in the actual schedule.
Furthermore, without the effective values of parameters, it is hard to estimate the order
and the number of long and short cooling periods which have a significant impact on
the response time value. Therefore, the only way to get an exact analysis is to simulate
the schedule of PFPASAP in the worst-case scenario and compute the response time of
the first job of each task.

7.5.2 Approximate Analysis

The aim of this work is to propose a schedulability analysis for thermal-aware
real-time systems. Such an analysis must consider not only the processor workload but
also the additional cooling time needed to respect the thermal constraints. To cope
with the difficulty of providing an exact analysis, one can propose an approximate one
that can be only sufficient instead of necessary and sufficient. This can be achieved by
upper bounding tasks worst-case response time produced by PFPASAP algorithm.
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First Upper bound (UBTmin):

Knowing that PFPASAP cools down the system enough to execute at least one
time unit, cooling periods are as short as possible. Furthermore, we know also that
the cooling function is exponentially decreasing and the heating one is asymptotically
increasing. Then, one can lengthen jobs response times by putting the cooling units
together and the heating ones together such that Tmax is never exceeded. By doing so,
the cooling slows down after a while and the system needs more time to cool down.
Similarly, the heating accelerates which heats up the system in a shorter amount of
time.

Description
The upper bound of task τi worst-case response time according to UBTmin is described
by Figure 7.4 on the previous page. It consists of:

• cooling down the system from Tmax to Tmin, where Tmin > TA,1

• a ceiling function applied to the time from Tmax to Tmin to ensure an integer
number of time units (this is safe since it only overestimates the time required to
reach Tmin),

• executing jobs and heating up the system until Tmax is reached or there is no
pending workload,

• repeating cooling-heating cycles until there is no pending workload,

• the last cycle may be shorter because of the remaining workload which can be
shorter than a full cycle. The corresponding cooling time is adjusted.

The upper bound of the worst-case response time of task τi of priority level-i that is
requested simultaneously with higher priority tasks with T (0) = Tmax, denoted RTmin

i ,
is given by Equation 7.9

wn+1
i = N(wni )× (∆c + ∆h) + ∆′c + ∆′h

R
UBTmin
i = {mint>0\ wn+1

i = wni }
(7.9)

where:

• N(w) is the number of full cooling-heating cycles needed to execute the workload
w without exceeding Tmax.

N(w) =
⌊
w

∆h

⌋
(7.10)

1Observe that a low Tmin value may result in an extremely pessimistic upper bound due to the
nature of the cooling function; It decreases asymptotically to TA, so waiting until Tmin is too pessimistic
because of the nature of the cooling function.
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• w is the workload of time interval [0, wni [.

w =
∑
j≤i

⌈
wni
Tj

⌉
× Cj (7.11)

• ∆h is the time to execute jobs and heat up the system from Tmin to Tmax.
(Obtained by solving Equation 7.6 on page 177).

∆h =


ln
(
b× Tmin − a
b× Tmax − a

)
b

 (7.12)

• ∆c is the time to cool down the system from Tmax to Tmin. (Obtained by solving
Equation 7.7 on page 177).

∆c =
⌈

ln(Tmax)− ln(Tmin)
b

⌉
(7.13)

• ∆′h is the remaining execution time of the busy period.

∆′h = w −N(wni )×∆h (7.14)

• ∆′c is the cooling time needed for ∆′h.

∆′c =
⌈

ln(Tmax)− ln(T ′min)
b

⌉
(7.15)

• T ′min is the maximum temperature needed to execute the remaining part of the
workload ∆′h without exceeding Tmax.

T ′min = (Tmax − a/b)eb∆
′
h + a/b (7.16)

Theorem 7.3.
An upper bound on the worst-case response time for task τi in the worst-case scenario
described in Section 7.4.1 on page 179 can be obtained from a sequence of execution units
of higher priority jobs and the necessary cooling time units where the cooling periods
are as long as needed to cool down the system from Tmax to Tmin (Tmin > 0) and the
heating periods are as long as needed to reach Tmax starting from Tmin, as described by
Formula 7.9 on the facing page.

Proof. In the computation of UBTmin , the cooling periods are as long as needed to cool
down the system from Tmax to Tmin and the execution periods are as long as needed
to heat up the system from Tmin to Tmax. Furthermore, we know that in the actual
schedule produced by PFPASAP algorithm for task τi in the critical instant, a cooling
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period is as long as needed to execute at least one time unit. The length of this period
is shorter or equal than a cooling period of UBTmin , and thus, by repeating these short
cooling/heating cycles, it cools down the system faster than fewer and longer cooling
periods. Then, to prove Theorem 7.3 on the previous page, we suppose that the actual
schedule has at least one short cycle and we compare the two response times by using
Fourier’s law described by Equation 7.1 on page 176.

As described in Figure 7.5, we suppose that the system cools down for one time
unit from Tmax to T1 (see Equation 7.17), and then heats up for one time unit reaching
temperature T2 (see Equation 7.17). After that, we follow the same schedule as UBTmin

by finishing the cooling period needed to finish the workload ∆h − 1 and reach Tmax
(see Equation 7.18). The temperature of the system after this cooling period is denoted
T3 (see Equation 7.17).



T1 = Tmax × e−b

T2 = a

b
+
(
T1 −

a

b

)
e−b

Tmax = a

b
+
(
T3 −

a

b

)
e−b·(∆h−1)

T3 = a+ (b× Tmin − a)× e−b
b

T3 = T2 × e−b×∆′′c

∆′′c =
⌈

ln(T2)− ln(T3)
b

⌉
(7.17)

∆′′c =



ln
a+

(
b× Tmax × e−b − a

)
× e−b

a+ (b× Tmin − a)× e−b


b


(7.18)
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Let us now compare the response time given by this assumption and the one given
by UBTmin . Knowing that the first cooling period, i.e. the first period of of time elapsed
between Tmax and T1, is the same for both cases, and supposing that after reaching
Tmax at the end of the first heating cycle, i.e. from temperature T3 to Tmax, the actual
schedule follows the same pattern as UBTmin cycles (see Figure 7.5 on the facing page).
If UBTmin does not upper bound the actual response time, then the total cooling time
needed for ∆h workload in the actual schedule is greater than the one of UBTmin , i.e.
∆′′c + 1 > ∆c. Knowing that ∆c can be written as Equation 7.19

∆c = 1 +
⌈ ln(T1)− ln(Tmin)

b

⌉

= 1 +


ln
(
Tmax × e−b

Tmin

)
b


(7.19)

Therefore, if ∆′′c + 1 > ∆c, then,

∆′′c + 1 > ∆c ⇒


ln
a+

(
b× Tmax × e−b − a

)
× e−b

a+ (b× Tmin − a)× e−b


b


>


ln
(
Tmax × e−b

Tmin

)
b



⇒ ln
a+

(
b× Tmax × e−b − a

)
× e−b

a+ (b× Tmin − a)× e−b

 > ln
(
Tmax × e−b

Tmin

)

⇒
a+

(
b× Tmax × e−b − a

)
× e−b

a+ (b× Tmin − a)× e−b > Tmax × e−b
Tmin

⇒ a+ (b× Tmin − a)× e−b

a+
(
b× Tmax × e−b − a

)
× e−b

< Tmin
Tmax × e−b

⇒ 1− b× e−b(Tmaxė−b − Tmin)
a+

(
b× Tmax × e−b − a

)
× e−b

< 1− (Tmax × e−b − Tmin)
Tmax × e−b

⇒ b× e−2b × Tmax > a+ (b× Tmax × e−b − a)× e−b

⇒ b× e−2b × Tmax − b× e−2b × Tmax > a(1− e−b)

⇒ e−b > 1 which is impossible because b > 0 !
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Figure 7.6: Parametric upper bound UBx

Therefore, we prove by contradiction that ∆′′c + 1 ≤ ∆c, and then UBTmin upper
bounds the actual worst-case response time.

Parametric Upper bound (UBx):

Description
The idea of this upper bound is to keep the same behavior of the PFPASAP algorithm
by cooling down for some time units and then executing jobs until reaching Tmax. The
approximation comes from the fact that time is discrete and that cooling periods are
of a fixed length x (where x ∈ N∗) instead of the minimum length needed to execute
at least one time unit. Then, executing or the heating periods may not reach Tmax in
an integer number of time units. Thus, we consider only the integer part of heating
periods (with floor function) and that Tmax is exactly or nearly reached at the end
of each heating period which adds additional cooling time than the actual schedule.
Figure 7.6 describes the scenario used to obtain UBx. It consists of:

• Cooling down the system for x time units, where x is a positive integer that
must be greater or equal to ∆UBx

c , the minimum time needed to decrease the
temperature such that the system can execute at least one time unit, i.e. x ≥ ∆UBx

c .
Equation 7.20 computes ∆UBx

c ; the ceiling function is used to respect the discrete
time and to ensure that the system is cold enough to execute at least one time
unit.

∆UBx
c =


ln
(

bTmax

(bTmax − a)eb + a

)
b


(7.20)

• Then, executing jobs and heating up the system until Tmax is reached (without
exceeding) or there is no pending workload. The length of this period is an integer.
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The floor function is used to ensure not exceeding Tmax.

• Repeating the cooling-heating cycles until there is no pending workload.

• The length of the last cooling period is still the same even if the remaining
workload is smaller.

The upper bound according to UBx of task τi of priority level-i that is requested
simultaneously with higher priority tasks with T (0) = Tmax is given by Equation 7.21.{

wn+1
i = N(wni )× x+ w

RUBx
i = wn+1

i = wni
(7.21)

where :

• N(w) is the number of cooling periods needed to execute the workload w without
exceeding Tmax:

N(w) =
⌈

w

∆UBx
h

⌉

• w is the workload of time interval [0, wni [:

w =
∑
j≤i

⌈
wni
Tj

⌉
× Cj

• ∆UBx
h is the time to execute jobs and heat up the system from the temperature

reached after x time units of cooling to Tmax:

∆UBx
h =


ln
(
b× Tmax × e−b×x − a

b× Tmax − a

)
b

 (7.22)

We choose cooling periods longer or equal to ∆UBx
c , i.e. x ≥ ∆UBx

c , because it is sufficient
to execute at least one time unit without exceeding Tmax which is close the behavior of
PFPASAP algorithm.

To prove that UBx upper bounds the actual response time, we first check the
case where x = ∆UBx

c . We know that in the actual schedule, the accumulation of
the temperature gained at the end of each heating period due to the discrete time, is
lesser than Tmax. We denote this difference of temperature δ.Thus, this accumulated
temperature can be used at least by one heating period which is supposed to be longer
as shown in Figure 7.7 on the next page. Then, we compare the length of the new
heating period ∆′h (see Equation 7.23 on the following page) to the one of UBx, i.e.
∆UBx
h , and the total number of cooling/heating cycles produced by UBx, i.e. NUBx(w),

and the one produced by the actual schedule denoted N ′(w).
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Figure 7.7: UBx proof insight


Tmax = (a+ (b× T2 − a)e−b×∆′h)/b

T2 = (Tmax − δ)e−b×x

∆′h =


ln
(
b× (Tmax − δ)× e−b×x − a

b× Tmax − a

)
b

 (7.23)

Lemma 7.1.
For x = ∆UBx

c , each heating interval of the actual schedule ∆′h given by Equation 7.23
is greater than or equal to UBx’s ones, i.e. ∆UBx

h ≤ ∆′h.

Proof. Let us suppose that ∆UBx
h > ∆′h, then:

∆UBx
h > ∆′h ⇒

 ln
(
b× Tmax × e−bx − a

bTmax − a

)
b

 >


ln
(
b(Tmax − δ)e−bx − a

bTmax − a

)
b



⇒
ln
(
bTmaxe

−bx − a
bTmax − a

)
b >

ln
(
b(Tmax − δ)e−bx − a

bTmax − a

)
b

⇒ bTmaxe
−bx − a

bTmax − a >
b(Tmax − δ)e−bx − a

bTmax − a
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Knowing that bTmax < a, then:

∆UBx
h > ∆′h ⇒ bTmaxe

−bx − a < b(Tmax − δ)e−bx − a

⇒ bTmaxe
−bx < b(Tmax − δ)e−bx

⇒ bTmaxe
−bx < b(Tmax − δ)e−bx

⇒ Tmax < Tmax − δ

⇒ δ < 0

Contradiction because 0 < b < 1, δ ≥ 0 and b× Tmax < a.
Therefore, we prove by contradiction that ∆UBx

h ≤ ∆′h

Lemma 7.2.
For x = ∆UBx

c , the number of cooling periods produced by a PFPASAP actual schedule
denoted N ′(w) is lesser than or equal to the ones produced by UBx, i.e. N ′(w) ≤
NUBx(w).

Proof. Let us suppose that N ′(w) > NUBx(w). From Lemma 7.1 on the facing page we
know that ∆UBx

h ≤ ∆′h at least for one time. Then:

N ′(w) =
⌈
w −∆′h
∆UBx
h

⌉
+ 1 =

⌈
w − (∆UBx

h + δ)
∆UBx
h

⌉
+ 1

where δ ≥ 0. Then, N ′(w) can be written as follows:

N ′(w) =
⌈
w − δ
∆UBx
h

⌉

Therefore, if N ′(w) > NUBx(w), then:

N ′(w) > NUBx(w) ⇒
⌈
w − δ
∆UBx
h

⌉
>

⌈
w

∆UBx
h

⌉

⇒ w − δ
∆UBx
h

> w

∆UBx
h

⇒ δ < 0

Contradiction, because ∆′h ≥ ∆UBx
h and δ ≥ 0. Therefore, we prove that N ′(w) ≤

NUBx(w)

Theorem 7.4.
An upper bound on the worst-case response time for task τi in the worst-case scenario
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described in Section 7.4.1 on page 179 can be obtained from a sequence of execution
units of τi and those of higher priority jobs and the necessary cooling time units where
the cooling periods are of x time units and the heating periods are integers and as long
as needed to reach Tmax (without exceeding) after x time units of cooling, as described
by Formula 7.21 on page 189.

Proof. To prove this theorem, we have to study the case where x = ∆UBx
c and the one

where x > ∆UBx
c .

Case where x = ∆UBx
c : From Lemma 7.1 on page 190 and Lemma 7.2 on the

preceding page we know that N ′(w) ≤ NUBx(w), then:

N ′(w) ≤ NUBx(w) ⇒ N ′(wni )x+ wni ≤ NUBx(wni )x+ wni

⇒ w′i ≤ wUBxi ⇒ R′i ≤ RUBx
i

⇒ R′i ≤ RUBx
i

Hence, when x = ∆UBx
c , UBx is an upper bound of tasks worst-case response time

according to PFPASAP algorithm.

Case where x > ∆UBx
c : Lengthening cooling periods by increasing the x parameter

is expected to increase the pessimism of UBx by increasing tasks response time over
estimation given by Equation 7.21 on page 189. To prove that, one can check if
the UBx’s response time computation function is increasing. From Equation 7.21 on
page 189, the response time function can be written as follows:

wn+1
i =


w ln

(
b×Tmax×e−b×x−a

b×Tmax−a

)
b




× x+ w

Recall that the ceil function is used to ensure a non null integer length for cooling
period, and that floor function is used ensure never exceeding Tmax after a heating
period. Even though, these two functions contribute to increase the pessimism of UBx,
removing them does not change the response time function monotonicity. Then, we
can study the monotonicity of this new function that we call f(x) by computing its
derivative function as follows:

f(x) = w × b× x

ln
(
b× Tmax × e−b×x − a

b× Tmax − a

) + w
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Figure 7.8: f ′(x) sign

f ′(x) =
b× ln

(
b× Tmax × e−b×x − a

b× Tmax − a

)
+ b3 × Tmax × x× e−b×x

b× Tmax × e−b×x − a(
ln
(
b× Tmax × e−b×x − a

b× Tmax − a

))2

We do not show the whole study of f(x)’s sign, we do this only with deductions.
We can see that the sign of f ′(x) depends only on the numerator part of the fraction,
we denote this part g(x). Then, knowing that g(0) = ln(a/(a− bTmax)) > 0, we can say
that g(x) is positive in interval [1,+∞[ because of the following arguments. Firstly, the
left part (i.e the logarithm part) is positively increasing because the combination of the
logarithm and the reverse exponential functions leads to decrease the numerator part
of the fraction which is inside the logarithm. Knowing that bTmax − a is negative, then,
bTmaxe

−bx − a is negatively increasing which makes the sign of the fraction necessarily
positive and increasing. Secondly, the right part is negative because b× Tmax < a. It
is slightly decreasing from 0 for a while and then it increases asymptotically to 0 as
shown in Figure 7.8. Therefore, the sum of these two parts leads g(x) to be positive
because the left part dominates the right one as shown in Figure 7.8, and thereby it
leads f ′(x) to be also positive which means that f(x) is increasing in interval [1,+∞[.
Then tasks response time according to UBx increases when x is increasing.

Therefore, we prove that UBx upper bounds the actual PFPASAP worst-case response
time.
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Lower bound (LBx=1):

Knowing that the actual schedule respects the discrete time constraint, we can
compute a lower bound of the actual tasks worst-case response time by violating this
constraint, i.e. allowing non-discrete execution times (see 7.9). The following points
summarize the behavior of LBx=1:

• Cooling down the system for one time unit. This is sufficient because continous
time allows executing less than one time unit.

• Then, executing jobs and heating up the system until Tmax is reached or there is
no pending workload; the length of this period is not necessarily an integer.

• Repeat cooling-heating cycles until there is no pending workload.

The lower bound of task τi of priority level-i that is requested simultaneously with
higher priority tasks with T (0) = Tmax is given by Equation 7.24{

wn+1
i = N(wni ) + w

Ri = wn+1
i = wni

(7.24)

where :

• N(w) is the number of cooling periods needed to execute the workload w without
exceeding Tmax:

N(w) =
⌈

w

∆LBx=1
h

⌉
(7.25)

• w is the workload of time interval [0, wni [.

• ∆LBx=1
h is the time to execute jobs and heat up the system from the temperature

reached after one time unit of cooling to exactly Tmax:

∆LBx=1
h =

ln
(
b× Tmax × e−b − a

b× Tmax − a

)
b

(7.26)
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Conjecture 7.1.
A lower bound on the worst-case response time for task τi in the worst-case scenario
described in Section 7.4.1 on page 179 can be obtained from a sequence of execution
units of τi and higher priority jobs and the necessary cooling time units where the cooling
periods are of one time unit and the heating periods are continuous (not necessarily
integers) and as long as needed to reach exactly Tmax after one time unit of cooling, as
described by Formula 7.24 on the facing page.

Proof. Let’s denote ∆H the longest execution period produced by the actual PFPASAP
schedule. Knowing that ∆LB2

h ≥ ∆H because ∆H is an integer and ∆LB2
h is a real

number, then:

∆LB2
h ≥ ∆H ⇒

⌈
w

∆LB2
h

⌉
≤
⌈
w

∆H

⌉

⇒
⌈

w

∆LB2
h

⌉
+ w ≤

⌈
w

∆H

⌉
+ w

⇒ RLB2 ≤ RH ≤ R

Therefore, we prove that LB2 lower bounds the actual worst-case response time
according to PFPASAP .

UBTmin vs. UBx

The tightness of the upper bound UBx relative to UBTmin depends on the parameter
x. In fact, the greater x is, the more pessimistic UBx is because of the nature of the
cooling function which is asymptotically decreasing to TA. Then, for small values of
x, UBx is tighter and for great values UBTmin is tighter. The experiments presented
in Section 7.6 on page 197 demonstrates the differences in practice between UBx and
UBTmin in term of tightness and complexity.

Utilization bound

Under thermal constraints, cooling periods are needed to prevent the system ex-
ceeding Tmax. This means that for a certain processor utilization, more time is needed
for cooling which means that the processor cannot be used at 100%. One can use this
idea to propose a new maximum processor utilization that can respect the thermal
constraints. In the following we discuss utilization bounds that consider cooling time.

Maximum utilization
Without considering thermal constraints, task sets cannot be feasible with a processor
utilization greater than 100% for monoprocessor platforms. Furthermore, knowing that
respecting the thermal constraints needs to add some cooling time, then, it is obvious
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that a task sets with a processor utilization of 100% cannot be feasible with PFPASAP ,
especially when Tmax is limited. To compute the maximum supportable processor
utilization that take into account cooling time, one can use the idea of overestimating
response times, by overestimating the cooling time needed to execute the workload of
one hyper-period. We can use for instance the idea of UBx to compute an upper bound
for the maximum supportable processor utilization.

Lemma 7.3.
An upper bound of the processor utilization U = ∑

1≤i≤nCi/Ti for thermal-aware fixed-
priority task sets can be obtained by Equation 7.27.

U ≤ ∆UBx
h

∆UBx
h + x

(7.27)

where ∆UBx
h is given by Equation 7.26 on page 194.

Proof. We first upper bound the workload of one hyper period with UBx then we
compute the corresponding processor utilization, and finally we compute the maxi-
mum achievable utilization. The workload of a hyper-period HP can be obtained by
multiplying HP by the processor utilization U . Then, we can replace w by U ×HP
in Equation 7.21 on page 189 to compute the time needed (cooling and workload) to
satisfy the workload U ×HP . Finally, we can compute the new utilization U∗, that
considers cooling time, by dividing the time demand (cooling and workload) by the
available time HP , Equation 7.28 shows how to compute U∗.

U∗ =

⌈
U ×HP

∆UBx
h

⌉
× x+ U ×HP

HP
(7.28)

For a task set to be feasible, the new utilization U∗ must be lesser than 1 because the
available time must be greater or equal to the time demand. Then,

U∗ ≤ 1 ⇒

⌈
U ×HP

∆UBx
h

⌉
× x+ U ×HP

HP ≤ 1

⇒
U ×HP × x

∆UBx
h

+U×HP

HP ≤ 1

⇒ U ×
(

x
∆UBx
h

+ 1
)
≤ 1

⇒ U ≤ ∆UBx
h

∆UBx
h + x
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Liu and Layland bound We can use the same reasoning as the above utilization
upper bound to propose a sufficient and pessimistic feasibility test based on Liu and
Layland bound. In fact, we can compare the total time utilization (processor and
cooling) to Liu and Layland bound.

Lemma 7.4.
An upper bound of the processor utilization U = ∑

1≤i≤nCi/Ti for thermal-aware fixed-
priority task sets with implicit deadlines can be obtained by Equation 7.29.

U ≤ ∆UBx
h × n( n

√
2− 1)

∆UBx
h + x

(7.29)

Proof. To prove this Lemma we just have to compare the over estimated utilization U∗
given by Equation 7.28 on the preceding page to Liu and Layland bound.

U∗ ≤ n(21/n − 1) ⇒

⌈
U ×HP

∆UBx
h

⌉
× x+ U ×HP

HP ≤ n( n
√

2− 1)

⇒

U ×HP × x
∆UBx
h

+ U ×HP

HP ≤ n( n
√

2− 1)

⇒ U ×
(

x
∆UBx
h

+ 1
)
≤ n( n

√
2− 1)

⇒ U ≤ ∆UBx
h × n( n

√
2− 1)

∆UBx
h + x

7.6 Performance Evaluation
In this section, we present the results of an empirical investigation, examining the

effectiveness of our sufficient schedulability tests.

7.6.1 Task set generation
To perform these experiments, we randomly generated 100000 task sets, varying

the processor utilization. We varied U in the range [0.05, 1] in steps of 0.05. Hence we
obtained 5000 distinct task sets for each U step. Each task set is composed of 10 tasks.
The thermal parameters was set as, Tmax = 32 ◦C, b = 0.228, and a = β0 × S3 = 8.
These parameters are the ones of the whole system (including an eventual cooling
device) and correspond to a classical Intel Pentium processor parameters [Het+12].
The task parameters were randomly generated as follows: task processor utilization



198 Chapter 7. Response-Time Analysis for Thermal-Aware Scheduling

(Ui = Ci/Ti) using the U-Unifast Discard algorithm [BB05], and periods randomly
generated between 2 and 25200 time units with a hyper-period limitation technique
[MG01]. Task deadlines were implicit.

We used YARTISS as a simulation environment (see Chapter 8) which respects the
following hypotheses: discrete time (all scheduling operations are performed before or
after one time unit), the heating behavior follows the Fourier’s law (see Equation 7.6
on page 177) and temperature values are real numbers.

7.6.2 Schedulability tests investigated
We investigated the performance of the following schedulability tests.

• SIM : is an empirical necessary and sufficient test based on simulating the schedule
of PFPASAP over more than one hyper-period, starting with synchronous release
and the maximum temperature level which corresponds to the worst-case scenario
discussed in Section 7.4.1 on page 179.

• UBTmin : the sufficient test presented in Section 7.5.2 on page 184, we consider
that Tmin = 1 ◦C.

• UBx: the sufficient test presented in Section 7.5.2 on page 188, the parameter x
is varied from 1 to 18.

• LBx=1: the necessary test presented in Section 7.5.2 on page 194.

• CFP : the exact test for fixed-priority ignoring thermal and energy constraints.
This was used to provide a schedulability bound, considering only processing time.

• UTZ: the necessary condition described in Section 7.5.2 on page 195.

• LnL: the sufficient condition described in Section 7.5.2 on the preceding page.

7.6.3 Experiments
Figure 7.10(a) on the next page shows how the percentage of task sets that are

deemed schedulable by each of the tests varies with processor utilization. The CFP test
has notionally the highest performance since it is widely optimistic and ignores thermal
considerations. When temperature is considered, UTZ, LBx=1 provide necessary tests,
upper bounding the number of task sets that are proved to be schedulable by the exact
empirical test SIM . We observe that the results confirm that UBTmin and UBx provide
sufficient schedulability tests and that for x = 1, UBx is a tighter bound than UBTmin

with a larger improvement at higher utilization levels. Furthermore, this experiment
confirms also the validity of the utilization bounds given in Section 7.5.2 on page 195.
We can see that the maximum achievable utilization for 10 tasks is 80% for UTZ and
the adapted Liu and Layland bound is 57%.
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Figure 7.10(b) on page 199 compares the pessimism of UBTmin based shcedulability
test to UBx’s one by varying the x parameter. We observe that UBx stays less pessimistic
than UBTmin for small values (1 ≤ x ≤ 14 in this experiment), however, it becomes
more pessimistic starting from x = 14. This result is as expected because the longer
cooling periods are, the slower the temperature decreases and the longer the response
times are.

Figure 7.10(c) on page 199 shows average deviation of bounds from the exact
response time given by simulations over processor utilization. The upper bounds have
positive values and lower bounds have negative values (the deviation of SIM is 0
because it gives the exact response time). We can see that deviation of UBx, LBx=1
and CFP are still stable over utilization variation in contrast of UBTmin which behaves
badly when utilization goes high. We notice also that when x = 1, UBx and LBx=1
are very close to the actual response time which makes them very interesting tools for
approximate schedulability analysis. However, increasing x leads UBx to be less precise,
when x > 14, UBx behaves as bad as UBTmin or worse.

Weighted Schedulability As well as processor utilization, task set schedulability is
dependent on a number of other key parameters, including: tasks deadlines model and
the number of tasks. Evaluating all possible combinations of these parameters is not
possible. Instead, the evaluation in this section varies one parameter at a time, with
the results presented in terms of the weighted schedulability measure [BBA10].

The figures in this section show the weighted schedulability measure described in
Section 5.4.2 on page 149.

Figure 7.11(a) on the facing page shows the impact of constrained deadlines on
performance. Here we vary the deadlines from heavily constrained where Di − Ci is
10% of Ti − Ci to 100% of Ti − Ci (i.e. implicit deadlines). We observe that all of the
schedulability tests are influenced by the tightness of deadlines to a similar degree, with
heavily constrained deadlines having significant impact on schedulability in all cases.

Figure 7.11(b) on the preceding page shows the impact of the number of tasks
on the effectiveness of the feasibility tests. We can see that the number of tasks does
not alter the feasibility rate of all the bounds.

Figure 7.11(c) on the facing page shows the trade-off of schedulability and
overhead between UBx and UBTmin over parameter x variation. The shown percentages
represent the gain or the loss of schedulability and overhead comparing to UBTmin . For
example, for x = 1, The schedulability test based on UBx=1 has more than 100% of
schedulability than UBTmin and almost 40% more overhead than UBTmin . Positive values
mean better performances than UBTmin and negative value mean worse performances.
We observe that increasing parameter x decreases the percentage of schedulable task
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sets, however, it decreases the test complexity or overhead. We observe also that the
loss of schedulablity is higher than the gain of overhead.

7.7 Conclusion
In this chapter, we addressed the problem of fixed-priority real-time scheduling for

thermal-aware systems, where both time and thermal constraints have to be met. In a
previous chapter, we showed that the scheduling policy PFPASAP is optimal among all
fixed-priority scheduling algorithms for energy-non-concrete energy-harvesting systems.
The main contributions of this chapter are as follows. we adapted PFPASAP algorithm
to the thermal-aware model, we proved its optimality and we proposed two schedulability
tests based on response-time upper bounds UBTmin and UBx which is a parametric
bound. Finally we performed simulations to validate the theoretical results. The
scheduling problems of energy-harvesting and thermal-aware systems seem to be close
to each other. This opens the door to use and adapt scheduling solutions from one
side to an other. This work is a first step in this way. It is interesting to continue
studying deeply the possible similarities between energy-harvesting model and the
thermal-aware’s one and to explore more adaptable and extensible results of each
model.
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8.1 Introduction
The real-time scheduling theory has been studied by many researchers since decades,

and many solutions and approaches have been proposed in the past to optimize the
scheduling of real-time tasks on single and multiple processor systems. In order to
check if a task set respects its temporal constraints according to a specific scheduling
policy or to evaluate the efficiency of a new approach against other algorithms, using
simulation software is considered as a valid comparison technique and it is commonly
used in the evaluation of real-time systems.
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Unfortunately, there is no standard simulation tool approved by the real-time
community and the existing tools are usually hard to be extended due to various reasons
such as code complexity, software copyrights or poor documentation. As a result, most
of the researchers tend to create their own simulation tools. This situation raises some
concerns. On one hand, results are hard to be validated without careful examination
of the used simulation tool. So these results might be biased toward the proposed
approach either by adapting the generation of tasks or by biased implementation against
the compared algorithms. On another hand, the use of out-of-date simulation tools
or the lack of good documentation pushes researchers to not use the existing tools
and to create their own ones, which leads to repetitive implementations especially
the common ones e.g. Earliest Deadline First (EDF ), Rate Monotonic (RM) and
Deadline Monotonic (DM).

Besides the time and the effort spent by researchers in developing new simulation
tools, the process of implementing comparable algorithms can be sometimes complicated
and time-consuming. If a standard simulation platform succeeds to emerge, one can
re-use already-implemented policies from literature and compare them with new policies
without the need to understand their specifications and particularities. Finally, the
simulation protocols can be standardized, and easily describable by the use of such a
reference tool.

In this chapter, we introduce Yet An Other Real-Time Systems Simulator (YARTISS),
a new simulation tool for real-time multiprocessor systems, which provides various
functions to simulate the scheduling process of real-time task sets and their temporal
behavior.

The main particularity of YARTISS is its genericity, by which we aim to overcome
the previously mentioned problems. Its architecture is designed in a way to allow new
users to add their own policies and algorithms and extend the simulator easily with no
need to modify the core of the simulator or even understand how it is built. YARTISS is
an extension of previous simulator projects [Mas; Fau] designed earlier by our research
team. We learned a lot from these attempts and we included this experience in the
development of YARTISS.

YARTISS is written in Java programming language, which is a popular object-
oriented language that offers valuable attributes regarding code portability. In order to
ensure independence between the different features of the simulator and to control the
development process, we used modern programming paradigms like module-oriented
programming and agile programming methods. We tried to develop YARTISS keeping
in mind that for a simulator in order to become a reference tool, it should have the
following properties: 1) the software must be available under an open source license
which gives any researcher the freedom to analyze, verify and modify its implementation
without the permission of the copyright holder; 2) the Application Programming
Interface (API) of the software must be well-documented and the developer who wants
to add or modify a part should be able to do it easily with no need to read the entire
source code in order to understand its behavior; 3) each part of the simulator must be
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independent from the other parts (or at least acyclic dependences must be guaranteed ,
and easily replaceable by an external module; and 4) the simulator has to be easy to
use in a way that a non-developer researcher can be able to use it easily. Due to its
genericity and modularity, we hope that YARTISS makes a valuable contribution to
the long process of developing a standard simulation tool recognized by the real-time
scheduling research community. YARTISS was developed in our Lab in collaboration
with Manar Qamhieh and Frédéric Fauberteau. The work presented in this chapter is
also available in [Cha+12].

The structure of this chapter is as follows. We review related works and examples
of real-time simulators in Section 8.2. Section 8.3 on the following page contains our
motivation and shows the history of YARTISS. Then, in Section 8.4 on page 207 we
present the various features of our simulation tool. The architecture design of the
simulator is described in Section 8.5 on page 213. We present a case study in Section 8.6
on page 221 in order to demonstrate the extensibility of the tool. Information about the
available versions of YARTISS and its download and install instructions are provided
in Section 8.7 on page 223. Finally, Section 8.8 on page 223 concludes this chapter.

8.2 Related Works

In this section we explore the existing works related to simulation tools and we
identify their respective strengths and weaknesses. There exist many tools to test and
visualize the execution of real-time systems. These tools are divided mainly into two
categories: the execution analyzer frameworks and the simulation software. Regarding
the execution analyzers, one can refer to RESCH [KRI09] which is a loadable real-
time scheduler framework for Linux. Also, Grasp [Hol+10] which is a set of tools
designed for tracing and measuring the scheduling of real-time tasks. Furthermore,
LitmusRT [Cal+06] is a real-time extension to Linux kernel for multiprocessor systems
that monitors the scheduling behavior of a real task set on a real platform.

Among open-source simulation tools, we start by referring to MAST [GH+01]
which is a modeling and analysis suite for real-time applications that was developed in
2000. MAST is an event-driven scheduling simulator that permits modeling distributed
real-time systems and offers a set of tools to test their feasibility or to compute their
sensitivity analysis. Another known simulator is Cheddar [Sin+09; Sin+04] which was
developed in 2004, it handles the scheduling of real-time tasks on multiprocessor systems.
It provides many implementations of basic scheduling, partitioning and analysis of
algorithms. Unfortunately, no API documentation is available to help implementing
new algorithms and to facilitate its extensibility. Moreover, Cheddar is written in Ada
programming language [MSH11] which is used mainly in embedded systems and has
strong features such as modularity mechanisms and parallel processing. Ada is often the
language of choice for large systems that require real-time processing, but in general, it
is not a common language for desktop or web applications. We believe that the choice
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of Ada reduces the potential contributions to the software from average developers and
researchers.

Finally, STORM [UDT09] and FORTAS [CG11] are simulation tools which, as
YARTISS, are written in Java. The first one, STORM, was released in 2009 and was
presented as a simulation tool for real-time multiprocessor scheduling. It has a modular
architectures and can simulate the scheduling of task sets on multiprocessor systems
according to several scheduling policies. The specifications of the simulation parameters
and the scheduling policies are modifiable using an Extensible Markup Language
(XML) file. However, the simulator tool lacks a detailed documentation and description
of the available scheduling methods and the features of the software. The second one,
FORTAS, is a real-time simulation and analysis framework which targets uniprocessor
and multiprocessor systems. It was developed mainly to facilitate the comparison
process between the different scheduling algorithms, and it includes features such as
task generators and computation of results of each tested and compared scheduling
algorithm. FORTAS represents a valuable contribution in the effort towards providing
an open and modular tool. Unfortunately, it seems to suffer from the following issues:
its development is not open to other developers up to now (we can only download .class
files), no documentation is yet provided and no new version has been released to public
since its presentation in [CG11].

During the development of YARTISS, we learned from those existing tools and we
included some of their features in addition to others of our own. Our aim is to provide a
simulation tool for multiprocessor systems that is easily extendable by fellow researchers
and developers, and it can be used to compare, simulate and visualize the scheduling of
real-time tasks on multiprocessor systems.

8.3 The History of YARTISS
YARTISS is the fourth simulation tool developed by our team during the last few

years. In this section we present each one of these tools, their contributions, challenges
and limitations. Each one of these tools was built for a specific purpose and consumed
relatively a long period of time to be developed. We used the experience from the
earlier simulators in the design of YARTISS. This is done by summing and optimizing
their functionalities while avoiding their limitations.

Our first try in writing a real-time system simulator was called RTSS [Mas] and it was
developed between 2005 and 2008. RTSS was initially developed to test some scheduling
algorithms on uniprocessor systems in order to handle temporal fault tolerance, such as
preemptive fixed priority, EDF and DOV ER algorithms [KS95]. Later, it was extended
in order to test aperiodic tasks with task servers such as Polling and Deferrable Servers
and their handling algorithms [MM08]. RTSS suffered from some problems. For
example, many modifications have been made in a hurry with certain assumptions
on the behavior of the existing code without a proper documentation. Also, RTSS
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was not easily extendable, a single modification in one part of the code could cause
non-understandable errors in another part of the software. Moreover, although the tool
was initially written in Java, it began to rely more and more on bash scripts which are
used mainly to launch the simulation processes and to transform outputs into human
readable files.

Based on RTSS, a second simulation tool was developed between 2008 and 2011. It
was called RTMSim [Fau] and it targeted the scheduling simulation of multiprocessor
platforms [FMG11]. In the meanwhile, RTSS had become such complicated and
not maintainable that we had to start over rather than to extend its functionalities
to multiprocessor systems. The general key ideas of RTSS were kept for RTMSim.
Unfortunately, the validated parts of RTSS, which were of no interest at that time,
were not re-implemented in RTMSim and thus they were lost.

A third try was made in early 2011. RTSS v2 [Mas] was developed as a rebuild of
RTSS in the aim of including energy consuming tasks. Unfortunately, even if RTSS v2
is more usable today than the first version, it still suffers from the same problems of the
original tool, namely the poor documentation and the lack of modularity. Moreover, it
seemed difficult to extend it to simulate multiprocessor platforms.

So we came to the development of a new software: YARTISS. From the beginning, we
aimed to produce a tool where the task models, the number of processors and scheduling
behavior such as energy consumption models can be easily added and modified. Another
important point is the usability of the user interface to produce human readable traces
of the simulation process of scheduling algorithms. Our goal was to develop a tool that
is able to perform evaluations as well as to debugging various algorithms including
the energy-related algorithms. When we wanted to use YARTISS for another purpose,
for example, the simulation of scheduling dependent real-time tasks of the acyclic
graph model (see [Qam+12]), this was done without any problems which validated the
extensibility of our simulator. This point is explained in more detail in Section 8.6 on
page 221.

8.4 Functionalities

There are two main functionalities in our simulation tool, the first is the simulation
of tasks execution and the temporal behavior of a task set according to a specific
scheduling policy. The second functionality is the large-scale comparison of several
scheduling policies in different scenarios. Both functionalities require a third feature
which is the random task set generation.

In this section we explain all functionalities of YARTISS in details while showing
their specifications and various characteristics regarding the scheduling problem of
real-time systems.



208 Chapter 8. Simulation Tool: YARTISS

8.4.1 Single Task Set Simulation
This feature deals with the simulation of the execution of a task set on mono/-

multiprocessor platform with a specific scheduling policy. The used task sets can be
loaded into the simulator either through the graphic user interface by loading an input
file or entering the parameters manually, or by using a task set generator. We can
parameterize the desired simulation and run it easily. Furthermore, several views are
proposed. The simulation parameters are the task set, the number of processors, the
scheduling algorithm and the energy profile.

Task Models

YARTISS offers an open architecture that greatly facilitates the integration of
different task models. The current version proposes two models, the first one is the
Liu and Layland task model augmented with energy related parameters. All tasks are
considered independent and each task τi is characterized by its Worst Case Execution
Time (WCET) Ci, its worst case energy consumption Ei, its period Ti and its deadline
Di. The second model is the Directed Acyclic Graph (DAG) task model which is
a common real-time dependent task model for multiprocessor systems. It is used to
implement systems consisting of number of subtasks with dependencies to control their
execution flow. In this model, a graph task Gi is a collection of real-time subtasks
{τi,1, τi,2, ...τi,q} that share the same deadline Di and period Ti of the DAG, and they
differ in their own WCET Ci,j. The directed edges between the tasks of the graph
determine their precedence constraints, and since each task in the graph might have
more than one successor and predecessor, concurrent execution can be generated.

These two models are the common models of independent and dependent real-
time tasks, and they can have different characteristics regarding deadlines (implicit,
constrained), and regarding periods (periodic, sporadic). We show in Section 8.6 on
page 221 a case study to demonstrate how to easily integrate new task models into
YARTISS.

Mono / Multiprocessor

Our simulation tool supports multiprocessor scheduling. According to this, the
number and the type of processors is passed as a parameter of the simulation. Initially
we considered a single type of platforms which consists of identical monospeed processors.
This model is extended in YARTISS to include heterogeneous systems in which the
processors can have different characteristics.

By using the simulator, one can implement and test his own multiprocessor algorithms
and partitioning policies. Also, we considered a global scheduling of task sets on
multiprocessor systems. It is defined as the scheduling in which the execution of
a job can be interrupted by higher priority jobs and the execution can be resumed
on a different processor. By default, some multiprocessor scheduling algorithms were
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(a) Time-line view

(b) Multiprocessor view

Figure 8.1: Energy and multiprocessor views
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(a) Scenarios view

(b) Metrics view

Figure 8.2: Large scale simulation view
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implemented in YARTISS on multiprocessor systems like EDF and Fixed-Task-Priority
(FTP).

Energy Profile

Unlike many other simulators, YARTISS permits us to simulate the production
and the consumption of energy in real-time systems. It permits the user to model an
energy-harvester and an energy storage unit such as a battery or a capacitor with a
certain capacity. A renewable energy source can be modeled also using a charging
function. It is possible as well for the user to implement and use customized energy
profiles. Figure 8.2 on the facing page shows screen-shots of the user interface of
YARTISS. We can see in Figure 8.1(a) on page 209 the time chart of the storage unit
energy level where we can see the consumption during the scheduling process. The
energy view, which is used to print the energy level chart is among many views provided
by YARTISS to show other metrics.

Energy Source Model: We have implemented an energy source profile that models
a renewable energy source represented by an energy storage unit with limited capacity.
Other models can be added by the user by implementing the profile interface and
injecting it into the engine module of the simulator. This process is not complicated
and it can be done without modifying the other modules of the simulator.

Consumption Model: It is important to note that the energy consumption of a task
must be modeled independently from its WCET as in the case of [JM06]. Therefore,
our simulator provides the ability to define a consumption profile for each task of the
system or to choose one global profile to apply to all tasks. A consumption model is
represented by a function and must be able to provide the amount of energy consumed
within a time interval during the tasks execution i.e. the integral of the consumption
function. The implemented models so far are: Linear consumption (not realistic but
permits to establish some interesting conclusions) and Early instantaneous consumption
where all the energy cost of a task is consumed as soon as a task is scheduled. This
latter model seems to be the worst-case scenario.
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8.4.1.1 Scheduling Policy

The main purpose of the simulator is to test scheduling algorithms by comparing
them to each other in order to measure their performances and efficiency. Much attention
has been focused on the design of this part of YARTISS to make it as generic as possible
so that users can add, override and inject their own scheduling policies easily. There are
currently many algorithms implemented in YARTISS with different priority assignment
policies such as fixed-job, fixed-task and dynamic priority. It includes also classical
algorithms such as RM , DM , EDF , Least Laxity First (LLF ) for both mono and
multiprocessor platforms. Users can add new scheduling policies easily, and Section 8.6
on page 221, we demonstrate in details how to integrate a new policy independently
from the rest of the modules of the simulator.

8.4.2 Run Large Scale Simulations

One of the major features of YARTISS is the large scale comparison of several
algorithms or scheduling policies. It is similar to the single task set simulation but it
is performed on a large set of task sets in different configurations and scenarios. The
comparison results are based on statistics such as the number of schedulability failures
or deadline misses, the system’s lifetime, the amount of time spent at maximum and
minimum energy levels or the average duration of idle and busy periods. Multiple
simulations can run simultaneously due to the use of the multi-threading concept
supported by Java. As a result, the duration of simulations is greatly reduced through
the parallelism of the used hardware.

8.4.3 Task Set Generation

Performing large scale simulations requires a large set of task sets. For the simulation
results to be credible, the used task sets should be randomly generated and varied
sufficiently. The simulator provides the ability to choose a generator according to the
desired task models and algorithms. The current version includes by default a generator
based on the UUniFast-Discard algorithm [BB05] coupled with a hyper-period limitation
technique [MG01] adapted to energy constraints. This algorithm generates task sets
by distributing the processor utilization and the energy utilization on tasks randomly.
Since the original version of the algorithm does not include energy, we had to adapt it
to produce feasible systems regarding time and energy. The idea behind the algorithm
is to distribute the system’s utilization on the tasks of the system. When we consider
tasks energy cost, we end up with two parameters to vary and two conditions to satisfy.
The algorithm in its current version distributes U and Ue uniformly on the tasks in
such a way that when we generate n task sets, we get approximately the same number
of task sets for each utilization value. Then, the algorithm finds the couples (Ci, Ei)
which satisfies all the conditions namely Ui, Ue and energy consumption constraints.
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The operation is repeated several times until the desired couples satisfy the imposed
conditions.

8.4.4 Graphical User Interface (GUI)

To facilitate the use of the simulator by a large number of users, we provide our tool
with a Graphic User Interface (GUI) to support the above-mentioned features in an
interactive and intuitive way. After the simulation of a specific system with a specific
energy profile and a specific scheduling policy, the user can follow and analyze the
scheduling process using three different views: a time chart (Gant chart), a processor
view and the energy storage level chart which monitors the energy levels of the system.
In order to run simulations and get the results of comparison of scheduling policies, the
simulator offers a control panel that allows the user to select the scheduling policies,
to choose the energy scenarios and to start the simulations. Thus, the user can see
the simulation results as one graph per scenario or per comparison criterion or metric.
Then, the simulator can obtain results on a large number of randomly generated task
sets in order to evaluate the performance of the tested scheduling policies, and easily
explore their properties. This view offers also a debugging window in which the user can
analyze the results of comparison and can optionally display the time chart of a task
set over each scheduling policy. This helps the user to analyze and debug scheduling
policies. It can be also useful to find counter examples and to isolate degenerate cases.
For example, in the case of energy-aware scheduling, no optimal algorithm exists yet.
In order to test empirically whether a new algorithm is potentially optimal or not, a
simple approach consists in simulating the scheduling of all possibilities of task sets and
ask the simulator to filter cases where the new scheduling algorithm fails whereas other
heuristics succeed.

8.5 Architecture
Usually, the common concern of real-time simulation tools is the possibility of using

the simulator in different contexts. In many cases, extending a simulator to include
customized modules needs a lot of modifications and refactoring of the code. Careless
modifications can lead to incompatibility with the original modules of the tool, or
worst, it may lead to a different or wrong simulation results. Furthermore, most of the
time, researchers do not like to spend much time or effort to understand and preserve
an existing tool, and finally, the tool becomes difficult to maintain. In our team, we
experienced this issue previously, and we noticed the importance of design and software
architecture. The more generic and flexible the software is, the less time and effort
we spend to integrate new customized modules. For this reason and in order to meet
the requirements mentioned in Section 8.3 on page 206, we decided to merge the old
versions of our simulator and to provide a new tool with an enhanced architecture and
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Figure 8.3: Modules UML diagram

design. We have ensured that the design is as generic and open as possible by applying
the appropriate design patterns and programming paradigms.

As shown in Figure 8.3, the simulation tool is divided into four main modules each
with a specific responsibility:

• the engine (core) module of the simulator which contains all the classes necessary
to simulate the scheduling of real-time systems,

• the service module responsible of handling the transparent interactions between
the engine and the presentation,

• the GUI module which contains the graphical components and classes,

• the framework module which contains useful tools and classes necessary for the
application.

This module separation follows the classical Model-View-Controller (MVC) design
pattern (see Figure 8.3) that allows a secure isolation of the business part of the
application from its presentation, and thus, it allows the engine module to be more
generic and easily usable by other applications as an API. Furthermore, splitting the
code into several modules limits the communication between the different modules to
specific classes or interfaces by respecting the Inversion of Control (IoC) design pattern.
The main advantage of IoC is to prevent inter-dependency between modules and to
facilitate their maintenance.

8.5.1 Engine Module
The aim of a real-time simulator is to imitate the execution behavior of systems while

respecting the hypotheses. Real-time systems are usually composed of a platform (i.e.
processors, memories and caches), an energy profile (i.e., supply, consumption, heating,
etc), a real-time task set and a scheduling policy. Many types of these components are
studied in research works and are simulated and compared. The architecture of the
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Figure 8.4: The engine module UML diagram

simulator must take into account the need to integrate new customized components,
and then be used for the comparison process using the same simulator.

In YARTISS, the concept of each component is defined with a java interface that
describes its responsibility, its input and its output as detailed in Figure 8.4.

Task set: Firstly, a task is defined mainly by the interface ITask that describes,
with getters and setters, the most common parameters of real-time tasks. A task is
generally characterized by a deadline, a period, a WCET and energy consumption.
Other parameters can be added based on the desired model by inheriting classes from
the basic interface. As a result, several task models can be implemented from the same
interface with different parameters, such as periodic and sporadic.

Secondly, a task set is defined in YARTISS as a collection of tasks sorted according
to a static or dynamic priority assignment following the adopted model. This aims to
provide a sorted subset of active tasks at any time to be used by scheduling policies. It
can be seen as a container of tasks that manages the dependencies between the tasks (as
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in the case of DAG tasks) and provides a task ordering according to the specifications
of the user (fixed job or task priority and dynamic priority). The combination of the
inherited classes of tasks and task sets defines the task set model to be simulated. The
user can implement a customized behavior of tasks and task sets by extending these
interfaces and adding his own properties by using the generic available getters and
setters.

The current release of YARTISS contains by default the following task set models:
Liu and Layland model (i.e., periodic fixed-priority task sets), the dependent tasks of
the DAG model and the energy-harvesting task model.

Scheduling policy: The responsibility of a scheduling policy is to decide at any time
t which task or job to execute on which processor. YARTISS defines this behavior with
the interface ISchedulingPolicy. It has a main method called chooseNextTasks()
that selects the highest priority tasks at time t, to execute on the processors of the
system. This method receives the necessary components for simulation such as the
state of the processors, the task set and the energy profile. The scheduling policy
can use external and generic parameters to calibrate its behavior with the method
setParameters(). A scheduling algorithm is usually adapted to a specific task set
model. For this reason, we give to the scheduling policies the responsibility of creating
new instances of the adapted type of task model with the method createTaskset().
By outsourcing the scheduling decisions from the core of the Simulation class, we
are able to implement several scheduling algorithms for different task models, which
simplifies the comparison process. We have already implemented many scheduling
policies in YARTISS for different task models, including fixed-priority RM , DM , EDF ,
LLF , etc. Also, there are algorithms for energy-harvesting systems and DAG task
model.

Energy profile: The energy profile of a system includes the profiles of energy, produc-
tion and consumption, and heating models. The interface IEnergyProfile describes
how the system is supplied with energy and how it manages its consumption. It offers a
set of methods that demonstrates the energy source (battery for instance), its limits and
its energy levels within a time interval. The method howLongCanExecute() calculates
the maximum time at which a task can execute w.r.t. the available energy and the used
consumption profile. This can be used to simulate different energy sources, different
rechargeable batteries with different environments and energy sources. The second part
of the energy profile is the energy consumption model. YARTISS proposes two modes,
the global mode in which all the tasks have the same energy consumption model, and
the non-global mode which allows the tasks to consume energy based on their own
consumption model. According to this, the simulator can be general and specific at the
same time. The interface IEnergyConsumptionProfile describes how tasks consume
energy with the method getConsumed(). This method gives the amount of energy
to consume for a given execution time. The thermal behavior is also defined by this



8.5. Architecture 217

interface. It consists of providing the heating and the cooling functions that can be
general or task or processor specific.

Execution platform: A system platform consists mainly of a number of processors
on which the tasks execute their code. The interface IProcessor defines the common
behavior of processors. A task is allocated to a processor within a time interval and the
method execute() performs the execution of the tasks within this interval by updating
the state of the tasks. The current release of YARTISS proposes only one default
type of multiprocessor which is the homogeneous mono-speed processors. However,
it is possible to add new types of processors with different speeds and, consequently,
the method execute() has to be modified according to the new characteristics. An
example of the different type of processors is the processors with Dynamic Voltage and
Frequency Scaling (DVFS) capabilities.

The Simulation Process

The aim of this tool is to simulate the scheduling of a system according to the
parameters and the assumptions set by the user, namely the task set, the platform, the
energy profile and the scheduling policy. According to the scheduler, the scheduling
decisions are taken based on specific events, such as activation and finish times of a job,
its deadline and preemption events.

A scheduling decision consists of assigning priorities to the active jobs statically
or dynamically according to the scheduling policy, and allocating them to processors
by considering the state of the system (energy state for example). The simulator uses
a basic set of events that guarantee a correct execution of the system such as job
request events, finish executing events, deadline events, etc. These events are natively
implemented in YARTISS. The simulation starts generating the events responsible of
requesting the first job of each task. Then other events are generated dynamically during
the simulation process. For example, when a job meets its deadline, the corresponding
deadline event is generated in order to check if the job has met its deadline and to request
an other event for the next job as well. The events are generated sorted according to
their temporal order and priority ordering. For each event, the scheduling policy is
called to select the highest priority jobs to execute on the available processors. Then,
the selected jobs execute while respecting the type of processors and the energy profile.
This mechanism is implemented in class Simulation.

The interface Event describes the role of an event. The current release of YARTISS
provides the necessary events to schedule a real-time system. However, the user is
allowed to add his own events by implementing their customized behavior. To do so,
the user should extend the Event interface and register the new event with the method
register() from class EventGenerator. Furthermore, to generate an event, the user
should use the method generate() of class EventGenerator. Then the event will be
processed with the desired behavior which is implemented by the user.
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Metrics and Statistics: The aim of a simulation is not restricted to checking the
feasibility of a given system. It is important also to compute some metrics and statistics
of the performed simulation in order to analyze the performance of the tested solution.
We considered this functionality in YARTISS and we integrated a generic mechanism
dedicated to compute statistics. It is possible to compute a metric at the beginning
or the end of the simulation, or even during events processing. Moreover, it can be
aggregated with other values when several simulations are performed. In the simulator,
a metric is represented by the interface IStatisticCriterion which has a method for
each possible calculation time (i.e., beginning, end, event processing). Several metrics
are implemented natively and, as for the other parts, the user can add new customized
metrics to the simulator by implementing the interface and injecting an instance of
the new metric to the metrics manager class. At the beginning of each simulation,
an instance of each active metric is created. Then, at each metric calculation time,
the corresponding method of the metric is called. At the end of the simulation we
can get the final value of each metric using the method getValue(). In the case of
several simulations, we can also aggregate the values of the same metric on all of the
simulations in order to compute the maximum/minimum values, the average value, etc.
The aggregation function is implemented by the metric class and can provide several
values: maximum, minimum, average values, percentage value, etc. By doing so, the
simulation class computes several statistics independently from their implementation.
Among the implemented metrics available in YARTISS, we can cite: deadline miss
counter, average busy and idle periods, average overheads.

Inversion of Control and Dependency Injection

Based on the above described components, we notice that the simulator deals
only with interfaces and never directly with implemented classes. This allows the
simulator to be generic regarding the parts that can be replaced, such as the scheduling
policy, the task set model, the platform, the energy profile and the statistics metrics.
This implantation respects the IoC design pattern and the Dependency Injection that
stipulates that the objects composing the application must be weakly coupled and
dependencies should be linked only at run-time.

The IoC design pattern is a design pattern of software construction where reusable
code controls the execution of problem-specific code. Its main advantage is that the
reusable code is developed independently from the problem-specific code, which often
results in a single integrated application. The IoC design guideline is useful for the
following purposes:

• the execution of a certain task is independent from its implementation,

• every part of the system focuses on its design purpose,

• all parts have no assumptions about the constraints and the limitations of the
other parts,
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• replacing or modifying a part in the system does not affect the rest of the parts.

Sometimes, IoC is referred to as the Hollywood Principle: Don’t call us, we’ll call
you, because program logic runs against abstractions such as callbacks.

In the case of YARTISS, the simulation code is a reusable part and the different
implementations of scheduling policies, processors, task sets or metrics are done on
specific parts that can be replaced and developed independently. This is what makes
YARTISS a generic real-time simulator that can be used easily by other researchers.

8.5.2 Service Module

The engine module contains all the code necessary to build and run a simulation.
Furthermore, it can be used alone or imported as an API to be integrated into another
software. However, we were interested in providing a complete simulation tool and
not only an API. So we implemented more classes which allow an intermediate user to
build and run simulations easily. This is done using the Service module which contains
the functionalities described above in Section 8.4 on page 207. From a design point of
view, the service module represents the Controller and the Model parts of the famous
MVC design pattern or the View-Model part of the Model View View-Model (MVVM)
design pattern. It is a software brick of higher level that uses the engine module. The
service module provides the classes that set the replaceable parts of a simulation (e.g.
the scheduling policy, the task set, the platform, metrics, etc), run the simulation
and save the results. It contains mainly three public classes, each represents a certain
functionality:

• The TimeLineViewModel class provides the necessary parameters to simulate a
task and allows the user to run the simulation and visualize the results.

• The BenchmarkViewModel class allows the user to set quickly the description of
a large scale simulation where several scheduling policies are compared using
the chosen statistic metrics in different scenarios of energy profiles. This class
helps the user to build such a simulation without knowing the implementation
of any parts. The description is passed using a String object and all created
generic objects are done using the Dependency Injection paradigm. This class
saves results which are readable by the chart plotter tool Gnuplot.

• The task GenViewModel class builds a custom task set generator in the same
way.

These classes are packed in an independent module so as to be built easily using
a higher level software layer with a friendly user interface (such as a web server or a
graphical or textual interface).
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Figure 8.5: Producer/Consumer design pattern

8.5.3 Framework Module
This is a toolbox module that contains generic classes and functions that facilitate

building simulations. It is completely independent from the other modules and can be
reused by other projects easily. This module is considered as a small API that provides
a simple and small abstraction of the Java concurrency API and some generic classes
for the MVC design pattern :

Concurrency: This feature allows the user to run several Java Runnables objects
simultaneously with the possibility of collecting results. It implements the producer/-
consumer design pattern to get the final results. It aims to accelerate simulations by
leveraging the concurrency API of Java. Furthermore, running several computations in
parallel can be done directly by using Java threads. However, getting and computing
the final results of simulation is difficult due to threads concurrency. For this reason,
we adopted the producer/consumer design pattern such that the threads perform the
required computations and produce the results in parallel. On the other hand, a single
consumer is allowed to collect and aggregate the results with a thread safe mode by
using a blocking queue. The service module uses this functionality to run large scale
simulations in parallel to collect aggregated results in order to present them through
the user interface. It can also use the task set generator. Figure 8.5 illustrates the
producer/consumer design pattern.

Model-View-Controller (MVC): This part provides a simple framework for build-
ing MVC applications. It is not as sophisticated as commercial frameworks, but it is
sufficient for the simulator needs. Mainly, it contains classes that use the Java reflection
capabilities to handle getter and setter properties. This enhances the generic aspect of
the architecture and keeps a weak coupling between objects and modules.

8.5.4 View-Module or GUI
This module is responsible of building and running a graphical user interface that

facilitates the use of the different features and functionalities of the simulator that are
described in section 8.4 on page 207. It represents the highest level of the application



8.6. Case Study 221

Figure 8.6: UML diagram describing the addition of a new scheduling policy

and it proposes some independent graphical components that can be used to build a
customized graphical interface (components to visualize the time chart of a simulation,
to visualize the energy or the battery evolution chart). The views provided by this
module are linked to the other models and controllers of the service model only at
run-time.

8.6 Case Study
As described above, the particularity of YARTISS is its genericity. This means that

its parts can be extended easily by users. They can develop new customized parts and
use them in the simulating tool without need to understand the implementation of
simulator core.

In this section we demonstrate the generality of YARTISS by adding a new schedul-
ing policy, The Preemptive Fixed-Task-Priority As Soon As Possible (PFPASAP )
scheduling algorithm presented in Chapter 4 on page 109.

8.6.1 Adding a new Scheduling Policy
As mentioned in Section 8.5.1 on page 216, to add a new scheduling policy,

the user have to import the modules of YARTISS and to implement the interface
ISchedulingPolicy that defines the concept of a scheduling algorithm.

The implementation of the interface ISchedulingPolicy means the implementation
of all methods. The most important method is chooseNextTasks( Platform platform,
ITaskSet taskSet, IEnergyProfile energyProfile, long t, EventGenerator gen
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) that assigns tasks to the available processors at any time t. The parameter platform
represents the hardware part, i.e. processors and memories, etc. The parameter taskSet
is the real-time task set to simulate, energyProfile is the energy profile chosen by the
user and evGen is the event generator that can be used to generate additional events.
We notice that except the task set, all of the parameters are typed with interfaces which
means that the scheduling policy deals with generic parameters as illustrated by the
UML diagram of Figure 8.6 on the previous page. The real types are instantiated at
run-time following the configuration set by the user. For this reason the implementation
of a new scheduling algorithm is easy and the new class contains only the code of the
scheduling algorithm.

Therefore, knowing that PFPASAP schedules tasks as soon as possible by consuming
greedily the available energy, the method chooseNextTasks(...) can be implemented
by writing in Java the following instructions:

1. check if there is at least one active task at time t,

2. get the task with the highest priority among the active tasks,

3. ask the energy profile how long this task can be executed continuously,

4. do not execute the task if the energy is not sufficient to execute by assigning null
to the processor and generating a new event at time t+ 1 to retry again,

5. execute the remaining time of the highest priority active task by assigning the
task to the processor with platform.getProcessor().setNextTask(task), and
generating an other event at the time when the energy become insufficient to
execute all the remaining execution time of the active task.

The second important method is createTaskSet(). It creates an instance of the
task set model that is compatible with the current policy. In the case of PFPASAP , the
suitable task set is the classical fixed-priority one, i.e. Liu and Layland model, where the
tasks are sorted according to their static priorities. The task set models follows the same
design pattern as scheduling policies but in this case we use an already existing model
(with TaskSetFactory.getNewInstance( "priority")) instead of implementing a
new one.

The third important method is newInstance() which is a factory method that
creates new instances of the current scheduling policy, name PFPASAP in this case.
This method is used to create new objects of the scheduling policy class without requiring
to do it manually with new constructors. This design patter allows us to centralize the
creation of objects of classes that implement the same interface which allows a generic
injection of new implementations, e.g. new scheduling algorithms in this case.

The remaining methods are used to identify the policy among others and to provide
parameters if necessary (which is not the case of PFPASAP ).
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Then, the newly-created scheduling policy should be registered in the simulator
by the use of the register() method from the SchedulingPolicyFactory class that
centralize the creation of classes implementing ISchedulingPolicy interface. This
method injects a sample object of the policy we want to register, then using the methods
newInstance() and getPolicyName(), the new scheduling policy can appear in the
list of the available scheduling policies and can be instantiated generically. The call
of the method register() should be done in the customized main class created by
the user or by using the GUI of YARTISS as shown in Listing 1 on page 251 in the
Appendix.

The adopted design allows us to implement other scheduling policy easily, we did
the same with all the policies discussed in this dissertation.

8.6.2 Adding an Energy Profile
The same methodology can be applied if we want to add a new energy consumption

profile to YARTISS. Listing 2 on page 252 in the Appendix shows the Java code needed
to use a logarithmic energy consumption profile as an external module.

8.7 Distribution
The project is available on the collaborative development platform hosted at

https://svnigm.univ-mlv.fr/projects/YARTISS/. This environment provides a
subversion repository allowing anonymous checkouts, documentation hosting, RSS feeds
subscriptions, and public forums. A web page dedicated to YARTISS is also available
at http://YARTISS.univ-mlv.fr. In addition to a general presentation of the tool, it
proposes a demo applet version which allows interested readers to try YARTISS directly
from their web browser and an application form to allow anybody to share external
modules.

8.8 Conclusion
In this paper we presented YARTISS, a real-time multiprocessor scheduling simulator.

A consequent effort has been made to make it as extensible as possible. To justify the
need for an open and generic tool, we presented the history of YARTISS development.
Then we briefly presented existing simulation tools. We have described the three main
functionalities of YARTISS: 1) simulate a task set on one or several processors while
monitoring the system energy consumption, 2) concurrently simulate a large number
of task sets and present the results in a user friendly way that permits us to isolate
interesting cases, and 3) randomly generate a large number of task sets. Then, in
order to demonstrate the modularity and extensibility of our tool, we presented its
architecture and a case study that shows how to add new parts, in most cases without

https://svnigm.univ-mlv.fr/projects/YARTISS/
http://YARTISS.univ-mlv.fr


224 Chapter 8. Simulation Tool: YARTISS

having to open or modify the core modules. Finally, we gave the instructions to get
and test YARTISS. We hope that this software can contribute to build a standard
simulation tool that can be adopted through the real-time scheduling community.
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Scope
In this thesis we addressed the real-time scheduling problem of fixed-priority energy-

harvesting systems. A real-time energy harvesting system must respect not only the
deadlines of all tasks but also their energy constraints. This means that the energy cost
of all jobs must be satisfied by the energy stored in the storage unit and the energy
collected from the environment. To satisfy tasks energy cost, additional idle times
may be necessary to collect the required energy. These necessary delays create a new
scheduling problematic. Now, the challenge for a fixed-priority scheduling algorithm
is to execute tasks according to their deadlines and to delay executions at the right
moments and for the right durations in order to meet all deadlines and satisfy the
energy demand.

The problems are: first to find an optimal scheduling for such a model; second to
provide schedulability conditions that help designers to check if a given task set is
schedulablable or not; third, to find the minimum battery capacity that ensure the
feasibility of a given task set.

In this dissertation, we started by presenting the state of the art of this research
area. We first reminded briefly the classical real-time scheduling theory including the
different task models and the main scheduling algorithm families. Second, we explored
the state of the art of energy-harvesting hardware, namely the different technologies of
energy-harvesting and energy storage and the applications for which they are suitable.
Third, we presented the main scheduling algorithms proposed in the literature and
their properties. We showed also that the fixed-priority scheduling problematic for
energy-harvesting systems is not very well studied by the community.

After that, we presented in detail the contributions of this thesis, summarized in
the next section.

Main Results

The PFPASAP Algorithm
The first result of this thesis is the PFPASAP algorithm which is an adaptation

of the classical FTP Algorithm. It schedules tasks as soon as possible by executing
whenever the energy available in the storage unit is sufficient to execute at least one
time unit, and by replenishing otherwise but only as long as needed to replenish the
energy necessary to execute one time unit of the job with the highest priority. In
other words, it is a fixed-priority energy-work-conserving algorithm. We proved that
this algorithm is optimal for energy-non-concrete task sets where the initial battery
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capacity and task offsets are known only at run-time. This optimality relies first on the
fact that all tasks consume more energy than what it is possible to replenish during
their execution time, and second, on the fact that in this case the schedulability of
the task set can be studied only for the first instance of each task in the worst-case
scenario which is the simultaneous release of all the tasks with the minimum battery
level. A necessary and sufficient schedulability test was also proposed for this family
of task sets. Furthermore, we proposed a bound of the minimum battery capacity
that preserves the schedulability of a task set with PFPASAP algorithm. This capacity
is equal to the maximum instantaneous energy consumption of task. Moreover, we
compared PFPASAP to the algorithms presented in the state of the art with simulations.
These later confirmed the theoretical results and showed in one hand the advantages
of PFPASAP which are its optimility and its low overhead, and in an other hand its
drawbacks which are mainly the high rate of preemptions and context switches.

Schedulability Analysis for PFPASAP Algorithm

The second result is a schedulability analysis of PFPASAP that removes some
restrictive assumptions. As mentioned above, the optimality of PFPASAP relies on
the fact that the task sets are energy-non-concrete and that the consumption rate
of all the tasks is greater than the replenishment rate. If we remove one of these
assumptions, PFPASAP is no longer optimal, the simultaneous request of all the tasks
with the minimum battery level is no longer the worst-case scenario and the proposed
schedulability test becomes only necessary.

To cope with this problem, we proposed a schedulability analysis using tasks worst-
case response time upper bounds. For this analysis we relaxed the assumption of tasks
consumption, offsets and initial battery level. Then, we can check with a sufficient
test the schedulability of task sets that can include tasks with a consumption rate
lesser than the replenishment, i.e. gainer tasks, for any scenario. The idea behind the
first upper bound is to maximize the number of interferences and to assume that all
consuming jobs are scheduled before gaining jobs, which maximizes the delays due to
replenishments and the delays due to interferences. The second upper bound keeps the
same idea but by respecting jobs request time and deadlines which tighten the upper
bound. The schedulability test consists of computing an upper bound of the longest
response time of each task and to compare it to its deadline. We proved also that
the proposed schedulability tests are compatible with the optimal priority assignment
algorithm of Audsley. We performed some simulations to evaluate the validity of the
theoretical results and to measure the tightness of the upper bounds comparing to the
empirical worst-case response time. The experiments showed that the second upper
bound is tighter and that its deviation is reasonable.
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Schedulability Analysis for Thermal-aware Systems
We showed in Chapter 6 the difficulty of finding an optimal scheduling algorithm

and exact feasibility conditions for the general model of fixed-priority energy-harvesting
systems. To cope with this problem, we decided to address the problem from an other
point of view by studying other real-time scheduling problems that might present some
similarities especially the ones where some delays are needed to produce a valid schedule.
Then, we started studying the real-time scheduling for thermal-aware systems where
the temperature of the system must be managed such that it never exceeds a certain
maximum threshold. To respect this constraint, it may be necessary to delay executions
in order to cool down the system reactively when reaching the maximum temperature
or proactively before reaching it.

As a first step, we started by studying the behavior of the equivalent of PFPASAP
algorithm for thermal-aware systems. We proved that PFPASAP is also optimal for
thermal-non-concrete task sets where tasks offsets and the initial temperature are
known only at run-time. In this model, PFPASAP schedules jobs whenever the system
is cold enough to execute at least one time unit, and otherwise, it delays executions
in order to cool down enough to execute one time unit. In this model the worst-case
scenario occurs for a task occurs when all the higher priority tasks are requested
simultaneously while the temperature is at its maximum level. However, computing the
exact response times is difficult to express with a formula or an algorithm. For this
reason, we proposed two sufficient schedulability conditions that uses tasks worst-case
response time approximation. The idea of the first bound is to maximize the cooling
periods in the worst-case scenario by leveraging the fact that the cooling function is
exponentially decreasing which leads to long cooling periods. The second bound is
parametric, it considers that the cooling periods are of the same length x and the
corresponding execution periods are integers (floor value). The performed simulations
showed that the first upper bound is very pessimistic, however, the second one is very
tight to the empirical worst-case response time when x = 1. This result is the first step
of the exploration of similarities between energy-harvesting and thermal-aware systems.
More work is planned to try to adapt some results from the thermal-aware side to the
energy-harvesting one.

Simulation tool
The fourth main result of this thesis is the development of YARTISS the simulation

tool used to perform all the experiments of this thesis and the ongoing work of our
team. YARTISS is a modular and Java-based real-time simulator that provides a
generic simulation framework and a friendly graphical user interface. This simulator
was designed such that the major aspects of real-time scheduling can be substituted.
The concept of each part, e.g. scheduling algorithm, task, task set, energy consumption,
etc, is modeled by a java interface which facilitates the substitution of implementations.
YARTISS provides also a graphic user interface that allows the visualization of the
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schedule of a given task set according to a given scheduling algorithm in a given
environment of energy. Moreover, it can be also used to run large scale simulations
which is very useful to evaluate and validate theoretical results.

Future Research
The work done along this thesis helped us to better understand the problematic of

fixed-priority real-time scheduling for energy-harvesting systems. Moreover, the results
of this thesis contribute to cover a part of the not yet studied research areas of this
field.

As any research work, the achievement of a project is the starting point of an other
one, and each answer arises more questions. In the case of this thesis, the following
points and open questions deserve more investigations.

Optimal Algorithm
The main question that is still without answer is the existence of an optimal

algorithm for the general model of energy-harvesting systems that includes all energy
consumption types, i.e. gaining and consuming tasks, concrete task sets, i.e. without
any assumption on tasks offsets and the initial battery level. We showed in Chapter 6
that many intuitive ideas do not work to build an optimal algorithm. The only idea
that could lead to an optimal algorithm is to combine virtual deadlines with lookahead
computation to compute the optimal delay at any moment. However, the complexity
of this algorithm is exponential. The question now is: does an optimal algorithm
for fixed-priority energy-harvesting systems exist ? or is the fixed-priority scheduling
problem of energy-harvesting systems an NP-hard problem ?

We tried to answer both of these two questions but we was not able neither to find
an optimal algorithm nor to prove the NP-hardness of the problem. Therefore, this is
still an open question that deserves more interest and effort to answer.

Energy Assumptions
One of the interesting future axes is to study the problem in more realistic assump-

tions even with non optimal solutions. In fact, the results presented in this thesis
assume that the replenishment and tasks consumption are constant functions. Even
though there exist some applications where these assumptions are not far to be realistic,
they are still marginal. For example, with energy sources like solar energy, the harvested
energy varies over time which might make the proposed solutions very optimistic and
not realistic. It might be useful to provide energy-source-specific scheduling algorithms
and schedulability analysis in order to build real efficient applications. Moreover, the
energy consumption of tasks may also vary over time due to the use of different circuitry
or due to the thermal state of the system. This problem should be addressed by either
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taking into account the real consumption profile or to find the worst consumption profile
of each task.

Similarities With Thermal-Aware Systems
This point is as important as the precedent ones because more work has been done

for thermal-aware systems than energy-harvesting systems. Many ideas that have been
proposed for the thermal model might be applicable for energy-harvesting systems
especially for more realistic assumptions of energy replenishment and consumption. The
results presented in Chapter 7 represent the first step in the exploration of such ideas.

Simulation Tool
YARTISS is still under development and requires more time and effort to improve

its architecture and to add implementations of more algorithms task models, etc. The
simulator is used by our team and few students around the world. We aim to form a
dedicated development team that can maintain its code and do more communications
about it in order to attract more interest and more contributions.
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Chapter 9

Ordonnancement temps réel avec
gestion de l’énergie renouvelable

9.1 Introduction
L’informatique est l’une des sciences qui ont révolutionné le monde durant le dernier

siècle. L’homme a inventé les ordinateurs électroniques durant la deuxième guerre
mondiale. Ces derniers étaient capables d’effectuer des opérations de cryptographie
en utilisant le modèle de la Machine de Turing. Depuis, ces ordinateurs n’ont cessé
d’évoluer.

Pendant les dernières décennies, l’utilisation des ordinateurs dans la vie moderne
a fortement augmenté et a fait exploser la demande en termes de puissance de calcul
et d’efficacité. Le progrès de la technologie a permis aux ordinateurs modernes d’être
beaucoup plus petits et plus performant que les premières machines. Les ordinateur
simples sont devenus tellement petits qu’il est aujourd’hui possible d’avoir des petits
appareils mobiles qui peuvent fonctionner avec très peu d’énergie, ce qui a permis à de
nouvelles applications d’émerger. De nos jours, les ordinateurs sont aussi utilisés pour
contrôler des opérations critiques telles que les réactions nucléaires ou les commandes
de vol d’un avion. Ce type d’ordinateurs est souvent utilisé dans les systèmes embarqués
autonomes qui vont du simple lecteur MP3 aux très complexes navettes spatiales et des
jouets d’enfants aux robots industriels.

Dans ce genre d’applications, le temps que les tâches du système prennent pour
délivrer les résultats est aussi important que leur exactitude. Les systèmes qui sont
soumis à des contraintes temporelles sont les systèmes dits temps réel.

De plus, avec l’augmentation de la vitesse des processeurs et la miniaturisation
des appareils électroniques, la gestion de l’énergie est devenue l’une de problématiques
importantes à étudier. La mission des petits appareils est de fournir un service de
manière autonome et cela pour une longue durée de vie comme par exemple dans
les réseaux de capteurs ou les implants médicaux. Le défi ici est de pouvoir utiliser
l’énergie ambiante pour permettre une longue durée de vie en éliminant les opérations
de maintenance. Plusieurs sources d’énergie peuvent être exploitées en fonction des
besoins de l’application, par exemple, les énergies solaires, vibratoires ou thermiques.

Dans cette thèse, nous nous intéressons à la problématique de l’ordonnancement
temps réel de ce type de systèmes.
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renouvelable

Durant la dernière décennie, le comportement temps réel de ce genre de systèmes
a attiré plus d’attention. Le défi ici est de trouver le bon ordonnancement des tâches
tout en respectant les contraintes énergétiques et temporelles. Quelques algorithmes
d’ordonnancement ont été proposés dans la littérature mais la majorité des travaux sont
concentrés sur l’ordonnancement à priorité dynamique du type EDF . L’ordonnancement
à priorité fixe a quant à lui été très peu traité alors qu’il est largement utilisé en industrie.
Cette thèse traite la problématique d’ordonnancement pour cette famille d’algorithmes.

Nous proposons d’abord une solution partielle qui consiste en un algorithme optimal
pour une sous catégorie des systèmes étudiés, ainsi que l’analyse d’ordonnançabilité
associée, puis nous expliquons la difficulté de la généralisation.

Le reste de ce résumé est organisé comme suit. Un bref aperçu de l’état de l’art
de l’ordonnancement temps réel des systèmes collecteurs d’énergie est exposé dans
les sections 9.2, 9.3, et 9.4. La section 9.5 introduit l’algorithme PFPASAP qui est la
première contribution de cette thèse. La section 9.6 présente une analyse approximative
de temps réponse des tâches avec PFPASAP en relâchant quelques hypothèses. La section
9.7 explique la difficulté de trouver un algorithme optimal pour notre modèle. Dans la
section 9.8 nous discutons la similitude entre le modèle des systèmes collecteurs d’énergie
et celui des systèmes contraints par la chaleur. La section 9.9 présente brièvement l’outil
de simulation YARTISS développé pendant cette thèse. Pour terminer, la section 9.10
conclut ce résumé.

9.2 Ordonnancement temps réel
En informatique, un système est considéré comme étant temps réel si le respect de

ses contraintes temporelles est aussi important que l’exactitude des résultats [But11]. Le
terme temps réel n’est pas forcément associé à la rapidité. L’objectif d’un système temps
réel correct est de respecter perpétuellement les échéances individuelles des tâches dans
le pire cas même si l’exécution est lente. Généralement, les systèmes temps réel sont
classifiés en fonction de la gravité des conséquences des dépassements d’échéances. Nous
distinguons alors deux familles : les systèmes temps réel durs et les systèmes réel souples.
Dans la première famille, aucun dépassement n’est toléré car les dommages occasionnés
sont catastrophiques, par exemple, la perte des commandes de vol d’un avion. Par
contre, les dépassements d’échéances dans la deuxième famille ne font que dégrader la
qualité du service, par exemple, la perte de quelques images lors du décodage d’un flux
vidéo en direct.

9.2.1 Modèle de tâches
Un système temps réel est généralement composé d’un ensemble de tâches temps

réel récurrentes noté Γ. Chaque tâche τi est caractérisée par son pire temps de réponse
Ci, par son échéance temporelle relative Di, par sa période Ti et sa première date
d’activation Oi. Chaque tâche se réactive au moins toutes les Ti unités de temps pour
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exécuter ce que l’on appelle un travail ou un job. Un travail Ji,j est caractérisé par sa
date d’activation ai,j et son échéance absolue di,j.

Ces paramètres peuvent êtres spécifiés avant le lancement du système ou uniquement
au moment de l’exécution. De ce fait, nous distinguons deux familles de systèmes :
les systèmes complètement spécifiés et les systèmes partiellement spécifiés. Dans la
première catégorie, tous les paramètres sont connus à l’avance, ainsi le système est
dit concret. Dans cette famille, nous trouvons les systèmes de tâches périodiques qui
se réactivent à un intervalle régulier de temps. Dans la deuxième famille, au moins
un paramètres n’est connu qu’au moment de l’exécution, par exemple les systèmes de
tâches sporadiques où seul le temps minimal d’inter-arrivée est connue, ou encore les
systèmes apériodiques où modèle de récurrence n’est pas connue du tout.

9.2.2 Algorithmes d’ordonnancement
Les tâches du système sont exécutées de manière concurrente sur le processeur. De

ce fait, il est nécessaire de spécifier une politique pour choisir quelle tâche exécuter
à tout moment. C’est le rôle de l’algorithme d’ordonnancement. Dans la théorie de
l’ordonnancement temps réel, nous distinguons distingue trois familles d’algorithmes :
les algorithmes à priorité de tâche fixe FTP , ceux à priorité de job fixe FJP et ceux à
priorité dynamique DP . Dans la première famille, la tâche se voit attribuer une priorité
fixe tout au long de son cycle de vie. Ainsi, l’algorithme exécute en premier la tâche
active avec la priorité la plus élevée. Dans la deuxième famille, les priorités sont données
aux jobs et non aux tâches, par exemple, l’ordonnancement EDF qui attribue les
priorités aux jobs en fonction de leur échéance temporelle (le job avec l’échéance la plus
proche est exécuté en premier). Dans la troisième famille, les priorités sont attribuées
dynamiquement et peuvent changer d’un unité de temps à une autre, l’exemple typique
de cette famille est l’algorithme LLF .

9.2.3 Analyses d’ordonnançabilité
Pour s’assurer qu’un système de tâches donné est faisable ou ordonnançable avec

un algorithme spécifique, nous avons besoin d’outils d’analyse qui nous permettent
de statuer sur le respect des échéances de toutes les tâches y compris dans le pire
cas. Dans la théorie classique des systèmes temps réel, nous trouvons des conditions
d’ordonnançabilité qui sont basées principalement sur la charge processeur du système
(U = ∑

Ci/Ti) ou sur une analyse du temps réponse des tâches dans le pire scénario.
Pour la priorité de tâche fixe, la borne de Liu et Layland constitue une condition
d’ordonnançabilité suffisante (U ≤ n(21/n − 1)) dans le cas des échéances sur requête
(∀iTi = Di) tandis que la condition de charge maximale (U ≤ 1) est une condition
nécessaire. Pour EDF , la condition sur la charge maximale est nécessaire et suffisante
dans le cas des échéances sur requête (∀iTi = Di). D’autre conditions et analyses sont
détaillées dans le chapitre 1.
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Dans cette thèse, nous nous focalisons sur l’ordonnancement à priorité de tâche fixe
sur des plateformes monoprocesseur.

9.3 Les systèmes collecteurs d’énergie
Un système collecteur d’énergie est un système qui récupère l’énergie ambiante et la

stocke dans un réservoir d’énergie afin d’alimenter un appareil électronique.
Généralement, ce genre de système est composé de trois composants principaux :

un collecteur d’énergie, un réservoir d’énergie et une unité de calcul.
Le collecteur d’énergie est responsable de la transformation de l’énergie ambiante

en courant électrique.
Le réservoir d’énergie stocke temporairement l’énergie collectée par le collecteur.

Généralement, les batteries rechargeables ou les super-condensateurs sont utilisés pour
cet effet en fonction des besoins de l’application.

L’unité de calcul est généralement composée de capteurs de données, de proces-
seurs et de composants de transmission. C’est ce composant héberge le système temps
réel que nous étudions dans cette thèse.

9.3.1 Les technologies d’extraction de l’énergie ambiante
Plusieurs sources d’énergie peuvent être exploitées. Toutes les sources ne sont pas

adaptées à toutes les applications. La source d’énergie et la méthode d’extraction doivent
être soigneusement choisies pour répondre aux besoins de l’application.

Parmi les méthodes de conversion on trouve les suivantes :

• Conversion de l’énergie solaire : Cela passe par l’utilisation de cellules photovol-
taïques. Cette technique présente un rendement assez faible (de l’ordre de 13%) et
la quantité d’énergie produite est très fluctuante dans la journée et dans l’année.

• Conversion de l’énergie des ondes radio : Cette méthode présente un rendement
faible mais très utile pour un usage ponctuel, par exemple, les puces Radio
Frequency Identification (RFID).

• Conversion électromagnétique de l’énergie vibratoire : Cette technique utilise
le champ magnétique pour transformer l’énergie mécanique des vibrations en
courant électrique. Cette technique présente un rendement faible par rapport aux
précédentes.

• Conversion électrostatique de l’énergie vibratoire : Cette technique utilise cette
fois le champ électrostatique pour transformer l’énergie mécanique des vibrations.
Le rendement de cette dernière est meilleur et peut être intéressant pour les
applications qui subissent une fréquence de vibration importante.
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• Conversion piézoélectrique de l’énergie vibratoire : Cette méthode utilise un
matériau piézoélectrique qui crée une différence potentiel lors des mouvements
produits par les vibrations. Cette technique est très prometteuse et peut être
facilement utilisée dans des applications de surveillance de machines industrielles
où le taux de génération d’énergie s’approche du constant.

• Conversion de l’énergie thermoélectrique : Cette technique utilise le différentiel
de température pour faire circuler les électrons et par conséquent un courant
électrique. Cela peut être efficace uniquement dans le cas où la différence de
température est assez élevée.

Cette liste de méthode de conversion n’est pas exhaustive, d’autres techniques moins
connues existent dans la littérature.

9.3.2 Les technologies de stockage d’énergie

Le stockage d’énergie est le domaine qui a le moins évolué durant les dernières
décennies par rapport aux autres technologies. Cela n’a pas empêché l’utilisation de
supports de stockage rechargeables dans les petits systèmes embarqués.

Différentes technologies de stockage ont été explorées et commercialisées. Parmi
ces dernières, nous distinguons deux familles : les batteries rechargeables et les super-
condensateurs.

Les batteries chimiques sont les plus répandues dans le marché. Cela est dû non
seulement aux facilités de fabrication mais aussi à leurs caractéristiques de durée de
vie, de capacité, de courant et de taux d’auto-déchargement. Les batteries chimiques
les plus utilisées de nos jours sur des petits appareils électroniques sont : les batterie
Nickel Cadmium (NiCd), Nickel-Metal Hydrid (NiMH), et Lithium Ion (Li-ion).

Les inconvénients des batteries chimiques sont leur taille et leur perte de capacité
(effet mémoire) au fils des cycles de charge et décharge.

Ces problèmes peuvent être résolus par l’usage des super-condensateurs qui sont
capables de stocker une quantité d’énergie suffisante pour un petit appareil en offrant
un taux de chargement et de déchargement quasiment constant avec un nombre de
cycles de charge/décharge très important.

Dans cette thèse, nous supposons que le collecteur d’énergie recharge le réservoir
avec un taux constant et que les tâches peuvent consommer l’énergie avec un taux
constant également. Cela peut être réalisé avec un collecteur du type piézoélectrique et
un super-condensateur pour des applications de surveillance des machines industrielles.



238
Chapter 9. Ordonnancement temps réel avec gestion de l’énergie

renouvelable

9.4 L’ordonnancement temps réel dans les systèmes
collecteurs d’Énergie

Dans cette section, nous nous concentrons sur la partie applicative en spécifiant
le modèle général des systèmes temps réel collecteurs d’énergie visé par cette thèse.
Nous présentons par la suite les différents algorithmes et approches d’ordonnancement
proposés dans la littérature.

9.4.1 Modèle

Le modèle considéré ici est une extension du modèle de Liu et Layland décrit dans
la section 9.2. L’extension consiste à intégrer les paramètres énergétiques au modèle,
soit principalement la pire consommation d’énergie de la tâche notée Ei.

Le rechargement : la quantité d’énergie qui arrive dans le réservoir est une fonction
du temps notée Pr(t). Dans un premier temps et afin de simplifier le modèle, nous
considérons que cette fonction est constante. Ainsi, nous utiliserons par la suite Pr à la
place de Pr(t) pour designer la fonction de rechargement constante.

Même si l’utilisation d’une fonction de rechargement constante parait irréaliste, il
existe tout de même des sources d’énergie et des techniques d’extraction comme l’énergie
vibratoire et la technique piézoélectrique qui permettent d’avoir un flux d’énergie proche
du constant dans certaines applications industrielles (voir le chapitre 2).

Le stockage d’énergie : nous considérons un support de stockage idéal qui peut être
chargé et déchargé avec des taux constants. Le niveau d’énergie dans le réservoir fluctue
entre deux seuils, le niveau minimal Emin qui assure la continuité de fonctionnement
du système et le niveau maximal Emax qui ne peut être dépassé. La capacité effective
du réservoir pour notre système temps réel notée C est la différence entre Emin et Emin.
Ces caractéristiques peuvent être satisfaites par les super-condensateurs qui permettent
des taux de chargement et de déchargement constants et qui sont capables de supporter
des cycles fréquents sans pour autant dégrader la capacité.

On utilisera par la suite le terme batterie pour désigner le réservoir d’énergie décrit
dans cette section.

La consommation : pour ce travail nous considérons que les tâches consomment
l’énergie de façon uniforme tout au long de leurs temps d’exécution. Nous considérons
aussi que chaque tâche a son propre taux de consommation instantanée Pci = Ei/Ci
qui diffère d’une tâche à une autre, c’est à dire qu’il est possible d’avoir deux tâches τi
et τj avec Ci < Cj et Ei > Ej.
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9.4.2 Problématique
Rappelons que cette thèse se focalise sur l’ordonnancement monoprocesseur à

priorité de tâche fixe des systèmes temps réel. Les problèmes soulevés par cette famille
d’ordonnancement peuvent être résumés par les questions suivantes.

1. Les algorithmes : Comment peut-on ordonnancer un ensemble de tâches à
priorité fixe sur un seul processeur de telle sorte que les échéances de toutes
les tâches soient respectées et que leur demande d’énergie soit satisfaite tout en
gardant le niveau du réservoir entre Emin et Emax ?

2. Les conditions d’ordonnançabilité : Existe-t-il une condition nécessaire et
suffisante pour vérifier l’ordonnançabilité d’un système de tâches donné ?

3. La capacité minimale du réservoir : Quelle est la capacité minimale de la
batterie qui préserve l’ordonnançabilité d’un système donné ?

Nous apportons quelques éléments de réponse à ces questions au travers de cette thèse.

9.4.3 Approches d’ordonnancement
Dans la littérature on identifie principalement deux approches pour répondre au

besoin temps réel des systèmes collecteurs d’énergie. La première consiste à minimiser
la consommation d’énergie en réduisant la fréquence et/ou la tension du processeur
[PBB98; Wei+94]. La deuxième consiste à gérer l’énergie disponible sans avoir à baisser
la consommation. Cela passe par une sélection judicieuse des moments d’exécution et
ceux de rechargement ou des périodes d’activité et celles d’inactivité afin de ne jamais
tomber à court d’énergie et faire au mieux pour respecter toutes les échéances. Dans la
suite de ce manuscrit, nous nous intéresseront uniquement à la deuxième approche en
explorant les différents algorithmes proposés dans la littérature pour cet effet.

9.4.4 Les algorithmes existants
Cette section présente brièvement les principaux algorithmes disponibles dans l’état

de l’art des systèmes temps réel collecteurs d’énergie.

Frame-Based Algorithm (FBA) : Il s’agit du premier algorithme proposé pour les
systèmes collecteurs d’énergie. Il est spécifique au modèle de tâches dit Frame-Based où
toutes les tâches partagent la même période et la même échéance. L’idée de l’algorithme
est de séparer les tâches en deux groupes : les tâches dites consommatrices qui ont un
taux de consommation supérieur à celui du rechargement, et les tâches dites génératrices
qui ont un taux de consommation inférieur ou égal. L’algorithme ordonnance alors en
continue les tâches consommatrice pour vider la batterie puis les génératrices pour
la recharger. Si l’énergie générée par les tâches génératrices n’est pas suffisante, une



240
Chapter 9. Ordonnancement temps réel avec gestion de l’énergie

renouvelable

période de rechargement suffisamment longue est ajoutée au début du cycle. La même
séquence d’ordonnancement est répétée à chaque période.

EDF As Late As Possible (EDL) : Cet algorithme s’applique à notre modèle
décrit plus haut. Il s’agit d’une adaptation de l’algorithme EDF qui exécute les tâches
au plus tard tout en respectant les échéances temporelles des tâches [Sil99]. Quand
une tâche est prête pour être exécutée selon les règles de EDF , EDL calcule d’abord
le retardement maximal à appliquer, et si ce dernier n’est pas nul, alors la tâche est
retardée jusqu’à la consommation de la totalité des temps creux disponibles.

Malheureusement EDL n’est pas optimal car même si les retardements servent à
recharger un maximum d’énergie avant les exécutions, le calcul des retardements ne
prend pas en compte les contraintes énergétiques, ce qui peut aboutir à les surestimer.

EDF with energy guaranty (EDeg) : L’intuition derrière cet algorithme est
d’ordonnancer les tâches selon EDF , mais avant d’autoriser un job à s’exécuter, EDeg
utilise la notion du surplus d’énergie [Che14; EGCC11] pour prédire d’éventuels futurs
dépassements d’échéances dûs à une insuffisance d’énergie. Cette notion est l’équivalent
“énergie” de celle du temps creux utilisée par EDL.

Cet algorithme est optimal (voir [Che14]) mais seulement pour les systèmes de
tâches périodiques et synchrones.

La condition de charge maximale de l’énergie (Ue = ∑n
i=1Ei/Ti×Pr ≤ 1) représente

d’après [Che14] un test d’ordonnançabilité nécessaire et suffisant dans le cas où ∀iDi =
Ti.

Lazy Scheduling Algorithm (LSA) : Cet algorithme a été proposé par Moser et al
dans [Mos+06a]. Il s’agit d’un algorithme basé sur EDF mais qui retarde les exécutions
à une date à partir de laquelle la tâche en cours peut s’exécuter continuellement et finir
avant son échéance et cela en prévoyant les éventuelles interférences et en évitant de
perdre de l’énergie si Emax est atteint.

Cet algorithme a été présenté comme étant optimal mais uniquement dans le cas
où les tâches consomment l’énergie avec le même taux et que le temps d’exécution des
tâches varie en fonction du taux de consommation appliqué.

Preemptive Fixed-Task-Priority As Late As Possible (PFPALAP ) : Cet al-
gorithme est l’équivalent de EDL pour la priorité fixe. Il retarde les exécutions au
plus tard pour laisser le système recharger un maximum d’énergie. Malheureusement
PFPALAP n’est pas optimal non plus parce que l’algorithme utilisé pour calculer les
temps creux ne prend pas en considération les contraintes d’énergie.

Preemptive Fixed-Task-Priority with Slack-Time (PFPST ) : Cet algorithme
exécute les tâches au plus tôt en respectant leurs priorités statiques quand l’énergie est
suffisante et retarde au plus tard sinon. L’algorithme de calcul des retardements est le
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même que celui de PFPALAP . Cette approche améliore le taux d’ordonnançabilité par
rapport à PFPALAP mais n’est pas optimal car l’algorithme de retardement n’intègre
pas les paramètres énergétiques du système.

9.5 L’algorithme PFPASAP
La première contribution de cette thèse est l’étude de l’algorithme PFPASAP . Il

s’agit d’une adaptation de l’ordonnancement classique à priorité fixe au contexte des
systèmes collecteurs d’énergie.

C’est un algorithme à priorité de tâche fixe qui exécute les tâches au plut tôt dès
que l’énergie est suffisante pour exécuter au moins une unité de temps et qui laisse le
réservoir d’énergie se recharger le cas échéant. Les périodes de rechargement sont aussi
longues que nécessaire pour exécuter une seule unité de temps. PFPASAP , malgré sa
simplicité, présente des propriétés intéressantes telles qu’un pire scénario et une capacité
minimale de batterie caractérisés et celle d’être un algorithme optimal dans sa classe.

9.5.1 Le pire scénario
La considération de la consommation d’énergie des tâches et les deux seuils du

réservoir d’énergie impose des changements dans l’ordonnancement à priorité fixe et
par conséquent la théorie classique d’analyse d’ordonnançabilité n’est plus applicable
en l’état à commencer par la caractérisation du pire scénario.

Le pire scénario ou l’instant critique est la situation d’énergie et d’activation de
tâches qui engendre les plus long temps de réponse des tâches. Cela se traduit par la
maximisation des interférences de tâche plus prioritaires et la maximisation des temps
de rechargement.

Dans le cas où toutes les tâches présentent un taux de consommation d’énergie
plus élevé que le taux de rechargement, le pire scénario qu’un système peut subir avec
un ordonnancement PFPASAP est l’activation synchrone de toutes les tâches quand le
niveau de la batterie est à son seuil minimal (voir le chapitre 4). Cela découle du fait
que quand on a que des tâches consommatrices d’énergie, le système a un comportement
très proche de l’ordonnancement classique.

9.5.2 L’optimalité
Dans le cas des systèmes temps réel non-concrets, c’est à dire les systèmes où les

premières dates d’activation des tâches et le niveau initial d’énergie du réservoir ne sont
connus qu’au moment de l’exécution, l’étude d’ordonnançabilité du système se fait dans
le pire cas.

Sachant que ce scénario est connu pour l’algorithme PFPASAP , si un système rate une
échéance dans cette configuration, cela signifie que ce dernier n’est pas ordonnançable
avec PFPASAP . De plus, nous savons qu’une échéance ne peut être violée que dans
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deux cas avec PFPASAP . Le premier cas arrive quand la somme du temps d’exécution
de la tâche et des interférences de tâches plus prioritaires est supérieure à l’échéance
relative de la tâche. Dans ce cas le système n’est pas ordonanançable même sans les
contraintes énergétiques. Le deuxième cas se produit quand la somme des interférences
et des temps de rechargement dépassent l’échéance. Sachant que le système est composé
uniquement de tâches qui nécessitent des rechargements, le système ne peut pas être
ordonnnançable avec un autre algorithme à priorité fixe parce que les interférences ne
peuvent pas être réduite et les temps de rechargement sont aussi court que possible. De
ce fait, PFPASAP est optimal pour les systèmes non-concrets composés uniquement de
tâches consommatrices.

9.5.3 Condition d’ordonnançabilité
Connaissant un algorithme optimal et son pire scénario, il est possible de construire

un test de faisabilité nécessaire et suffisant en vérifiant que le temps réponse de chaque
tâche dans le pire scénario ne dépasse pas son échéance. C’est ce que nous avons fait en
proposant la formule 4.13 on page 120 pour calculer le pire temps réponse des tâches
en adoptant l’algorithme itératif classique.

9.5.4 La capacité minimale de la batterie
La capacité minimale de la batterie recherchée ici est la plus petite capacité qui

permet à un système de tâches ordonnançable avec PFPASAP et une capacité non
bornée de le rester. Sachant que PFPASAP introduit des périodes de rechargement aussi
courtes que possible pour exécuter une seule unité de temps, la capacité nécessaire pour
stocker cette quantité d’énergie doit être supérieure ou égale au plus grand taux de
consommation des tâches.

9.5.5 Avantages et inconvénients
Le principal inconvénient de PFPASAP est son taux très élevé de préemptions qui

peut être bloquant en pratique car le coût des transitions entre les modes actif/inactif
n’est pas négligeable dans certains cas. Par contre, PFPASAP peut être considéré comme
un algorithme de référence dans l’ordonnancement à priorité fixe des systèmes collecteurs
d’énergie de par sa simplicité et son optimalité pour les systèmes non-concrets.

9.6 Analyse de temps de réponse avec approxima-
tion

Malheureusement, quand on relâche les hypothèse sur la consommation des tâches,
c’est à dire lorsque l’on considère également les tâches qui ont un taux de consommation
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inférieur au taux de rechargement (tâches génératrices d’énergie), le pire scénario de
PFPASAP n’est plus l’activation synchrone de toutes les tâches, et il n’existe à ce jour
aucune caractérisation de ce pire scénario. Sans ce scénario, le calcul du pire temps
de réponse des tâches n’est plus possible et par conséquent le test d’ordonnançabilité
précédemment mentionné non plus.

Pour répondre à cette limitation, nous proposons de borner le pire temps réponse
des tâches afin de construire des conditions d’ordonnançabilité suffisantes.

Pour ce faire, nous avons besoin d’une fonction qui borne par le haut le temps de
réponse d’une tâche dans un intervalle de temps fini. Cela passe par une borne des
interférences et des temps de rechargement.

Pour cela, nous construisons un scénario virtuel où nous maximisons indépendam-
ment le nombre de tâches qui interfèrent avec la tâche dont nous bornons le pire temps
de réponse, et le nombre d’unités de temps de rechargement nécessaires pour satisfaire
la demande d’énergie de la tâche et les interférences.

Pour maximiser le nombre de jobs activés dans un intervalle donné, le seul moyen
est d’activer le premier job immédiatement au début de l’intervalle ce qui anticipe
l’activation des jobs suivants de la même tâche et permet d’avoir le plus d’activation
possible. En faisant cela pour toutes les tâches, le scénario qui maximise les interférences
est l’activation synchrone de toutes les tâches.

Une fois le nombre d’interférence maximisé, nous construisons nos scénarios virtuels
qui maximisent le temps de rechargement.

La première borne supérieure UB1
Pour la première borne supérieure notée UB1, nous construisons une séquence

d’exécution virtuelle qui suppose que tous les jobs consommateurs sont exécutés avant
les jobs générateurs. Cela force le système à rajouter des unités de temps de rechargement
à tous les jobs consommateurs et les prive de l’énergie générée par tâches génératrices.
Ce scénario ne peut pas se produire dans l’ordonnancement réel mais peut être utilisé
pour borner le pire temps réponse des tâches. Ainsi, la fonction de calcul de pire temps
de réponse est construite. Cette fonction est ensuite utilisée dans l’algorithme itératif
classique pour calculer les temps de réponse en priorité fixe.

Il est aussi possible de construire un scénario symétrique pour calculer une borne
inférieure du pire temps de réponse afin de construire un test de faisabilité suffisant.

La deuxième borne supérieure UB2
Le borne UB1 est très pessimiste car elle considère un scénario irréaliste. Pour

réduire ce pessimisme, nous proposons une deuxième borne notée UB2 qui reprend le
même principe que UB1 mais en respectant cette fois les dates d’activation des jobs et
leurs échéances. Nous construisons un scénario virtuel où les jobs consommateurs sont
exécutés au plut tôt immédiatement après leurs activations et les jobs générateurs sont
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exécutés au plus tard juste avant leurs échéances. De plus, les activations des tâches
génératrices sont décalées de telle sorte que le dernier job soit exécuté immédiatement
après son activation et juste avant la fin de l’intervalle. Un fois le scénario construit,
toutes les unités de temps de l’intervalle sont parcourues pour calculer le temps réponse
dans ce scénario. Quand une unité d’un job consommateur est rencontrée, cette dernière
est ajoutée au temps réponse avec les unités de rechargement nécessaires, et quand une
unité d’un job générateur est rencontrée, celle-ci est ajoutée au temps réponse à son
tour. En cas de chevauchement entre consommateurs et générateurs, les générateurs
sont plus prioritaires car ils sont contraints par leurs échéances et cela permet de réduire
le pessimisme. Ainsi, la fonction de bornage du pire temps de réponse est construite et
peut être utilisée itérativement pour un test de faisabilité.

Les simulations montrent qu’effectivement UB2 est moins pessimiste que UB1 en
particulier quand l’utilisation du système U est très élevée. Nous constatons aussi que
les conditions d’ordonnançabilité basées sur ces bornes deviennent des tests exacts
quand le système est composé uniquement de tâches consommatrices ou uniquement de
tâches génératrices.

La capacité minimale de la batterie
Pour que ces bornes soient valides, la capacité de la batterie doit être suffisamment

grande pour stocker l’énergie collectée pendant les périodes de rechargement et pendant
l’exécution des tâches génératrices. Pour UB1 la batterie doit pouvoir stocker au moins
l’énergie nécessaire pour satisfaire le plus grand taux de consommation d’énergie des
tâches. Cela découle des exécutions gloutonnes produites par PFPASAP .

Pour UB2, on borne la capacité minimale par la plus grande demande d’énergie de
la plus longue période d’exécution.

9.7 Recherche d’algorithme optimal
Nous avons vu dans les sections précédentes que ni l’ordonnancement au plut tôt avec

PFPASAP , ni l’ordonnancement au plus tard avec PFPALAP , ni le mixte des deux avec
PFPST ne sont optimaux. Pour PFPASAP , cela est dû au fait que l’ordonnancement au
plus tôt peut mener à la situation où une tâche moins prioritaire qui s’exécute au plus
tôt peut consommer l’énergie nécessaire pour une autre tâche plus prioritaire qui s’active
juste après alors que la tâche la moins prioritaire peut être retardée pour permettre
la tâche la plus prioritaire d’utiliser l’énergie rechargée pendant le retardement. Pour
PFPASAP et PFPST , le problème vient du fait que les retardements sont calculés sans
prendre en compte les contraintes énergétiques.

L’algorithme optimal doit alors calculer les retardements exacts qui prennent en
compte la demande d’énergie des tâches et l’énergie disponible. Cela veut dire que
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cet algorithme ne peut être non-oisif énergiquement (comme PFPASAP ) et doit être
clairvoyant pour éviter les futurs dépassements d’échéances.

Pour aller dans ce sens, nous avons exploré les idées intuitives suivantes :

• Fixed-Task-Priority Clairvoyant as soon as possible (FPCasap) : Cet algo-
rithme utilise une fonction de clairvoyance pour prédire de futurs dépassements
d’échéances avant l’autorisation de l’exécution du plus prioritaires des jobs actifs.
Cette fonction consiste à simuler l’ordonnancement du système selon PFPASAP
dans l’intervalle de temps qui va de l’instant courant jusqu’à l’échéance du job en
cours. Ainsi, si un dépassement d’échéance est détecté, l’exécution est retardée
jusqu’à ce que toutes les échéances de l’intervalle soient respectées.

Malheureusement, même si FPCasap est clairvoyant et oisif, il n’est pas optimal
car il retarde toutes les tâches dans l’ordre chronologique de leur activations. La
figure 6.7 on page 163 montre un contre-exemple où l’ordonnancement optimal ne
respecte pas cet ordre.

• Fixed-Task-Priority Lazy Scheduling Algorithm (FPLSA) : Cet algorithme est
l’équivalent “priorité de tâche fixe” de LSA qui est basé sur EDF (voir section
9.4). Il n’est pas optimal non plus pour la priorité fixe même en supposant un taux
de consommation d’énergie unique pour toutes les tâches car le même problème
de retardement persiste.

• Fixed-Task-Priority As Late As Possible with energy guaranty (FPLeg) : Cet
algorithme reprend l’ordonnancement produit par PFPALAP mais cette fois en
prenant en compte les contraintes énergétiques. Cela passe par l’utilisation des
échéances virtuelles à la place des vraies pour calculer les retardements. Ici, une
échéance virtuelle est une date chronologiquement inférieure à l’échéance réelle
mais qui garantit un bilan d’énergie positif de l’intervalle de temps qui va de
l’instant courant à cette échéance virtuelle. Cela suppose que si un ordonnancement
faisable existe, le bilan énergétique à la fin de chaque job doit être positif.

Cette idée est une piste très intéressante mais n’est pas suffisante car si un job
moins prioritaire trouve une telle échéance, cela force toutes les interférences
plus prioritaires à s’exécuter plus tôt que nécessaire ce qui les expose au même
problème que celui de PFPASAP . La figure 6.9 on page 166 illustre une telle
situation.

• Fixed-Task-Priority lookahead (FPlh) : L’idée de cet algorithme est d’utiliser des
échéances virtuelles exactes qui garantissent non seulement un bilan positif mais
aussi une vérification des bilans énergétiques des jobs activés dans une fenêtre de
clairvoyance. Cela est supposé calculer le retardement optimal pour chaque job.
Malheureusement, la complexité de cet algorithme est exponentielle du fait que le
calcul des échéances virtuelles est interdépendant entre les jobs plus prioritaires
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et les moins prioritaires et que la taille de la fenêtre de clairvoyance est très
importante dans le pire cas.

Cela montre la difficulté de trouver un algorithme optimal pour la priorité fixe et
mène à la conclusion suivante :

• Si le calcul des échéances virtuelles est nécessaire pour un algorithme optimal,
alors, il aura une complexité pseudo-polynomiale multipliée par la complexité de
l’algorithme de calcul de ces échéances virtuelles.

• Dans ce cas, si la complexité de calcul des échéances virtuelles est NP-difficile
alors la problématique d’ordonnancement à priorité de tâche fixe des systèmes
collecteurs d’énergie l’est également.

• Sinon, le problème reste ouvert.

9.8 Analyse de temps de réponse des systèmes à
contraintes thermiques

Dans le but de mieux comprendre la problématique d’ordonnancement à priorité fixe
des systèmes collecteurs d’énergie, nous proposons d’explorer les solutions proposées pour
des problématiques d’ordonnancement similaires, en particulier celles où le retardement
des exécutions est parfois nécessaire pour respecter certaines contraintes.

L’ordonnancement avec contraintes thermiques est l’une de ces problématiques.
Cette dernière consiste à exécuter les tâches de telle sorte qu’une certaine température
maximale n’est jamais atteinte ou dépassée. Cette contrainte pousse le système à
suspendre les exécutions de temps en temps pour insérer des temps de refroidissement
afin d’éviter que la température maximale ne soit atteinte.

Dans ce domaine, il existe deux approches. La première dite réactive consiste à
suspendre l’exécution en réaction à l’atteinte de la température maximale. La seconde
dite proactive consiste à suspendre l’exécution ou à réduire la vitesse du processeur
avant d’atteindre la température maximale. Différents travaux ont été menés sur ce sujet
mais la majorité des résultats sont basés sur la technique de réduction de la fréquence
et/ou de la tension du processeur ou sur l’ordonnancement EDF.

Comme première étape de ce travail, nous proposons dans cette thèse d’adapter les
solutions proposées pour les systèmes à énergie renouvelable aux systèmes à contraintes
thermiques pour l’ordonnancement à priorité fixe. Ainsi, nous adaptons l’algorithme
PFPASAP pour que la contrainte thermique soit respectée ce qui constitue une solution
réactive. Nous proposons également une analyse d’ordonnançabilité basée sur des bornes
du pire temps de réponse des tâches.
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Modèle
Nous considérons un système temps réel non-concret composé d’un ensemble de

tâches sporadiques et indépendantes avec des échancres contraintes (∀iDi ≤ Ti).

Le modèle Thermique : nous considérons que la température du système fluctue en
fonction de la dissipation de chaleur générée par l’exécution des tâches sur le processeur.

La température à l’instant t notée T (t) est toujours supérieure ou égale à la tem-
pérature ambiante TA et ne doit jamais dépasser la température maximale Tmax. Le
seul moyen pour refroidir le système est de suspendre temporairement l’exécution des
tâches et de mettre le processeur en mode inactif.

Le comportement thermique du processeur peut être modélisé par un filtre Résistance
Capacitance (RC) [TYS01] illustré par la Figure 7.1 on page 176. Nous utilisons alors
l’équation différentielle de Fourrier pour modéliser le comportement thermique de notre
système (voir l’équation 7.1 on page 176). La solution à cette equation donne la fonction
qui exprime la température en fonction du temps et des paramètres du processeur (voir
l’équation 7.6 on page 177). Quand le processeur est inactif, sa vitesse devient nulle,
et par conséquent la dissipation de chaleur est nulle, le système commence alors à se
refroidir jusqu’à atteindre la température ambiante (voir l’équation 7.7 on page 177).

L’adaptation de l’algorithme PFPASAP
L’équivalent de l’algorithme PFPASAP pour le modèle avec contraintes thermiques

est l’ordonnancement au plus tôt qui choisit la plus prioritaire des tâches actives à tout
instant dès que le système est suffisamment froid pour pouvoir exécuter au moins une
unité de temps, et qui laisse seulement refroidir dans le cas échéant. Les périodes de
refroidissement sont aussi longues que nécessaire pour pouvoir exécuter une seule unité
de temps. Il s’agit de l’ordonnancement thermiquement non-oisif, c’est à dire que des
périodes de refroidissement ne sont ajoutées que lorsque c’est nécessaire.

Pour le modèle considéré, nous prouvons que le pire scénario de PFPASAP est
l’activation synchrone de toutes les tâches quand la température est à son niveau
maximal. Cela découle du fait que toutes les tâches chauffent le système de la même façon
ce qui est très proche du cas des systèmes collecteurs d’énergie composés uniquement
de tâches consommatrices d’énergie.

Nous prouvons également que PFPASAP est optimal pour les systèmes non-concrets
dont la température initiale et la date de la première activation des tâches ne sont
connus qu’au moment de l’exécution. L’idée de la preuve consiste à analyser tous les
cas où PFPASAP rate une échéance dans le pire cas et voir s’il est possible de l’éviter.

9.8.1 Analyse de temps de réponse
Notre objectif maintenant est de construire des conditions d’ordonnançabilité de

PFPASAP pour le modèle considéré. Le temps de réponse d’une tâche étant difficile à
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écrire sous forme d’une formule générique à cause du temps discret, nous proposons
une analyse de temps de réponse basée sur des bornes du pire temps de réponse des
tâches. Pour cela, nous proposons deux bornes supérieures qui maximisent le temps de
refroidissent nécessaire pour l’exécution selon PFPASAP .

La première borne UBTmin : Cette borne consiste à supposer que toutes les périodes
de refroidissement sont les plus longues possible, c’est à dire le temps nécessaire pour
faire baisser la température de Tmax à la température ambiante. L’approximation vient
du fait de la nature exponentielle inversée de la fonction de refroidissement, c’est à dire
que plus le refroidissent est long plus il est lent. On utilisera Tmin à la place de TA car
quand le processeur est éteint, la température baisse asymptotiquement à TA ce qui
peut rendre la borne très pessimiste.

La borne paramétrée UBx : L’idée de cette borne est de reproduire l’ordonnance-
ment de PFPASAP en considérant que toutes les périodes de refroidissent ont la même
longueur et que cette dernière est toujours plus longue que celle de l’ordonnancement
réel. En variant celle-ci, nous augmentons le pessimisme de la borne mais nous baissons
sa complexité en moyenne.

Ces bornes sont utilisées dans l’algorithme itératif classique pour calculer le pire
temps réponse final des tâches. Ainsi, nous obtenons deux tests d’ordonnançabilité
suffisants.

Les simulations montrent que UBx domine de loin UBTmin et est très proche du pire
temps de réponse empirique pour des petites valeurs du paramètre x mais devient très
pessimiste quand x devient très grand. Nous observons aussi qu’en variant x, le gain en
complexité est plus faible que la perte au niveau de l’ordonnançabilité.

9.9 L’outil de simulation YARTISS
Pour terminer, nous présentons brièvement YARTISS : l’outil de simulation déve-

loppé pendant cette thèse pour en évaluer les résultats théoriques.
YARTISS est un logiciel qui permet de simuler l’ordonnancement des systèmes de

tâches temps réel. Il permet de tester et comparer différents algorithmes et politiques
d’ordonnancement dans différents environnements, par exemple, multi/monoprocesseur,
contraintes d’énergie, etc.

Un effort conséquent a été fait pour rendre son architecture la plus générique et
extensible possible afin de pouvoir y intégrer et tester différents modèles de tâches,
d’algorithmes d’ordonnancement, de plateformes, etc.

YARTISS offre deux fonctionnalités principales : la première est la visualisation de
l’ordonnancement temps réel d’un système donné selon un algorithme donné et dans un
environnement donné. La deuxième est la simulation à grande échelle d’un ensemble de
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systèmes de tâches afin de comparer les performances d’algorithmes d’ordonnancement
ou de tests de faisabilité/ordonnançabilité donnés.

Nous espérons que cet apport pourra contribuer au développement d’un outil
de simulation qui pourra être adopté par une grande partie de la communauté de
l’ordonnancement temps réel.

9.10 Conclusion

Dans cette thèse nous avons traité le problème de l’ordonnancement temps réel
à priorité fixe des systèmes collecteurs d’énergie. Un tel système doit respecter non
seulement les échéances des tâches mais aussi leurs contraintes énergétiques. Cela veut
dire que le coût énergétique des tâches doit être satisfait par l’énergie stockée dans
la batterie ainsi que par l’énergie collectée depuis l’environnement. Pour satisfaire la
demande énergétique des tâches, des périodes d’inactivité du processeur additionnelles
peuvent être nécessaires pour collecter l’énergie demandée. Le défi pour un algorithme
d’ordonnancement à priorité fixe est alors d’exécuter les tâches en respectant leurs
échéances et de retarder les exécutions au bon moment et pendant la bonne durée pour
satisfaire au mieux les contraintes énergétiques et les échéances.

La problématique ici est de premièrement trouver un algorithme optimal pour le
modèle considéré ; deuxièmement, de fournir des outils d’analyse d’ordonnançabilité ;
troisièmement, de trouver la capacité minimale de la batterie qui préserve l’ordonnan-
çabilité d’un système donné.

Dans ce résumé, nous avons commencé par un bref état de l’art de ce domaine de
recherche incluant un aperçu de la théorie classique de l’ordonnancement temps réel,
les différentes technologies de stockage et d’extraction de l’énergie environnementale
et les principaux algorithmes d’ordonnancement proposés dans la littérature pour les
systèmes collecteurs d’énergie.

Nous avons présenté ensuite les résultats de cette thèse. Le premier résultat est
l’étude de l’algorithme PFPASAP qui est optimal pour les systèmes non-concrets com-
posés uniquement de tâches qui consomment plus d’énergie que le rechargement. Ce
travail a été effectué en collaboration avec Dr. Y. Abdeddaïm et a été publié dans les
actes de la conférence ECRTS 2013 [ACM13a]. Le deuxième résultat est une analyse
d’ordonnançabilité basée sur des bornes du pire temps de réponse des tâches qui prend
en compte tous les types de taux de consommation des tâches. Ce travail est le fruit
d’une collaboration avec Prof. R. Davis et a été publié dans les actes de la conférence
RTNS 2014 [Abd+14]. Ce papier a obtenu le prix du meilleur article de cette conférence.
Le troisième résultat est une exploration des différentes idées intuitives pour construire
un algorithme optimal où nous avons soulevé la difficulté de trouver un tel algorithme.
Ce travail est publié dans un rapport de recherche [AC13]. Le quatrième résultat est
la transposition des résultats obtenus pour les systèmes collecteurs sur les systèmes
contraints par la température qui présentent des similitudes au niveau de la problé-
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matique de l’ordonnancement à priorité fixe. Cette idée a été étudiée dans le cadre
d’une collaboration avec Prof. N. Fisher et est en cours de soumission. Finalement, le
cinquième résultat est le développement d’un outil de simulation de l’ordonnancement
des systèmes temps réels. YARTISS a fait l’objet d’une publication dans le workshop
WATERS 2012 [Cha+12].



Appendix

YARTISS Case Study

Listing 1: How to add a scheduling policy
1 public class MainDemoSP {
2 public static void main(String[] args) {
3 SchedulingPolicyFactory.registerPolicy(new PFPASAP());
4 DesktopMain main = new DesktopMain();
5 main.setVisible(true);
6 }
7 }
8

9 /∗∗
10 ∗ Preemptive Fixed Priority. When there is not enough energy, the system is
11 ∗ paused for x time unit (even if it results in missing a deadline)
12 ∗/
13 class PFPASAP extends ISchedulingPolicy {
14

15 protected final String tasksetType;
16 protected final String policyName;
17 protected List<Integer> parameters;
18 private long sleepUntil = −1;
19 private final int x = 1;
20

21 public PFPASAP(String tasksetType, String policyName) {
22 this.tasksetType = tasksetType;
23 this.policyName = policyName;
24 }
25

26 public PFPASAP(){
27 this("priority", "PFP_ASAP");
28 }
29

30 @Override
31 public void chooseNextTasks(Platform platform, ITaskSet taskSet, IEnergyProfile energyProfile,

long t, EventGenerator evGen) {
32

33 SortedSet<ITask> activeTasks = taskSet.getActiveTasks(t);
34

35 if (!activeTasks.isEmpty()) {
36 ITask first = activeTasks.first();
37 long hlcet = energyProfile.howLongCanExecute(first);
38

39 if (hlcet <= 0) {
40 evGen.generateEvent("check_energy_state", activeTasks.first(), t + x, null);
41 platform.getProcessor().setNextTask(null);
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42 return;
43 }
44

45 if (hlcet < activeTasks.first().getRemainingCost())
46 evGen.generateEvent("check_energy_state", activeTasks.first(), t + hlcet, null);
47

48 platform.getProcessor().setNextTask(first);
49 return;
50 }
51 platform.getProcessor().setNextTask(null);
52 }
53

54 @Override
55 public void setParameters(List<Integer> parameters) {
56 parameters = parameters!= null ? parameters: new ArrayList<Integer>();
57 this.parameters = new ArrayList<Integer>(parameters);
58 }
59

60 @Override
61 public List<Integer> getParameters() {
62 return parameters;
63 }
64

65 @Override
66 public String getPolicyName() {
67 return policyName;
68 }
69

70 @Override
71 public ITaskSet createTaskSet() {
72 return TaskSetFactory.getNewInstance(tasksetType);
73 }
74

75 @Override
76 public ISchedulingPolicy newInstance() {
77 return new PFPASAP(tasksetType, policyName);
78 }
79 }

Listing 2: How to add a new energy profile
1 public class MainDemo {
2 public static void main(String[] args) {
3 SchedulingPolicyFactory.registerPolicy(new LLF());
4 ConsumptionProfileFactory.registerConsumptionProfile(new LogConsumption());
5 DesktopMain main = new DesktopMain();
6 main.setVisible(true);
7 }
8 }
9

10 class LogConsumption implements
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11 IEnergyConsumptionProfile {
12 @Override
13 public String getName() {return "log";}
14 @Override
15 public List<Double> getParameters() {return null;}
16 @Override
17 public void setParameters(List<Double> params) {}
18

19 @Override
20 public long getConsumed(long wcet, long wcee,
21 long remainingTimeCost, long duration) {
22 double a = wcet − romainingTimeCost;
23 double b = a + duration;
24 if(b > wcet) b = wcet;
25 if( (b−a) <= 0 )return 0;
26 long result = (long) Math.log(b/a);
27 if(result > wcee )result = wcee;
28 return result;
29 }
30

31 @Override
32 public IEnergyConsumptionProfile cloneProfile() {
33 return new LogConsumption();
34 }
35 }





Glossaries

Symbols
Bai(t)

The energy balance of a job Ji,j at time t. 155

Bu(t1, t2)
The energy budget of time interval [t1, t2]. 155

Ci

The worst case execution time of task τi. 31

Constant

A constant. 99, 100, 102–104

DBFi(t)
The demand bound function of task τi in time interval [0, t]. 42

Di

The relative deadline of task τi. 31

E(t)
The level of the energy storage unit at time t. 68

E∗X [m]
The total energy required by execution units from the start of the sequence up to
and including execution unit X[m]. 134

EX [m]
The amount of energy required by the execution unit X[m] of sequence X. 134

Ei

The worst case energy consumption of task τi. 67

Emax

The highest reachable level of the energy storage unit. 68, 238

Emin

The lowest authorized level of the energy storage unit. 68, 238
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I∗X [m]
The the minimum number of replenishment units required to execute all of the
subsequence X[1] to X[m] in order. 135

IX [m]
The minimum number of replenishment units required to provide sufficient energy
to execute X[m] at the end of the subsequence X[1] to X[m]. 135

LX

The number of execution units in sequence X. 134

Nh

The number of jobs in sequence X. 141

Oi

Offset or first release time of task τi. 30

P (t)
The global power consumption function of the system. 176

PD(t)
The dynamic power consumption function of the system. 176

PL(t)
The power leakage or the static power consumption function of the system. 177

Pi

The priority of task τi. 38

Pr

Constant replenishment function. 68

Pr(t)
The power rate or the replenishment function. 67, 238

Pi,j

The priority of job Ji,j. 38

Pci

The worst-case power consumption of task τi during one time unit. 132

R

The electrical resistance. 176
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RBFi(t)

The request bound function of task τi in time interval [0, t]. 42

Ri

The Worst Case Response Time (WCRT) of task τi. 32

RUB1
i

The WCRT of task τi according to response time upper bound UBx. 137

Ri,j

The response time of job Ji,j. 32

SE(t)

The available slack-energy of the system at time t. 84

ST (t)

The available slack-time of the system at time t. 84

STi(t)

The available slack-time of priority level-i at time t. 92

T (t)

The temperature of the system at time t. 176, 247

Ti

The period or the inter-arrival time of task τi. 31

TA

The ambient temperature. 176

Tmax

The the maximum tolerated temperature. 176, 247

U

The processor utilization of the system. 41

Ui

The processor utilization of task τi. 41

Ue

The energy utilization of the system. 70
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V

Volt. 54

W

Watt. 50

W (t1, t2)

The workload of the system in time interval [t1, t2]. 42

W/cm2

Watt per square centimeter. 50

Wi(t1, t2)

The workload of task τi in time interval [t1, t2]. 42

Wm
i (t)

The recurrent workload function. 92

WUB1
i (w)

The workload function of priority level-i according to upper bound UB1. 139

Wei(t)

The energy workload or demand of priority level-i in time interval [0, t]. 113

Wh/kg

Watt-hour per kilogram. 56

Wh/m3

Watt-hour per cubic centimeter. 56

Wpi(t)

The processor workload or demand of priority level-i in time interval [0, t]. 113

X

A vector of execution units from 1 to LX . 134, 255, 256

X[m]

The m-th element of sequence X. 134, 255, 256

∆

A certain interval of time. 87
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Γ
A task set. 38, 132, 259

Γc
The subset of Γ that contains consuming tasks. 132

Γg
The subset of Γ that contains gaining tasks. 132

Λ
The density of the system. 41

Λi

The density of task τi. 41
◦C

Celsius degree. 54

C
The capacity of the energy storage unit. 68, 176

CUBimin

The minimum energy storage unit capacity needed for response time upper bound
UBi. 143

Cmin
The minimum capacity of the energy storage unit that keeps a task set schedulable.
91

µA

Microampere. 54

µF

Microfarad. 60

µW

Microwatt. 54

µW/cm2

Milliwatt per square meter. 51

µW/cm3

Milliwatt per cubic centimeter. 53
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τi

Task number i or of priority level i. 30

ai(t)

The next job request time of priority level-i. 92, 154

ai,j

The arrival time of job Ji,j. 32

ci(t)

The remaining execution time at time t of the current job of task τi. 92, 154

cm2

Square centimeter. 50

cm3

Cubic centimeter. 53

di(t)

The next absolute deadline of priority level-i after time t. 92, 154

di,j

The absolute deadline of job Ji,j. 32

ei(t)

The remaining energy cost of the current job of task τi at time t. 154

fi,j

The termination time of job Ji,j. 32

g(t1, t2)

The energy replenished during time interval [t1, t2]. 68

hp(k)

Subset of tasks of priority higher or than τk. 146

idle(t1, t2)

The amount of time where the processor is idle within interval of time [t1, t2]. 92

lp(i)

Subset of tasks of priority lower or equal than τi. 146
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mA

Milliampere. 56

mAh

Milliampere-hour=10−3Ah. 56

mW

Milliwatt. 54

n

The task set cardinal. 38

si(t)
The effective execution starting time of the current job of task τi at time t. 154

si,j

The effective execution starting time of job Ji,j. 87, 154

t

Time instant t. 36



262 Acronyms

Acronyms
DM

Deadline Monotonic. 38, 124, 146, 147, 204, 212, 216,
— Glossary: DM

EDF

Earliest Deadline First. 22, 40, 79–81, 83–86, 89, 91, 92, 105, 164, 204, 206, 211,
212, 216, 234, 235, 240, 262, 268, 270,
— Glossary: EDF

EDL

EDF As Late As Possible. 79–84, 86, 92, 95, 98, 99, 102–104, 240, 273,
— Glossary: EDL

EDeg

EDF with energy guaranty. 79, 83–86, 98, 99, 101, 104, 240, 273, 275,
— Glossary: EDeg

FBA

Frame-Based Algorithm. 76–79, 98, 99, 101, 102, 104, 239, 273, 275,
— Glossary: FBA

FPCasap

Fixed-Task-Priority Clairvoyant as soon as possible. 161–163, 165, 167, 245,
274, 275,
— Glossary: FPCasap

FPLSA

Fixed-Task-Priority Lazy Scheduling Algorithm. 164, 165, 245, 274, 275,
— Glossary: FPLSA

FPLeg

Fixed-Task-Priority As Late As Possible with energy guaranty. 164–170, 245,
274, 275,
— Glossary: FPLeg

FP lh

Fixed-Task-Priority lookahead. 167–170, 245, 274, 275,
— Glossary: FPlh



Acronyms 263

LLF

Least Laxity First. 40, 212, 216, 235, 269,
— Glossary: LLF

LSA

Lazy Scheduling Algorithm. 79, 86–91, 98, 99, 101, 102, 104, 164, 240, 245, 273,
275,
— Glossary: LSA

PFPALAP

Preemptive Fixed-Task-Priority As Late As Possible. 92–96, 98, 99, 101, 103,
104, 110, 123, 125–129, 160, 161, 165, 166, 168, 170, 240, 241, 273–275,
— Glossary: PFPALAP

PFPASAP

Preemptive Fixed-Task-Priority As Soon As Possible. 23, 110–114, 116–119,
121, 122, 125–129, 131, 136, 138, 141, 144, 147, 148, 151, 153, 156, 157, 159–163,
174, 178, 179, 181–185, 188, 189, 191–193, 196, 198, 202, 221, 222, 225–227, 241,
273–275,
— Glossary: PFPASAP

PFPST

Preemptive Fixed-Task-Priority with Slack-Time. 95–99, 101, 103, 104, 110, 123,
125–128, 161, 240, 273–275,
— Glossary: PFPST

RM

Rate Monotonic. 38, 204, 212, 216,
— Glossary: RM

API

Application Programming Interface. 204, 205, 214, 219, 220

CMOS

Complementary Metal–Oxide–Semiconductor . 74

CPU

Central Processing Unit. 21, 29, 35, 73, 74, 175, 176,
— Glossary: CPU



264 Acronyms

DAG

Directed Acyclic Graph. 35, 173, 208, 216,
— Glossary: DAG

DBF

Demand Bound Function. 42,
— Glossary: DBF

DP

Dinamic Priority. 38,
— Glossary: DP

DVFS

Dynamic Voltage and Frequency Scaling. 73, 74, 175, 217

EH

Energy-Harvesting. 47,
— Glossary: EH

EHS

Energy-Harvesting System. 22, 48

EVCC

Energy Variability Characterization Curves. 87,
— Glossary: EVCC

FIFO

First In First Out. 175

FJP

Fixed-Job-Priority. 38, 40,
— Glossary: FJP

FTP

Fixed-Task-Priority. 38, 40, 71, 95, 97, 147, 148, 211, 225, 268, 269,
— Glossary: FTP

GUI

Graphic User Interface. 213, 214, 223



Acronyms 265

HP

Hyper-Period. 42,
— Glossary: HP

ICT

Information and Communication Technologies. 55, 56, 61, 273

IMD

Implantable Medical Device. 174

IoC

Inversion of Control. 214, 218, 219,
— Glossary: IoC

LCM

Least Common Multiple. 42, 270

Li-ion

Lithium Ion. 59, 237, 273

Li-polymer

Lithium-ion Polymer . 59, 273

MEMS

Microelectromechanical Systems. 52

MP3

MPEG Audio Layer 3 . 21,
— Glossary: MP3

MVC

Model-View-Controller . 214, 219, 220,
— Glossary: MVC

MVVM

Model View View-Model. 219,
— Glossary: MVVM

NiCd

Nickel Cadmium. 57–59, 237, 273



266 Acronyms

NiMH

Nickel-Metal Hydrid. 58, 59, 237, 273

NP-Hard

Non-deterministic Polynomial-time Hard. 74

OPA-compatible

Optimal Priority Assignment (OPA)-compatible.
— Glossary: OPA-compatible

OPA

Optimal Priority Assignment. 38, 39, 265, 270,
— Glossary: OPA

PC

Personal Computer . 21

QoS

Quality of Service. 29, 35

RBF

Request Bound Function. 42,
— Glossary: RBF

RC

Resistance Capacitance circuit. 176, 271,
— Glossary: RC

RF

Radio Frequency. 50, 51, 53

RFID

Radio Frequency Identification. 51, 236

RTEHS

Real-Time Energy-Harvesting Systems. 22

RTS

Real-Time Systems. 21, 28



Acronyms 267

TA
Thermal-Aware.
— Glossary: TA

WCET
Worst Case Execution Time. 31, 34, 35, 208, 211, 215

WCRT
Worst Case Response Time. 45, 257, 271,
— Glossary: WCRT

XML
Extensible Markup Language. 206

YARTISS
Yet An Other Real-Time Systems Simulator . 23, 204–208, 211, 212, 215–219,
221, 223, 224
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Glossary
DM

The priority assignment policy that grants the highest priority to the task with
the smallest deadline. 262

EDF

The scheduling policy that executes first the jobs with the nearest deadlines. 262

EDL

The scheduling algorithm that schedules jobs as late as possible according to
EDF rules. 262

EDeg

The scheduling algorithm that checks if the execution of the current job does not
lead to future deadline miss before authorizing it to execute according to EDF
rules. 262

FBA

The scheduling algorithm that schedules continuously the group of gaining tasks
when the minimum battery level is reached and executes the group of consuming
tasks when the maximum battery level is reached. 262

FPCasap

The FTP algorithm that uses lookahead computations to detect future deadline
misses in order to adapt the scheduling decisions. 262

FPLSA

The FTP counter-part of Lazy Scheduling Algorithm. 262

FPLeg

The FTP algorithm that uses only virtual deadlines to compute the maximum
delay to apply for each job. 262

FPlh

The FTP algorithm that uses virtual deadlines and lookahead verifications to
compute the maximum delay to apply for each job. 262

LLF

The scheduling policy that executes first the jobs with the smallest laxity. 262
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LSA

The Lazy Scheduling Algorithm is an EDF-based algorithm that delays execution
such that the current job and the eventual higher priority jobs can be executed
continuously without running out of energy and without exceeding the maximum
capacity of the battery. 263

PFPALAP

The scheduling algorithm that schedules jobs as late as possible according to FTP
rules. 263

PFPASAP

An energy-work-conserving FTP scheduling policy. 263

PFPST

The scheduling algorithm that executes jobs according to FTP rules when some
energy is available and replenishes as long as possible otherwise. 263

RM

The priority assignment policy that grants the highest priority to the task with
the smallest period. 263

CPU

The processor. 263

DAG

The task model that considers dependencies between the jobs of the same task.
263

DBF

The demand bound function of recurrent is the worst cumulative workload gener-
ated jobs that are requested and finished during time interval [0, t]. 263

DP

According to dynamic priority scheduling, a job may be scheduled with different
priorities, e.g. LLF . 264

EH

Energy-Harvesting systems collect the energy from the environment and use it to
supply the operations of the system. 264
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EVCC

The Energy Variability Characterization Curves is technique used to bound the
amount of energy that comes from a solar energy harvester. 264

FJP

Scheduling algorithms driven by jobs priorities, e.g. EDF . 264

FTP

Scheduling algorithms driven by the static priorities of tasks. 264

HP

The hyper-period is the smallest interval of time after which the global periodic
pattern of all the tasks are repeated. It is typically defined as the Least Common
Multiple (LCM) of the periods of all the tasks of the system.. 264

IoC

The Inversion of Control design pattern. 265

MP3

An audio codec. 265

MVC

Model-View-Controller design pattern. 265

MVVM

The Model View View-Model design pattern. 265

OPA

The algorithm of Audsley that calculate a valid tasks priority assignment whenever
there exists one. 266

OPA-compatible

A schedulability test is compatible with the OPA algorithm if the priority ordering
of higher and lower priority tasks does not alter the schedulability of the current
level. 265

RBF

The request bound function computes the worst cumulative workload generated
by jobs that are requested during time interval [0, t[. 266



Glossary 271

RC
The Resistance Capacitance circuit (RC) circuit is used to model the thermal
behavior of the system. 266

TA
Thermal-Aware systems adapt the performances in order to keep the temperature
of the system below a maximum threshold. 266

WCRT
The WCRT of a task is the maximum duration between the activation of the task
and the moment it finishes its execution. 266
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