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P2IP: A novel low-latency Programmable Pipeline

Image Processor I
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Abstract

This paper presents a novel systolic Coarse-Grained Reconfigurable Archi-
tecture for real-time image and video processing called P2IP. The P2IP is a
scalable architecture that combines the low-latency characteristic of systolic
array architectures with a runtime reconfigurable datapath. Reconfigurabil-
ity of the P2IP enables it to perform a wide range of image pre-processing
tasks directly on a pixel stream. The versatility of the P2IP is demonstrated
through three image processing algorithms mapped onto the architecture,
implemented in an FPGA-based platform. The obtained results show that
the P2IP can achieve up to 129 fps in Full HD 1080p and 32 fps in 4K 2160p
what makes it suitable for modern high-definition applications.

Keywords: Reconfigurable hardware, Image processing, Real-time system,
Computer vision

1. Introduction

Digital image processing is a well-known class of computationally in-
tensive tasks that conventional computing architectures cannot efficiently
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perform in terms of power consumption and when real-time performance
is required [1, 2, 3, 4]. Real-time requirements are especially important in
latency-critical applications, such as live video broadcasting, video surveil-
lance, Unmanned Vehicle (UV) navigation, interactive multimedia applica-
tions, and video assisted medical devices. Latency is defined here as the
amount of time between when a signal is impressed on the input of a circuit
and when it is received or detected at its output [5].

We can divide image processing tasks into two groups: high-level and low-
level tasks [6]. High-level image processing tasks are algorithms that create
symbolic representations of the image contents, e.g., object recognition and
tracking. Low-level image processing tasks are algorithms that can modify
specific aspects in the image (e.g., color correction, filtering, and blurring), or
detect features (e.g., edge and corner detectors). The data input of the last
group is frequently a stream of a large collection of small and independent
data elements [7]. Due to this inherent data parallelism, low-level tasks are
very suitable for highly parallel processing architectures. Numerous imple-
mentations have been proposed in the past for this last group. They mainly
target general flexibility improvement but the problem of minimal latency
has not been directly studied.

In order to explore the data parallelism of low-level image processing
tasks, we are proposing a new reconfigurable architecture, the Programmable
Pipeline Image Processor (P2IP). The P2IP is a Coarse-Grained Reconfig-
urable Architecture (CGRA) based on a linear systolic array model targeting
low-latency real-time applications and supporting a wide range of image res-
olutions and operators. Figure 1 shows a simplified functional diagram of the
P2IP architecture. Each Processing Element (PE) of the P2IP contains an op-
timized set of essential image processing operators that can be parametrized
at runtime. A Recongurable Interconnection module associated to each PE
enables dynamic datapath re-routing. Configuration registers define the be-
havior of the operators distributed in the P2IP including the Reconfigurable
Interconnection. These registers can be accessed through a dedicated con-
trol path in order to change the application context without resynthesizing
the system. Algorithms can be created or invoked by using a MATLAB
embedded library that supports algorithm allocation and task mapping into
the reconfigurable architecture through the configuration port of the P2IP
controller.

The parametrizable PEs and the reconfigurable datapath provide post-
synthesis flexibility to the P2IP architecture. Synthesis is defined here as
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Figure 1: Simplified functional diagram of P2IP architecture showing the datapath formed
by Processing Elements (PEs) associated to a Reconfigurable Interconnection (RI).

the process where a digital circuit behavior, usually described in a Hardware
Description Language (HDL) such as Verilog HDL or VHDL, is converted
by a synthesizer into an association of logic gates that can be implemented
in hardware. Thus, post-synthesis flexibility means that the P2IP can still
be configured to change its functionality after its hardware implementation.
Beyond that, the modular organization of P2IP facilitates pre-synthesis cus-
tomizations in order to meet application requirements. That includes cus-
tomizations such as the number of PEs, maximum frame resolution, and set
of operators.

The rest of this paper is organized as follows: Section 2 presents related
works. Section 3 describes the P2IP architecture in detail. Examples of
algorithms mapping are presented in Section 4. Afterwards, the algorithm
performances and the architecture implementation results are analyzed in
Section 5. Finally, the conclusions of this work are presented in Section 6.
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2. Related work

It has been almost half a century since one of the first digital computers
specially designed for image processing started operating [8]. Since then, a
large number of specialized architectures have been designed with the same
basic purpose: to process images automatically and efficiently. Historically,
the performance requirements of image processing applications have only
been met with special-purpose (custom), fixed-function hardware [3, 9], i.e.
Application-Specific Integrated Circuits (ASICs) [10]. However, due to the
lack of flexibility in custom solutions, alternatives have been proposed by
the community in order to provide more flexible architectures. Among these
alternatives, three computing models can be highlighted: Domain-specific
processors, e.g., Digital Signal Processors (DSPs) [11, 12], Single-Instruction
Multiple-Data (SIMD) architectures [1, 13, 14], and Reconfigurable Comput-
ing (RC) systems [10, 15, 16].

Among these alternatives, the most promising in terms of computing per-
formance and energy efficiency is the RC approach [15, 17, 18]. RC systems
can be divided into two groups, Fine-Grained Reconfigurable Architectures
(FGRAs) and CGRAs. FGRAs, e.g., Field Programmable Gate Arrays (FP-
GAs), are extremely flexible architectures containing PEs in which it is possi-
ble to map any 1-bit logic function at the cost of long design and compilation
times. CGRAs overcome this cost by using more elaborated PEs that can
perform word-level operations for a wide range of applications including im-
age and video processing. Some important examples of these architectures
are PipeRench [19], RAW [20], and MORPHEUS [17]. PipeRench is a linear
array accelerator for pipelined applications composed of 256 ALU-based PEs
that can be reconfigured dynamically. RAW is a multiprocessor architecture
containing 16 MIPS-style microprocessors arranged in a 4×4 array intercon-
nected by a both static and dynamic network. MORPHEUS is a more recent
architecture including three heterogeneous processing engines, each one with
a different reconfigurable granularity, interconnected by a Network-on-Chip
(NoC) and controlled by a RISC processor. However, these solutions gen-
erate supplementary latency, penalizing the execution time with respect to
fixed-function hardware.

In our approach, we combine the flexibility of RC systems to the process-
ing performance and latency of fixed-function hardware solutions to bridge
their performance/flexibility gap. The P2IP flexibility was obtained by ex-
ploring classic low-level image processing algorithms, such as Canny Edge
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Detection and Harris Corner Detection, resulting in the design of fundamen-
tal building operators that could be generalized and combined in PEs to
support a wide range of algorithms. The cost of the P2IP approach is to
be restricted to a single application domain which in this work corresponds
to image and video pre-processing. However, this characteristic reduces al-
gorithm mapping complexity since many image processing operators are al-
ready implemented on the architecture, e.g., linear filters and non-maximum
suppressors.

Other architectures that offer competitive performances targeting low-
power image processing applications are CSX700 [21], Diet SODA [14], and
CRISP [22]. CSX700 presents a low-power SIMD architecture for image pro-
cessing, containing 192 PEs divided into two processing cores. Diet SODA
is another low-power architecture targeting Digital Still Cameras (DSCs),
containing a 128-lane SIMD unit that works at low frequencies. CRISP pro-
cessor is a CGRA, but optimized for image and video processing in DSCs. It
presents a series of specific image processing operators associated to a config-
urable interconnection that routes the data stream through these operators,
which makes it possible to change the processing task.

It is also interesting to cite here another popular approach for image
processing based on General-Purpose Graphics Processing Units (GPGPUs).
Though these solutions do not target low power consumption application,
they have presented very competitive performances [1, 13]. Also, the work
in [23] explores a parallel hybrid approach using optimized heterogeneous
multi-CPU/multi-GPU architectures to address image processing tasks.

3. P2IP architecture

The P2IP architecture can be classified as a CGRA based on a linear
systolic array model. Images or frames are entered as a stream of pixels in
sequential line-scanned format progressing through the pipeline at a constant
rate. The P2IP datapath works at the pixel clock frequency and can deliver
one processed pixel per clock cycle after the initial latency to fill the pipeline.
It was designed to work between a frame source and a frame sink directly on
the pixel stream, as shown in Fig. 2.

In order to permit the P2IP integration into an image processing chain,
the AXI4-Stream [24] was adopted as the external interconnection proto-
col. The AXI4-Stream protocol is controlled by the P2IP Controller which
is also in charge of reading configuration words on the configuration input
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Figure 2: Functional diagram of the P2IP architecture.

port (config in) and their transfer to the PEs. The P2IP Controller is the
input node of the P2IP configuration mechanism formed by the Configuration
Tree. A detailed description of the P2IP configuration mechanism is given in
Section 3.2.

The input register block along with the output register block (Fig. 2)
constitute the boundaries of the P2IP architecture. This practice prevents
any timing critical changes due to nets crossing the module boundaries. Also,
it helps synthesis tools to optimize a module without the interference of
other system components [25, 26]. The input register block separates three
color channels (red, green, and blue) from a true-color input data stream
(24 bits per pixel) before transferring it to the first PE in the pipeline. It
also generates a fourth color channel (8 bits per pixel) carrying a grayscale
version of the input pixel stream. A grayscale image represents an effectively
continuous range of tones, from black to white, through intermediate shades
of gray [27].

The processing core of the P2IP is formed by a sequence of identical PEs.
Although the PEs have the same internal structure, each one can perform a
different function according to its configuration. The number of PEs can be
defined before synthesis by a simple instantiation procedure without changing
the P2IP basic structure or the programming mechanism. Following, the
P2IP PE is described in detail.

3.1. The P2IP Processing Element

The PEs are the main components of the P2IP. All PEs are identical,
formed by a Reconfigurable Interconnection and modules containing groups
of image processing operators. The Reconfigurable Interconnection directs
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the pixel stream through modules forming the P2IP datapath. Fig. 3 shows
the PE functional diagram.

Figure 3: Functional diagram of the P2IP Processing Element (PE).

Each PE has its own local data memory divided into 4 Memory Blocks
(MBs) used for storing frame lines (one line per MB). The maximum horizon-
tal size of the input frame is limited by the MB’s size which can be defined
before synthesis. The MBs are based on dual-port memory elements accessed
sequentially. TheMemory Controller performs all memory operations needed
by the PE, e.g., neighborhood extraction and delay. The other modules, Pixel
Processor and Spatial Processor, comprise clusters of image operators. The
Pixel Processor module contains pixel-to-pixel operators which process each
pixel individually, e.g., arithmetic and logic operations. The Spatial Pro-
cessor module contains spatial operators which are neighborhood oriented
functions. These functions require an input window formed by the targeted
pixel and its neighborhood to provide a result. Those three modules are
interconnected by the Reconfigurable Interconnection. Also in Fig. 3, we
can see the PE-Configuration Decoder (PE-CD) which is the second node of
the Configuration Tree. The PE-CD distributes the configuration received
from the P2IP Controller to the internal PE modules. More details about
this block and the P2IP configuration mechanism are given in Section 3.2.
Following, we present a detailed description of the PE internal modules.

3.1.1. Memory Controller

As mentioned earlier, the Memory Controller contains memory-based op-
erators, more specifically, a Neighborhood Extractor (NE), a mirror, and a
delay. Fig. 4 shows the functional diagram of the Memory Controller struc-
ture.

7



Figure 4: Functional diagram of the Memory Controller (MC).

In order to reduce memory resources, MB 3 and 4 (Fig. 4) can be allocated
to any Memory Controller operator through the MB crossbar. It is impor-
tant to highlight here that these MBs can be allocated to only one operator
at a time. In this way, the NE can have up to four allocated MBs, allowing
it to generate sliding windows of 5×9 pixels or 9×9 by associating two con-
secutive PEs. All data inputs and outputs of the Memory Controller module
are connected to the Reconfigurable Interconnection, with the exception of
the window output (oWindow) connected to the Spatial Processor module
(Section 3.1.2) and the configuration input (pe cfg) that is part of the Config-
uration Tree (Section 3.2). There follows a description of the memory-based
operators.

• Neighborhood Extractor (NE): An NE provides a sliding window that
scans the whole image. This window contains a pixel neighborhood
that is necessary for some computations, e.g., 2D Convolution. The
operating principle of a 3 × 3 neighborhood extractor is presented in
Fig. 5. The line buffer size of the NE operator can be configured af-
ter synthesis in order to adjust it to the frame size. In addition, the
number of line buffers can be configured, from 2 to 4 by allocating
more MBs. The number of elements in a pixel array is fixed with nine
registers. Thus, the NE operator can support sliding windows of up
to 5×9 pixels. The NE operator also supports recursive operations by
introducing a second pixel stream directly into the line buffer located
just after the central pixel array. This feature allows the PE to process
a part of the window twice, what can reduce the number of operators
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in certain computations. Also, in order to avoid random pixels in sub-
sequent stages, a border handler is placed at the output of the NE
block (Fig. 4). The border handler assigns determined values to pixels
of the window that crosses the image’s border. This situation occurs
when the center of the window is located near to the image border and
part of the window stays outside the image boundaries. In our system,
we replicate the inner window pixel values to those pixels outside the
image boundaries.

Figure 5: Operating principle of a 3× 3 neighborhood extractor.

• Mirror (Mir : The function of the Mirror operator is to invert the direc-
tion in which the image is scanned. This is necessary when an algorithm
must propagate an event in the image and the regular scanning direc-
tion does not allow it. The Mirror structure is based on two line buffers
working in a Last-In-First-Out (LIFO) fashion.

• Delay (Z−n): The Delay operator is composed of two line buffers with
configurable size and is used to synchronize two pixel streams that are
in different stages of the P2IP. The maximum delay supported is 2 frame
lines which is equivalent to the delay imposed by a 5×5 neighborhood
operation.

3.1.2. Image operators

The Spatial Processor is a PE module containing three fundamental
neighborhood-based operators for low-level image processing, more specif-
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ically, a Two-Dimensional Convolver (2DC), a Non-Maximum Suppressor
(NMS), and a connector. Fig. 6 shows the functional diagram of the Spatial
Processor module.

Figure 6: Functional diagram of the Spatial Processor (SP).

The output window from the Memory Controller module (Section 3.1.1)
is the main input of the Spatial Processor module. The other inputs and
outputs are connected directly to the Reconfigurable Interconnection, with
the exception of the configuration input that is part of the Configuration
Tree. The 2DC configuration selects which operator will be activated in the
module. Next, we present a description of the Spatial Processor operators.

• Two-Dimensional Convolver (2DC): The 2DC is a fundamental oper-
ator in many image processing algorithms. It can convolve an input
image f(x, y) with a predefined kernel or mask h(i, j) such as Sobel,
Gaussian, and Laplacian, as defined in (1).

g(x, y) =
∑
i,j

f(x+ i, y + j) · h(i, j) (1)

where g(x, y) is the resulting image, f(x, y) is the input image, and
h(i, j) is the kernel. The equation above can be more compactly noted
as in (2).

g(x, y) = f(x, y)⊗ h(i, j) (2)

A set of these kernel coefficients is stored in a local ROM block. They
can be downloaded during the 2DC configuration step. An important
feature of the 2DC is that it can compute up to two 3×3 kernels in
parallel per module or a single 5×5 kernel. This approach can reduce
idle resources in certain operations.
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• Non-Maximum Suppressor (NMS): The NMS operator analyses the in-
put window and outputs the center pixel only if it is the local maximum.
Otherwise, NMS outputs the value zero. It has a specific input that
provides the gradient direction of the input window. This direction is
estimated by the direction operator in the Pixel Processor module.

• Connector (Con): The connector operator is used during edge detection
to reduce the number of gaps along lines representing edges. It analyses
the neighborhood of a pixel to verify if it can be connected to another
pixel in its neighborhood.

The Pixel Processor is a PE module containing a set of optimized pixel-
to-pixel operators. Fig. 7 depicts the Pixel Processor module showing all
internal operators and their respective interconnection. Following, we give
an overview of these operators.

Figure 7: Functional diagram of the Pixel Processor (PP).

• Direction (Dir): This operator compares if the input iPP a value is
greater than iPP b and its output (oPP a) is Boolean. It is used as an
approximation of the arctangent function which provides the direction
of a gradient.

• Harris (Har): The Harris operator computes the Harris response based
on [28]. The Harris response is an alternative to calculate the eigenval-
ues for feature detection applications.

• Arithmetic and Logic Unit (ALU): The ALU operator is a more generic
and configurable operator that can compute the following functions:
multiplication, square power, binary shifting, addition, subtraction,
logic AND (&), greater than, and less than.
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• Threshold (Thr): The Threshold operator performs a simple segmenta-
tion technique, classifying pixels into two categories according to rule
(3)

gth(x, y) =

{
0, f(x, y) < T
1, f(x, y) > T

(3)

where gth(x, y) is the resulting image of the threshold operator, f(x, y)
is the image function, and T is the threshold limit value. It can also be
configured to operate in a hysteresis mode where two threshold limits
(Tlow and Thigh) can be used according to rule (4).

gth(x, y) =


0, f(x, y) < Tlow

f(x, y), Tlow 6 f(x, y) < Thigh

1, f(x, y) > Thigh

(4)

The two clusters of image processing operators in each PE of the P2IP
can perform a series of fundamental computations and combinations of them.
To illustrate some of the operations supported by the P2IP, Table 1 shows
the relations between the P2IP operators and low-level image processing op-
erations.

Table 1: Relation between the P2IP operators and low-level image processing operations.

Low-level P2IP Operators
Operations 2DC NMS Con Dir ALU Thr Har
Thresholding x
Arithmetic Operations x
Smoothing x
Sharpening x x
Noise Reduction x
Edge Detection x x x x x x
Corner Detection x x x x x
Gradient Direction x x
First-order Derivative x x
Laplacian x
Basic Segmentation x
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3.1.3. Reconfigurable Interconnection

The Reconfigurable Interconnection is the PE module in charge of routing
different datapaths in the P2IP architecture. It is composed of two indepen-
dent configurable crossbars with 8-bit wide paths. Each external input or
output of the Reconfigurable Interconnection passes by a register. This ap-
proach guarantees that the maximum pixel clock supported by the P2IP does
not change with long paths between PEs. Fig. 8 shows the Reconfigurable
Interconnection functional diagram.

Figure 8: Functional diagram of the Reconfigurable Interconnection (RI).

The module crossbar interconnects all modules in a PE. Its auxiliary I/Os
(iAux and oAux ) can share partial results directly with other PEs. The RGB
crossbar is the main I/O of a PE. As the P2IP can only process one color
component per PE, the RGB crossbar has a single I/O channel connected to
the module crossbar. It outputs a selected color component to be processed
by the PE and receives the result which is transferred to the next PE. Fig. 9
shows three basic configurations that can be associated to obtain different
datapaths.

The pipeline configuration (Fig. 9a) is the natural datapath supported
by the P2IP architecture. In this model, the input data passes through a
cascaded series of Operators (Op). In the second configuration (Fig. 9b), the
input data is processed simultaneously in two different PEs and their outputs
are processed in a third PE. The third configuration, presented in Fig. 9c, has
three concurrent inputs that are processed simultaneously in three different
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(a)

(b)

(c)

Figure 9: Basic datapath configurations mapped through the Reconfigurable Interconnec-
tion (RI). (a) Regular pipeline of Operators (Op). (b) Fork then fusion. (c) Independent
parallel pipelines.

PEs. This last configuration is mostly used for color processing.

3.2. Configuration mechanism

The Configuration Tree is a scalable configuration structure formed by
a series of Configuration Decoders (CDs) hierarchically organized. The ob-
jective of the Configuration Tree is to provide access to all configuration
registers located in the P2IP operators. Fig. 10 depicts the Configuration
Tree architecture showing all decoder levels, from the configuration input
(config in) to the configuration register.

The configuration input of the Configuration Tree is an 8-bit wide bus that
can be connected to any kind of external interface, e.g., UART, Ethernet,
or flash memory. Differently from the datapath that works at the same
clock frequency as the input pixel stream, the Configuration Tree works at
a fixed clock frequency of 100 MHz. An input configuration word takes
four clock cycles to arrive at a specific operator. Each configuration process
can send a maximum of eight configuration bytes to a determined operator.
Considering the extra two bytes corresponding to the configuration header
(operator location and number of extra bytes), an operator takes a maximum
of 0.34 µs to be configured.

14



Figure 10: Configuration Tree architecture with a highlighted path showing the active
modules during an operator configuration.

The P2IP-CD is the input node of the Configuration Tree. It extracts
global parameters from the configuration input, such as the frame size, and
transfers the rest to the next level of decoders formed by PE-CDs. Each PE
and its internal components have an Identification (ID) number. These IDs
are used to identify operators in the P2IP architecture. To access an oper-
ator, firstly it is necessary to send a header through the configuration bus
containing all IDs in the path towards the operator. During the configura-
tion process, the PE-CDs distribute the configuration words to the next level
of decoders inside the processing modules, called Module Configuration De-
coders (Module-CD). The Module-CDs send the configuration words to the
final level of decoders located inside the processing operators, the Register
Configuration Decoders (Reg-CDs). The configuration registers are located
in the Reg-CDs and they vary in size depending on how many parameters
must be set to configure the operator. Fig. 11 shows the register fields of the
configuration header and an example of a configuration register to configure
a Threshold operator.

In Fig. 11, the Threshold configuration register is composed by three
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Figure 11: Register fields of the configuration header and the Threshold configuration
register.

bytes where the first byte configures the lower threshold limit, the second
byte configures the higher threshold limit, and bits 0 and 1 of the third
byte indicate the operating mode of the Threshold operator. The Threshold
operator can be configured to work in three different modes:

1. Bypass;

2. Normal mode as in eq. (3) where only the lower threshold limit is taken
in consideration;

3. Hysteresis mode as in eq. (4) where Tlow is the lower threshold limit
and Thigh higher threshold limit.

The configuration transfer at the configuration input port (config in) is ac-
cepted when the corresponding VALID signal is high. Fig. 12 presents an
example of configuration transfer.

Figure 12: Example of configuration transfer targeting a Threshold operator.

The methodology to configure the P2IP by manually creating configura-
tion transfer sequences is timing consuming and error prone. In order to
facilitate the P2IP configuration process, a function library embedded on
MATLAB-based language has been created. This library accepts mnemon-
ics to cover all possible configurations of the P2IP operators, giving to the
user full control over the architecture. In addition to creating configuration
transfer sequences, MATLAB allows the user to send them directly to the
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P2IP by creating Interface Objects (e.g. UART, UDP, I2C, and Bluetooth).
Following, we give an example of configuration using the function library:

>> P2IP(ser, ‘PE’,2, ‘threshold’, ‘Tcfg’,3, ...

‘Ta’,50, ‘Tb’,100)

where P2IP(...) is the main MATLAB function that calls the internal func-
tions; ser is a MATLAB opened communication port that will be used
to transfer the configuration words generated by the assembler; ‘PE’ is
the mnemonic for PE ID that receives the value 2; and ‘threshold’ is the
mnemonic for the threshold operator that receives three parameters: Tcfg =
3 corresponding to the hysteresis operating mode; Ta = 50 corresponding to
Tlow value; and Tb = 100 corresponding to Thigh value.

4. Algorithm partitioning and allocation

The objective of algorithm partitioning is to divide the algorithm into
groups of operations that can fit in a single PE and analyze the appropriate
configuration of the interconnection. The basic rule for an efficient algorithm
mapping on the P2IP is to allocate at least one neighborhood operator per PE
and distribute the remaining operators according to the available resources
and their data dependencies.

In order to validate the proposed architecture, three low-level image pro-
cessing algorithms have been mapped on the P2IP, more specifically, the Edge
Sharpening, Canny Edge Detection, and Harris Corner Detection algorithms.
These algorithms are very popular in the field and used in a wide range of
applications, e.g. image enhancement, image segmentation, object recogni-
tion, and object tracking. In addition, they require a variety of operators
that offer an interesting use case for evaluating our approach. Following, we
give an overview of these application algorithms and then a description of
the partitioning of each algorithm.

4.1. Edge Sharpening

Edge Sharpening is a technique for enhancing edges in images with a low
level of edge definition, e.g. X-ray images. It commonly uses the unsharp
sharpening algorithm where an unsharp filter extracts the image gradient
edges and then adds them back onto the original image [29]. Mathematically,

17



the unsharp filter produces an edge image e(x, y) from an input image f(x, y),
as defined in (5).

e(x, y) = f(x, y)− fsmooth(x, y) (5)

where fsmooth(x, y) is a smoothed version of f(x, y) that must be previously
computed.

To obtain the sharpened edges, the result of (5) is added back to the
original image, as in (6).

s(x, y) = f(x, y) + k · e(x, y) (6)

where s(x, y) is the resulting image with sharpened edges, and k is a scaling
constant.

A different commonly used technique is to apply a negative Laplacian
kernel (7) as the unsharp filter, simplifying the algorithm in one operation.
Using this technique, the unsharp filter e(x, y) can be defined as in (8).

hl(i, j) =
1
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−1 −1 −1
−1 8 −1
−1 −1 −1

 (7)

e(x, y) = f(x, y)⊗ hl(i, j) (8)

Fig. 13 presents the Edge Sharpening algorithm graph for a single color
channel applying a Laplacian kernel (hl) as the unsharp filter and its imple-
mentation on the P2IP architecture in a true-color (24-bit RGB) format.

(a)

(b)

Figure 13: Edge Sharpening algorithm. (a) Algorithm graph. (b) P2IP implementation.

The Edge Sharpening implementation (Fig. 13b) requires three PEs for a
true-color format and performs 60 operations per pixel along the datapath.
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The datapath configuration is similar to the one presented in Fig. 9c where
each PE has an identical set of operators working in parallel. For each color
channel, the input is computed by a 3×3 Laplacian (L) kernel and the ALU
operator adds its result to a delayed version of the input provided by the
delay (Z−n) operator.

4.2. Canny Edge Detection

Edge detection is a fundamental process in computer vision for image
segmentation and object recognition. Edges are prominent events due to
local changes in intensity or color in images [30]. Basically, if the brightness
of a pixel is significantly different from the pixels in its neighborhood, it may
contain an edge. It is possible to detect such changes in an image f(x, y)
by applying special kernels, such as the Sobel kernel (9). These kernels are
presented in pairs where one is used to detect horizontal variations (hh) on the
image and the other vertical variations (hv). As a result of these operations,
we obtain a horizontal gradient gh(x, y) and a vertical gradient gv(x, y) as
defined in (10) and (11), respectively.

hh(i, j) =
1

8

−1 0 1
−2 0 2
−1 0 1

 and hv(i, j) =
1

8

−1 −2 −1
0 0 0
1 2 1

 (9)

gh(x, y) = f(x, y)⊗ hh(i, j) (10)

gv(x, y) = f(x, y)⊗ hv(i, j) (11)

With these gradients, it is possible to obtain a gradient magnitude or
modulus that represents the local edge strength |G(x, y)| (12) and the local
edge orientation angle Φ (13) using an arctangent operation.

|G(x, y)| =
√

gh(x, y)2 + gv(x, y)2 (12)

Φ(x, y) = tan−1

(
gv(x, y)

gh(x, y)

)
(13)

Canny Edge Detection is one of the most popular algorithms for edge
detection due to its minimum number of false edge points, good localization of
edges, and single mark on each edge [30]. The Canny algorithm is composed
of three steps: smoothing, edge enhancement, and localization. For the
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smoothing step, the Canny algorithm uses a Gaussian low pass filter, based
on a Gaussian kernel (14), to suppress the noise of the input image.

hg =
1

273


1 4 7 4 1
4 16 26 16 4
7 26 41 26 7
4 16 26 16 4
1 4 7 4 1

 (14)

Next, during the edge enhancement step, a gradient vector at each pixel
of the smoothed image is calculated based on the Sobel kernel, as defined in
(9). The localization step is divided into two stages: NMS and Hysteresis
Thresholding (HThr). The objective of the NMS is to eliminate non-ridge
pixels giving a one pixel wide aspect at the edges. A ridge pixel is defined
as a pixel with a gradient magnitude greater than that of the adjacent pixels
in the direction of the gradient. In the HThr stage, two thresholds are used:
Tlow and Thigh. All pixels with a magnitude higher than Thigh are considered
as true edges. Pixels with magnitudes between Thigh and Tlow are considered
as edge candidates. Pixels that do not satisfy these two criteria are sup-
pressed. Edge candidates become true edges if they are connected to true
edges directly or through other candidates. Fig. 14a presents the algorithm
graph of the Canny Edge Detection, while Fig. 14b shows how the algorithm
is partitioned and implemented on the P2IP architecture.

The Canny Edge Detection implementation (Fig. 14b) works with a flow
of 8-bit grayscale pixels. It starts by computing a 5×5 Gaussian (G) ker-
nel. In PE2 two 3×3 kernels are computed in parallel, the horizontal Sobel
(SH) and the vertical Sobel (SV ). Also in this PE, the gradient direction is
estimated by the direction (Dir) operator and the ALU computes a gradient
magnitude approximation based on [29]. The direction is transferred by an
auxiliary channel (oAux1 ) to the next PE where it is used to process the
NMS. Finally, the threshold (Thr) operator of the PE3 along with PE4 and
PE5 perform an approximation of the HThr operation where a sequence of
connectors (Con) and mirrors (Mir) can fill most of the gaps in edge lines.
The datapath structure in this implementation is mostly a regular pipeline
as presented in Fig. 9a. The mapped version occupies five PEs and performs
123 operations per pixel along the datapath.
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(a)

(b)

Figure 14: Canny Edge Detection algorithm. (a) Algorithm graph. (b) P2IP implemen-
tation.

4.3. Harris Corner Detection

Corner detection is another fundamental process in computer vision. It is
mainly used for motion detection, object tracking, panorama stitching, and
3D modeling. A corner is defined as an area that exhibits a strong gradient
value in multiple directions at the same time [30]. The Harris operator uses
this premise to find corners on an image. The first step is to obtain the first
partial derivative of the image function f(x, y) in both directions, horizontal
and vertical, based on approximations (15) and (16).

gH(x, y) =
δf

δx
(x, y) ≈ f(x, y)⊗

[
−1 0 1

]
(15)

gV (x, y) =
δf

δy
(x, y) ≈ f(x, y)⊗

−1
0
1

 (16)

With the values of gH(x, y) and gV (x, y), it is possible to calculate the
elements of the matrix M , described in (17), using (18), (19), and (20).

M =

[
A C
C B

]
(17)

A = gH(x, y)
2 ⊗ w (18)
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B = gV (x, y)
2 ⊗ w (19)

C = (gH(x, y) · gV (x, y))⊗ w (20)

where w is a smoothing circular operator, e.g., a Gaussian kernel as defined
in (14). The final step is to obtain the Harris operator response as in (21).

R = Det[M ]− k · Tr2[M ] (21)

where R is positive in corner regions, negative in edge regions, and small in
flat regions, k is a constant coefficient that, in practice, is a fixed value in the
range of 0.04 to 0.06, and Det and Tr are the determinant and trace matrix
operations, respectively. An optional final step is to select the best results
in a determined region in order to reduce false corners. It can be done by a
10×10 NMS operator. Fig. 15a presents the algorithm graph of the Harris
Corner Detection, while Fig. 15b shows how the algorithm is partitioned and
implemented on the P2IP architecture.

(a)

(b)

Figure 15: Harris Corner Detection algorithm. (a) Algorithm graph. (b) P2IP implemen-
tation.

The Harris Corner Detection implementation on the P2IP architecture
(Fig. 15b) works with a flow of 8-bit grayscale pixels. It starts by computing
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two 3×3 kernels in parallel, the horizontal first derivative (FDH) and the
vertical first derivative (FDV ). The output of the PE1 is transferred to 3
different PEs (2, 3, and 4). In PE4, the Harris (H) operator uses the result of
the previous 5×5 Gaussian kernel along with the results from PE2 and PE3
to compute the Harris response. The datapath structure along PE2, PE3,
and PE4 is an example of the model presented in Fig. 9b. In PE5, an extra
5×5 Gaussian kernel is computed in order to help the NMS operator during
the selection of the best results. Finally, PE6 and PE7 create two 5×9
windows where one represents the top and the other represents the bottom
part of a 9×9 window. The P2IP version of the algorithm requires 7 PEs and
performs 340 operations per pixel along the datapath.

5. Results

As mentioned earlier, latency is a critical characteristic of image pro-
cessing systems in applications that must react as fast as possible to events
captured by the image sensor. In the P2IP, each PE can have a different
latency according to its configuration. In order to simplify the latency anal-
ysis, we will assume a worst-case scenario, when a pixel stream takes the
longest path along a PE. The longest path in a PE is shown in Fig. 16 where
the corresponding latency is expressed in pixels since the P2IP works at the
input stream clock frequency, processing one pixel per clock cycle.

Figure 16: Longest path in a PE and the related latency. The latency is expressed in
pixels.

The NE latency (NEL) for a neighborhood window with m× n pixels in
an image with dimensions M ×N pixels, can be expressed as defined in (22).

NEL = N

(
m− 1

2

)
+
n− 1

2
+ b (22)

where N is the number of pixels in one line of the input image and, for the
neighborhood window, m is the number of lines, n is the number of pixels per
line, and b is the Border Handler latency. As the largest window provided by
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a single NE is 5×9 and the border handler latency is 3 clock cycles, we can
obtain the PE total latency for the worst-case scenario (PEL) as in (23).

PEL = 2N + 32 (23)

Finally, the total latency of the system can be expressed as in (24), taking
into consideration that PEs operating in parallel are not included as active
PEs.

P2IPL = pa · PEL (24)

where pa is the number of active PEs in the P2IP architecture.
In order to evaluate the P2IP performance, we have implemented the ar-

chitecture containing 10 PEs and supporting line buffers of up to 4095 pixels
in an FPGA-based platform Altera Stratix IV EP4SGX230. The maximum
clock frequency (Fmax) in the datapath reported after synthesis was 268MHz.
As the P2IP delivers one processed pixel per clock cycle, the datapath Fmax

corresponds to the architecture throughput that in this case is 268 Mpixel/s.
Table 2 presents the P2IP benchmarking obtained from HDL simulation tar-
geting the low-level image processing algorithms described in the last section.
Due to the constant output data rate, the throughput results do not change
from one application to another. The performance varies according to the
number of operations per pixel along the datapath, but stays constant for
any resolution considering maximum throughput. Fig. 17 shows examples of
images processed by the P2IP using the algorithms mentioned.

Table 2: Throughput (T), Performance (P), and Latency (L) benchmarking results for
Edge Sharpening (ES), Canny Edge Detection (CED), and Harris Corner Detection (HCD)
algorithms w.r.t. P2IP (10 PEs @ 268 MHz ).

Application
Full HDa 4Kb Any
T L T L P

(fps) (µs) (fps) (µs) (GOPS )
ES

129

21.9

32

43.3 16.1
CED 43.5 86.6 33.0
HCD 65.1 129.5 91.1
a 1080×1920 pixels.
b 2160×3840 pixels.

Table 3 shows the FPGA resources required by the P2IP architecture with
10 PEs. Considering that the P2IP reconfigurability is mainly supported
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(a) (b)

(c) (d)

Figure 17: Example of images processed on the P2IP architecture. (a) Original image -
The belfry of Mons. (b) Edge Sharpening. (c) Canny Edge Detection - inverted output
for better visualization. (d) Harris Corner Detection.

by the Configuration Tree and the Reconfigurable Interconnection, we can
establish the amount of resource overhead generated only by this feature,
corresponding to 15 % of the total resources. This overhead is more important
when we take into consideration the resources left idle in comparison with a
dedicate not-flexible implementation of the same algorithm. An example of
this is when we compare a bare-metal implementation of the Harris Corner
Detection with its analogous P2IP implementation. The overhead in this case
is an average of 74 % in each PE. If resource utilization is a design concern, the
overhead can be drastically reduced by mapping as fixed PEs’ parameters,
all operators that are not required to be modified after-synthesis. During
synthesis, the synthesizer in capable of optimizing these PEs by removing all
resources that are not associated to the mapped operators, i.e., idle resources.

A comparison between the P2IP performance and the state-of-the-art
architectures is presented in Table 4. We can see that P2IP has a better
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Table 3: FPGA resources w.r.t. P2IP (10 PEs).

Memory
Component ALMa Dedicated registers (kbits) DSPsb

Controller 218 133 0 0
Input Reg. 31 50 0 0
Output Reg. 139 76 0 0
PE 3028 3766 131 29
Total 3416 4025 131 29
Total (10 PEs)c 30668 37919 1310 290
a Adaptive Logic Module (ALM).
b DSP block elements distributed on the FPGA fabric.
c Total resources with 10 PEs.

performance than all architectures presented in Table 4. P2IP has shown
a performance enhancement from 1.7 to 3.18 times faster than the state-of-
the-art related works. In terms of latency, it is clear that P2IP has a big
advantage over the architectures that have addressed this specification.

To obtain this comparison, we have taken applications and parameters
(image size) presented in [21, 14, 22, 13, 31] and similarly mapped them onto
the P2IP. This gave us a fair basis to compare their results against the re-
sults obtained with the P2IP. As presented earlier, our proposed architecture
supports any image size up to 4095×4095 pixels, only limited by the size of
the line buffers present in the PEs.

The throughput of the P2IP is highly dependent on the Fmax obtained
during synthesis. The obtained Fmax will certainly be different depending on
the technology where the architecture is implemented (e.g., different FPGAs
vendors or families and different ASIC technology). The results presented in
this section attempt to illustrate the P2IP performance on a relatively old
FPGA technology (40 nm process technology) which we have had available
for prototyping.

6. Conclusions

In this paper, we have presented P2IP, a novel coarse-grained reconfig-
urable systolic array for real-time image and video processing. With a run-
time reconfigurable datapath associated to a dedicated programming mech-
anism, the P2IP architecture can perform many low-level image processing
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Table 4: Throughput (T) and operating frequency (F) comparison with the state-of-the-art
architectures w.r.t. P2IP (10 PEs) @ 268 MHz.

P2IP
Image Size F T T

Architecture Application (M ×N pixels) (MHz) (fps) (fps)
CSX700 [21] HCDa 720×1280 250 91 290
Diet SODA [14] 2D Filter 2720×4072 400/50b 13 24
CRISP [22] 2D Filter 2720×4072 115 9 24
GPU [13] CEDc 3936×3936 575 10 17
Hybrid [31] CED 1472×1760 2400/1296d 47 103
a Harris Corner Detection.
b 400 MHz is the frequency of the memory and controller systems and
50 MHz is the SIMD frequency.

c Canny Edge Detection.
d 2400 MHz is the CPU frequency and 1296 MHz is the GPU frequency.

applications.
In our study, three image processing algorithms were mapped on the

proposed architecture in order to validate it. Reliable output results were
achieved and discussed for that purpose. We also show how each algorithm is
mapped on the architecture via the P2IP configuration mechanism on differ-
ent PEs all configured to become one application. For different image sizes,
we show the latency of our proposed architecture and compared to that of
the state-of-the-art architectures, presenting very competitive performances
with a throughput of one processed pixel per clock cycle independently of
the operating frequency. These obtained results proved that the proposed
architecture can be a suitable low-level image processor candidate for com-
mercial embedded systems targeting modern video standards. Finally, from a
System-on-Chip point of view, the P2IP can be seen as a new flexible build-
ing block with an industrial standard interface base on the AXI4-Stream
interconnection protocol.

Regarding future extensions of the present work, an important addition
could be an evolution of the MATLAB-based function library by using higher-
level entry methods such as MATLAB/Simulink or LabVIEW. Furthermore,
the addition of an expert system capable of inferring routing solutions and
adjusting internal delays based on a desired P2IP configuration could be
very beneficial to the architecture acceptance. This expert system could
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make the internal routing and delay balancing transparent for the user and
complemented by a higher level entry method.
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