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Abstract

In a context of increasing interoperability, several high speed trains, such as ICE, TGV,
ETR 500, are likely to run on the same tracks, whereas they have been originally designed for
specific and different railway networks. Due to different mechanical properties and structures,
the dynamic behaviors, the aggressiveness of the vehicle on the track and the probabilities of
exceeding security and comfort thresholds will be very different from one train to an other.
These maintenance, certification and comfort criteria depend on the dynamic interaction
between the vehicle and the railway track and in particularly on the contact loads between
the wheels and the rail, which are very hard to evaluate experimentally. Moreover, the track-
vehicle system being strongly non-linear, this dynamic interaction has to be analyzed not
only on a few track portions but on the whole realm of possibilities of running conditions
that the train is bound to be confronted to during its life cycle.

The idea of this paper is therefore to show to what extent this influence of the track
geometry variability on the train dynamics can be analyzed from the coupling of a deter-
ministic multibody modeling of the train with a track geometry stochastic modeling, which
has been identified and validated from experimental data.
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1. Introduction

To face the always more demanding challenges of the railway field, the expected benefits
of simulation versus experiment are multiple, as it would allow cheaper, shorter, and more
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Figure 1: Parametrization of the track irregularities, where E the theoretical track gauge,
s is the curvilinear abscissa of the track and (ONT(s),T(s),N(s),B(s)) is the Frenet frame
(for each rail, the mean position is represented in black, whereas the real position is in grey).

practical procedures. However, if simulation has to be used in security, maintenance and
comfort prospects, it has to be representative of the physical behavior of the track-vehicle
system. The numerical models of the train and of the wheel-rail contact have indeed to be
fully validated, and a procedure to accurately investigate the diversity of running conditions
that the train can be confronted to during its life cycle has to be defined. Such running
conditions refer, in particular, to a double scale description of the track geometry. Indeed,
whereas the mean line position of the perfect track, which is chosen at the building of a new
track, is characterized by three curvilinear quantities, which are the vertical curvature cV ,
the horizontal curvature cH , and the track superelevation cL, the description of four kinds
of track irregularities has to be added to define the actual positions of the two rails, which
are the lateral and vertical alignment irregularities x1 and x2, the cant deficiencies x3 and
the gauge irregularities x4 (see Figure 1). These four track irregularities, which are the main
source of excitation of the train dynamics, are moreover in constant evolution, which is due
to the train dynamics, to the modifications of the track substructure and to maintenance
operations. Numerical methods to quantify the influence of this track irregularity variability
on the train dynamics are therefore needed.

The general scheme for probabilistic analysis is usually divided in three steps [1, 2, 3].
First, the mechanical model and the associated input parameters and output criteria have to
be defined precisely. Three kinds of inputs are needed for a railway model to be defined: the
vehicle model, the track model, and the wheel-rail contact model. Given these three inputs,
the train response can be computed as the solution of a system of coupled equations that are
strongly nonlinear. Once these equations have been solved, the spatial accelerations of each
mass body, as well as the internal and external loads are available. These railway outputs
can then be post-processed to define safety, comfort and maintenance criteria. Hence, thanks
to the coupling of a series of breakthroughs in the modeling of complex mechanical systems
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[4, 5, 6, 7, 8, 9, 10, 11, 12, 13] with an increase of the computational resources, it is now
possible to compare the simulated dynamics of a real train on a measured track geometry and
the measured dynamics of the same train on the same track [14]. Then, much attention has to
be paid to the modeling of the input variability, as any error on the input will be propagated
to the output. Only the uncertainty in the track irregularities is addressed in this work.
Finally, the variability has to be propagated through the mechanical model. Noticing that
the railway mechanical system is based on a very high number of variable input parameters,
that the train response is very sensitive, very non linear, and very fuzzy with respect to
these input parameters, it appears that the best method to propagate the track variability
to the train dynamics is the Monte Carlo (MC) method [15]. If such a MC method is used, a
method to generate independent realistic and representative track conditions is thus needed.
In this prospect, methods based on the one-sided power spectral density (PSD) functions of
the track geometry [16, 17, 18] could be introduced to statistically characterize the random
irregularities. From a time-frequency transformation based on a spectral representation
[19, 20], track irregularities can indeed be generated from these PSD functions, which can
be either estimated from measured track irregularities or from track safety standards such
as the ones given by the Federal Railroad Administration [21]. In that case, the railway
track irregularities are however seen as four independent Gaussian random fields that are
assumed to be ergodic and stationary in space. These track irregularities are nevertheless
strongly dependent in practice, and due to the strong coupling of the train dynamics with the
track degradation, they are actually neither stationary nor Gaussian. More recently, taking
advantage of the recent developments in the modeling of non-Gaussian and non-stationary
vector-valued random fields [22, 23, 24, 25, 26, 27, 28, 29, 30], an original construction of
the track irregularities distribution has been proposed in [31]. Such a modeling allows then
the generation of running conditions that are realistic from frequency and statistical points
of view, and representative of the measured track quality.

Hence, the idea of this work is to show to what extent such a complex modeling of the
track geometry can be coupled with a rigid-body modeling of a complete train to analyze
the influence of the track irregularity variability on the train dynamics. To this end, Section
2 introduces first the railway stochastic modeling and its validation from experimental data.
Section 3 underlines then how such a stochastic modeling of the railway system can be
used to perform robust comparisons between trains with different mechanical properties and
to quantify the consequences of an increase of the train speed on the train stability and
aggressiveness.

For confidentiality reasons, only qualitative analysis will be presented in this work as
very few numerical values will be given.

2. Railway stochastic modeling

This section aims at presenting the numerical frame, on which the quantification of the
influence of the track variability on the train dynamics is based. First, a description of
the railway deterministic problem is introduced. Then, the railway stochastic modeling is
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described. The relevance of both deterministic and stochastic problems is moreover evaluated
from comparisons to experimental data.

2.1. Railway deterministic modeling

2.1.1. Definition of the deterministic modeling

As presented in Section 1, a deterministic railway simulation is based on the introduction
of three kinds of inputs.

• The vehicle model V. Multibody simulations are usually employed to model the train
dynamics. Carbodies, bogies and wheelsets are therefore modeled by rigid bodies
linked with connections represented by rheologic models (dampers, springs, ...). For
1 ≤ i ≤ NDoF, and t in [0, T ], we denote by ui(t) the position at time t of the coordinate
associated with each degree of freedom of the rigid body modeling of the train, and
by u̇i(t) = dui

dt
(t) its time derivative. For instance, for a classical one-carriage TGV,

which is made of 10 coaches, 13 bogies and 52 wheelsets that are linked by a series of
suspensions and bumpstops, NDoF is about two hundreds (see Figure 2 for a simplified
representation of the TGV).

• The track geometry, T . As described in Section 1, the track geometry refers to a double
scale description. On the first hand, the track design gathers the horizontal curvature
cH , the vertical curvature cV and the cross level cL, and corresponds to the description
of a perfect track without irregularities. On the other hand, four track irregularities,
x1, x2, x3 and x4, have been added to characterize the deviation of the real railway
track toward this perfect track. It is moreover recalled that whereas the track design
is chosen constant, such irregularities are in constant evolution.

• The contact model, C, allows the computation of the contact forces between the rails
and the wheels. In the railway community, these contact forces are almost always
computed from the wheel profile and the rail profile thanks to the Hertz and Kalker
theories [32, 33].

Introducing the vector of the generalized coordinates, at time t,

U(t) = (u1(t), u2(t), . . . , u̇1(t), u̇2(t), . . .) , (1)

the train dynamics can therefore be determined by solving the Euler-Lagrange equation,
which is written as:

d

dt

(
∂Ec

∂u̇i

)
−

∂Ec

∂ui

= Li(U , T , C), 1 ≤ i ≤ NDoF, (2)

with Ec the total kinetic energy of the train, and Li(U , T , C) the general load that is applied
to the degree of freedom i, which depends on the track geometry T , on the wheel-rail contact
C and on the generalized coordinated U . Eq. (2) can be rewritten in a matricial form as:
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Figure 2: Simplified description of a multibody model of a TGV.

[A(U)]U̇ = F (U , T , C), (3)

with [A] and F two strongly nonlinear operators. This system is usually solved with an
explicit time scheme. In the following, the commercial black-box software, Vampire (see
[34, 35] for further details about this software), is used. The chosen time step of this explicit
scheme was identified according to a convergence analysis and is generally taken equal to
10−4 second. The generalized coordinates vector U is then post-treated to define the final
comfort and safety criteria associated with the railway system. In this work, five represen-
tative outputs are chosen to characterize the train dynamics, which can be classified in two
categories.

1. First, the maximal values of the vertical and lateral accelerations in the train coaches,
z̈max and ÿmax, are controlled to guarantee the comfort of the passengers.

2. Secondly, the safety and maintenance criteria of the track-vehicle system are based
on the analysis of the wheel-rail contact forces. In this prospect, the following three
criteria are generally introduced to characterize the vehicle dynamics on a given track
geometry of total length Stot:

• a shifting criterion:

(Yℓ + Yr)max = max
wheelset w

{
max

0≤s≤Stot
{Y w

ℓ (s) + Y w
r (s)}

}
, (4)

• a derailment criterion:

(Y/Q)max = max
wheel q

{
max

0≤s≤Stot
{Yq(s)/Qq(s)}

}
, (5)

• a wear criterion:

(Tγ) =
∑

wheel q

{∫ Stot

0

Tq(s)γq(s)ds

}
, (6)
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where:

• 0 ≤ s ≤ Stot is the curvilinear abscissa of the track;

• Y w
ℓ and Y w

r are the left and right lateral forces of the same wheelset w, such that
the higher (Yℓ + Yr)max, the more chance for a shifting of the track;

• Yq and Qq are the lateral and vertical components of the wheel-rail contact force
at wheel q, such that the higher (Y/Q)max is, the more on the flange a wheel of
the train can be;

• Tq and γq are respectively the creep force and the slip at wheel q, such that the
higher (Tγ), the higher the contact wear for one run of the complete train.

Finally, given a model of the wheel-rail contact C, the deterministic railway problem
corresponding to the dynamics of a vehicle V on a track geometry T can be expressed as:

(V, T , C) 7→ c = g (V, T , C) , c = (z̈max, ÿmax, (Yℓ + Yr)max, (Y/Q)max, (Tγ)) , (7)

where it is reminded that g is a complex and nonlinear operator. These nonlinearities are
mostly due to the train suspensions (especially the airsprings between the bogies and the
coaches), to a series of bumpstops in the train description and to the wheel-rail contact
forces. Moreover, due to the train dynamics, to the track irregularities and to the specific
wheel and rail profiles, the contact positions between each wheel of the train and the rails
keep changing. The wornest the track geometry is, the more discontinuous these changes are
likely to be. For instance, the diversity of these contact positions and contact forces can be
seen in Figure 4, which is based on the run of a train on a measured track geometry around
a curve, whose design is shown in Figure 3.

2.1.2. Domain of validity for the deterministic problem

As a first comment on the validity of the deterministic railway modeling, it is important
to point out that all European railway reference standards and reference maintenance guides
only consider the low-frequency content, f ≤ fc, of the train dynamic quantities of interest
(either simulated or measured). As presented in the former Section, the software Vampire is
used to solve the railway deterministic problem. The train being constituted of rigid bodies,
the simulated high-frequency response of the train cannot be physical. As an illustration,
Figure 5 compares the measured and simulated frequency properties of a bogie of a TGV.
As shown in Figure 6, although the transverse and vertical accelerations of the bogie are
low-pass filtered at the reference cut-frequency f = fc, it can be seen that the low-frequency
response is well reproduced both in the time and frequency domains by the deterministic
model. As a consequence, in agreement with the work achieved in [14], it is assumed that
the proposed railway deterministic model is valid on the frequency band 0 ≤ f ≤ fc. In the
following, each output of the train dynamics (whether measured or simulated) will thus be
low-pass filtered at frequency fc before being analyzed.

6



 

 

Abscissa s

A
m

p
li
tu

d
es

0 Stot

0.2

cH

Case 1

Case 2

Case 3

Case 4

Case 5

cV

cL

Figure 3: Evolution of the horizontal curvature cH (×km−1), the vertical curvature cV
(×km−1) and of the cross level cL (×m−1) with respect to the track curvilinear abscissa s.

2.2. Railway stochastic problem

2.2.1. Definition of the stochastic problem

As presented in Section 1, only the track geometry variability is analyzed in this work.
The wheel and rail profiles of high speed trains and lines being checked and maintained very
regularly, only perfect wheel and rail profiles will be considered in the following, such that
the contact properties, C, are chosen to be constant. It is moreover supposed that the track
irregularities can be separated from the track design. Hence, in the following, the track
design is also supposed to be constant, while the four track irregularities can vary. As a
consequence, vector c, which is defined by Eq. (7), becomes a random vector that is denoted
by C = (C1, C2, C3, C4, C5). It is reminded that by definition of vector c, C1 and C2 refer to
the vertical and lateral maximal accelerations in the train coaches, C3 is the maximal value
of the sum of the transverse loads of the wheelsets, C4 is the maximal value of the Y/Q ratio,
and C5 is the cumulated wear along the track. At last, given a fixed description of the track
design, (cH , cV , cL), and a normalized model of train, V, for which mechanical parameters
are also fixed and have been accurately identified, the railway stochastic problem can be
witten:

X 7→ C = G (X | cH , cV , cL,V, C) , (8)

where X = (X1, X2, X3, X4) is a non-Gaussian and non-stationary four-dimensional random
field, which gathers the evolutions with respect to the curvilinear abscissa of the considered
track design of the four track irregularities that were introduced in Section 1. In this work,
the distribution of X is moreover supposed to be identified according to the developments
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achieved in [31], from the measurement of the track geometry of a whole railway network.
Hence, coupled with any track design, we admit that such a construction for X allows the
generation of independent running conditions that are realistic and representative of the
available measured track irregularities.

2.2.2. Validation of the stochastic problem

Two validations for the track geometry stochastic modeling, based on the train dynamics,
are proposed in this section. In a first step, it is shown that the track generator coupled
with the Vampire software allows the simulation of train accelerations that are similar to
accelerations that have been recorded on a real high speed train on a real track. In a second
step, another type of validation is proposed to evaluate the relevance of the track stochastic
modeling for the analysis of the wheel-rail forces, as these forces can hardly be measured.

Relevance of the track stochastic modeling for the analysis of the train accelerations.

Since 2007, the measurement train IRIS-320 keeps monitoring the track geometry of the
French high speed lines. The rigid body modeling of this train has therefore been achieved,
simulations have then been performed at constant speed S on ν = 500 variable running condi-
tions of total length Stot. For each simulation, the track design is therefore chosen to be con-
stant and to correspond once again to the one given by Figure 3, whereas the track irregular-
ities, which correspond to a particular realization, X(Θn), of X, are supposed to be different

from one simulation to another. Hence, for all s in [0, Stot], we respectively define Ĉsim
z (Θn, s)

and Ĉsim
y (Θn, s) as the vertical and lateral maximal values, at position s, of the accelera-

tions in all the coaches of the train that is excited by the track irregularity X(Θn). Given

these two sets of train responses,
{
Ĉsim

z (Θn), 1 ≤ n ≤ ν
}

and
{
Ĉsim

y (Θn), 1 ≤ n ≤ ν
}

, let

{Dz
i (s), s ∈ [0, Stot], 1 ≤ i ≤ 10} and {Dy

i (s), s ∈ [0, Stot], 1 ≤ i ≤ 10} be the decile func-

tions, such that at each position s, i/10 of the values of Ĉsim
z (Θn, s) and Ĉsim

y (Θn, s) are
in Dz

i (s) and Dy
i (s) respectively. These decile functions, whose representations are shown

in Figure 7, allow us to evaluate the influence of the track irregularity variability on such
maxima.

The IRIS-320 train is moreover equipped with accelerometers that record the vertical
and transverse accelerations at three coaches,

{
ÿ
(1)
C , ÿ

(2)
C , ÿ

(3)
C , z̈

(1)
C , z̈

(2)
C , z̈

(3)
C

}
.

In order to evaluate the relevance of the former results for the maximal accelerations in the
train coaches, we define Ĉexp

z and Ĉexp
y , such that for any value of the curvilinear abscissa of

the track, s, we get:

Ĉexp
z (s) = max

i∈{1,2,3}

∣∣∣z̈(i)C (s)
∣∣∣ , (9)

Ĉexp
y (s) = max

i∈{1,2,3}

∣∣∣ÿ(i)C (s)
∣∣∣ . (10)
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Five particular evolutions for Ĉexp
z and Ĉexp

y over a length Stot, which are denoted by{
Ĉ

exp,(1)
z , . . . , Ĉ

exp,(5)
z

}
and

{
Ĉ

exp,(1)
y , . . . , Ĉ

exp,(5)
y

}
, are then extracted from the experimental

database collected by measurement train IRIS 320. These measurements were chosen as their
dynamic characteristics were the most comparable to the simulated one, in terms of cross
level, horizontal and vertical curvatures, speed of the train and length of the curve. If the
chosen simulated dynamic characteristics were not similar to the extracted dynamic char-
acteristics on the complete domain [0, Stot], non-valid domains were added to these figures.
The evolutions of these measured accelerations are compared to the simulated ones in Figure
8. In the light of these results, the track generator coupled with the Vampire software seems
to be able to simulate realistic and representative runs of the IRIS-320 train to analyze the
link between the two first quantities of interest of the stochastic modeling, C1 and C2, and
the track geometry variability.

Dynamic validation of the track generator for the analysis of the wheel-rail contact forces.

No on-track measurements of the contact forces between the train and the track at high
speed being available, an other approach is proposed to evaluate the relevance of the track
generator to simulate realistic and representative values for C3, C4 and C5. To this end,
the particular curve of total length Stot shown in Figure 3, is once again considered. From
the available measurements of the track geometry, νexp = 400 different track conditions of
total length Stot, {Xexp(θ1), . . . ,Xexp(θνexp)}, are gathered. The same normalized high-speed
train V, for which mechanical parameters are supposed to be accurately identified, is thus
made run first on the νexp measured track conditions, and then on the ν = 500 formerly
generated track conditions, {X(Θ1), . . . ,X(Θν)}, at the same speed S. Eight quantities of
interest that are representative of the train dynamics are then compared:

• the left and right transverse contact forces at the first wheelset of the first bogie of the
motor car, Q1 = Y ℓ

MC and Q2 = Y r
MC ;

• the left and right transverse contact forces at the second wheelset of the second bogie
of the second passenger car, Q3 = Y ℓ

PC and Q4 = Y r
PC;

• the left and right Y/Q ratio at the first wheelset of the first bogie of the motor car,
Q5 = (Y/Q)ℓMC and Q6 = (Y/Q)rMC ;

• the left and right Y/Q ratio at the second wheelset of the second bogie of the second
passenger car, Q7 = (Y/Q)ℓPC and Q8 = (Y/Q)rPC.

For 1 ≤ i ≤ 8, we are now interested in the mean power spectral densities of Qi and the
mean numbers of upcrossings of the level u by Qi over the length Stot, which are respectively
denoted by PSDmes(Qi) and Nmes

up (Qi, u, S
tot) when these quantities are computed from the

measured track geometries and PSDgen(Qi) and Ngen
up (Qi, u, S

tot) when these quantities are
computed from the generated track geometries. The comparisons between these quantities
are represented in Figure 9, where a very good fit can be seen (for confidentiality reasons,
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it is reminded that no numerical values for the abscissa of these graphs are given). The
stochastic modeling of the track geometry, based on the developments carried out in [31], is
thus relevant from the train response point of view. In the following, it is therefore supposed
that the track stochastic modeling, coupled with the software Vampire is also relevant to
investigate the relation between the track variability and the three quantities of interest C3,
C4 and C5.

3. Influence of the track irregularities variability on the train dynamics

As explained in Section 1, a better understanding of the specific link between the track
irregularities and the train response is needed to optimize the maintenance, and to better
anticipate the consequences of modifications of the running conditions. To this end, we
denote by PC(dx) = pC(x)dx the multidimensional distribution of random vector C, where
pC is the associated density. This distribution is strongly related to the distribution of the
track irregularity random field, PX (see Eq. (8)). Assuming that the latter distribution has
been accurately identified, the track variability has now to be propagated through the railway
model to characterize PC . As the statistical dimension of X is very high and as the relation
between PC and PX is very complex and strongly nonlinear, the Monte Carlo method is
chosen to evaluate PC . From ν independent realizations of X, {X(Θ1), . . . ,X(Θν)}, which
correspond to ν independent realistic and representative running conditions that a train can
be confronted to during its lifecycle, ν independent realizations of C, {C(Θ1), . . . ,C(Θν)},
can be deduced as:

C(Θn) = G (X(Θn) | cH , cV , cL,V, C) , 1 ≤ n ≤ ν. (11)

The statistical properties of C are finally deduced from the analysis of this ν-dimensional
set of independent realizations of C. Three applications of this stochastic modeling are now
presented. These are based on the track design of total length Stot shown in Figure 3, and
on ν = 4, 000 independent running conditions. First, the compared influence of the track
design and of the track irregularities is illustrated. Then, it is shown to what extent such a
method can be used to quantify the influence of an increase of the train speed on C, and to
compare the safety and the aggressiveness of three different high speed trains.

3.1. Influence of the track design

The idea of this section is to quantify the importance of the track irregularities and of
the track design on vector C. In this prospect, the response of a normalized high train V to
the former ν track conditions of total length Stot is analyzed. Four categories are considered:
the alignment (A), the curve entrance (CE), the established curve (C) and the curve exit
(SC). The response of the train is therefore sorted with respect to these four curve categories,
such that, for 1 ≤ i ≤ 5, four values of the railway quantities of interest CA

i (Θn), C
EC
i (Θn),

CC
i (Θn) and CSC

i (Θn) can be computed. Based on these sets of ν independent realizations,
the PDFs of the components of C are estimated from a kernel smoothing method [2], and
are represented in Figure 10. From these graphs, it can be seen that the influence of the
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track design on the wear criterion, C5 is very high. The other dynamic quantities, C1, C2,
C3 and C4 seem however to be much more dependent on the track irregularities than on the
track design.

3.2. Influence of an increase of the speed on the quantities of interest

The second application deals with the influence of the train speed on the PDFs of the five
considered criteria. Only the established curve configuration is shown. Railway simulations
are therefore performed on the same ν realistic and representative track geometries, at the
four speeds S1 = S, S2 = 1.1S, S3 = 1.2S and S4 = 1.3S. Two other sets of simulations
have then been carried out for a different value of the track superelevation, c∗L, at speeds
S3 = 1.2S and S4 = 1.3S in order to quantify the importance of this track design parameter
with respect to the five studied criteria. In other words, whereas cL is chosen to compensate
the train inertial acceleration in curve at speed S1, c∗L allows the compensation of the train
inertial acceleration in curve at speed S3. For each speed, the PDFs of each component
of C are once again estimated using a kernel smoothing method based on the ν = 4, 000
independent railway simulations. These PDFs are represented in Figure 11. In this figure,
the nonlinearity of the system can be noticed, as the consequences of an increase of the speed
of 10% to 30% are much higher than 30% for each criterion. In particular, an increase of 30%
of the speed of the train can yield an increase of more than 500% of the contact wear if the
track superelevation is not adjusted. In addition, these figures emphasize the importance of
the adjustment of the track superelevation to the speed, in terms of minization of the wear,
of the shifting and of the risk of derailment.

3.3. Comparison of three high speed trains

In this section, it is supposed that three different models of three competitive high speed
trains, V1, V2 and V2 are available. The mechanical parameters of these trains are very
different and were carefully identified from experimental measurements. These three trains
are thus made run on the same ν track geometries at the same speed S. The PDFs of each
criterion Ci associated with each train are then shown in Figure 12. Hence, the stochastic
modeling allows us to compare the dynamic response of these three trains when excited by
a representative set of realistic track conditions. In particular, criteria C3 and C5 could be
interesting indicators to compare the aggressiveness of each train.

4. Conclusions and prospects

A method to propagate the track geometry variability through railway mechanical sim-
ulations is nowadays of great interest to face always more challenging railway issues. In
this prospect, this paper has presented a method based on the coupling of a track geometry
stochastic modeling with a rigid-body modeling of a train. Based on experimental data,
this stochastic modeling of the track geometry allows the generation of running conditions
that are realistic and representative of the quality of the measured railway network. In this
work, it has therefore been shown to what extent such a complex modeling, which takes into
account the dependencies between the different track irregularities, can be used to analyze
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Figure 10: Influence of the track design on the marginal PDFs of vector C.
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18



 

 

Values of C1

P
D

F
s

V1

V2

V3

0
0

 

 

Values of C2

P
D

F
s

V1

V2

V3

0
0

 

 

Values of C3

P
D

F
s

V1

V2

V3

0
0

 

 

Values of C4

P
D

F
s

V1

V2

V3

0
0

 

 

Values of C5

P
D

F
s V1

V2

V3

0
0

Figure 12: Influence of the train characteristics on the PDFs of C.
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the complex link between the track geometry variability and the train dynamics and stabil-
ity. In particular, three applications have been described in this paper. First, the compared
influence of the track design and of the track irregularities has been analyzed. Then, the
impact of an increase of the speed on the train stability has been presented. At last, it has
been shown to what extent such an approach could be used to compare competitive high
speed trains with respect to their response on a set of representative track conditions.
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