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Abstract

This paper deals with the regulation of greenhouse gases emissions
related to climate change. We consider a stylized climate-economy se-
quential model and use a cost-effectiveness approach. The analytical
study is based on dynamic programming method. It provides both a
tolerable ceiling of concentration and, under simple conditions involv-
ing the marginal abatement cost and emission functions, optimal and
effective abatement rates. In particular, we prove how the cost effec-
tive abatement rate increases with time. Through the optimal time to
act function, we examine in detail the role played by greenhouse gases
absorption, growth and discount rates. We also analyze the paths from
an intergenerational equity perspective. Numerical examples illustrate
the general statements.

1 Introduction

Climate change has now emerged as one of the most important issues facing
the international community as it could durably threaten productive activ-
ities, human settlements and environmental amenities and act as a supple-
mentary barrier to development in many regions of the world. Over the past
decade, many efforts have been directed toward evaluating policies to control
the atmospheric accumulation of greenhouse gases (GHG), especially carbon
dioxide (CO2) which will be responsible for the main part of the additional
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anthropogenic atmospheric forcing during the 21st century. Due to the lack
of reliable information on the magnitude of climate change damages, par-
ticular attention has been paid to the stabilization of GHG concentrations.
In spite of many analyses, surveyed for instance in IPCC (2001a), consider-
able debates about the timing and magnitude of GHG emissions mitigation
in this context still take place owing to significant sources of uncertainty
applying to socio-economic features (technology development, capital stock,
societies inertias and discounting) and environmental determinants (carbon
cycle). These discussions emphasize the necessity to deal explicitly with
environmental, economic and technological imprecisions, uncertainties and
ambiguity in view to draw reliable operational conclusions to cope with
climate change following a precautionary approach. Furthermore, intergen-
erational equity concerns related to sustainability preoccupations play an
important role in the mitigation policy and it is still unclear whether the
choice of the discount rate is enough to yield relevant answers in this topic
Heal (1998).

Numerous studies have challenged these issues by using different ap-
proaches regarding decision framework and model complexity. At this stage,
we can distinguish several classes of models: simulation, cost-benefit, cost-
effectiveness and viability models. Simulation or policy evaluation models,
such as IMAGE Alcamo (1994), produce detailed pictures of climate change
impacts following exogenous socio-economic scenarios (including prices, tech-
nological, demographic and life-style projections). Here, uncertainty is dealt
with using different scenarios. This class of models allows for a fairly de-
tailed view of the system, but may become complex and does not easily
allow for an analytic comparison of policies. To overcome these difficulties,
control or decision frameworks are used, involving less complex and more
compact or stylized models. In particular, cost-benefit analysis Farzin and
Tahvonen (1996); Goulder and Mathai (2000); Kolstad (1996b); Manne et al.
(1995); Nordhaus (1994) refers to an inter-temporal criteria of discounted
net benefits (i.e. entailed costs and avoided damages) which are expressed
in a homogeneous metric, usually as a ratio of gross world product. In this
context, the policy is associated to an optimal dynamic decision. In Tolera-
ble Windows Approaches Petschel-Held et al. (1999) or viability and target
concerns Hourcade and Chapuis (1995), the performance of the sequential
decisions is evaluated through the respect of given constraints that stands for
the admissibility, the safety, or by extension the effectiveness of the decision
strategy. Thus a set of acceptable states and policies respecting some con-
straints are computed or approximated. The use of constraints is a way to
avoid the detailed specification of a damage function and to take into account
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the lack of knowledge in this area Ambrosi et al. (2003). The advantage of
these geometric approaches is to provide flexibility, some room of maneuver
for decisions and to stress on irreversibility and dangerous situations. It is
possible to mix these two approaches within a cost-effectiveness framework
where an inter-temporal actualized cost is minimized given some admissible
environmental constraints Manne et al. (1995); Goulder and Mathai (2000);
Ha-Duong et al. (1997). In most of optimal approaches, uncertainty is taken
into account through stochastic and probabilistic assumptions. Hence the
decision refers to the maximization of the expected criteria Gjerde et al.
(1999); Kolstad (1996a); Ulph and Ulph (1997). Within this context, the
role of information and learning is important.

The present paper proposes and analyzes a dynamic control problem in a
cost-effectiveness framework. Our work is in the spirit of Farzin and Tahvo-
nen (1996), Goulder and Mathai (2000) or Peck and Wan (1996) in the sense
that it focuses on analytical results for mitigation decisions. Nevertheless,
instead of deriving results from the so-called maximum principle, we use dy-
namic programming and backward Bellman method. One interest of such
an approach is to reveal feedback policies (control depending on the state)
which are known to display important properties of adaptability. It also al-
lows to provide explicit qualitative, quantitative and sensitivity statements.
Of course this analytical perspective implies to impose some simplifying as-
sumptions, but the interest is clearly to point out some mechanisms at stake
in physical, economic and decision processes.

The model represents the interactions between economic growth and
the progressive build-up of GHG concentrations (following a linear carbon
cycle). Here the influence of the economy on the environment is captured
through emission and abatement cost functions, both depending on the gross
world product (GWP). We do not specify the emission function simply re-
quiring a positive elasticity with respect to the economic activity level. For
sake of simplicity, we assume the cost to be proportional with respect to
abatement rates (i.e. linear, unlike all previous studies) still we do not
specify the form of the marginal abatement cost function (but a general hy-
pothesis of decrease with time). The main questions that we address in this
paper are:

• What is the behaviour of optimal and effective sequential abatements?

• What is the associated mitigation timing?

• Does the effective policy exhibit intergenerational equity?

• What is the sensitivity of the quantitative results?
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The paper is organized as follows. Section 2 lays out the dynamic model,
including the discrete time dynamics, the target, the inter-temporal criteria
along with the optimization problem. Section 3 presents the analytical re-
sults focusing on the tolerable ceiling, the optimal feedback policy and the
study of the “optimal time to act” value. Section 4 provides some numerical
illustrations. The final section concludes and presents future developments
of research. To restrict the mathematical content in the core of the text, the
proofs of the formal propositions are expounded in the appendix.

2 The model

The model is a discrete time one and thus refers to sequential decision.
The state of climate-economy system at time t ≥ 0 is described by two
variables, namely some aggregated economic production level such as gross
world product GWP denoted by Qt and the atmospheric GHG concentration
level denoted by Mt. The decision variable related to mitigation policy is
the emission abatement rate denoted by at. The goal of the policy makers
is to minimize inter-temporal discounted abatement costs while respecting a
maximal sustainable GHG concentration threshold at the final time horizon.
Thus we face a cost-effectiveness problem.

2.1 Discrete dynamics of the system

The description of the carbon cycle is similar to Nordhaus (1994)

Mt+1 = Mt + E(Qt)(1 − at) − δ(Mt − M∞) (1)

where

• the function E(Q) stands for the emissions of GHG resulting from the
economic production Q in a“Business As Usual” (BAU) scenario and
accumulating in the atmosphere.

• the abatement rate at corresponds to the applied reduction of GHG
emissions level (0 ≤ at ≤ 1)

• the parameter δ stands for the natural rate of removal of atmospheric
CO2 to unspecified sinks (0 ≤ δ < 1).

It can be noticed that carbon cycle dynamics can be reformulated as

Mt+1 − M∞ = (1 − δ) (Mt − M∞) + E(Qt)(1 − at) (2)
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thus representing the anthropogenic perturbation of a natural system from a
preindustrial equilibrium atmospheric concentration M∞. Thus δ accounts
for the inertia of natural system. Two polar cases are worth being pointed
out: when δ = 1, carbon cycle inertia is nil and therefore GHG emissions
induce a flow externality; on the contrary, when δ = 0, stock externality
reaches a maximum and GHG accumulation is irreversible1.

We do not provide a specific form for the baseline emissions function
E(.) allowing for non-linear emission mechanisms. The emissions depend
on production Q because it is clear that growth is a major determinant on
energy demand Manne et al. (1995). We only assume that BAU emissions
increase2 with production Q namely when E is regular enough

∂E(Q)

∂Q
> 0. (3)

Combined with a global economic growth assumption, this is equivalent to
a rising emissions baseline.

The global economy dynamics is represented by an autonomous rate of
growth g ≥ 0 for the aggregated production level Qt related to gross world
product:

Qt+1 = (1 + g)Qt. (4)

This dynamics means that the economy is not directly affected by abate-
ment policies and costs. Of course, this is a restrictive assumption but it is
commonly used in modeling for GHG reduction policies as in Ambrosi et al.
(2003) or Ha-Duong et al. (1997). However, one might consider this GWP
dynamics (4) as a relevant global economic target or a constraint related to
sustainable development.

1The removal rate, δ, is a most uncertain parameter and some recent results indicate
that it may decrease due to the combined effect of high GHG accumulation and global
warming (the so-called climate-carbon cycle feedback in IPCC (2001b)) and ongoing de-
forestation trends Gitz and Ciais (2003).

2We do not need to assume that emissions E increase more slowly than production, a
frequent hypothesis, in the sense that

∂2E(Q)

∂2Q
< 0.
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2.2 The cost-effectiveness criteria

2.2.1 The effectiveness setting

We consider a physical or environmental requirement through the limitation
of concentrations of GHG below a tolerable threshold M ♭ at a specified date
T > 0:

MT ≤ M ♭. (5)

Observe that we can equivalently write a damage function with an indi-
catric extended function

D(M) =

{

0 if M − M ♭ ≤ 0
+∞ otherwise.

(6)

2.2.2 The abatement costs

For sake of simplicity, we assume that the abatement costs C(a, Q) are of
linear form with respect to abatement rate a in the sense that

C(a, Q) = c(Q)a. (7)

We do not specify the marginal cost function allowing again for non linear
processes. We just assume that the abatement cost C(a, Q) increases with
a which implies

∂C(a, Q)

∂a
= c(Q) > 0. (8)

Furthermore, following for instance Goulder and Mathai (2000) or Peck
and Wan (1996), we assume that growth lowers marginal abatement costs3.
This means that the availability and costs of technologies for fuel switching
improve with growth. Thus if the marginal abatement cost c(.) is regular
enough, it is decreasing with production in the sense

∂2C(a, Q)

∂Q∂a
=

∂c(Q)

∂Q
≤ 0. (9)

As a result, the costs of reducing a ton of carbon decline.

3We could reason similarly with abatement level A = aE(Q). In this case indeed, we
could define the reduction cost

eC(A, Q) = C

„
A

E(Q)
, Q

«
= A

c(Q)

E(Q)
.

Thus, since emissions E(.) increases with production Q, the marginal costs eCA(Q) = c(Q)
E(Q)

decreases more sharply.
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2.2.3 The optimisation problem

The cost effectiveness problem faced by the social planner is an optimisation
problem under constraints. It consists in minimizing the discounted inter-
temporal abatement cost

T
∑

t=0

ρtC(at, Qt) (10)

while reaching the concentration tolerable window MT ≤ M ♭. The parame-
ter ρ stands for the discount factor of the considered period. Therefore, the
problem can be written in a value function form as follows:

V (0, M0, Q0) = min
a0,a1,..,aT−1

( T
∑

t=0

ρtC(at, Qt) + ρT D(MT )

)

, (11)

under the dynamics constraints (1) and (4). We denote by a∗0, a
∗
1, .., a

∗
T−1 an

optimal solution of the previous problem whenever it exists.

3 Optimal and effective abatements

Using backward dynamic programming approach, we compute explicitly the
optimal and feasible solutions of the cost-effectiveness problem. At this
stage, let us mention that the proofs are not obvious and require the use of
generalized gradient Rockafellar and Wets (1998). Indeed, the value func-
tion and feedback controls display some non smooth shapes because of kink
solutions and active constraints.

3.1 A viability ceiling

We first provide an existence or effectiveness result whose proof is given in
the appendix A.3 and derived from proposition (A.1). We need to introduce
the following maximal concentration values

M ♯
t = (M ♭ − M∞)(1 − δ)t−T + M∞. (12)

These induced thresholds M ♯
t play the role of an evolving tolerable window

and account for irreversibility constraints.
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Proposition 3.1 An optimal cost-effective policy exists if and only if the
initial concentration M0 is smaller than M ♯

0. In that case, the whole pol-
icy a0, a1, .., aT−1 is effective if and only if associated concentrations M(t)

remain lower than M ♯
t .

Let us observe that we always have M ♯
T = M ♭ which means that the

terminal tolerable concentration is M ♭ as expected. We note also that,
whenever the natural removal occurs (δ > 0), safety thresholds M ♯

t are
strictly larger than terminal target M ♭, which allows for exceeding the target
during time. A contrario, whenever the natural removal term disappears
(δ = 0), the induced safety thresholds coincide with final M ♭ along the whole
time sequence and the effective mitigation policy imposes to stay below the
CO2 target at every period.

3.2 Optimal feedback

Now, under the previous existence and effectiveness assumption, we ob-
tain the optimal policy in terms of a feedback depending on the current
environmental-economic state (M, Q) of the system. The proof based on
Bellman dynamic programming principle is given in the appendix.

Proposition 3.2 Consider a tolerable initial situation M0 ≤ M ♯
0. If as-

sumptions for emissions and cost functions (3) and (9) hold true, then the
optimal effective mitigation policy is defined by the feedback abatement

a∗(t, M, Q) = max

(

0,
(1 − δ)(M − M ♯

t ) + E(Q)

E(Q)

)

.

Let us point out that the abatement a∗(t, M, Q) reduces to zero when

condition (1 − δ)(M − M ♯
t ) + E(Q) is negative which corresponds to the

case where the violation of the tolerable threshold M ♯
t is not at stake even

with Business As Usual emissions. We also emphasize that the case of total
abatement where a∗(t, M, Q) = 1 occurs when current concentration M

coincides with maximal tolerable concentration M ♯
t .

Moreover, let us mention that it is well-known that feedback and closed-
loop (depending on the state) decisions or controls are better than open-
loop ones because of their adaptive and stability properties. This means
that applying such decision rules yields to relevant states even with errors
or perturbations occurring along time since the feedback decisions take into
account the current state of the system. In the present context, this implies
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that some events modifying the concentration or the GWP in an unforeseen
way could be compensated and assimilated by the abatement decisions and
generate a relevant evolution.

3.3 Increasing abatement rates

Again we consider the previous existence and effectiveness assumptions. Us-
ing the optimal feedback abatement above, we obtain the following mono-
tonicity result whose proof is given in the appendix A.5. It favors the all in
the last minute option in the sense that the reduction of emissions is more
intensive at the end of period than at the beginning.

Proposition 3.3 Consider a tolerable situation M0 ≤ M ♯
0. If assumptions

for emissions and cost functions (3) and (9) holds true, then the optimal
mitigation policy sequence a∗t is increasing with time in the sense that

a∗0 ≤ a∗1 ≤ .. ≤ a∗T−1.

At this stage, let us point out that the previous qualitative results do
not depend neither on the discount factor ρ ≤ 1, nor on the growth rate
g ≥ 0, nor on the specific form of the emission and marginal abatement cost
functions. This emphasizes the generality of the assertions. In other words,
only a change on the described behaviour of emission function or the use of
a non linear cost function could justify another abatement decision profile
on the ground of this simple optimality model.

3.4 Optimal time to act

However, the timing of action remains a relevant question. Indeed, first op-
timal abatement rates are zero while the last ones turns out to be extensive.
But the date when to jump from a situation of no abatement into a situa-
tion of abatement is a key issue. The optimal time to act OTTA(.) function
allows to cope with this kind of concern. It is related to the first strictly
positive optimal abatement along time:

OTTA(M0, Q0) = inf(t ≥ 0 | a∗t > 0).

It turns out that the OTTA is closely connected to both the Business As
Usual (BAU) trajectories and tolerable ceiling M ♯

t . We define the Baseline
or Business As Usual trajectory Mbau as the solution of (1) starting at initial
concentration M0 without abatement i.e. with a(t) = 0 for any time t:

Mbau
t+1 = Mbau

t + E(Qt) − δ(Mbau
t − M∞). (13)
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Figure 1: Cost-effective concentrations trajectories M∗
t over the time win-

dow [2000, 2120]. The optimal concentrations are plotted for different con-
centration targets. The baseline concentrations, Mbau

t , and the tolerable
concentration for a 550 ppm target, M ♯

t , are also shown.

The proposition (3.4) below, whose proof is given in the appendix A.6,
characterizes the optimal time to act through the time when the baseline
trajectory Mbau

t crosses the tolerable ceiling M ♯
t .

Proposition 3.4 The optimal time to act function is given by

OTTA(M0, Q0) = max

(

t ≥ 0 | Mbau
t ≤ M ♯

t

)

.

3.5 Sensitivity concerns

We concentrate the sensitivity analysis with respect to the parameters of
the model on optimal time to act function. From previous proposition (3.4),
the sensitivity of OTTA is deduced from the variations of Mbau and M ♯.
We already know the explicit formulation (12) of the viability ceiling M ♯.
We now expand the expression of the baseline concentrations (13). A simple
recursion on carbon cycle leads to:

Mbau
t = (1 − δ)t(M0 − M∞) + M∞ +

t
∑

s=0

(1 − δ)t−sE(Q0(1 + g)s).
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Therefore we derive the following table of sensitivity:

δ M∞ g T M ♭ ρ

Mbau - + + 0 0 0
M ♯ + - 0 + + 0

Consequently, using previous proposition (3.4), we obtain the detailed sen-
sitivity analysis of OTTA.

Corollary 3.5

(i) OTTA(.) does not depend on the marginal cost function c(Q) and
the discount factor ρ.

(ii) OTTA(.) increases with respect to δ, T and M ♭.
(iii) OTTA(.) decreases with respect to M∞ and g.

Most of these results are not amazing and confirm the intuition. Not
surprisingly, more intensity of absorption mechanisms provides more flexi-
bility in the prevention action. “When flexibility” is also achieved through
the relaxation of the effectiveness target both in time and concentration.
Symmetrically one clear result is that economic growth reduces the flexi-
bility of abatement decisions. More surprising is the fact that the discount
rate does not affect the mitigation timing. Although one simple explanation
of this result is the linear form of the abatement cost function with respect
to abatement, this statement emphasizes that the discount context is not
always the most stringent determinant for the analysis.

3.6 Mitigation costs and equity concerns

The intergenerational equity issue is important as long as sustainability is
at stake. Since production growth is assumed to be exogenous in the model,
we capture these intergenerational concerns though the abatement profile
C(at, Qt). Since the optimal reductions a∗t are zero before OTTA, we obvi-
ously deduce that optimal costs C(a∗t , Qt) are also zero for any generations
before OTTA. Furthermore, since abatement policies are extensive (equal to
one) for almost every time following OTTA, a clear jump of abatement costs
occurs and consequently the optimal mitigation policies do not yield any in-
tergenerational equity. Let us emphasize that this behavior is not related
to the discount rate. Moreover, from the declining form of the marginal
abatement cost function c(Q), it appears that the cost sequence exhibits a
decreasing pattern from OTTA to horizon term T . Consequently, as illus-
trated by figure 2, there is a sharp “peak” for the OTTA generation.
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Let us point out that, in this perspective, the generations older than
OTTA could be the “losers” for two reasons: they support the costs of
mitigation while probably facing the damages to come.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 2000  2010  2020  2030  2040  2050  2060  2070  2080  2090

Figure 2: Cost path
C(a∗

t ,Qt)
Qt

displays intergenerational inequity. A “peak”
appears for generations OTTA.

4 Numerical illustrations

To illustrate the previous analytical results, we now turn to numerical com-
putations performed for specific functional forms and parameter values. In
particular, emissions follow a prospective scenario. It is shown that, in the
theoretical case relying on a linear marginal abatement costs, as expected

1. the optimal abatement is increasing with respect to time,

2. a quick jump from 0 to 100% reduction rate occurs during time in the
optimal abatement policy.

To test the robustness of these results, we relax two of the underlying hy-
pothesis:

1. different non linear increasing marginal abatement cost functions are
used;
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parameter η ξ α µ

value 100 -0.03 19.2 0.03

Table 1: Parameters of the abatement cost functions

2. a concentration ceiling M ♭ acting over the whole period, not just the
terminal time T .

4.1 Numerical context

For these illustrations, baseline scenarios, the optimal paths and the toler-
able concentrations are computed for different values and functional forms
inspired from calibrations of Nordhaus (1994) and from the scenario A1M
of AIM (1997) in Nakićenović and Swart (2000).

The model is solved at 1-year intervals with 1990 as the initial year
(t = 0) and 2100 as the target date (t = T ). Initial condition M0 is set
according to Keeling and Whorf (2002) and Q0 is set according to AIM
(1997)

M0 = 354 ppmv, Q0 = 20.9 T US$,

while preindustrial level is fixed to M∞ = 274 ppmv.
The carbon cycle formulation and parameters are taken from Nordhaus

(1994), δ = 1/120. In the dynamic equation (1) the function E(.) stands
for the emissions reaching the atmosphere, thus we introduce Ep(.), the
emissions released by the production process and we have:

E(Q) = βEp(Q) (β = 0.64).

Ep(.) is taken from AIM, points for each year are obtained with a linear
interpolation. After 2060 the emissions are set constant at the 2050 level.

The concentration ceiling level is set to M ♭ = 450 ppm.
The cost functions C(a, Q) tested have the following multiplicative form:

C(a, Q) = P (Q)L(a).

The marginal cost function is

dC(a, Q)

da
= P (Q)l(a)

The following functions l(a) are distinguished with the parameters summa-
rized in table 1:
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• theoretical case of constant marginal cost

l(a) = η;

• a sigmoid marginal cost function with a backstop technology, i.e. a
constant marginal cost for high abatement rates (function S):

l(a) = η +
ξ − η

1 − ξ
η exp(αa)

.

η is the price of the backstop technology, in the sense that l(1) ≈ η.
With the value of α used, the backstop price is around η for a = 0.8.

• a linearly increasing marginal cost function:

l(a) = ηa;

The function P (Q) is assumed to be related to the BAU emissions Ep(Q)
as in Ambrosi et al. (2003):

P (Q) = Ep(Q)

(

Q

Q0

)−µ

where µ > 0 may rely on technical progress rate. The parameter values are
chosen such that the backstop for the sigmoid functions is at 1000$ per ton
of carbon, and cost of a full abatement (a = 1) is about 550$ per ton of
carbon, in the first year.

The proposed cost functions are consistent with the evaluations found in
the literature Keith et al. (2005); IPCC (2001a) with an optimistic assump-
tion regarding technical progress.

4.2 Simulation results

Increasing abatement: As displayed by Figure 3(b), it turns out that
with all the increasing positive marginal cost function l(.) tested, optimal
abatement rate a∗t remains increasing with respect to time. This suggests
the following conjecture that could be studied mathematically extending the
results for the linear marginal cost.

Conjecture 1 If marginal cost function is increasing, optimal abatement is
increasing along the optimal trajectory.
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Figure 3: Optimal abatement rate a∗t and concentration M∗
t over the period

[0, T ] for distinct marginal cost functions: constant (theoretical case), linear,
sigmoid.

Jump and intergenerational equity: We now turn to the presence of
a jump in reduced emissions a∗t jeopardizing the intergenerational equity of
mitigation costs. Here the picture seems to be more complicated to extend
the linear result. The numerical results captured by Figure 3(b) suggests
that such a jump (at least a strong change of slope) appear when there is a
taste of constant marginal cost in the marginal function in particular when
the function saturates at a constant level. Hence, the jump occurs in the
case of constant and sigmoid marginal cost functions while this jump effect
vanishes for the linear case.
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Concentration constraint from the beginning: We also examined the
situation when the CO2 constraint holds from the beginning not just at the
terminal date T as studied previously:

Mt ≤ M ♭, t = 0, . . . , T.

Such a change does not seem to alter the whole qualitative behavior of
the optimal abatement solution as shown by Figure 4. In particular the
optimal abatement rate a∗t remains increasing with respect to time.
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Figure 4: Optimal abatement rate a∗t and concentration M∗
t over the period

[0, T ] with a ceiling concentration M ♭ = 450 ppm over the whole time pe-
riod for distinct marginal cost functions: constant (theoretical case), linear,
sigmoid.
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Discount rate influence: In the case of a non-linear cost function, the
discount rate is influential, especially on the first period abatement, as first
period abatements are reduced with an higher discount rate. This can be
seen on Figure 5 where the abatement is shown for a discount rate of 2.1,
6 and 10% and a sigmoid abatement cost function. Abatement are still
increasing and the jump is still present, with a very similar amplitude, but
happens sooner with higher discount rate.
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Figure 5: Optimal abatement rate a∗t and concentration M∗
t over the period

[0, T ] with a sigmoid cost function and distinct discount rates: 2.1, 6 and
10%.

Therefore, these experiments indicate how the analytical results found in
the context of constant marginal cost may be, at least partially, generalized.
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5 Conclusion and perspectives

In this paper, a cost-effectiveness model provides results for greenhouse gases
mitigation policies. A tolerable ceiling of concentration is computed together
with optimal and effective abatement rates. One main originality of the
paper is to shed an analytical and mathematical light on mitigation profile.
Bellman principle and backward dynamic programming method allow to
compute effective and optimal feedback policies with interesting adaptive
properties. The analytical results enable also to deduce explicit sensitivity
analyses. Numerical simulations are also given, reinforcing the intuition
and understanding of the results. They suggest extensions of the general
mathematical results obtained in the linear case.

Although illustrative in nature, the study highlights some important
considerations for decision making. First, it turns out that both declining
marginal abatement cost and increasing emissions are sufficient conditions
for the abatement rates to exhibit an increasing intensity with respect to
time. This means that there are strong reasons for preferring emissions
strategies involving modest reductions in the near term followed by sharper
reductions later on. Second, the study of the optimal time to act function
reveals the weak influence of marginal cost function and discount rate on
the policy. Furthermore, this optimal time to act function also shows how
absorption and removal mechanisms in the carbon cycle favor the flexibility
of mitigation decisions whereas the growth intensity seems to reduce it.
We also show that the optimal abatement cost profile does not seem fair
regarding intergenerational equity.

Nevertheless a lot of work remains to do. One main restriction of the
work is the linear behavior of the cost function with respect to abatement
rate. This is part of future research to relax this assumption of “first order
approximation ” and to exhibit more general monotonicity results suggested
by our numerical works. Moreover the influence of technology acting on
growth, baseline emissions and marginal costs is crucial in the analysis and
the extension of the model in this direction is a challenging goal.

The sensitivity analysis shows clear monotone and non local dependen-
cies with respect to the parameters and we might derive some robust decision
processes within a radical uncertainty context. However, we are convinced
that stochastic control is a relevant framework to overtake uncertainty con-
cerns. More specifically, in this context, much attention has to be paid to
the influence of the resolution of scientific uncertainties on precautionary de-
cisions. The computation of information values is an important issue in this
perspective. Furthermore, decisions rules and criteria taking into intergen-
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erational equity requirements should be examined. In particular “maximin”
framework could provide adequate alternatives.

A Appendix

A.1 Notations

We need to consider

• The indicatric extended function

Ψ(x) =

{

0 if x ≤ 0
+∞ otherwise.

(14)

• The time dependent value function V (t, ., .) defined for any time t < T
by

V (t, M, Q) = inf
at, at+1, .., aT−1

(T−1
∑

s=t

ρsC(as, Qs) + Ψ(MT − M ♭)

)

(15)
and at final period T by V (T, M, Q) = Ψ(M − M ♭).

• The abatement rate

a+(t, M, Q) =
(1 − δ)(M − M ♯

t ) + E(Q)

E(Q)
. (16)

• The notation for the concentration dynamics

f(M, Q, a) = (1 − δ)(M − M∞) + E(Q)(1 − a) + M∞. (17)

We also recall (see Rockafellar and Wets (1998) for instance) that the
generalized ∂xg(x) gradient of a Lipschitz function g : IRn → IR at the point
x is defined by

∂xg(x) =

{

p ∈ IRn | lim inf
x′→x

g(x′) − g(x)− < p, x′ − x >

‖x′ − x‖
= 0

}

. (18)
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A.2 Bellman dynamic programming

We obtain

Proposition A.1 We posit the assumptions (3) and (9). Then there exists
a function φ(., ., .) such that the optimal value function V satisfies for any
0 ≤ t ≤ T and for any (M, Q)

V (t, M, Q) = φ(t, M, Q) + Ψ(M − M ♯
t ), (19)

where M → φ(t, M, Q) is locally Lipschitz for any (t, Q) and satisfies

∂Mφ(t, M, Q) ⊂

[

0,
c(Q)

E(Q)

]

.

Furthermore an optimal feedback abatement exists and is defined for any
0 ≤ t < T by

a∗(t, M, Q) = max(0, a+(t, M, Q)).

Proof — of proposition (A.1)
We reason recursively using backward dynamic programming principle.

First, the condition (19) holds true for t = T with

φ(T, M, Q) = 0.

Now, assume the condition (19) to hold at time t + 1. Using Bellman
equation, we can write:

V (t, M, Q) = inf
a∈[0,1]

{

C(a, Q) + ρV

(

t + 1, f(M, Q, a), (1 + g)Q)

)}

= inf
a∈[0,1]

{

ac(Q) + ρφ

(

t + 1, f(M, Q, a), (1 + g)Q

)

+Ψ

(

f(M, Q, a) − M ♯
t+1

)}

.

Using definitions of f(M, Q, a) and M ♯
t+1, we check that the condition

Ψ
(

f(M, Q, a) − M ♯
t+1

)

< +∞

is equivalent to claim aE(Q) ≥ f(M, Q, 0) − M ♯
t+1. The straightforward

computation described in Lemma (A.2) then provides

a+(t, M, Q) ≤ a.
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Combined with condition a ≤ 1, we derive that M ≤ M ♯
t or equivalently

Ψ(M − M ♯
t ) < +∞.

Moreover, dynamic programming then reduces to

V (t, M, Q) = inf
a ∈ [0, 1]
a ≥ a+(t, M, Q)

{

C(a, Q) + ρφ

(

t + 1, f(M, Q, a), (1 + g)Q

)

+Ψ

(

M − M ♯
t

)}

= inf
a ∈ [0, 1]
a ≥ a+(t, M, Q)

{

α(a) + Ψ

(

M − M ♯
t

)}

where α(a) = C(a, Q) + ρφ

(

t + 1, f(M, Q, a), (1 + g)Q

)

.

Now let us use the recursive condition

∂Mφ(t + 1, M, (1 + r)Q) ⊂

[

0,
c((1 + g)Q)

E((1 + g)Q)

]

.

Marginal assumptions on emissions (3) and marginal abatement costs (9)
combined with condition g ≥ 0 yields

∂Mφ(t + 1, M, (1 + g)Q) ⊂

[

0,
c(Q)

E(Q)

]

.

Thus, using a chain rule, we have

∂aα(a) ⊂ c(Q) + ρ∂Mφ(t + 1, f(M, Q, a), (1 + g)Q)∂af(M, Q, a)

⊂ c(Q) + ρ
[

− c(Q)
E(Q) , 0

]

E(Q)

⊂ c(Q)[1 − ρ, 1]
⊂ IR∗

+.

Therefore, the generalized derivative of the function α is strictly positive and
consequently α is increasing with respect to a. Thus the minimal abatement
is achieved at the lowest feasible boundary namely

a∗(t, Q, M) = Argmin8

<

:

a ∈ [0, 1]
a ≥ a+(t, M, Q)

α(a)

= max(0, a+(t, M, Q)).

Moreover we set φ(t, M, Q) = α(a∗(t, Q, M)).
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It remains to prove that M → φ(t, M, Q) is Locally Lipschitz for any
(t, Q) and satisfies

∂Mφ(t, M, Q) ⊂

[

0,
c(Q)

E(Q)

]

.

As a maximum of linear functions, it is clear that M → a∗(t, M, Q) is
Lipschitz. The Lipschitziannity of α implies that M → φ(t, M, Q) is also
Lipschitz.

Now we distinguish two cases:
• If a∗(t, Q, M) = a+(t, Q, M) then Lemma (A.3) allows to claim

f(M, Q, a∗) = M ♯
t+1. We deduce that the value function is

φ(t, M, Q) = a+(t, M, Q)c(Q) + ρV (t + 1, M ♯
t+1, (1 + g)Q).

Since 0 ≤ δ < 1, we obtain that

∂Mφ(t, M, Q) = c(Q)∂Ma+(t, M, Q)

= c(Q)(1−δ)
E(Q)

⊂
[

0, c(Q)
E(Q)

]

which is the desired condition.
• Now we consider the case where a∗(t, Q, M) = 0. In this case, we

obtain

φ(t, M, Q) = C(0, Q) + ρφ

(

t + 1, f(M, Q, 0), (1 + g)Q)

)

and, using assumptions (3) and (9),

∂Mφ(t, M, Q) = ρ(1 − δ)∂Mφ(t + 1, f(M, Q, 0), (1 + g)Q)

⊂ ρ(1 − δ)
[

0, c((1+g)Q)
E((1+g)Q)

]

⊂
[

0, c(Q)
E(Q)

]

.

This concludes the proof.

A.3 The existence and effectiveness results

Proof — of proposition (3.1)
We use proposition (A.1) and consider the value function V (t, Mt, Qt) for
an optimal trajectory Mt and an optimal feedback a∗(t, Mt, Qt)

{

Mt+1 = f(Mt, Qt, a
∗(t, Mt, Qt))

Qt+1 = (1 + g)Qt.
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It is well-defined when it takes finite values namely

V (t, Mt, Qt) < +∞

when Ψ(Mt − M ♯
t ) = 0. This means that

Mt ≤ M ♯
t .

In particular, for initial time t = 0, this yields M0 ≤ M ♯
0.

A.4 The feedback result

Part of the previous proposition is directly the feedback assertion in propo-
sition (3.2).

A.5 The monotonicity result

Proof — of proposition (3.3)
We need to prove that for every t we have

a∗t ≤ a∗t+1.

To achieve this, we use Bellman iterative process through the proposition
(A.1). We need to distinguish two cases: Indeed

• If the abatement rate is zero i.e. a∗t = 0, since a∗t+1 ≥ 0, we easily
conclude a∗t ≤ a∗t+1.

• If 1 ≥ a∗t > 0, we deduce by proposition (A.1) that a∗t = a+(t, Mt, Qt).
Then Lemma (A.3) yields

Mt+1 = f(Mt, Qt, a
+(t, Mt, Qt)) = M ♯

t+1.

Therefore by the very definition of a+, we obtain

a+(t + 1, M ♯
t+1, Qt+1) = 1,

and consequently

a∗t+1 = max(0, a+(t + 1, M ♯
t+1, Qt+1)) = 1.

We obviously conclude that a∗t ≤ a∗t+1.

This ends the proof of proposition (3.3).
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A.6 Last time to act

Proof — of proposition (3.4)
The proof proceeds in two steps:

(i) Mbau
t − M ♯

t ≤ 0, ∀t ≤ OTTA,

(ii) Mbau
t − M ♯

t > 0, ∀t > OTTA.
(20)

(i) We consider M∗
t the effective optimal concentration at time t as-

sociated with optimal and effective abatement policy a∗t . From the very
definition of OTTA = min(t ≥ 0 | a∗t > 0), we deduce that

∀t < OTTA, a∗t = 0 and M∗
t+1 = Mbau

t+1 .

In particular, this shows that M∗
OTTA = Mbau

OTTA. Since a∗t is an effective
policy, the concentration M∗

t remains within the tolerable ceiling and we
derive that

Mbau
t+1 = M∗

t+1 ≤ M ♯
t+1, ∀t < OTTA.

Consequently condition (20) (i) holds true.
(ii) From the very definition of OTTA, we know that a∗OTTA > 0. Fur-

thermore, since a∗t increases with time, we have

a∗t = a∗(t, M∗
t , Qt) > 0, ∀t ≥ OTTA.

Moreover, the proposition (3.2) allows us to write for every t larger than
OTTA

a∗t = a∗(t, M∗
t , Qt) = max(0, a+(t, M∗

t , Qt)) = a+(t, M∗
t , Qt).

For any t larger than OTTA, Lemma (A.3) then yields that

M∗
t+1 = f(M∗

t , Qt, a
∗
t )

= f(M∗
t , Qt, a

+(t, M∗
t , Qt))

= M ♯
t+1.

Since the optimal concentration path M∗ is strictly smaller than the BAU
path Mbau from the optimal time to act, we deduce that

M ♯
t+1 < Mbau

t+1 , ∀t ≥ OTTA

which is equivalent to condition (20) (ii). We conclude.
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A.7 Some useful lemmas

Lemma A.2 For any (t, M, Q), we have

a+(t, M, Q) =
f(M, Q, 0) − M ♯

t+1

E(Q)

Lemma A.3 For any (t, M, Q), we have

f(M, Q, a+(t, M, Q)) = M ♯
t+1.

Proof — of the Lemma (A.2)
We can write

a+(t, M, Q)E(Q) = (1 − δ)(M − M ♯
t ) + E(Q),

= (1 − δ)(M − M∞ − (1 − δ)t−T (M ♭ − M∞)) + E(Q)

= (1 − δ)(M − M∞) − (1 − δ)t+1−T (M ♭ − M∞) + E(Q)

= (1 − δ)(M − M∞) + E(Q) − (M ♯
t+1 − M∞)

= (1 − δ)(M − M∞) + E(Q) + M∞ − M ♯
t+1

= f(M, Q, 0) − M ♯
t+1.

This ends the proof.
Proof — of the Lemma (A.3)

We can write

f(M, Q, a+(t, M, Q)) = (1 − δ)(M − M∞) + E(Q)(1 − a+(t, M, Q)) + M∞

= f(M, Q, 0) − a+(t, M, Q)E(Q).

We use (A.2) to deduce

f(M, Q, a+(t, M, Q)) = M ♯
t+1.

which concludes the proof.
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