Refined Enumeration of Noncrossing Chains and Hook Formulas

Matthieu Josuat-Vergès

To cite this version:

Matthieu Josuat-Vergès. Refined Enumeration of Noncrossing Chains and Hook Formulas. Annals of Combinatorics, Springer Verlag, 2015, 19 (3), pp.443-460. <10.1007/s00026-015-0278-5>. <hal-01189485>

HAL Id: hal-01189485

https://hal.archives-ouvertes.fr/hal-01189485
Submitted on 1 Sep 2015

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

REFINED ENUMERATION OF NONCROSSING CHAINS AND HOOK FORMULAS

MATTHIEU JOSUAT-VERGÈS

Abstract

In the combinatorics of finite finite Coxeter groups, there is a simple formula giving the number of maximal chains of noncrossing partitions. It is a reinterpretation of a result by Deligne which is due to Chapoton, and the goal of this article is to refine the formula. First, we prove a one-parameter generalization, by the considering enumeration of noncrossing chains where we put a weight on some relations. Second, we consider an equivalence relation on noncrossing chains coming from the natural action of the group on set partitions, and we show that each equivalence class has a simple generating function. Using this we recover Postnikov's hook length formula in type A and obtain a variant in type B.

1. Introduction

Let W be a finite Coxeter group of rank n and h its Coxeter number. A formula due to Deligne [5] states that the number of factorizations of a Coxeter element as a product of n reflections is

$$
\frac{n!}{|W|} h^{n} .
$$

The value in the case of the symmetric group is $(n+1)^{n-1}$, and this number is also known to be the number of Cayley trees on n vertices. Chapoton [4] give another interpretation of Deligne's formula: this number counts the maximal chains in the lattice of noncrossing partitions [1].

Our first goal (in Section 3) is to prove a one-parameter generalization of this result. A noncrossing chain is a sequence $\hat{0}=\pi_{0} \lessdot \pi_{1} \lessdot \cdots \lessdot \pi_{n}=\hat{1}$ in the lattice of noncrossing partitions. By weighting some of the cover relations in these chains with a parameter q, the refined enumeration turns out to be

$$
\frac{n!}{|W|} \prod_{i=1}^{n}\left(d_{i}+q\left(h-d_{i}\right)\right)
$$

where the d_{i} 's are the degrees of the group. This is done by generalizing a recursion due to Reading [14], and using known results on Fuss-Catalan numbers [1].

Our second goal (in Section 4) is to study the equivalence classes of noncrossing chains defined as follows. The group W acts naturally on the set partition lattice, and there is

[^0]an induced action on the set of maximal chains of set partitions. The number of orbits is an integer $K(W)$ that has been calculated in our previous work [10]. The subset of noncrossing chains is not stable under this action, but let us say that two noncrossing chains are equivalent if they are in the same orbit. We show that the generating function of each equivalence class has a simple form as a product.

Eventually (in Section 5), we show how our results lead to some hook-length formula for trees in type A and B, more precisely, in type A we recover Postnikov's hook formula [11, 6] and in type B we obtain a variant.

Acknowledgement

We thank the anonymous referee who provided the proof of Proposition 3.4 (which in the previous version of the article was proved only for the infinite families, and for some of the exceptional cases via a computer).

2. Definitions

Let $S=\left\{s_{1}, \ldots, s_{n}\right\}$ be the set of simple generators of W, and T the set of reflections. Let V be the standard geometric representation of W, i.e. an n-dimensional Euclidean space such that each $t \in T$ is an orthogonal reflection through the hyperplane $\operatorname{Fix}(t)=\{v \in V: t(v)=v\}$. These hyperplanes are called the reflecting hyperplanes. In particular, $H_{i}=\operatorname{Fix}\left(s_{i}\right)$ are called the simple hyperplanes.
Definition 2.1. Let $\mathcal{P}(W)$ denote the set of (generalized) set partitions, i.e. linear subspaces of V that are an intersection of reflecting hyperplanes. It is partially ordered with reverse inclusion (i.e. $\pi \leq \rho$ if $\rho \subseteq \pi$ as linear subspaces). Let $\mathcal{M}(W)$ denote the set of maximal chains of $\mathcal{P}(W)$.

For each $\pi \in \mathcal{P}(W)$, we define the stabilizer and pointwise stabilizer as, respectively:

$$
\begin{aligned}
\operatorname{Stab}(\pi) & =\{w \in W: w(L)=L\}, \\
\operatorname{Stab}^{*}(\pi) & =\{w \in W: \forall x \in L, w(x)=x\} .
\end{aligned}
$$

In the classical case, an interval partition is a set partition where each block is a set of consecutive integers, for example $123|4| 56$. In the present context, there is a natural generalization (which might have been considered in previous work, with different terminology).
Definition 2.2. An element $\pi \in \mathcal{P}(W)$ is an interval partition if it is an intersection of simple hyperplanes. Let $\mathcal{P}^{I}(W) \subseteq \mathcal{P}(W)$ denote the set of interval partitions, and $\mathcal{M}^{I}(W) \subset \mathcal{M}(W)$ denote the set of maximal chains in $\mathcal{P}^{I}(W)$.

The set $\mathcal{P}^{I}(W)$ is a sublattice of $\mathcal{P}(W)$ and is isomorphic to a boolean lattice. It follows that $\mathcal{M}^{I}(W)$ has cardinality $n!$. The coatoms of $\mathcal{P}^{I}(W)$ are exactly the lines L_{1}, \ldots, L_{n} defined by:

$$
\begin{equation*}
L_{i}=\bigcap_{\substack{1 \leq j \leq n \\ j \neq i}} H_{j} . \tag{1}
\end{equation*}
$$

Let $W_{(i)}$ denote the (standard maximal parabolic) subgroup of W generated by the s_{j} with $j \neq i$. Then $W_{(i)}=\operatorname{Stab}^{*}\left(L_{i}\right)$.

We will need the following fact (see [10, Proposition 3.3]) where w_{0} denote the longest element of W (with respect to the simple generators s_{i} and the associated length function).

Proposition 2.3. Each line $L \in \mathcal{P}(W)$ can be written $w\left(L_{i}\right)$ for some $w \in W$ and $1 \leq i \leq n$. If $w \in W$ and $i \neq j$, then $w\left(L_{i}\right)=L_{j}$ implies $w_{0}\left(L_{i}\right)=L_{j}$.

A consequence is the following:
Proposition 2.4. Each orbit $O \in \mathcal{M}(W) / W$ contains an element of $\mathcal{M}^{I}(W)$.
Proof. Let $C \in O$. Using Proposition 2.3, there exists $w \in W$ such that the coatom L in the chain $w(C)$ is an interval partition, i.e. L is one the L_{i} previously defined. At this point we can make an induction on the rank.

Let us sketch how the induction work, using ideas present in [10]. There is a natural bijection between $\mathcal{M}\left(W_{(i)}\right)$ and the chains in $\mathcal{M}(W)$ having L_{i} as coatom. This bijection sends $\mathcal{M}^{I}\left(W_{(i)}\right)$ to the chains in $\mathcal{M}^{I}(W)$ having L_{i} as coatom. By induction, there is $u \in W_{(i)}$ such that $u w(C) \in \mathcal{M}^{I}(W)$, whence the result.

Let us motivate the next definition by some considerations in the "classical" case. Let $\pi_{1}, \pi_{2}, \pi_{3}$ be the noncrossing partitions represented in Figure 1 from left to right. Here, π is represented by drawing an arc between two consecutive elements of each block. Both π_{2} and π_{3} are covered by π_{1}, and more precisely they are obtained from π_{1} by splitting the block $\{1,2,5,7\}$. But we can make one distinction: π_{2} is obtained by removing one arc from π_{1}, and its two blocks $\{1,2\}$ and $\{5,7\}$ form an interval partition of the block $\{1,2,5,7\}$ of π_{1}. This is not the case for π_{3}.

Figure 1. Noncrossing partitions.
To generalize this distinction, consider the group $\operatorname{Stab}^{*}\left(\pi_{1}\right) \subset \mathfrak{S}_{7}$. It has an irreducible factor \mathfrak{S}_{4} acting on the block $\{1,2,5,7\}$. The simple roots of \mathfrak{S}_{7} are $e_{1}-e_{2}, \ldots, e_{6}-e_{7}$ where $\left(e_{i}\right)_{1 \leq i \leq 7}$ is the standard basis of \mathbb{R}^{7}. The ones of the irreducible factor \mathfrak{S}_{4} of $\operatorname{Stab}^{*}\left(\pi_{1}\right)$ are $e_{1}-e_{2}, e_{2}-e_{5}, e_{5}-e_{7}$. It can be seen that the simple roots of $\operatorname{Stab}^{*}\left(\pi_{2}\right)$ are included in the ones of $\operatorname{Stab}^{*}\left(\pi_{1}\right)$, but it is not the case for π_{3}.

Let us turn to the general case. Let Φ be a root system of W (in the sense of Coxeter groups, see [9]), and let Φ^{+}be a choice of positive roots. For each $\pi \in \mathcal{P}(W)$, the group $\operatorname{Stab}^{*}(\pi)$ is a reflection subgroup of W, and its set of roots is $\Phi \cap \pi^{\perp}$. We will always take $\Phi^{+} \cap \pi^{\perp}$ as a natural choice of positive roots, and accordingly $\operatorname{Stab}^{*}(\pi)$ has a natural set of simple roots and simple generators. In this setting, we have the following:

Definition 2.5. Let $\pi_{1}, \pi_{2} \in \mathcal{P}(W)$, we denote $\pi_{2} \sqsubseteq \pi_{1}$ and say that π_{2} is an interval refinement of π_{1} if the simple roots of $\operatorname{Stab}^{*}\left(\pi_{2}\right)$ are included in the simple roots of $\operatorname{Stab}^{*}\left(\pi_{1}\right)$.

Note that $\pi_{2} \sqsubseteq \pi_{1}$ implies $\pi_{1} \subseteq \pi_{2}$, i.e. $\pi_{2} \leq \pi_{1}$ in the lattice $\mathcal{P}(W)$. Also, interval partitions are exactly the interval refinements of the maximal partition.

Some preliminary definitions are needed before going to noncrossing partitions.
Definition 2.6. Let $T \subset W$ be the set of reflections. A reduced T-word of w is a factorization $w=t_{1} \ldots t_{k}$ where $t_{1}, \ldots, t_{k} \in T$ and k is minimal. Let $u, v \in W$, the absolute order is defined by the condition that $u<_{a b s} v$ if some reduced T-word of u is a subword of some reduced T-word of v.

Definition 2.7. If $\sigma \in \mathfrak{S}_{n}$, we call $c=s_{\sigma(1)} \ldots s_{\sigma(n)}$ a standard Coxeter element of W with respect to S. Any element conjugated in W to a standard Coxeter element is called a Coxeter element.

This might differ from the terminology used in other references, but we need here some properties of the standard Coxeter elements that are not true in general. In what follows, we always assume that c is a standard Coxeter element.
Definition 2.8. A set partition $\pi \in \mathcal{P}(W)$ is noncrossing with respect to c if $\pi=\operatorname{Fix}(w)$ for some $w \in W$ such that $w<_{a b s} c$. This w is actually unique and will be denoted $\underline{\pi}$ (see $\left[3\right.$, Theorem 1]). Let $\mathcal{P}^{N C}(W, c) \subset \mathcal{P}(W)$ denote the subset of noncrossing partitions with respect to c, and $\mathcal{M}^{N C}(W, c) \subset \mathcal{M}(W)$ denote the set of maximal chains of $\mathcal{P}^{N C}(W, c)$. If $\pi \in \mathcal{P}^{N C}(W, c)$, then $\underline{\pi}$ is the Coxeter element of a unique parabolic subgroup of W that we denote $W_{(\underline{\pi})}$ or $W_{(\pi)}$ (although this interferes with the notation $W_{(s)}$ for maximal standard parabolic subgroup, there should be no confusion).

Note in particular that $\operatorname{Fix}(\underline{\pi})=\pi$. We refer to [1] for more on the subject of noncrossing partitions. In general, $\mathcal{P}^{N C}(W, c)$ is not stable under the action of W. But from the invariance of the absolute order under conjugation, we can see that $\mathcal{P}^{N C}(W, c)$ is stable under the action of c.

Remark 2.9. Noncrossing partitions are usually defined as a subset of W, but here it is natural to have the inclusion $\mathcal{P}^{N C}(W, c) \subset \mathcal{P}(W)$. These two points of view are equivalent under the correspondence $\underline{\pi} \leftrightarrow \pi$ and we will also allow to identify noncrossing partitions with a subset of W. For example, if $u, v \in W$ are noncrossing, the notion of interval refinement $u \sqsubseteq v$ is well defined, and $u \in W$ is called an interval partition if it is so as a noncrossing partition.
Proposition 2.10. We have $\mathcal{P}^{I}(W) \subset \mathcal{P}^{N C}(W, c)$. Let $\pi_{1} \in \mathcal{P}^{N C}(W, c)$ and $\pi_{2} \in \mathcal{P}(W)$ with $\pi_{2} \sqsubseteq \pi_{1}$, then $\pi_{2} \in \mathcal{P}^{N C}(W, c)$.
Proof. The maximal partition is noncrossing since $\{0\}=\operatorname{Fix}(c)$, so the first point follows the second one.

To prove the second point, we need Proposition 3.4 from the next section. Let r_{1}, \ldots, r_{k} be the reflections associated with the simple roots of π_{1}^{\perp}, and we can assume there is
$j \leq k$ such that r_{1}, \ldots, r_{j} are the reflections associated with the simple roots of π_{2}^{\perp}. Since π_{1} is noncrossing, it means there is $u \in W$ with $u<_{a b s} c$ and $\operatorname{Fix}(u)=\pi_{1}$. It is known that u is a Coxeter element of the subgroup $\operatorname{Stab}^{*}\left(\pi_{1}\right) \subset W$. But Proposition 3.4 shows more: it is a standard Coxeter element, so there is $\sigma \in \mathfrak{S}_{k}$ such that $u=r_{\sigma(1)} \ldots r_{\sigma(k)}$. Let v be obtained from this factorization by keeping only the factors r_{1}, \ldots, r_{j}. Then, we have $v<_{a b s} u<_{a b s} c$ and $\operatorname{Fix}(v)=\pi_{2}$, so π_{2} is noncrossing.

Remark 2.11. It is interesting to note that similar results hold for nonnesting partitions in the sense of Postnikov (defined only in the crystallographic case). A set partition $\pi \in \mathcal{P}(W)$ is nonnesting when the simple roots of $\operatorname{Stab}^{*}(\pi)$ form an antichain in the poset of positive roots. A subset of an antichain being itself an antichain, if $\pi_{2} \sqsubseteq \pi_{1}$ and π_{1} is nonnesting, then π_{2} is nonnesting. Any interval partition is nonnesting, since the simple roots form an antichain. Note also that the intuition from the "classical" case is clear: it is impossible to create a crossing or a nesting by removing arcs.

3. Chains of noncrossing partitions

Definition 3.1. For any chain $\Pi=\left(\pi_{0}, \ldots, \pi_{n}\right) \in \mathcal{M}^{N C}(W, c)$, let nir(Π) be the number of i such that π_{i} is not an interval refinement of π_{i+1}. Let

$$
M(W, q)=\sum_{\Pi \in \mathcal{M}^{N C}(W, c)} q^{\operatorname{nir}(\Pi)} .
$$

It is not a priori obvious that $M(W, q)$ does not depend on the choice of the standard Coxeter element c. This will be proved below.

The coatoms of the lattice $\mathcal{P}^{N C}(W, c)$ are exactly the products $c t$ for $t \in T$. Since T is stable by conjugation, the set $c T$ of coatoms is stable by conjugation by c. An interesting property of standard Coxeter elements is that this action has good properties, (see Propositions 3.2 and 3.4) similar to those of a bipartite Coxeter element obtained by Steinberg [17].

In what follows, an orbit for the action of c will be called a c-orbit. Note that the action of c becomes conjugation when we see noncrossing partitions as elements of W, i.e. $c(\pi)=c \underline{\pi} c^{-1}$ if $\pi \in \mathcal{P}^{N C}(W, c)$.

Proposition 3.2. Let h be the Coxeter number of W (i.e. the order of c in W). For any $t \in T$, the c-orbit of ct satisfies one of the following condition:

- It contains h distinct elements, and exactly 2 interval partitions L_{i} and L_{j}, related by $L_{i}=w_{0}\left(L_{j}\right)$.
- Or it contains $\frac{h}{2}$ distinct elements, and exactly 1 interval partition L_{i}, satisfying $w_{0}\left(L_{i}\right)=L_{i}$. Moreover, $c^{h / 2}$ restricted to L_{i} is -1 (i.e. $\left.c^{h / 2} \notin W_{(i)}\right)$.
The full proof is in Appendix A but let us give some comments. A standard Coxeter element $c=s_{\sigma(1)} \ldots s_{\sigma(n)}$ is called bipartite if there is j such that $s_{\sigma(1)}, \ldots, s_{\sigma(j)}$ are pairwise commuting, and $s_{\sigma(j+1)} \ldots s_{\sigma(n)}$ too. Steinberg [17] proved that for a bipartite Coxeter element c, the c-orbit of a reflection contains either h elements and 2 simple reflections, or $\frac{h}{2}$ elements and 1 simple reflection. If h is even, another property of
the bipartite Coxeter element is $c^{h / 2}=w_{0}$. What we have is a variant that holds for any standard Coxeter element. It is natural to expect that our result can be seen as a consequence of Steinberg's but we have been unable to realize this in a uniform way.

Since the standard Coxeter element c is conjugated with a bipartite Coxeter element, and the bijection $t \mapsto c t$ from T to $c T$ commutes with c-conjugation, we see that the c-orbit of ct contains either h or $\frac{h}{2}$ elements. In the case where w_{0} is central, we can easily complete the proof of Proposition 3.2. It is known that in this case, h is even and $c^{h / 2}=w_{0}=-1$, which acts trivially on $\mathcal{P}(W)$ (see [9, Section 3.19]). So every orbit has $\frac{h}{2}$ elements. Proposition 2.3 shows that there is at most one interval partition in each orbit, and the equality $\# T=\frac{n h}{2}$ shows that there is exactly one interval partition in each orbit. See Appendix A for the other cases.
Remark 3.3. Suppose h is even and let L_{i} be such that $c^{h / 2}\left(L_{i}\right)=L_{i}$. As mentioned above, we have $c^{h / 2}=w_{0}$ when c is a bipartite Coxeter element. In the general case, since w_{0} and $c^{h / 2}$ are both in $\operatorname{Stab}\left(L_{i}\right)-\operatorname{Stab}^{*}\left(L_{i}\right)$, we have $w_{0} c^{h / 2} \in W_{(i)}$. From the properties of $x \mapsto w_{0} x w_{0}$, one can deduce that the map $x \mapsto c^{h / 2} x c^{h / 2}$ permutes the irreducible factors of $W_{(i)}$ in the same way as $x \mapsto w_{0} x w_{0}$. This will be needed in the sequel.

It is known that parabolic Coxeter elements can be characterized with the absolute order, see [2, Lemma 1.4.3], so that $c t$ is a Coxeter element of $W_{(c t)}$. The point of the next proposition is that it is actually a standard Coxeter element.
Proposition 3.4. For any $t \in T$, ct is a standard Coxeter element of the parabolic subgroup $W_{(c t)}$ for the natural choice of simple generators.

Proof. The elements $c t(t \in T)$ are the coatoms of $\mathcal{P}^{N C}(W)$. By an immediate induction, the proposition implies (and therefore is equivalent) to the stronger fact that $\underline{\pi}$ is a standard Coxeter element of $\operatorname{Stab}^{*}(\pi)$ for each $\pi \in \mathcal{P}^{N C}(W)$. The proof of this has been provided by an anonymous referee, and relies on results by Reading [13].

More specifically, the result follows from [13, Theorem 6.1]. A consequence of this theorem is that a noncrossing partition $\underline{\pi}$ is a product of its so-called cover reflections. Besides, [13, Lemma 1.3] states that these cover reflections are the simple generators of a parabolic subgroups.

We are now ready to prove how $M(W, q)$ can be computed inductively, and in particular that it does not depend on the choice of a standard Coxeter element.
Proposition 3.5. If W is irreducible, we have:

$$
\begin{equation*}
M(W, q)=\frac{2+q(h-2)}{2} \sum_{s \in S} M\left(W_{(s)}, q\right) . \tag{2}
\end{equation*}
$$

Proof. For each $\Pi=\left(\pi_{0}, \ldots, \pi_{n}\right) \in \mathcal{M}^{N C}(W, c)$, let $\Pi^{\prime}=\left(\pi_{0}, \ldots, \pi_{n-1}\right)$. The coatom of Π is $\pi_{n-1}=c t$ for some $t \in T$, and the set of such Π with $c t$ as coatom is in bijection with $\mathcal{M}^{N C}\left(W_{(c t)}, c t\right)$ via the map $\Pi \mapsto \Pi^{\prime}$. Moreover, $\operatorname{nir}(\Pi)=\operatorname{nir}\left(\Pi^{\prime}\right)$ if $c t \sqsubseteq c$
(i.e. ct $\left.\in \mathcal{P}^{I}(W)\right)$ and $\operatorname{nir}(\Pi)=\operatorname{nir}\left(\Pi^{\prime}\right)+1$ otherwise. So, distinguishing the chains in $\mathcal{M}^{N C}(W, c)$ according to their coatoms gives:

$$
\begin{equation*}
M(W, q)=\sum_{t \in T} q^{\chi\left[c t \notin \mathcal{P}^{I}(W)\right]} M\left(W_{(c t)}, q\right) \tag{3}
\end{equation*}
$$

Note that to write this equation, we need to use Proposition 3.4. While it should be clear from the definition that the generating function of the chains $\left(\pi_{0}, \ldots, \pi_{n-1}\right) \in$ $\mathcal{M}^{N C}\left(W_{(c t)}, c t\right)$ with respect to the statistic nir is $M\left(W_{(c t)}, q\right)$, this quantity was only defined with respect to a standard Coxeter element. Since $c t$ is indeed a standard Coxeter element of $W_{(c t)}$, we get the term $M\left(W_{(c t)}, q\right)$ which we assume we already know by induction.

Let $O \subset T$ be an orbit under conjugation by c. So if $t_{1}, t_{2} \in O, W_{\left(c t_{1}\right)}$ and $W_{\left(c t_{2}\right)}$ are conjugated in W, so they are isomorphic and $M\left(W_{\left(c t_{1}\right)}, q\right)=M\left(W_{\left(c t_{2}\right)}, q\right)$. If $c O=\{c o$: $o \in O\}$ contains $h / 2$ elements and 1 interval partition L_{i}, we get

$$
\begin{equation*}
\sum_{t \in O} q^{\chi\left[c t \notin \mathcal{P}^{I}(W)\right]} M\left(W_{(c t)}, q\right)=\left(1+q\left(\frac{h}{2}-1\right)\right) M\left(W_{(i)}, q\right) \tag{4}
\end{equation*}
$$

If it contains h elements and 2 interval partitions L_{i} and L_{j}, then

$$
\sum_{t \in O} q^{\chi\left[c t \notin \mathcal{P}^{I}(W)\right]} M\left(W_{(c t)}, q\right)=(2+q(h-2)) M\left(W_{(i)}, q\right)
$$

and since the previous equation is true with i replaced with j, we also have

$$
\begin{equation*}
\sum_{t \in O} q^{\chi\left[c t \notin \mathcal{P}^{I}(W)\right]} M\left(W_{(c t)}, q\right)=\frac{2+q(h-2)}{2}\left(M\left(W_{(i)}, q\right)+M\left(W_{(j)}, q\right)\right) . \tag{5}
\end{equation*}
$$

Now, we can split the sum in the righ-hand side of (3) to group together the $t \in T$ that are in the same orbit, and using Equations (4) and (5), we get the desired formula for $M(W, q)$.

Besides, in the reducible case it is straightforward to show that

$$
\begin{equation*}
M\left(W_{1} \times W_{2}, q\right)=\binom{m+n}{m} M\left(W_{1}, q\right) \times M\left(W_{2}, q\right) \tag{6}
\end{equation*}
$$

if the respective ranks of W_{1} and W_{2} are m and n.
Equation (2) and (6) can be used to compute $M(W, q)$ by induction for any W, with the initial value $M\left(A_{1}, q\right)=1$.

This recursion permits to make a link with the Fuss-Catalan numbers Cat ${ }^{(m)}(W)$ (see [1, Chapter 5]). These numbers can be defined in terms of the degrees of the group d_{1}, \ldots, d_{n} and the Coxeter number $h=d_{n}$ by

$$
\operatorname{Cat}^{(m)}(W)=\frac{1}{|W|} \prod_{i=1}^{n}\left(h m+d_{i}\right)
$$

Chapoton [4] showed that $\operatorname{Cat}^{(m)}(W)$ is the number of multichains $\pi_{1} \leq \cdots \leq \pi_{m}$ in $\mathcal{P}^{N C}(W, c)$, i.e. $\operatorname{Cat}^{(m)}(W)=Z(W, m+1)$ where $Z(W, m)$ is the zeta polynomial of
$\mathcal{P}^{N C}(W, c)$. Fomin and Reading [8] introduced the so-called generalized cluster complex $\Delta^{m}(\Phi)$, and showed that its number of maximal simplices is $\mathrm{Cat}^{(m)}(W)$ (where Φ is the root system of W). Using this generalized cluster complex, they obtain in [8, Proposition 8.3] that

$$
\begin{equation*}
\operatorname{Cat}^{(m)}(W)=\frac{(m-1) h+2}{2 n} \sum_{s \in S} \operatorname{Cat}^{(m)}\left(W_{(s)}\right) \tag{7}
\end{equation*}
$$

in the irreducible case. Besides, there holds

$$
\begin{equation*}
\operatorname{Cat}^{(m)}\left(W_{1} \times W_{2}\right)=\operatorname{Cat}^{(m)}\left(W_{1}\right) \times \operatorname{Cat}^{(m)}\left(W_{2}\right) \tag{8}
\end{equation*}
$$

in the reducible case. Comparing the recursions (2), (6) and (7), (8) shows that

$$
M(W, q)=n!(1-q)^{n} Z\left(W, \frac{1}{1-q}\right)
$$

where we use the zeta polynomial rather than writing "Cat ${ }^{\left(\frac{q}{1-q}\right)}(W)$ " because it is generally assumed that $m \in \mathbb{N}$ when we write $\operatorname{Cat}^{(m)}(W)$. Then, the formula for $\operatorname{Cat}^{(m)}(W)$ in terms of the degrees proves the proposition below (note that the particular case $q=1$ is the result by Chapoton mentioned in the introduction):

Proposition 3.6.

$$
M(W, q)=\frac{n!}{|W|} \prod_{i=1}^{n}\left(d_{i}+q\left(h-d_{i}\right)\right)
$$

It is also possible to obtain this formula by solving the recursion (2) case by case. We will not give the details, since lengthy calculations are needed for the differential equations arising in the infinite families case. Let us just present the case of the group A_{n}, where we get that the series $A(z)=\sum_{n \geq 0} M\left(A_{n}, q\right) \frac{z^{n}}{n!}$ satisfies the differential equation

$$
A^{\prime}=A^{2}+\frac{q z}{2}\left(A^{2}\right)^{\prime} .
$$

After multiplying the equation by A^{q-2}, it can be rewritten

$$
\left(\frac{A^{q-1}}{q-1}\right)^{\prime}=\left(z A^{q}\right)^{\prime}
$$

After checking the constant term, we arrive at the functional equation $A^{q-1}=1+(q-$ 1) $z A^{q}$. It would be possible to extract the coefficients of A with the Lagrange inversion formula. Another method is to use results about Fuss-Catalan numbers in type A. It is known that $\operatorname{Cat}^{(m-1)}\left(A_{n-1}\right)=\frac{1}{m n+1}\binom{m n+1}{n}$, which is the number of complete m-ary trees with n internal vertices, so that $F=1+\sum_{n \geq 1} \operatorname{Cat}^{(m-1)}\left(A_{n-1}\right) z^{n}$ satisfies $F=1+z F^{m}$. The equation for A can be rewritten

$$
A^{1-q}=1+z(1-q) A
$$

So, comparing the functional equations shows $F(z)=A\left(\frac{z}{1-q}\right)^{1-q}$ if $m=\frac{1}{1-q}$. This is also $F(z)=1+z A\left(\frac{z}{1-q}\right)$. Taking the coefficient of z^{n+1}, we obtain:

$$
\frac{1}{\frac{n+1}{1-q}+1}\binom{\frac{n+1}{1-q}+1}{n+1}=\frac{1}{(1-q)^{n} n!} M\left(A_{n}, q\right)
$$

hence

$$
M\left(A_{n}, q\right)=\frac{n!(1-q)^{n}}{\frac{n+1}{1-q}+1}\binom{\frac{n+1}{1-q}+1}{n+1}=\prod_{i=1}^{n-1}(i+1+q(n-i)) .
$$

4. Generating functions of equivalence classes and hook formulas.

Definition 4.1. For any $\Pi \in \mathcal{M}^{N C}(W, c)$, let [Π] denote its equivalence class for the W-action:

$$
[\Pi]=\{w(\Pi): w \in W\} \cap \mathcal{M}^{N C}(W, c) .
$$

We also define the class generating function:

$$
M([\Pi], q)=\sum_{\Omega \in[\Pi]} q^{\operatorname{nir}(\Omega)} .
$$

These classes partition the set $\mathcal{M}^{N C}(W, c)$, so that we have

$$
\begin{equation*}
M(W, q)=\sum_{[\Pi]} M([\Pi], q) \tag{9}
\end{equation*}
$$

where we sum over all distinct equivalence classes.
We need some definitions before giving the formula for $M([\Pi], q)$.
Let $\tau \lessdot \pi$ be a cover relation in $\mathcal{P}^{N C}(W, c)$. The group $W_{(\pi)}$ can be decomposed into irreducible factors (that can be thought of as "blocks" of the set partition π). There is only one of these factors where $\underline{\tau}$ and $\underline{\pi}$ differ, as can be seen from the factorization of the poset $\mathcal{P}\left(W_{(\pi)}\right)$ induced by the factorization of $W_{(\pi)}$.
Definition 4.2. With τ and π as above, let $h(\tau, \pi)$ be the Coxeter number of the irreducible factor of $W_{(\pi)}$ where $\underline{\tau}$ and $\underline{\pi}$ differ.
Definition 4.3. Let $g(\tau, \pi)$ be minimal $g>0$ such that $\underline{\pi}^{g} \underline{\tau} \underline{\pi}^{-g}=\underline{\tau}$ and the map $x \rightarrow \underline{\pi}^{g} x \underline{\pi}^{-g}$ stabilizes each irreducible factor of $W_{(\tau)}$.

Note that by examining the irreducible factors of $W_{(\pi)}$, we can see that we have $\underline{\pi}^{h(\tau, \pi)} \underline{\tau} \underline{\pi}^{-h(\tau, \pi)}=\underline{\tau}$. From $\underline{\pi}^{g} \underline{\tau} \underline{\pi}^{-g}=\underline{\tau}$ and Proposition 3.4, we have either $g(\tau, \pi)=$ $\bar{h}(\tau, \pi)$ or $g(\tau, \pi)=\frac{1}{2} h(\tau, \pi)$. Note also that when $h(\tau, \pi)$ is even, as noted in Remark 3.3, we known that the map $x \rightarrow \underline{\pi}^{\frac{1}{2} h(\tau, \pi)} x \underline{\pi}^{-\frac{1}{2} h(\tau, \pi)}$ permutes the irreducible factors of $W_{(\tau)}$. Proposition 4.4. Let $\Pi=\left(\pi_{0}, \ldots, \pi_{n}\right) \in \mathcal{M}^{N C}(W, c)$, let $h_{i}=h\left(\pi_{i-1}, \pi_{i}\right)$ and $g_{i}=$ $g\left(\pi_{i-1}, \pi_{i}\right)$ for $2 \leq i \leq n$. Then we have:

$$
M([\Pi], q)=\prod_{i=2}^{n}\left(\frac{2 g_{i}}{h_{i}}+q\left(g_{i}-\frac{2 g_{i}}{h_{i}}\right)\right) .
$$

The proof is rather similar to that of Proposition 3.5. We need a few lemmas.
Lemma 4.5. If $\Omega=\left(\omega_{0}, \ldots, \omega_{n}\right) \in[\Pi]$, there is $k \geq 0$ such that $\omega_{n-1}=c^{k}\left(\pi_{n-1}\right)$.
Proof. Let L_{i} (respectively, L_{j}) be an interval partition in the c-orbit of ω_{n-1} (respectively, π_{n-1}). The fact that these exist follows Proposition 3.2. If $L_{i}=L_{j}$, the c-orbits are the same and this ends the proof.

Suppose now that $L_{i} \neq L_{j}$. Since $\Omega \in[\Pi]$, there is $w \in W$ such that $w\left(L_{i}\right)=L_{j}$, so Proposition 2.3 shows that $w_{0}\left(L_{i}\right)=L_{j}$. Then, Proposition 3.2 shows that L_{i} and L_{j} are in the same c-orbit. So ω_{n-1} and π_{n-1} are in the same c-orbit.
Lemma 4.6. Let $\Omega=\left(\omega_{0}, \ldots, \omega_{n}\right) \in[\Pi]$, and assume inductively that Proposition 4.4 is true for the group $W_{\left(\omega_{n-1}\right)}$. Let $\langle\Omega\rangle$ denote the class of Ω for the action of $W_{\left(\omega_{n-1}\right)}$, i.e.

$$
\langle\Omega\rangle=\left\{w(\Omega): w \in W_{\left(\omega_{n-1}\right)}\right\} \cap \mathcal{M}^{N C}(W, c) .
$$

Then the generating function of $\langle\Omega\rangle$ is:

$$
\begin{equation*}
M(\langle\Omega\rangle, q)=q^{\chi\left[\omega_{n-1} \notin \mathcal{P}^{I}(W)\right]} \prod_{i=2}^{n-1}\left(\frac{2 g_{i}}{h_{i}}+q\left(g_{i}-\frac{2 g_{i}}{h_{i}}\right)\right) . \tag{10}
\end{equation*}
$$

Proof. Let $\Omega^{\prime}=\left(\omega_{0}, \ldots, \omega_{n-1}\right)$. Removing the last element of a chain gives a bijection between $\langle\Omega\rangle$ and

$$
\left[\Omega^{\prime}\right]=\left\{w\left(\Omega^{\prime}\right): w \in W_{\left(\omega_{n-1}\right)}\right\} \cap \mathcal{M}^{N C}\left(W_{\left(\omega_{n-1}\right)}, \underline{\omega_{n-1}}\right) .
$$

By induction, we can obtain $M\left(\left[\Omega^{\prime}\right], q\right)$. Since $\Omega \in[\Pi]$, it is straightforward to check that we have $g\left(\omega_{i-1}, \omega_{i}\right)=g\left(\pi_{i-1}, \pi_{i}\right)$ and $h\left(\omega_{i-1}, \omega_{i}\right)=h\left(\pi_{i-1}, \pi_{i}\right)$, although we see ω_{i-1}, ω_{i} as elements of $\mathcal{P}^{N C}\left(W_{\left(\omega_{n-1}\right)}, \omega_{n-1}\right)$ and π_{i-1}, π_{i} as elements of $\mathcal{P}(W, c)$. We have $M(\langle\Omega\rangle, q)=q^{\chi\left[\omega_{n-1} \notin \mathcal{P}^{I}(W)\right]} M\left(\left[\Omega^{\prime}\right], q\right)$, and this gives the formula for $M(\langle\Omega\rangle, q)$.

Lemma 4.7. The minimal integer $g>0$ such that $\langle\Pi\rangle=\left\langle c^{g}(\Pi)\right\rangle$ is g_{n}.
Proof. This g satisfies $c^{g}\left(\pi_{n-1}\right)=\pi_{n-1}$, so that either $g=h_{n}$ or $g=\frac{h_{n}}{2}$. If we are not in the case where $c^{h_{n} / 2}\left(\pi_{n-1}\right)=\pi_{n-1}$, we have $g=h_{n}=g_{n}$. So, suppose $c^{h_{n} / 2}\left(\pi_{n-1}\right)=$ π_{n-1}.

Consider the factorization of the poset $\mathcal{P}\left(W_{\left(\pi_{n-1}\right)}\right)$ induced by the factorization of $W_{\left(\pi_{n-1}\right)}$ in irreducible factors. From the definition of g_{n}, the action of $c^{g_{n}}$ stabilizes each factor of the poset, so it is the same action as some element $w \in W_{\left(\pi_{n-1}\right)}$. So $\langle\Pi\rangle=\left\langle c^{g_{n}}(\Pi)\right\rangle$ and this proves $g \leq g_{n}$.

Reciprocally, suppose that $c^{g}(\Pi)=w(\Pi)$ for some $w \in W_{\left(\pi_{n-1}\right)}$. It follows that c^{g} stabilizes the irreducible factors of $W_{\left(\pi_{n-1}\right)}$. If the permutation on the factors is nontrivial, it would be possible to distinguish $c^{g}(\Pi)$ from $w(\Pi)$. So $g_{n} \geq g$, and eventually $g=g_{n}$.

Lemma 4.8. The classes $\langle\Omega\rangle$ form a partition of the set $[\Pi]$. A set of representatives is $\left\{\Pi, c(\Pi), \ldots, c^{g_{n}-1}(\Pi)\right\}$.

Proof. The first point is clear. From the previous lemma, the elements in the set $\left\{\Pi, c(\Pi), \ldots, c^{g_{n}-1}(\Pi)\right\}$ are in distinct classes. It remains to show that the list is exhaustive.

Knowing Lemma 4.5, it remains to prove that if $\Omega \in[\Pi]$ is such that $\omega_{n-1}=\pi_{n-1}$, then there is k such that $\langle\Omega\rangle=\left\langle c^{k}(\Pi)\right\rangle$. Let $w \in W$ such that $\Omega=w(\Pi)$. In particular, $w\left(\pi_{n-1}\right)=\pi_{n-1}$.

If $w \in W_{\left(\pi_{n-1}\right)}$, we have $\langle\Omega\rangle=\langle\Pi\rangle$. Otherwise, it means that $w \in \operatorname{Stab}\left(\pi_{n-1}\right)-$ $\operatorname{Stab}^{*}\left(\pi_{n-1}\right)$. Since the class [Π] contains a chain of interval partitions, we might as well assume that π_{n-1} is an interval partition. It comes from Proposition 3.2 that $w c^{h / 2} \in$ $W_{\left(\pi_{n-1}\right)}$. So we obtain $\langle\Omega\rangle=\left\langle c^{h / 2}(\Pi)\right\rangle$. This completes the proof.

We can now prove Proposition 4.4.
Proof. Since the classes $\langle\Omega\rangle$ form a partition of $[\Pi]$, we have:

$$
M([\Pi], q)=\sum_{\langle\Omega\rangle} M(\langle\Omega\rangle, q),
$$

and $M([\Pi], q)$ can be obtained by summing Equation (10).
From the previous lemma, the number of distinct classes $\langle\Omega\rangle$ is g_{n}. As we have seen above (just before Proposition 4.4), either $g_{n}=h_{n}$ or $g_{n}=\frac{1}{2} h_{n}$, so that $\frac{2 g_{n}}{h_{n}}$ is an integer. From Proposition 3.2, $\frac{2 g_{n}}{h_{n}}$ among the distinct classes $\langle\Omega\rangle$ are such that their coatom is an interval partition. So, we get

$$
\sum_{\langle\Omega\rangle} q^{\chi\left[\omega_{n-1} \notin \mathcal{P}^{I}(W)\right]}=\left(\frac{2 g_{n}}{h_{n}}+q\left(g_{n}-\frac{2 g_{n}}{h_{n}}\right)\right) .
$$

So, we get the desired formula for $M([\Pi], q)$ by summing Equation (10) over the classes $\langle\Omega\rangle$.

5. Hook formulas for types A and B

This section is devoted to explicit combinatorial description in type A and B, where Equation (9) can be interpreted as a hook-length formula for trees.

Definition 5.1. Let \mathcal{A}_{n} denote the set of André trees on n vertices, i.e. trees such that:

- each internal node has either one son or two unordered sons,
- the vertices are labeled with integers from 1 to n, and the labels are decreasing from the root to the leaves.

The 5 elements of \mathcal{A}_{4} are represented in Figure 2. These trees were introduced by Foata and Schützenberger [7, Chapter 5], who proved that $\# \mathcal{A}_{n}=T_{n}$ (in fact their definition requires increasing labels instead of decreasing here, but this is clearly equivalent). They were also used by Stanley [15] to prove $K\left(A_{n}\right)=T_{n}$.

Let us describe Stanley's bijection. We see it as a map $\mathcal{M}\left(A_{n-1}\right) \rightarrow \mathcal{A}_{n}$ that induces a bijection $\mathcal{M}\left(A_{n-1}\right) / A_{n-1} \rightarrow \mathcal{A}_{n}$. We present an example on Figure 3 and refer to [15] for more details. Suppose that we start from the minimal partition $1|2| 3|4| 5|6| 7$ and at

Figure 2. The André trees with 4 vertices.
each step, two blocks merge into a larger block. We need 6 steps before arriving to the maximal partition 1234567. Each vertex v of the tree represents a subset b of $\{1, \ldots, n\}$ of cardinality at least 2, that appears as a block of an element in the chain. This vertex v has label i if the block b appears after the i th merging. If v_{1}, v_{2} are two vertices and b_{1}, b_{2} the corresponding subsets of $\{1, \ldots, n\}$ then v_{1} is below v_{2} in the tree if $b_{1} \subset b_{2}$. In the example of Figure 3, the correspondence between blocks and labels is: $46 \rightarrow 1$, $15 \rightarrow 2,37 \rightarrow 3,3467 \rightarrow 4,125 \rightarrow 5,1234567 \rightarrow 6$.

$$
\begin{aligned}
& 1234567 \\
& 125 \mid 3467 \\
& 15|2| 3467 \\
& 15|2| 37 \mid 46 \\
& 15|2| 3|46| 7 \\
& 1|2| 3|44| 5 \mid 7 \\
& 1|2| 3|4| 5|6| 7
\end{aligned}
$$

Figure 3. Stanley's bijection.
Proposition 5.2. Let $\Pi \in \mathcal{M}^{N C}\left(A_{n-1}\right)$, and $T \in \mathcal{A}_{n}$ its image under Stanley's bijection. Then we have

$$
M([\Pi], q)=\prod_{\substack{v \in T \\ h_{v} \neq 1}}\left(2+q\left(h_{v}-1\right)\right) .
$$

where h_{v} is the hook of the vertex v.
Proof. Let $2 \leq i \leq n$. There are $a>0$ and $b>0$ such that π_{i} is obtained from π_{i-1} by merging two blocks of size a and b into one block of size $a+b$. The integer h_{i} is the Coxeter number of \mathfrak{S}_{a+b}, i.e. $h_{i}=a+b$. If $a>1$ or $b>1$, i.e. one of the two blocks has cardinality at least 2 , there is a nontrivial factor \mathfrak{S}_{a} or \mathfrak{S}_{b} that needs $a+b$ rotations through the cycle to go back to itself, so that $g_{i}=a+b$. But if $a=b=1$, we have $g_{i}=1=\frac{h_{i}}{2}$.

Let v be the vertex of T with label i. From the properties of the bijection, the two sons of v contains $a-1$ and $b-1$ vertices, and $h_{v}=a+b-1$. So, we obtain:

$$
\frac{2 g_{i}}{h_{i}}+q\left(g_{i}-\frac{2 g_{i}}{h_{i}}\right)=\left\{\begin{array}{l}
2+q\left(h_{v}-1\right) \text { if } h_{v}>1 \\
1 \text { otherwise }
\end{array}\right.
$$

So Proposition 4.4 specializes as stated above.

As a consequence, Equation (9) gives the following:

Theorem 5.3.

$$
\begin{equation*}
\prod_{i=1}^{n-1}(i+1+q(n-i))=\sum_{T \in \mathcal{A}_{n}} \prod_{\substack{v \in T \\ h_{v} \neq 1}}\left(2+q\left(h_{v}-1\right)\right) \tag{11}
\end{equation*}
$$

For example, for $n=4$, and taking the 5 trees as in Figure 2, we get:

$$
\begin{aligned}
(2+3 q)(3+2 q)(4+q)= & (2+q)(2+2 q)(2+3 q)+(2+2 q)(2+3 q)+ \\
& (2+q)(2+3 q)+(2+q)(2+3 q)+(2+q)(2+3 q)
\end{aligned}
$$

We have to make the connection with previously-known results. Let \mathcal{T}_{n} denote the set of binary plane trees on n vertices, and \mathcal{T}_{n}^{ℓ} denote the set of pairs (T, L) where $T \in \mathcal{T}_{n}$ and L is a decreasing labeling of the vertices. It is well-known that the number such labelings L for a given T is

$$
\frac{n!}{\prod_{v \in T} h_{v}}
$$

Moreover, there is a map $\mathcal{T}_{n}^{\ell} \rightarrow \mathcal{A}_{n}$ which consists in "forgetting" the notion of left and right among the sons of each internal vertex. It is such that each $T \in \mathcal{A}_{n}$ has $2^{\operatorname{in}(T)}$ preimages, where $\operatorname{in}(T)$ is the number of internal vertices of T (i.e. $v \in T$ such that $\left.h_{v}>1\right)$. Then, we can rewrite the right-hand side of (11):

$$
\begin{aligned}
& \sum_{T \in \mathcal{A}_{n}} \prod_{\substack{v \in T \\
h_{v} \neq 1}}\left(2+q\left(h_{v}-1\right)\right)=\frac{1}{2^{n}} \sum_{T \in \mathcal{A}_{n}} 2^{\operatorname{in}(T)} \prod_{v \in T}\left(2+q\left(h_{v}-1\right)\right) \\
& =\frac{1}{2^{n}} \sum_{T \in \mathcal{T}_{n}^{\ell}} \prod_{v \in T}\left(2+q\left(h_{v}-1\right)\right)=\frac{n!}{2^{n}} \sum_{T \in \mathcal{T}_{n}} \prod_{v \in T}\left(\frac{2+q\left(h_{v}-1\right)}{h_{v}}\right) .
\end{aligned}
$$

So we arrive at

$$
\prod_{i=1}^{n-1}(i+1+q(n-i))=\frac{n!}{2^{n}} \sum_{T \in \mathcal{T}_{n}} \prod_{v \in T}\left(q+\frac{2-q}{h_{v}}\right)
$$

The particular case $q=1$ is Postnikov's hook-length formula [11, Corollary 17.3], proved in investigating the volume of generalized permutohedra. A one-parameter generalization was conjectured by Lascoux and proved by Du and Liu [6], it is exactly the previous equation up to the change of variable $(q, 2-q) \rightarrow(q, 1)$.

Let us turn to the type B analogue, where we can adapt Stanley's bijection. (Note that a type B analogue of André trees or permutations has been considered by Purtill [12], in relation with type B Springer numbers.)

For brevity, the integers $-1,-2$, etc. will be represented $\overline{1}, \overline{2}$, etc. A set partition of type B is a set partition of $\{\bar{n}, \ldots, \overline{1}\} \cup\{1, \ldots, n\}$, unchanged under the map $x \rightarrow-x$, and such that there is at most one block b such that $b=-b$ (called the 0 -block when it exists). For example, $1 \overline{2} 5|\overline{1} 2 \overline{5}| 3 \overline{3} 6 \overline{6}|4| \overline{4} \in \mathcal{P}\left(B_{6}\right)$.

Definition 5.4. A pointed André tree is an André tree with a distinguished vertex $v \in T$ having 0 or 1 son. Let \mathcal{A}_{n}^{*} denote the set of pointed André trees on n vertices.

A tree $T \in \mathcal{A}_{n}^{*}$ is represented with the convention that the distinguished vertex has a starred label i^{*}. We can create a new tree as follows: increase the labels by 1 , then add a new vertex with label 1 attached to the distinguished vertex. This is clearly a bijection between \mathcal{A}_{n}^{*} and \mathcal{A}_{n+1}, showing that $\# \mathcal{A}_{n}^{*}=T_{n+1}=K\left(B_{n}\right)$. See Figure 4 for an example.

Figure 4. The bijection $\mathcal{A}_{n}^{*} \rightarrow \mathcal{A}_{n+1}$.
Let $\Pi=\left(\pi_{0}, \ldots, \pi_{n}\right) \in \mathcal{M}\left(B_{n}\right)$. We build a tree $T \in \mathcal{A}_{n}^{*}$ by adapting Stanley's map. A vertex in T represents either the 0 -block in some π_{i}, or a pair of distinct opposite blocks in some π_{i} where the elements of the pair have cardinality at least 2 . This vertex has label i if this 0 -block, or pair of opposite blocks, appears in π_{i} but not in π_{i-1}. A vertex v_{1} is below another vertex v_{2} in the tree when the blocks represented by v_{1} are included in the blocks represented by v_{2}. Eventually, we have the following rule: the distinguished vertex has label i if and only if π_{i} has a 0 -block, and π_{i-1} has none. See Figure 5 for an example.

$$
\begin{aligned}
& 1 \overline{1} 2 \overline{2} 3 \overline{3} 4 \overline{4} 5 \overline{5} 6 \overline{6} \\
& 1 \overline{1} 3 \overline{3}|2 \overline{4} 56| \overline{2} 4 \overline{5} \overline{6} \\
& 1 \overline{1} 3 \overline{3}|25| 2 \overline{2}|4 \overline{6}| 46 \\
& 13|\overline{1} \overline{3}| 25|\overline{2} \overline{5}| 4 \overline{6} \mid \overline{4} 6 \\
& 1|\overline{1}| 3|\overline{3}| 25|\overline{5} \overline{4}| 4 \overline{4} \mid \overline{4} 6 \\
& 1|\overline{1}| 2|\overline{2}| 3|\overline{3}| 5|\overline{5}| 4 \overline{4} \mid \overline{4} 6 \\
& 1|\overline{1}| 2|2| 3|\overline{3}| 4|\overline{4}| 5|\overline{5}| 6 \mid \overline{6}
\end{aligned}
$$

Figure 5. Stanley's bijection adapted to type B.

Proposition 5.5. Let $\Pi \in \mathcal{M}\left(B_{n}\right)$ and $T \in \mathcal{A}_{n}^{*}$ its image under the bijection we have just defined. For any vertex v of the tree $T \in \mathcal{A}_{n}^{*}$, we define a factor $\beta(v)$ to be $1+q\left(h_{v}-1\right)$ if v belongs to the minimal path joining the root to the distinguished vertex, $2+q\left(h_{v}-1\right)$ otherwise. Then we have:

$$
M([\Pi], q)=\prod_{\substack{v \in T \\ h_{v} \neq 1}} \beta(v) .
$$

Proof. Let $2 \leq i \leq n$, let v be the vertex with label i.
Suppose first that π_{i} is obtained from π_{i-1} by merging two pairs of distinct opposite blocks into a pair of distinct opposite blocks (such as $25 \mid \overline{2} \overline{5}$ and $4 \overline{6} \mid \overline{4} 6$ in the example). This is the case where v is not in the minimal path from the root to the distinguished vertex. This means that $W_{\left(\pi_{i}\right)}$ is obtained from $W_{\left(\pi_{i-1}\right)}$ by replacing a factor $\mathfrak{S}_{a} \times \mathfrak{S}_{b}$ with \mathfrak{S}_{a+b}. As in the type A case, we get $g_{i}=h_{i}=a+b+1$, and $a-1, b-1$ are the number of vertices in the subtrees of v. This gives $\frac{2 g_{i}}{h_{i}}+q\left(g_{i}-\frac{2 g_{i}}{h_{i}}\right)=\beta(v)$.

Suppose then that π_{i} is obtained from π_{i-1} by merging two pairs of distinct opposite blocks into a 0 -block (such as 13 and $\overline{1} \overline{3}$ in the example). This is the case where v is the distinguished vertex. This means that $W_{\left(\pi_{i}\right)}$ is obtained from $W_{\left(\pi_{i-1}\right)}$ by replacing a factor $\mathfrak{S}_{j}=A_{j-1}$ into B_{j} where j is the size of the 0 -block, and also the hook-length of v. We obtain $h_{i}=2 j$, and $g_{i}=j$. Also in this case, this gives $\frac{2 g_{i}}{h_{i}}+q\left(g_{i}-\frac{2 g_{i}}{h_{i}}\right)=\beta(v)$.

Eventually, suppose that π_{i} is obtained from π_{i-1} by merging a pair of distinct opposite blocks to the 0 -block (such as $2 \overline{4} 56 \mid \overline{2} 4 \overline{5} \overline{6}$ in the example). This is the case where v is in the minimal path from the root to the distinguished vertex (but is not the distinguished vertex). This means that $W_{\left(\pi_{i}\right)}$ is obtained from $W_{\left(\pi_{i-1}\right)}$ by replacing a factor $A_{j-1} \times B_{k}$ into B_{j+k}. Here, $k>0$ is the number of vertices in the subtree of v containing the distinguished vertex, and $j-1 \geq 0$ is the number of vertices in the other subtree. We get $h_{i}=2(j+k), g_{i}=j+k=h_{v}$, and $\frac{2 g_{i}}{h_{i}}+q\left(g_{i}-\frac{2 g_{i}}{h_{i}}\right)=\beta(v)$.

So Proposition 4.4 specializes as stated above.
So, in the type B case, Equation (9) gives:

Theorem 5.6.

$$
\prod_{i=1}^{n}(i+q(n-i))=\sum_{T \in \mathcal{A}_{n}^{*}} \prod_{\substack{v \in T \\ h_{v} \neq 1}} \beta(v) .
$$

For example, let $n=3$. We take the 5 elements of \mathcal{A}_{n}^{*} as they appear in Figure 2 after we apply the bijection $\mathcal{A}_{n+1} \rightarrow \mathcal{A}_{n}^{*}$, and we get:

$$
\begin{aligned}
3(2+q)(1+2 q)= & (1+q)(1+2 q)+(1+q)(1+2 q)+(1+2 q)+ \\
& (1+2 q)+(2+q)(1+2 q) .
\end{aligned}
$$

Strictly speaking, the identity in the previous theorem might be not considered as a hook-length formula since $\beta(v)$ does not depend only on the hook-length h_{v}. Still, it is on its own an interesting variant of the type A case.

Appendix A. Properties of the standard Coxeter elements

We sketch here a case-by-case proof of Propositions 3.2. As we have seen above, the result is proved in the case where the longest element is central. It remains only to prove the result for the infinite families A_{n-1}, D_{n}, and for the exceptional group E_{6}.

We shall use the notion of cyclic order and cyclic intervals. Recall that a sequence i_{1}, \ldots, i_{n} is unimodal if there is k such that $i_{1} \leq i_{2} \leq \cdots \leq i_{k}$ and $i_{k} \geq i_{k-1} \geq \cdots \geq i_{n}$.
A.1. Case of A_{n-1}. Let $W=A_{n-1}=\mathfrak{S}_{n}, V=\left\{v \in \mathbb{R}^{n}: \sum v_{i}=0\right\}$. Let $S=$ $\left\{s_{1}, \ldots, s_{n-1}\right\}$, where s_{i} acts by permuting the i th and $(i+1)$ th coordinates. As a permutation, s_{i} is the simple transposition $(i, i+1)$. Let $c=s_{\sigma(1)} \ldots s_{\sigma(n-1)}$ be a standard Coxeter element. By exchanging pairs of commuting generators, we can write c as a product of s_{n-1} with a standard Coxeter element of A_{n-2} (where we do not specify the order of the product). By an easy induction, we see that we can write c as the cycle $\left(i_{1}, \ldots, i_{n}\right)$ where i_{1}, \ldots, i_{n} is a unimodal sequence (and a permutation of $\left.1, \ldots, n\right)$.

Any coatom of $\mathcal{P}^{N C}\left(A_{n-1}, c\right)$ is a pair of cyclic intervals of the sequence i_{1}, \ldots, i_{n}, complementary to each other, and the action of c is the "rotation" along the cycle. Two such coatoms are in the same c-orbit if and only if they have the same block sizes. So, for each k with $1 \leq k<\frac{n}{2}$, there is an orbit containing complementary cyclic intervals of size k and $n-k$. There are n such partitions, and the interval partitions among them are $1 \ldots k \mid k+1 \ldots n$ and $1 \ldots n-k \mid n-k+1 \ldots n$. Additionally, if n is even, there is an orbit containing two complementary cyclic intervals of size $\frac{n}{2}$. There are $\frac{n}{2}$ such partitions, and the only interval partition among them is $1 \ldots \frac{n}{2} \left\lvert\, \frac{n}{2}+1 \ldots n\right.$. Proposition 3.2 follows.
A.2. Case of B_{n}. Proposition 3.2 was already proved in this case, since the longest element is central. So the goal of this section is only to introduce some notation nedeed in the type D case (because we see D_{n} as a subgroup of B_{n} in the standard way). Let $W=B_{n}$ acting on $V=\mathbb{R}^{n}$. The group B_{n} is generated by s_{1}, \ldots, s_{n-1}, i.e. generators of A_{n-1}, together with another generator s_{0}^{B}. The latter acts as $\left(v_{1}, \ldots, v_{n}\right) \mapsto$ $\left(-v_{1}, v_{2}, \ldots, v_{n}\right)$. The simple roots are $-e_{1}$, together with $e_{i}-e_{i+1}$ for $1 \leq i<n$. We identify B_{n} with the group of signed permutations, and s_{0}^{B} is the transposition $(1,-1)$. We use the notation $\left(\left(a_{1}, \ldots, a_{n}\right)\right)=\left(a_{1}, \ldots, a_{n}\right)\left(-a_{1}, \ldots,-a_{n}\right)$ and $\left[\left[a_{1}, \ldots, a_{n}\right]\right]=$ $\left(a_{1}, \ldots, a_{n},-a_{1}, \ldots,-a_{n}\right)$ for the cycles of signed permutations.
A.3. Case of D_{n}. The group D_{n} is the subgroup of B_{n} generated by s_{1}, \ldots, s_{n-1} together with another generator s_{0}^{D}. The latter acts by the transformation

$$
v=\left(v_{1}, \ldots, v_{n}\right) \mapsto\left(-v_{2},-v_{1}, v_{3}, \ldots, v_{n}\right)
$$

As a signed permutation, it is the transposition $((-1,2))$. The simple roots are $-e_{1}-e_{2}$, and $e_{i}-e_{i+1}$ for $1 \leq i<n$. By exchanging pairs of commuting generators, we can see that a standard Coxeter element c of D_{n} is a product of s_{0}^{D} and a standard Coxeter element of A_{n-1}. So, either:

$$
c=(1,-1)\left[\left[i_{1}, \ldots, i_{n-1}\right]\right]
$$

where i_{1}, \ldots, i_{n-1} form a unimodal sequence, and a permutation of $2, \ldots, n$, or:

$$
c=(2,-2)\left[\left[i_{1}, \ldots, i_{n-1}\right]\right]
$$

where i_{1}, \ldots, i_{n-1} form a unimodal sequence, and a permutation of $1,3, \ldots, n$. We only consider the first case, the other one being completely similar (it suffices to replace each 1 with a 2 in the text).

We have four kinds of products $c t$ where t is a reflection:

$$
\begin{aligned}
c\left(\left(1, i_{m}\right)\right) & =\left(\left(1, i_{m+1}, \ldots, i_{n-1},-i_{1}, \ldots,-i_{m}\right)\right), \\
c\left(\left(-1, i_{m}\right)\right) & =\left(\left(1,-i_{m+1}, \ldots,-i_{n-1}, i_{1}, \ldots, i_{m}\right)\right), \\
c\left(\left(i_{\ell}, i_{m}\right)\right) & =(1,-1)\left[\left[i_{1}, \ldots, i_{\ell}, i_{m+1}, \ldots, i_{n-1}\right]\right]\left(\left(i_{\ell+1}, \ldots, i_{m}\right)\right) \\
c\left(\left(-i_{\ell}, i_{m}\right)\right) & =(1,-1)\left[\left[i_{\ell+1}, \ldots, i_{m}\right]\right]\left(\left(i_{1}, \ldots, i_{\ell},-i_{m+1}, \ldots,-i_{n-1}\right)\right) .
\end{aligned}
$$

Using the notation for type B set partitions, we obtain from the list above that the coatoms of $\mathcal{P}^{N C}\left(D_{n}, c\right)$ are:

- $1 i_{m+1} \ldots i_{n-1} \bar{i}_{1} \ldots \bar{i}_{m} \mid \overline{1}_{m+1} \ldots \bar{i}_{n-1} i_{1} \ldots i_{m}$,
- $\overline{1} i_{m+1} \ldots i_{n-1} \bar{i}_{1} \ldots \bar{i}_{m} \mid 1 \bar{i}_{m+1} \ldots \bar{i}_{n-1} i_{1} \ldots i_{m}$,
- $1 i_{1} \ldots i_{\ell} i_{m+1} \ldots i_{n-1} \overline{i_{1}} \ldots \bar{i}_{\ell} \bar{i}_{m+1} \ldots \bar{i}_{n-1}\left|i_{\ell+1} \ldots i_{m}\right| \bar{i}_{\ell+1} \ldots \bar{i}_{m}$,
- $1 i_{\ell+1} \ldots i_{m} \overline{1} \bar{i}_{\ell+1} \ldots \bar{i}_{m}\left|i_{1} \ldots i_{\ell} \bar{i}_{m+1} \ldots \bar{i}_{n-1}\right| \bar{i}_{1} \ldots \bar{i}_{\ell} i_{m+1} \ldots i_{n-1}$.

And the interval partitions among them are $1 \ldots n|\overline{1} \ldots \bar{n}, 1 \overline{2} \ldots \bar{n}| \overline{1} 2 \ldots n$, and

$$
1 \ldots i \overline{1} \ldots \bar{i}|i+1 \ldots n| \overline{i+1} \ldots \bar{n},
$$

where $2 \leq i<n$. From these explicit description, we can check Proposition 3.2. We find that all orbits have size $\frac{h}{2}$ (here $h=2 n-2$), except that $1 \ldots n \mid \overline{1} \ldots \bar{n}$ and $1 \overline{2} \ldots \bar{n} \mid \overline{1} 2 \ldots n$ are in a same orbit of size h if n is even.
A.4. Case of E_{6}. This can be done with the following Sage program [16] (tested with Sage 5.4).

```
W = WeylGroup(['E',6])
n = 6
h = 12
S = W.simple_reflections()
w0 = W.long_element()
def checkorbits(l):
    c = prod( S[i] for i in l )
    inte = []
    for i in range(1,n+1):
        inte.append( prod( S[j] for j in l if j!=i ) )
    for ct in inte:
        i=1; j=1; k= c * ct * c**(-1) ;
        while k != ct :
            i+=1
            if k in inte:
                j+=1
                ct2 = k
            k = c * k * c**(-1)
        if not (((j==2) and (i==h)) or ((mod (h,2)==0) and (i==h/2) and (j==1))):
            raise TypeError('ERROR!!!')
        if not (((j==2) and (ct2==w0*ct*w0)) or ((j==1) and (ct == w0*ct*w0))):
```

raise TypeError('ERROR!!!')
for 1 in Permutations(n):
checkorbits(1)

References

[1] D. Armstrong: Generalized Noncrossing Partitions and Combinatorics of Coxeter Groups. Mem. Amer. Math. Soc. 202, 2009.
[2] D. Bessis: The dual braid monoid, Ann. Sci. Ecole Norm. Sup. 36 (2003), 647-683.
[3] T. Brady and C. Watt: A partial order on the orthogonal group. Comm. Algebra 30(8) (2002), 3749-3754.
[4] F. Chapoton: Enumerative properties of generalized associahedra, Séminaire Lotharingien de Combinatoire 51 (2004), Article B51b.
[5] P. Deligne: Letter to E. Looijenga, 9/3/1974. Available at: http://homepage.univie.ac.at/christian.stump/Deligne_Looijenga_Letter_09-03-1974.pdf.
[6] R.R.X. Du and F. Liu: (k, m)-Catalan numbers and hook length polynomials for plane trees. European J. Combin. 28(4) (2007) 1312-1321.
[7] D. Foata and V. Strehl: Rearrangements of the symmetric group and enumerative properties of the tangent and secant numbers. Math. Z. 137 (1974), 257-264.
[8] S. Fomin and N. Reading: Generalized cluster complexes and Coxeter combinatorics. Int. Math. Res. Not. 2005, no. 44, 2709-2757.
[9] J.E. Humphreys: Reflection Groups and Coxeter Groups. Cambridge University Press, Cambridge, 1990.
[10] M. Josuat-Vergès: A generalization of Euler numbers to finite Coxeter group. Ann. Combin., to appear.
[11] A. Postnikov: Permutohedra, Associahedra, and Beyond. Internat. Math. Res. Notices 2009(6) 1026-1106.
[12] M. Purtill: André permutations, lexicographic shellability and the cd-index of a convex polytope. Trans. Amer. Math. Soc. 338(1) (1993), 77-104.
[13] N. Reading: Clusters, Coxeter-sortable elements and noncrossing partitions. Trans. Amer. Math. Soc. 359(12) (2007), 5931-5958.
[14] N. Reading: Chains in the noncrossing partition lattice. SIAM J. Discrete Math. 22(3) (2008), 875-886.
[15] R.P. Stanley: A survey of alternating permutations. Contemp. Math. 531 (2010), 165-196.
[16] W. A. Stein et al.: Sage Mathematics Software (Version 5.4), The Sage Development Team, 2013, http://www. sagemath.org.
[17] R. Steinberg: Finite reflection groups. Trans. Amer. Math. Soc. 91 (1959), 493-504.
CNRS and Institut Gaspard Monge, Université Paris-Est Marne-la-Vallée, 5 Boulevard Descartes, Champs-sur-Marne, 77454 Marne-la-Vallée cedex 2, France
E-mail address: matthieu.josuat-verges@univ-mlv.fr

[^0]: 2000 Mathematics Subject Classification. 05A18, 05E18, 11B68, 20 F55.
 Key words and phrases. noncrossing partitions, hook formulas.

