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Counting occurrences for a finite set of words: an inclusion-exclusion approach
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Optimal Prefix and Suffix Queries on Texts
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In this paper, we study a restricted version of the position restricted pattern matching problem introduced and studied
by Mäkinen and Navarro [Position-Restricted Substring Searching, LATIN 2006]. In the problem handled in this
paper, we are interested in those occurrences of the pattern that lies in a suffix or in a prefix of the given text.
We achieve optimal query time for our problem against a data structure which is an extension of the classic suffix
tree data structure. The time and space complexity of the data structure is dominated by that of the suffix tree.
Notably, the (best) algorithm by Mäkinen and Navarro, if applied to our problem, gives sub-optimal query time and
the corresponding data structure also requires more time and space.
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1 Introduction
The classical pattern matching problem is to find all the occurrences of a given pattern P = P[1..m]
of length m in a text T = T [1..n] of length n, both being sequences of characters drawn from a finite
character set Σ. This problem, along with its numerous variants, has been the focus of extensive research
in the field of computer science. Due to the need of various practical applications, most recent works
in pattern matching have considered ‘inexact matching’. Many types of differences have been defined
and studied in the literature, namely, errors (Hamming distance, LCS [10, 20], edit distance [10, 21]),
wild cards or don’t cares [10, 11, 15, 28, 30], rotations [1, 4, 16], scaling [2, 6, 3], permutations [8]
among others. The indexing problem for pattern matching, indexed pattern matching for short, is to
preprocess a given text T [1..n] over an alphabet Σ as efficiently as possible to build a data structure to
support the following form of online queries: Given a pattern P[1..m] over Σ find the occurrences of P
in T . The indexed pattern matching problem and its many variants have been central in pattern matching
literature [18, 14, 5, 9, 23, 24, 27, 30, 29, 10]. Recently, Mäkinen and Navarro, in [25], considered an
interesting variant of indexed pattern matching, where only the occurrences of a given pattern starting in
a particular area, are of interest. In particular, in this variant, the query provides an interval [`..r], 1 ≤
` ≤ r ≤ n along with the pattern P and the occurrences of P in T [`..r] are sought for. These queries,
as is pointed out in [25], are fundamental in many text search situations where one wants to search only
a part of the text. The authors in [25] presented a number of algorithms depending on different trade-offs
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between the time and space complexities. The best query time they achieved was O(m+ log log n+K)
(K is the output size) against a data structure exhibiting O(n log1+ε n) space and time complexity, where
0 < ε < 1.

In this paper, we study a restricted version of the problem handled in [25]. In particular, we are in-
terested in those occurrences of the pattern that lies in a suffix or in a prefix of the given text. In other
words, in our case, the query interval [`..r] is of special form: either ` = 1, i.e. prefix search, or r = n,
i.e. suffix search. This kind of queries seem to be interesting in many contexts as well. For example,
many of the queries in real life are restricted up to the table of contents of a book or in the title and ab-
stract of a scientific document. Another possible application for this problem can be found in Biological
Sequence Assembly where the question is to build a kind of Shortest Super-string Common to a given
set of sequences. In the greedy strategy for sequence assembly, this is usually done by finding markers
close to the ends i.e. suffixes of the strings: these markers witness possible overlaps between a suffix of
a sequence and a prefix of another sequence. Sequence having large overlaps are assembled in a longer
sequence and so on.

In this paper, we present an efficient data structure to handle such online queries in the prefix or suffix
of a given text in optimal time. Note that, the best query time achieved in [25] (for the more general
problem) is not optimal due to the additional (mild) log log n term. As a result, if applied to our problem,
their algorithm exhibits sub-optimal query time and the corresponding data structure also requires more
time and space.

The rest of the paper is organized as follows. In Section 2, we present the preliminary concepts. The
main result of this paper is presented in Section 3. We conclude briefly in Section 4.

2 Preliminaries
A text, also called a string, is a sequence of zero or more symbols from an alphabet Σ. A text T of length
n is denoted by T [1..n] = T1T2 . . . Tn, where Ti ∈ Σ for 1 ≤ i ≤ n. The length of T is denoted by
|T | = n. A string w is a factor or substring of T if T = uwv for u, v ∈ Σ∗; in this case, the string w
occurs at position |u|+ 1 in T . The factor w is denoted by T [|u|+ 1..|u|+ |w|]. A prefix (suffix) of T is
a factor T [x..y] such that x = 1 (y = n), 1 ≤ y ≤ n (1 ≤ x ≤ n). We define ith prefix to be the prefix
ending at position i i.e. T [1..i], 1 ≤ i ≤ n. On the other hand, ith suffix is the suffix starting at position i
i.e. T [i..n], 1 ≤ i ≤ n.

In traditional pattern matching problem, we want to find the occurrences of a given pattern P[1..m] in a
text T [1..n]. The pattern P is said to occur at position i ∈ [1..n] of T if and only if P = T [i..i+m− 1].
We use OccPT to denote the set of occurrences of P in T .

The problem we handled in this paper can be defined formally as follows.

Problem “PMP/S” (Pattern Matching in a Prefix/Suffix) 1 We are given a text T of length n. Prepro-
cess T to answer the following form of queries.
Query: Given a pattern P and a query interval [`..r], with 1 ≤ ` ≤ r ≤ n, where either ` = 1 (prefix
query) or r = n (suffix query), construct the set

OccPT [`..r] = {i | i ∈ OccPT and i ∈ [`..r]}.

It is easy to realize that Problem PMP/S is a special case of the problem handled in [25]. Apart from
being interesting from pure combinatorial point if view, Problem PMP/S is motivated by practical appli-
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cations as discussed in Section 1. As a result, it is interesting to see whether the solution of [25] can be
improved to optimal for this special case.

In traditional indexing problem one of the basic data structures used is the suffix tree data structure. In
our indexing problem, we make use of this suffix tree data structure. A complete description of a suffix
tree is beyond the scope of this paper, and can be found in [26, 33] or in any textbook on stringology
(e.g. [12, 19]). However, for the sake of completeness, we define the suffix tree data structure as follows.
Given a string T of length n over an alphabet Σ, the suffix tree STT of T is the compacted trie of all
suffixes of T $, where $ /∈ Σ. Each leaf in STT represents a suffix T [i..n] of T and is labeled with the
index i. We refer to the list (in left-to-right order) of indices of the leaves of the subtree rooted at node v
as the leaf-list of v; it is denoted by LL(v). Each edge in STT is labeled with a nonempty substring of T
such that the path from the root to the leaf labeled with index i spells the suffix T [i..n]. For any node v,
we let `v denote the string obtained by concatenating the substrings labeling the edges on the path from
the root to v in the order they appear. Several algorithms exist that can construct the suffix tree STT in
O(n log Σ) time(i) [26, 33, 13]. The space requirement of suffix tree is O(n log n) bits. Given the suffix
tree STT of a text T we define the “locus” µP of a pattern P as the node in STT such that `µP has the
prefix P and |`µP | is the smallest of all such nodes. Note that the locus of P does not exist, if P is not
a substring of T . Therefore, given P , finding µP suffices to determine whether P occurs in T . Given a
suffix tree of a text T , a pattern P , one can find its locus and hence the fact whether T has an occurrence
of P in optimal O(|P|) time.In addition to that, all such occurrences can be reported in constant time per
occurrence.

3 An Index for Problem PMP/S
In this section, we handle Problem PMP/S. Our basic idea is to build an index data structure that would
solve the problem in two steps. At first, it will (implicitly) give us the set OccPT . Then, the index would
‘select’ some of the occurrences to provide us with our desired setOccPT [`..r], where either ` = 1 or r = n.

The idea we employ is as follows. We first construct a suffix tree STT . According to the definition of
suffix tree, each leaf in STT is labeled by the starting location of its suffix. We do some preprocessing
on STT as follows. We maintain a linked list of all leaves in a left-to-right order. In other words, we
realize the list LL(R) in the form of a linked list, where R is the root of the suffix tree. In addition to
that, we set pointers v.left and v.right from each tree node v to its leftmost leaf v` and rightmost leaf vr
(considering the subtree rooted at v) in the linked list. It is easy to realize that, with these set of pointers at
our disposal, we can indicate the set of occurrences of a pattern P by the two leaves µP` and µPr because
all the leaves between and including µP` and µPr in LL(R) correspond to the occurrences of P in T . In
what follows, we define the term `T and rT such that LL(R)[`T ] = µP` and LL(R)[rT ] = µPr , whereR
is the root of STT . Now recall that our data structure has to be able to somehow “select” and report only
those occurrences that lies in the query interval. To solve this we use a solution to the following much
studied problem.

Problem “RMIN/MAX” (Range Minima/Maxima Query Problem) 1 We are given an array A[1..n]
of numbers. We need to preprocess A to answer the following form of queries:
Query: Given an interval I = [is..ie], 1 ≤ is ≤ ie ≤ n, the goal is to find the index k (or the value A[k]
itself) with minimum (maximum, in the case of Range Maxima Query) value A[k] for k ∈ I .

(i) For bounded alphabet the running time remains linear, i.e. O(n).
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Problem RMIN/MAX has received much attention in the literature and Bender and Farach-Colton showed
that we can build a data structure in O(n) time using O(n log n)-bit space and can answer subsequent
queries in O(1) time per query [7](ii). Recently, Sadakane [31] presented a succinct data structure which
achieves the same time complexity using O(n) bits of space.

Now, to complete the construction of the data structure we simply preprocess the array data structure
LL(R) for both range minima and range maxima queries. Algorithm 1 formally states the steps to build
our data structure. In the rest of this paper, we refer to this data structure as IDS PMP/S.

Algorithm 1 Algorithm to build IDS PMP/S
1: Build a suffix tree STT of T . Let the root of STT isR.
2: Label each leaf of STT by the starting location of its suffix.
3: Construct a linked list L realizing LL(R). Each element in L is the label of the corresponding leaf in
LL(R).

4: for each node v in STT do
5: Store v.left = i and v.right = j such that L[i] and L[j] corresponds to, respectively, (leftmost

leaf) v` and (rightmost leaf) vr of v.
6: end for
7: Preprocess L for both Range Minima and Range Maxima Queries.

3.1 Analysis

Let us analyze the the running time of Algorithm 1. Step 1 builds the traditional suffix tree requiring
O(n log Σ) time. Note that, for bounded alphabet the time required is reduced to O(n). Step 2 can be
done easily while building the suffix tree. Step 3 and Step 4 can be done together in O(n) by traversing
STT using a breadth first or in order traversal. Finally, the preprocessing for range minima and range
maxima queries require O(n) time and space [17, 7]. So IDS PMP/S can be constructed in O(n) and
O(n log Σ) time and space, respectively for bounded and general alphabet.

Algorithm 2 Algorithm for Query Processing
1: Find µP in STT .
2: Set i = µP .left, j = µP .right.
3: OccPT [`..r] = ε

4: if ` = 1{This is a prefix query} then
5: FindPrefixOccurrence(L, r, i, j){See Algorithm 3}
6: else
7: if r = 1{This is a suffix query} then
8: FindSuffixOccurrence(L, `, i, j){See Algorithm 4}
9: end if

10: end if

(ii) The same result was achieved in [17], albeit with a more complex data structure.
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Algorithm 3 Procedure FindPrefixOccurrence(L, r, i, j)
1: k = RangeMinimaQuery(L, i, j)
2: if L[k] < r then
3: Set OccPT [`..r] = OccPT [`..r]

⋃
L[k]

4: FindPrefixOccurrence(L, r, i, k − 1)
5: FindPrefixOccurrence(L, r, k + 1, j)
6: end if

Algorithm 4 Procedure FindSuffixOccurrence(L, `, i, j)
1: k = RangeMaximaQuery(L, i, j)
2: if L[k] > ` then
3: Set OccPT [`..r] = OccPT [`..r]

⋃
L[k]

4: FindSuffixOccurrence(L, `, i, k − 1)
5: FindSuffixOccurrence(L, `, k + 1, j)
6: end if

3.2 Query processing
Now we discuss the query processing. Suppose we are given a query pattern P along with a query interval
[`..r]. We first find the locus µP in STT . Let i = µP .left and j = µP .right. This means, we get the
set OccPT in the form of L[i..j] spending O(m) time. Now, suppose we are performing a prefix query, i.e.
` = 1. So we want to compute the set OccPT [1..r]. It is easy to see that

OccPT [1..r] = {L[k] | i ≤ k ≤ j,L[k] ≤ r}.

To compute OccPT [1..r], we apply a divide and conquer approach as follows. We perform a Range Minima
Query on L on the interval [i..j]. Suppose the query returns the index k. If L[k] ≤ r then L[k] ∈
OccPT [1..r] and then we perform the range minima query on the intervals [i..k − 1] and [k + 1..j] and
continue as before. If any of the queries returns k such that L[k] > r we stop. It is easy to verify that
this would give us the set OccPT [1..r]. Note that, in this way, for each found entry in OccPT [1..r], we have at
most 2 intervals to perform range minima queries further. So, in total the time spent is O(|OccPT [1..r]|).

On the other hand, for a suffix query, i.e. when r = n, we want to compute:

OccPT [`..n] = {L[k] | i ≤ k ≤ j,L[k] ≥ `}.

So, in this case, in the above procedure, we just need to perform a Range Maxima (instead of Minima)
Query and instead of checking whether L[k] ≤ r, we need to check whether L[k] ≥ `. The query steps
are formally stated in Algorithm 2, 3 and 4. In light of the above discussion, it is straightforward to see
that the total query time is O(m + |OccPT [`..r]|). The result of this section is formally presented in the
form of following theorem.

THEOREM 1 For Problem PMP/S, we can construct the IDS PMP/S data structure in O(n) time for
bounded alphabet and O(n log Σ) time for general alphabet requiring O(n log n) bits of space. We can
then answer the relevant queries in optimal O(m+ |OccPT [`..r]|) time per query.
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4 Conclusion
In this paper, we have studied Problem PMP/S, a restricted version of the position restricted pattern
matching problem (Problem PRPM) introduced and studied in [25]. In Problem PRPM, the query provides
an interval [`..r], 1 ≤ ` ≤ r ≤ n along with the pattern P and the occurrences of P in T [`..r] are sought
for. In Problem PMP/S, on the other hand, we are interested in those occurrences of the pattern that lies
in a suffix or in a prefix of the given text. In other words, in our case, the query interval [`..r] is of special
form: either ` = 1, i.e. prefix search, or r = n, i.e. suffix search. We have presented an efficient data
structure, IDS PMP/S, which is an extension of the classic suffix tree data structure. The time and space
complexity of IDS PMP/S is dominated by that of the suffix tree and hence is O(n) for bounded alphabet
and O(n log Σ) for the general case. The query time we achieve is O(m + |OccPT [`..r]|) time per query,
which is optimal. Notably, the (best) algorithm in [25], if applied to Problem PMP/S, gives sub-optimal
query time and the corresponding data structure also requires more time and space. One interesting feature
is that, with IDS PMP/S, we can answer ‘normal’ pattern queries(iii) as well. This, we believe, makes our
data structure a very strong tool to be used in different pattern matching and related applications with
multiple objectives. One final remark is that, we can use the suffix array instead of suffix tree as well with
some standard modifications in the algorithms presented in this paper.
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