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Abstract. Given a square (0, 1)-matrix A, we consider the problem of
deciding whether there exists a permutation of the rows and a permu-
tation of the columns of A such that after carrying out these permuta-
tions, the resulting matrix is triangular. The complexity of the problem
was posed as an open question by Wilf [7] in 1997. In 1998, DasGupta et
al. [3] seemingly answered the question, proving it is NP-complete. How-
ever, we show here that their result is flawed, which leaves the question
still open. Therefore, we give a definite answer to this question by proving
that the problem is NP-complete. We finally present an exponential-time
algorithm for solving the problem.

1 Introduction

In his contribution in the tribute to the late Professor Erdös [7], Wilf posed the
following question: “Let A be a m×n matrix of 0’s and 1’s. Consider the com-
putational problem: do there exist permutations P of the rows of A, and Q, of
the columns of A such that after carrying out these permutations, A is triangu-
lar? The question we ask concerns the complexity of the problem. Is this problem
NP-complete? Or, does there exist a polynomial-time algorithm for doing it?”
As noted by Wilf, this problem is strongly related to job scheduling with prece-
dence constraints, a well-known problem in theoretical computer science. The
present paper is devoted to giving an answer to this question.

A square matrix is called lower triangular if all the entries above the main
diagonal are zero. Similarly, a square matrix is called upper triangular if all
the entries below the main diagonal are zero. A triangular matrix is one that
is either lower triangular or upper triangular. Because matrix equations with
triangular matrices are easier to solve, they are very important in linear algebra
and numerical analysis. We refer the reader to [4] for a further discussion.

For an arbitrary square matrix A, it is well-known in linear algebra that
there exists an invertible matrix S such that S−1AS is upper triangular. We
focus here, however, on permutation matrices. Recall that a permutation matrix
is a square matrix obtained from the same size identity matrix by a permutation
of rows. A product of permutation matrices is again a permutation matrix and



the inverse of a permutation matrix is again a permutation matrix. In fact, for
any permutation matrix P , P−1 = PT .

This paper is organized as follows. In Section 2, we provide the basic material
needed for this paper. Section 3 is devoted to proving hardness of determining
whether a square (0, 1)-matrix is permutation equivalent triangular, i.e. whether
it can be transformed into a triangular matrix by independent row and column
permutations. In Section 4, we give some properties of permutation equivalent
triangular matrices (or pet matrices, for short) and present an exponential-time
algorithm to determine whether a matrix is a pet matrix. The paper concludes
with suggestions for further research directions.

2 Notations

For any positive integer n, denote [n] = {1, 2, . . . , n}. Let A = [ai,j ], 1 ≤ i ≤ m
and 1 ≤ j ≤ n, be a matrix of m rows and n columns. In the case that m = n
then the matrix is square of order n. It is always assumed that the entries of the
matrix are elements of some underlying field F . It is convenient to refer to either
a row or a column of the matrix as a line of the matrix. We use the notation AT

for the transpose of matrix A. We always designate a zero matrix by 0, a matrix
with every entry equal to 1 by J , and the identity matrix of order n by I. In
order to emphasize the size of these matrices we sometimes include subscripts.
Thus Jm,n denotes the all 1’s matrix of size m by n, and this is abbreviated to
Jn if m = n. Notations 0m,n, 0n and In are similarly defined. In displaying a
matrix we often use ∗ to designate a submatrix of no particular structure. Two
matrices A and B are said to be permutation equivalent, denoted by A ∼ B, if
there exist permutation matrices P and Q of suitable sizes such that B = PAQ.

We will be greatly concerned with matrices whose entries consist exclusively
of the integers 0 and 1. Such matrices are referred to as (0, 1)-matrices. For a
(0, 1)-matrix A, we let ω(A) stand for the number of 1’s in A. A square matrix
A = [ai,j ] of order n is said to be lower left triangular if it has only 0’s above the
main diagonal (i.e. ai,j = 0 for 1 ≤ i < j ≤ n. We write n for the lower left
triangular (0, 1)-matrix whose 0’s are exclusively above the main diagonal. For
two matrices A = [ai,j ] and B = [bi,j ] of size m by n, we write A ≤ B if ai,j ≤ bi,j
for 1 ≤ i ≤ m and 1 ≤ j ≤ n, so that a square matrix A of order n is lower left
triangular if A ≤ n. In the context of permutation equivalent matrices, we will
sometimes not be interested in any particular orientation of a triangular matrix
and forget about any specific orientation such as “lower left”. Furthermore, for
readability, a matrix which is permutation equivalent to a triangular matrix is
said to be a pet matrix. The row sum vector R(A) =

[
r1 r2 . . . rm

]
and the

column sum vector C(A) =
[
c1 c2 . . . cn

]
of A are defined by ri =

∑
1≤j≤n ai,j

for 1 ≤ i ≤ m and cj =
∑

1≤i≤m ai,j for 1 ≤ j ≤ n. The row sum vector R(A)
(resp. column sum vector C(A)) is stepwise bounded if |{i : ri ≤ k}| ≥ k (resp.
|{j : cj ≤ k}| ≥ k) for 1 ≤ k ≤ n. It is clear that if a (0, 1)-matrix A is a pet
matrix then both R(A) and C(A) are stepwise bounded.



The permanent ofA = [ai,j ] is defined as per(A) =
∑

(j1,j2,...,jn)∈Sn
a1,j1 a2,j2 . . . an,jn

where the summation is over all permutations (j1, j2, . . . , jn) of [n]. Observe that,
unlike the determinant, we do not put a minus sign in front of some of the terms
in the summation. Of particular importance, the permanent does not change if
we permute the rows of A and permute the columns of A.

Let A = [ai,j ] be an m by n matrix. For convenience, for a set K ⊆ [m] we
will write K for the set [m] \K. Let K = {i1, i2, . . . , ik} be a set of k elements
with K ⊆ [m], and let L = {j1, j2, . . . , jl} be a set of l elements with L ⊆ [n].
The sets K and L designate a collection of row indices and column indices,
respectively, of the matrix A, and the k by l submatrix determined by them is
denoted A[K,L].

Let X = {xi : 1 ≤ i ≤ n} be a non-empty set of n elements, that we call an
n-set. Let S = (Si : 1 ≤ i ≤ m) be m not necessarily distinct subsets of the n-set
X. We refer to this collection of subsets of an n-set as a configuration of subsets.
We set ai,j = 1 if xj ∈ Si, and ai,j = 0 if xi /∈ Si. The resulting (0, 1)-matrix
A = [ai,j ], 1 ≤ i ≤ m and 1 ≤ j ≤ n of size m by n is the incidence matrix for
the configuration of subsets S of the n-set X. The 1s in row αi of A display the
elements in the subset Si, and the 1’s in column βj display the occurrences of
xj among the subsets. Let S = (Si : 1 ≤ i ≤ n) be a configuration of subsets of
some ground n-set X. A bijective mapping ϕ : S → [n] is said to be a stepwise

bounded labeling (or sbl for short) of S if
∣∣∣⋃ϕ(Sj)≤i Sj

∣∣∣ ≤ i for 1 ≤ i ≤ n.

3 Answering Wilf’s question

We prove in this section that, given a square (0, 1)-matrix A, deciding whether
there exists a permutation matrix P and a permutation matrix Q of suitable
size such that PAQ is triangular is NP-complete.

3.1 Disproving a previous related result

Before giving our proof, it is worth mentioning that the following problem (called
LBQIS(n, k) and rephrased to fit the context of this paper) is claimed to be
NP-complete in [3]: Given a (0, 1)-matrix of order n and positive integer k ≤ n,

do there exist permutation matrices P and Q such that PAQ =

[
A1,1 A1,2

A2,1 A2,2

]
with

A1,2 a square lower triangular matrix of size k by k? It is not very difficult to
find a polynomial transformation from LBQIS to Wilf’s question, which would
prove the NP-completeness of the latter. Just add n− k empty rows and n− k
empty columns to matrix A to obtain a new matrix A′. Now, notice that each
submatrix A1,2 in a solution for LBQIS may be completed with the n−k empty
rows put before row 1 of A1,2 and with the n−k empty columns put after column
k of A1,2 to yield a solution for the instance A′ in Wilf’s question, and viceversa.

Unfortunately, paper [3] contains a serious flaw in the proof. To fix things,
note that in [3] LBQIS is stated in terms of bipartite graphs, for which matrix
A is the reduced adjacency matrix. Then, LBQIS(n, k) is proved NP-complete



by reduction from another problem on bipartite graphs called LBIS(n, k), using
the so-called Rearrangement Lemma (Lemma 3.5 in [3]). Two affirmations in
the proof of this lemma are contradicted by the following example. Let G be
the graph (input for LBIS) with vertices U = {i | 1 ≤ i ≤ 4} and V = {i | 1 ≤
i ≤ 4}, whose edges are (1, 1), (2, 1), (2, 2), (3, 2), (3, 4), (4, 3) and (4, 4). Thus,
n = 4. Define k = 1. Let G′ be the input graph for LBQIS built as in [3], and
k′ = k2 + k = 2. Then the vertex subset U ′ ∪ V ′ of G′, with U ′ = {[2, 4], [1, 2]}
and V ′ = {[1, 3], [2, 2]} is a solution of LBQIS of size k′ for which the assumption
on the first line of the Rearrangement Lemma’s proof is false. Also, the vertex
subset U ′∪V ′ of G′, with U ′ = {[1, 1], [2, 1]} and V ′ = {[1, 2], [1, 3]} is a solution
of LBQIS of size k′ for which the second affirmation in the same lemma (“clearly
q1 ≤ p1”) is also false.

3.2 Our NP-completeness proof for Wilf ’s question

We present our results in terms of sbl for configurations of subsets. The rationale
for considering sbl for configurations of subsets stems from the following lemma.

Lemma 1. Let S = (Si : 1 ≤ i ≤ n) be a configuration of subsets of some ground
n-set, and let A be the corresponding incidence matrix. There exist permutation
matrices P and Q of order n such that PAQ ≤ n if and only if there exists
an sbl of S.

We need to focus our attention on a special type of sbl. Call a bijective
mapping ϕ : S → [n] normalized if ϕ maps the identical subsets of elements of
S to a set of consecutive integers. Most of the interest in normalized bijective
labelings stems from the following intuitive lemma.

Lemma 2. Let S = (Si : 1 ≤ i ≤ n) be a configuration of subsets of some
ground n-set. If there exists an sbl of S then there exists a normalized sbl of S.

We are now ready to prove that deciding whether there exists an sbl of some
configuration of subsets is NP-complete thereby proving that deciding whether
a square (0, 1)-matrix is a pet matrix is NP-complete as well. The proof proceeds
by a reduction from the 3Sat problem - which is a known NP-complete problem
[2]. Let an arbitrary instance of the 3Sat problem be given by a 3CNF formula
φ = c1 ∨ c2 ∨ . . . ∨ cm over variables x1, x2, . . . , xn. Our construction is divided
into two steps: (1) construction of a (polynomial size) ground set X and (2)
construction of a configuration of subsets C of the ground set X. Throughout the
proof, parts of the ground set X are written as capital bold letters (V,T,F, . . .)
and subsets of the configuration are written with capital calligraphic letters
(Vi, Ti,Fi, . . .).
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Fig. 1. Illustration of the construction for the 3CNF formula φ = (x1∨x2∨x3)∧ (x1∨
x2∨x3)∧ (x1∨x2∨x3). Identical subsets are not distinguishable in our representation.
A satisfying truth assignment is given by f(x1) = TRUE, f(x2) = FALSE and f(x3) =
FALSE. For sake of clarity, neither the ground set X nor the collection of subsets C is
fully represented.

To begin with, define pi = 3(n+m+ 1− i) + 2, qi = 3(n+m+ 1− i) + 1 and
ri = 3(n+m+ 1− i) for 1 ≤ i ≤ n+m. Furthermore, define pn+m+1 = 1, K =∑n
i=1 qi+2

∑n+m
i=n+1 qi and L =

∑n+m
i=1 (pi+1+ri). Let us now define the ground set

X. Consider the pairwise disjoint sets defined as follows: Vi = {vi,j | 1 ≤ j ≤ pi},
V′i = {v′i,j | 1 ≤ j ≤ ri}, Ti = {ti,j | 1 ≤ j ≤ qi}, Fi = {fi,j | 1 ≤ j ≤ qi}
for 1 ≤ i ≤ n. Furthermore, define Ci = {ci,j | 1 ≤ j ≤ pn+i} C′i = {c′i,j | 1 ≤
j ≤ rn+i} for 1 ≤ i ≤ m, and Li,k = {`i,k,j | 1 ≤ j ≤ qn+i} for 1 ≤ i ≤ m
and 1 ≤ k ≤ 3. Finally, define S = {s}. For simplicity of notation, write V =⋃

1≤i≤nVi, V
′ =

⋃
1≤i≤nV

′
i, T =

⋃
1≤i≤nTi, F =

⋃
1≤i≤nFi, C =

⋃
1≤i≤mCi,

C′ =
⋃

1≤i≤mC′i, and Li =
⋃

1≤k≤3 Li,k for 1 ≤ i ≤ m and L =
⋃

1≤i≤m Li.
Informally, elements of V∪V′ are associated to variables, elements of T∪F are



associated to literals, elements of C ∪C′ are associated to clauses, elements of
L are associated to literals in clauses and S is a separator set. The ground set
X of our construction is defined to be X = V ∪V′ ∪T ∪ F ∪C ∪C′ ∪ L ∪ S.

Having defined the ground set X, we now turn to the detailed construction
of a configuration of subsets C of X. For sake of clarity, this will be divided
into several steps. First, each variable xi, 1 ≤ i ≤ n, is associated to identical
subsets Vi,j , 1 ≤ j ≤ qi, in C. These subsets are defined as follows: Vi,j =(⋃

1≤k≤iVk

)
∪
(⋃

1≤k≤i−1 V
′
k

)
for 1 ≤ i ≤ n and 1 ≤ j ≤ qi. Let us denote

by Vi, 1 ≤ i ≤ n, the collection (Vi,j | 1 ≤ j ≤ qi). Next, each (positive)
literal xi, 1 ≤ i ≤ n, is associated to identical subsets Ti,j , 1 ≤ j ≤ ri, and
to identical subset T ′i,j , 1 ≤ j ≤ pi+1. These subsets are defined as follows:

Ti,j = Ti ∪
(⋃

1≤k≤iVk

)
∪
(⋃

1≤k≤i−1 V
′
k

)
for 1 ≤ i ≤ n and 1 ≤ j ≤ ri, and

T ′i,j = Ti ∪
(⋃

1≤k≤iVk

)
∪
(⋃

1≤k≤iV
′
k

)
for 1 ≤ i ≤ n and 1 ≤ j ≤ pi+1.

Of course, a similar construction of subsets applies for the negation xi of each

variable xi, i.e., Fi,j = Fi ∪
(⋃

1≤k≤iVk

)
∪
(⋃

1≤k≤i−1 V
′
k

)
for 1 ≤ i ≤ n

and 1 ≤ j ≤ ri, and F ′i,j = Fi ∪
(⋃

1≤k≤iVk

)
∪
(⋃

1≤k≤iV
′
k

)
for 1 ≤ i ≤ n

and 1 ≤ j ≤ pi+1. For readability, write Ti = (Ti,j | 1 ≤ j ≤ ri), T ′i = (T ′i,j |
1 ≤ j ≤ pi+1), Fi = (Fi,j | 1 ≤ j ≤ ri) and F ′i = (F ′i,j | 1 ≤ j ≤ pi+1) for
1 ≤ i ≤ n. Note that the following (strict) inclusions hold for all 1 ≤ i ≤ n,
1 ≤ j1 ≤ qi, 1 ≤ j2 ≤ ri and 1 ≤ j3 ≤ pi+1: (i) Vi,j1 ⊂ Ti,j2 ⊂ T ′i,j3 and (ii)
Vi,j1 ⊂ Fi,j2 ⊂ F ′i,j3 . We now turn to the m clauses of the 3CNF formula. Each
clause ci, 1 ≤ i ≤ m, is associated to identical subsets Ci,j , 1 ≤ j ≤ qn+i. These

subsets are defined as follows: Ci,j = V ∪V′ ∪
(⋃

1≤k≤iCk

)
∪
(⋃

1≤k≤i−1 C
′
k

)
for 1 ≤ i ≤ m and 1 ≤ j ≤ qn+i. Let us denote by Ci, 1 ≤ i ≤ m, the collection
(Ci,j | 1 ≤ j ≤ qn+i). It is easily seen that Vi,j1 ⊂ Ck,j2 for all 1 ≤ i ≤ n,
1 ≤ j1 ≤ qi, 1 ≤ k ≤ m and 1 ≤ j2 ≤ qn+k.

Now, we consider the only part of the construction that depends on which
literal occurs in which clauses. Denote by λi,k the k-th literal of clause ci, that
is write ci = λi,1 ∨ λi,2 ∨ λi,3 for 1 ≤ i ≤ m, where each λi,k is a variable
or its negation. The k-th literal, 1 ≤ k ≤ 3, of each clause ci, 1 ≤ i ≤ m, is
associated to identical subsets Li,k,j , 1 ≤ j ≤ rn+i, and to identical subsets
L′i,k,j , 1 ≤ j ≤ pn+i+1. These subsets are defined as follows: Li,k,j = V ∪V′ ∪
Ak ∪ Li,k ∪

(⋃
1≤`≤iC`

)
∪
(⋃

1≤`≤i−1 C
′
`

)
for 1 ≤ i ≤ m, 1 ≤ j ≤ rn+i and

1 ≤ k ≤ 3 and L′i,k,j = V ∪V′ ∪Ak ∪ Li,k ∪
(⋃

1≤`≤iC`

)
∪
(⋃

1≤`≤iC
′
`

)
for

1 ≤ i ≤ m, 1 ≤ j ≤ pn+i+1 and 1 ≤ k ≤ 3, where Ak = T` if λi,k = x` and
Ak = F` if λi,k = x`. For the sake of clarity, write Li,k = (Li,k,j | 1 ≤ j ≤ rn+i)
and L′i,k = (L′i,k,j | 1 ≤ j ≤ pn+i+1) for 1 ≤ i ≤ m and 1 ≤ k ≤ 3. Again, observe
that Ci,j1 ⊂ Li,k,j2 ⊂ Li,k,j2 for all 1 ≤ i ≤ m, 1 ≤ j1 ≤ qn+i, 1 ≤ j2 ≤ rn+i,
1 ≤ j3 ≤ pn+i+1 and 1 ≤ k ≤ 3.

Our construction ends with p1 + K − 1 utility subsets. These subsets will
be partitioned into two separate classes according to their indented function:



bootstrap subsets and separator subsets. First, C contains identical bootstrap
subsets Bi, 1 ≤ i ≤ p1 − 1, defined as follows: Bi = ∅ for 1 ≤ i ≤ p1 − 1.
The idea is to force any sbl to map the p1 − 1 empty sets of B to the first
p1 − 1 = 3(n + m) + 1 integers. Indeed, it is easily seen that all the above
defined subsets of the configuration of subsets C but those of B contain at least
p1 elements and hence cannot be mapped to an integer i ≤ p1 − 1 in any sbl
of C. Second, C contains identical separator subsets Si, 1 ≤ i ≤ K, defined by:
Si = V ∪V′ ∪C ∪C′ ∪ S for 1 ≤ i ≤ K. The rationale of these subsets is that
we need a separator between subsets in C corresponding to a satisfying truth
assignment f for the 3CNF formula φ and garbage subsets of C, that is subsets
not involved in the satisfying truth assignment f . For simplicity, let us denote
by B the collection (Bi | 1 ≤ i ≤ p1−1) and by S the collection (Si | 1 ≤ i ≤ K).
Clearly our construction can be carried on in polynomial time: indeed, we have
|X| = O(m2 + n2) and |C| = O(m2 + n2).

Lemma 3. There exists a satisfying truth assignment f for φ if and only if
there exists an sbl of the configuration of subsets C of the ground set X.

The key elements of the proof are as follows. First, it is crucial to focus on
solutions that map identical subsets of elements of S to a set of consecutive ele-
ments (see Lemma 2). Second, the general shape of the solution is largely guided
by the construction. Indeed, the empty subsets have to be placed first, followed
by subsets corresponding to literals (either the positive or the negative literal of
each variable has been chosen) and next by subsets corresponding to clauses (one
satisfying literal of each clause is chose). Finally the separator subsets have to
be placed, with the result that (thanks to the large polynomial number of such
subsets) the remaining subsets can be placed in any order without violating the
sought sbl property. The reader is invited to consider Figure 1 for a schematic
illustration of the reduction. We now briefly discuss, in an informal way, the two
key arguments that are used in the proof. First, the whole procedure is, to some
extent, similar to the accounting method used in amortized complexity analysis.
Indeed, one might view the operation of placing a set (one after the other) as the
process of charging some customer, the cost being the number of new elements
that are introduced. With this metaphor in mind, notice that we do not charge
when a subset does not introduce any new element, so that the leftover amount
can be stored as ”credit”. When we place a new subset that does introduce some
new elements, we can use the ”credit” stored to pay for the cost of the operation.
Second, when a subset uses the ”credit” stored to pay the cost of introducing
new elements, the following invariants can be shown to hold true: (i) it uses
all the available credit and (ii) it does not allow to accumulate (it should be
now clear that consecutive identical subsets do allow for accumulating credit) as
much credit as it has consumed, thereby proving that subsets introduce less and
less new elements as we progress adding subsets one after the other.

The main result of this paper can now be stated.

Theorem 1. Let A be a (0, 1)-matrix. Deciding whether A is a pet matrix is
NP-complete.



4 Exponential-time algorithm

We present here an exponential-time algorithm for deciding whether a given a
(0, 1)-matrix A of order n is a pet matrix. We start by presenting some basic
properties of square (0, 1)-matrices that can be transformed into some triangular
matrix by row and column independent permutations to help solving involved
algorithmic issues. We of course focus of polynomial-time checkable properties.

We first focus on the permanent of a square (0, 1)-matrix. A well-known result
(see e.g. [1]) states that for a (0, 1)-matrix A of order n, one has per(A) = 1 if
and only if the lines of A may be permuted to yield a triangular matrix with 1’s
in the n main diagonal positions and 0’s above the mail diagonal. This theorem
amounts to saying that per(A) = 1 if and only if there exist permutation matrices
P and Q such that I ≤ PAQ ≤ . As shown in the following lemma, per(A) = 1
is certainly a threshold value in our context.

Lemma 4. Let A be (0, 1)-matrix. If A is a pet matrix then per(A) ≤ 1.

Notice that deciding per(A) ≤ 1 for (0, 1)-matrices of order n reduces to
computing at most n + 1 perfect matchings in bipartite graphs [1], and hence
the above test is O(n3

√
n) time as the Hopcroft–Karp algorithm for computing

a maximum matching in a bipartite graph B = (V,E) runs in O(|E|
√
|V |) [6].

Next, it is a simple matter to check that if a (0, 1)-matrix A of order n is a
pet matrix, then it contains at most 1

2n(n+ 1) 1’s (i.e., ω(A) ≤ 1
2n(n+ 1)). The

following lemma gives a lower bound.

Lemma 5. Let A be (0, 1)-matrix of order n, n ≥ 2. If A contains at most n+1
1’s, then A is a pet matrix.

Notice that, albeit not very impressive, Lemma 5 is tight as the square matrix[
In−2 0n−2,2
02,n−2 J2

]
of order n has n− 2 + 4 = n+ 2 1’s and is not a pet matrix.

Finally, the following trivial lemma gives another condition that helps im-
proving the running time of the algorithm in practice.

Lemma 6. Let A be (0, 1)-matrix of order n and D the directed graph associated
to A ( i.e., the adjacency matrix of D is A). If the digraph D is acyclic (regardless
self-loops), then A is a pet matrix.

We now turn to presenting the exponential-time algorithm. The simplest ex-
haustive algorithm considers every possible pairs of permutation matrices (P,Q)
yielding a O((n!)2 · poly(n)) time algorithm. However, according to Lemma 1, it
is enough to consider every permutation matrix P of order n and check whether
the first i, 1 ≤ i ≤ n, rows of PA have 1’s in at most i columns. This observation
yields a O(n! · poly(n)) time algorithm. We propose here another exhaustive
algorithm that improves on the O(n! · poly(n)) time algorithm. The basic idea
is to recursively split into smaller submatrices, instead of enumerating all per-
mutations. For a (0, 1)-matrix A of order n, we consider every possible set R
of dn/2e rows of A and every possible set of dn/2e columns C of A, and check



PAQ =

[
A1 0
∗ A2

]
(a) Even

PAQ =

A1 0 0
∗ 1 0
∗ ∗ A2
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(b) Odd and one 1

PAQ =

A1 0 0
∗ 0 0
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
(c) Odd and zero 1

Fig. 2.

whether these lines induce a zero matrix (or a matrix with at most one 1 in case
the matrix has odd order; details follow).

If n is even, we let P and Q be two permutation matrices that put the rows in
R at the first dn/2e positions and the columns in C at the last dn/2e positions.
The key element for the improvement is that no specific order is required for
the rows in R nor for the columns in C. The algorithm rejects the matrix A
for the subsets R and C if ω(A[R,C]) > 1, otherwise we can write PAQ as in
Figure 2(a), where A1 and A2 are matrices of order dn/2e = n/2, and we proceed
to recursively check that both A1 and A2 are pet matrices.

The case n is odd is a little bit more complicated. First, the algorithm rejects
matrix A for the subsets R and C if ω(A[R,C]) > 1. Otherwise, we need to
consider two (possibly positive) cases: (i) ω(A[R,C]) = 1 or (ii) ω(A[R,C]) = 0.
If ω(A[R,C]) = 1, we let P and Q be two permutation matrices that put the
rows in R at the first dn/2e positions and the columns of C at the last dn/2e
positions (no specific order for the rows in R nor for the columns in C, except
that the 1 of A is at row index dn/2e and at column index dn/2e in PAQ).
We can write PAQ as in Figure 2(b), where A1 and A2 are matrices of order
dn/2e − 1 = n/2, and we proceed to recursively check that both A1 and A2 are
pet matrices. Finally, if ω(A[R,C]) = 0, for every row index i ∈ R and every
column index j ∈ C, we let P and Q be two permutation matrices that put the
rows in R at the first dn/2e positions and the columns of C at the last dn/2e
positions (no specific order for the rows in R nor for the columns in C except
that row i in A is at row index dn/2e and column index j is at column index
dn/2e in PAQ). We can write PAQ as in Figure 2(c), where A1 and A2 are
matrices of order dn/2e − 1 = n/2, and we proceed to recursively check that
both A1 and A2 are pet matrices.

A detailed description is given in Algorithms 1, 2 and 3. We now turn to
evaluating the time complexity of this algorithm and we write T (n) for the time
complexity of calling permTriangular(A) for some (0, 1)-matrix A or order n.

T (n) ≤

{
(dn/2e)2

(
n
dn/2e

)2
(2T (bn/2c) + 1) +O(n3

√
n) if n is odd

2 (dn/2e)2
(

n
dn/2e

)2
T (bn/2c) +O(n3

√
n) if n is odd

with T (1) = O(1). The O(n3
√
n) term is the time complexity for lines 2 and 3

in Algorithm 1. We also observe that the worst case occurs when n = 2m − 1
as dn/2e , dn/4e , . . . are odd integers. Looking for an asymptotic solution of
the worst case, we thus write the following simplified recurrence: T (2m) =



Algorithm 1: Recognizing pet matrices.

1 Algorithm: permTriangular

Data: A square matrix A = [ai,j ] of order n
Result: true if A is a pet matrix, false otherwise

2 if (ω(A) ≤ n+ 1) or (per(A) = 1) or (A is stepwise bounded) or (D(A) is
acyclic) then return true

3 if (ω(A) > n(n+1)
2

) or (per(A) > 1) or (R(A) or C(A) is not stepwise bounded)
then return false

4 for every subset R ⊂ [n] of size
⌈
n
2

⌉
and every subset C ⊂ [n] of size

⌈
n
2

⌉
do

5 if n is even then
6 return permTriangularEven(A,R,C)
7 else
8 return permTriangularOdd(A,R,C)

9 return false

Algorithm 2: Subprocedure for recognizing pet matrices of even order.

1 Algorithm: permTriangularEven

Data: A square matrix A = [ai,j ] of even order n, and non-empty subsets
R ⊂ [n] and C ⊂ [n], both of size n

2

Result: true if A is a pet matrix with A[R,C] as the upper right submatrix,
false otherwise

2 if ω(A[R,C]) > 0 then return false

3 Let Aul = A[R,C] and Alr = A[R,C]
4 return permTriangular(Aul) && permTriangular(Alr)

22m−2
(

2m

2m−1

)2 (
2T (2m−1) + 1

)
+ 27m/6, with T (1) = 1. Now, write α(2m) =

22m−2
(

2m

2m−1

)2
. Clearly, α(2m) ≥ 27m/6, and hence we focus for now on on the

recurrence T (2m) = 2α(2m)
(
T (2m−1) + 1

)
. A convenient non-recursive form of

T (2m) is given in the following lemma.

Lemma 7. T (2m) =
(
2m
∏m
i=1 α(2i)

)
+
(∑m

i=1 2m−i+1
∏m
j=i α(2j)

)
.

We now need the following lemma, in order to give an asymptotic solution
for T (n) in Proposition 1.

Lemma 8.
∑m
i=1 2m−i

∏m
j=i α(2j) = O

(
m 22

m+2+m+1
)

.

Proposition 1. Algorithm permTriangular runs in O
(
n 24n π− log(n)

)
time.

Proof. We have already observed that the worst case occurs for n = 2m − 1.

According to Lemma 8, we have T (2m) = O
(

22
m+2+m−3 π−m

)
and hence

T (n) = O
(

22
log(n)+2+log(n)−3 π− log(n)

)
= O

(
n 24n π− log(n)

)
. ut



Algorithm 3: Subprocedure for recognizing pet matrices of odd order.

1 Algorithm: permTriangularOdd

Data: A square matrix A = [ai,j ] of odd order n, and non-empty subsets
R ⊂ [n] and C ⊂ [n], both of size

⌈
n
2

⌉
Result: true if A is a pet matrix with A[R,C] as the upper right submatrix

2

3 if ω(A[R,C]) > 1 then return false
4 if ω(A) = 0 then
5 for every i ∈ R and every j ∈ C do

6 Let Aul = A[R \ {i}, C] and Alr = A[R,C \ {j}]
7 if permTriangular(Aul) && permTriangular(Alr) then return true

8 return false

9 else
10 Let i and j be the row and column indices of the unique 1 in A[R,C]

11 Let Aul = A[R \ {i}, C] and Alr = A[R,C \ {j}]
12 return permTriangular(Aul)) && permTriangular(Alr)

5 Conclusion

We suggest for further research directions regarding the hardness of recognizing
pet (0, 1)-matrices. (i) Suppose a (0, 1)-matrix A of order n has n + k 1’s with
n + 2 ≤ n + k ≤ 1

2n(n + 1). Can one decide in f(k)nO(1) time whether A is a
pet matrix, where f is an arbitrary function depending only on k? (ii) What is
the average running time of Algorithm permTriangular for pet matrices? (iii) A
graph labeling strongly related to symmetric pet (0, 1)-matrices can be defined
as follows: Given a graph G = (V,E) or order n, decide whether there exists
a bijective mapping f : V → [n] such that f(u) + f(v) > n for every edge
{u, v} ∈ E (i.e., PAPT ≤ n). Investigating the relationships between the two
combinatorial problems is expected to yield fruitful results.
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Appendix (Reviewers’ version only)

Proof (of Lemma 1). The forward direction if obvious. For the reverse direction,
let S = (Si : 1 ≤ i ≤ n) be a configuration of subsets of some ground set of

cardinality n and ϕ : S → [n] be a bijective mapping such that
∣∣∣⋃S∈S:ϕ(S)≤i S∣∣∣ ≤

i for all 1 ≤ i ≤ n. Let A = [ai,j ] be the incidence matrix of S. Now let P be
the permutation matrix of order n that permutes the rows of A so that row i of
PA correspond to subset ϕ−1(i) for all 1 ≤ i ≤ n. We denote this row-permuted
matrix by A′ = [a′i,j ]. Define the function τ : [n]→ [n+1] that indicates for each
column index j the minimum row index i so that a′i,j = 1, and we adhere to the
convention that τ(j) = n+ 1 if row j does not contain a 1. Define a permutation
matrix Q or order n that permutes the columns of A′ by ascending τ values,
breaking ties arbitrarily. We designate this row-permuted matrix by A′′ = [a′′i,j ].

We claim that A′′ = PAQ ≤ n. Indeed, suppose, aiming at a contradiction,
that A′′ 6≤ n. Let imin be the smallest row index such that a′′imin,jmin

= 1
for some jmin > imin. Then it follows that τ(j) ≤ τ(jmin) for j < jmin and

hence
∣∣∣⋃S∈S:ϕ(S)≤imin

S
∣∣∣ > imin. This is the desired contradiction, and hence

A′′ = PAQ ≤ n. ut

Proof (of Lemma 2). The proof is by contradiction. Denote by Φ(S) the set of all
sbl s of the configuration of subsets S. We claim that there exists a normalized sbl
ϕ ∈ Φ(S) which maps the identical subsets of S to sets of consecutive integers.
For each ϕ ∈ Φ(S), define

M(ϕ) = {Sj | ∃Si, Sk s.t. ϕ(Si) < ϕ(Sk) < ϕ(Sj) and Si = Sj 6= Sk}

Then, there exists a mapping ϕ∗ ∈ Φ(S) such that |M(ϕ∗)| ≤ |M(ϕ′)| for all
ϕ′ ∈ Φ(S). We show that |M(ϕ∗)| = 0, and hence that ϕ∗ is our desired mapping.
Suppose, for the sake of contradiction, that |M(ϕ∗)| > 0. Let Sj ∈ M(ϕ∗) be
such that ϕ∗(Sj) ≤ ϕ∗(S) for all S ∈ M(ϕ∗). Then, there exists two subsets
Si, Sk ∈ S such that Si = Sj 6= Sk and ϕ∗(Si) + 1 = ϕ∗(Sk) < ϕ∗(Sj). Consider
a new labeling ϕ′ defined by

ϕ′(S) = ϕ∗(S) for all S ∈ S such that 1 ≤ ϕ∗(S) ≤ ϕ∗(Si)
ϕ′(S) = ϕ∗(S) + 1 for all S ∈ S such that ϕ∗(Si) < ϕ∗(S) < ϕ∗(Sj)

ϕ′(Sj) = ϕ∗(Sk)

ϕ′(S) = ϕ∗(S) + 1 for all S ∈ S such that ϕ∗(Sj) < ϕ∗(S) ≤ m

For simplicity of notation, we write i instead of ϕ∗(Si), j instead of ϕ∗(Sj)
and k instead of ϕ∗(Sk). Observe that i+ 1 = k. We claim that ϕ′ is an sbl for
S. It is sufficient to show that⋃

ϕ′(S)≤`

S ⊆
⋃

ϕ∗(S)≤`

S



for all k ≤ ` ≤ j. We check at once that

⋃
1≤ϕ′(S)≤`

S =

 ⋃
1≤ϕ′(S)≤i

S

 ∪ Sj ∪

 ⋃
k+1≤ϕ′(S)≤`

S


=

 ⋃
1≤ϕ∗(S)≤i

S

 ∪ Sj ∪

 ⋃
k≤ϕ∗(S)≤`−1

S


=

 ⋃
1≤ϕ∗(S)≤`−1

S

 ∪ Sj

=
⋃

1≤ϕ∗(S)≤`−1

S (since Si = Sj)

⊆
⋃

1≤ϕ∗(S)≤`

S

It follows immediately that Sj /∈ M(ϕ′). Indeed, ϕ∗(Sj) ≤ ϕ∗(S) for all S ∈
M(ϕ∗).

We proceed to show that |M(ϕ∗)| > |M(ϕ′)|. If |M(ϕ′)| = 0, we are done,
so that we may assume |M(ϕ′)| > 0. Let S′ ∈ M(ϕ′). Then there exist subsets
Sa and Sb such that ϕ′(Sa) < ϕ′(Sb) < ϕ′(S′) and Sa = S′ 6= Sb. Now, observe
that we must have ϕ∗(Sj) < ϕ∗(S′). Again, this follows from the fact that
ϕ∗(Sj) ≤ ϕ∗(S) for all S ∈M(ϕ∗). Therefore, by construction of the labeling ϕ′,
either ϕ∗(Sa) < ϕ∗(Sb) < ϕ∗(S′) or ϕ∗(Sb) < ϕ∗(Sa) < ϕ∗(S′). We claim that
S′ ∈M(ϕ∗). The result is certainly valid in case ϕ∗(Sa) < ϕ∗(Sb). Suppose now
that ϕ∗(Sb) < ϕ∗(Sa). Then it follows that we must have Sa = Sj . But Si = Sj .
Therefore ϕ∗(Si) < ϕ∗(Sb) < ϕ∗(S′) and Si = S′ 6= Sb, and hence S′ ∈ M(ϕ∗).
Combining this with the fact that Sj /∈ M(ϕ′) yields |M(ϕ∗)| > |M(ϕ′)|. This
contradicts the choice of ϕ∗. Therefore, we must have |M(ϕ∗)| = 0 and hence
ϕ∗ is a normalized sbl of S. ut

Proof (of Lemma 3). We claim that there exists a satisfying truth assignment
f for φ if and only if there exists an sbl of the configuration of subsets C of the
ground set X.

Suppose that there exists a satisfying truth assignment f for the 3CNF for-
mula φ. Due to symmetry, there is no loss of generality in assuming that each
clause is satisfied by its first literal. Define an labeling τ of the configuration of
subsets C as follows. First, we begin our labeling construction by placing all the
empty subsets of C, that is

1 ≤ τ(Bi) ≤ p1 − 1



for all Bi ∈ B. Next, all the subsets corresponding to the variables are ordered
as follows: for all Vi,j ∈ Vi, 1 ≤ i ≤ n,

pi +

i−1∑
k=1

(pk + qk + rk) ≤ τ(Vi,j) ≤ pi + qi +

i−1∑
k=1

(pk + qk + rk)− 1

The satisfying truth assignment f for φ is coded in our construction as follows:
for all Ai,j ∈ Ai, 1 ≤ i ≤ n, where Ai = Ti if f(xi) = TRUE and Ai = Fi if
f(xi) = FALSE,

pi + qi +

i−1∑
k=1

(pk + qk + rk) ≤ τ(Ai,j) ≤
i∑

k=1

(pk + qk + rk)− 1

and for all A′i,j ∈ A′i, 1 ≤ i ≤ n, where A′i = T ′i if f(xi) = TRUE and A′i = F ′i
if f(xi) = FALSE,

i∑
k=1

(pk + qk + rk) ≤ τ(A′i,j) ≤ pi+1 +
i∑

k=1

(pk + qk + rk)− 1

It easily follows that

τ(Vi) < τ(Ai) < τ(A′i) < τ(Vj) < τ(Aj) < τ(A′j)

for all 1 ≤ i < j ≤ n.
Having disposed of all those subsets corresponding to the variables and to

the satisfying truth assignment f for φ, we now turn to the clauses. This will
be divided into two parts. First, the subsets of Ci, 1 ≤ i ≤ m, are ordered as
follows: for all Ci,j ∈ Ci, 1 ≤ i ≤ m,

pn+i +

n+i−1∑
k=1

(pk + qk + rk) ≤ τ(Ci,j) ≤ pn+i + qn+i +

n+i−1∑
k=1

(pk + qk + rk)− 1

Second, all the subsets of Li,1 and L′i,1, 1 ≤ i ≤ m, are ordered as follows1: for
all Li,1,j ∈ Li,1, 1 ≤ i ≤ m,

pn+i + qn+i +

n+i−1∑
k=1

(pk + qk + rk) ≤ τ(Li,1,j) ≤
n+i∑
k=1

(pk + qk + rk)− 1

and for all L′i,1,j ∈ L′i,1, 1 ≤ i ≤ m,

n+i∑
k=1

(pk + qk + rk) ≤ τ(L′i,1,j) ≤ pn+i+1 +

n+i∑
k=1

(pk + qk + rk)− 1

1 Recall that we assume that each clause is satisfied by its first literal.



A trivial verification shows that

τ(Ci) < τ(Li,1) < τ(L′i,1) < τ(Cj) < τ(Lj,1) < τ(L′j,1)

for all 1 ≤ i < j ≤ m.
Here come the K separator subsets of S, that is for all Si ∈ S

pn+m+1 +

n+m∑
k=1

(pk + qk + rk) ≤ τ(Si) ≤ pn+m+1 +K +

n+m∑
k=1

(pk + qk + rk)− 1

Up to now, all the subsets of C but L of them have been used to define τ . Our
labeling construction ends with those subsets by packing them in the L last
places:

pn+m+1+K+

n+m∑
k=1

(pk+qk+rk) ≤ τ(Xj) ≤ pn+m+1+K+L+

n+m∑
k=1

(pk+qk+rk)−1

A careful examination of τ shows that
∣∣∣⋃τ(X)≤iX

∣∣∣ ≤ i for 1 ≤ i ≤ |C| and

hence that τ is an sbl2 of the configuration of subsets C of the ground set X.
An (partial) illustration of the construction of the sbl τ is shown in Figure 1.

For the converse, suppose that there exists an sbl τ for C, that is an labeling

such that
∣∣∣⋃τ(Xj)≤iXj

∣∣∣ ≤ i for 1 ≤ i ≤ |C|. According to lemma 2, there is

no loss of generality in assuming that τ is a normalized sbl i.e., the identical
subsets of the configuration C are mapped by τ to a set of consecutive integers.
This property is crucial in our proof.

Let us start by proving that 1 ≤ τ(Bi) ≤ p1 − 1 for all Bi ∈ B. Indeed, as
mentioned earlier in the proof, all the above defined subsets of the configuration
of subsets C but those of B contain at least p1 elements and hence can not be
mapped to an integer i ≤ p1 − 1 in any sbl τ for C.

Define the subcollection C∗ ⊂ C as follows:

C∗ = (X ∈ C | max{τ(Bi) | Bi ∈ B} < τ(X) < min{τ(Si) | Si ∈ S})

In other words, the subcollection C∗ contains all those subsets that go after the
last bootstrap subset Bi ∈ B and before the first separator subset Si ∈ S. We
claim that C∗ contains (1) the subsets of Vi for 1 ≤ i ≤ n, (2) either the subsets
of Ti and T ′i or the subsets of Fi and F ′i for 1 ≤ i ≤ n, (3) the subsets of Ci for
1 ≤ i ≤ m and (4) the subsets of Li,1 and L′i,1 or the subsets of Li,2 and L′i,2
or the subsets of Li,3 and L′i,3 for 1 ≤ i ≤ m. For simplicity, this will be divided
into several steps.

Having disposed of the bootstrap subsets, we now turn to the non-empty
subsets of the configuration of subsets C. Roughly speaking, we show that our

2 Observe that the construction of τ may be specialized to yield a normalized sbl.
Indeed, all the subsets of C but the L last ones are mapped by τ to a set of consecutive
integers. But there is no less of generality in assuming that these subsets are mapped
by τ to a set of consecutive integers as well.



construction implies a force placement of the subsets of C together with choices
corresponding to a satisfying truth assignment for the 3CNF formula φ. First,
we must have:

p1 ≤ τ(V1,j) ≤ p1 + q1 − 1

for all 1 ≤ j ≤ q1. Indeed, all other subsets have more than p1 elements and
hence can not be mapped to p1 by τ . Moreover, τ is a normalized sbl for C, i.e.,
the subsets V1,j , 1 ≤ j ≤ q1, are mapped by τ to a set of consecutive integers.
Now, the key point is that the subset which is mapped to p1 + q1 by τ must
have cardinality at most p1 + q1. But a careful examination of the configuration
of subsets C shows that all the remaining subsets contain V1, and hence the
subset which is mapped to p1 + q1 by τ may introduce at most q1 new elements
of the ground set. Then it follows from our construction that this subset is
either a subset of the collection T1 or a subset of the collection F1. Indeed, it
is sufficient to note that r1 + p2 > q1, and hence that no subset V2,j ∈ V2 can
satisfy τ(V2,j) = p1 + q1. As an immediate result, exactly one of the following
two statements is true:

p1 + q1 ≤ τ(T1,j) ≤ p1 + q1 + r1 − 1 (1)

p1 + q1 ≤ τ(F1,j) ≤ p1 + q1 + r1 − 1 (2)

for all 1 ≤ j ≤ r1. We can now proceed analogously to the above to obtain:

(1) ⇒ p1 + q1 + r1 ≤ τ(T ′1,j) ≤ p1 + q1 + r1 + p2 − 1

(2) ⇒ p1 + q1 + r1 ≤ τ(F ′1,j) ≤ p1 + q1 + r1 + p2 − 1

for all 1 ≤ j ≤ p2. Summarizing, exactly one of the following two statements is
true:

p1 ≤ τ(V1) < τ(T1) < τ(T ′1 ) ≤ p1 + q1 + r1 + p2 − 1

p1 ≤ τ(V1) < τ(F1) < τ(F ′1) ≤ p1 + q1 + r1 + p2 − 1

We continue in this fashion obtaining that exactly one of the following two
statements is true:

pi +

i−1∑
k=1

(pk + qk + rk) ≤ τ(Vi) < τ(Ti) < τ(T ′i ) ≤ pi+1 +

i∑
k=1

(pk + qk + rk)− 1

pi +
i−1∑
k=1

(pk + qk + rk) ≤ τ(Vi) < τ(Fi) < τ(F ′i) ≤ pi+1 +

i∑
k=1

(pk + qk + rk)− 1

for all 1 ≤ i ≤ n. This result is crucial as it allows us to construct a truth
assignment f for the 3CNF formula φ. Indeed, subsets of Ti and T ′i are associated
in our construction to literal xi while subsets of Fi and F ′i are associated in our
construction to literal xi.



Having disposed of the variables we now turn to the clauses. For the sake of
clarity, let us first introduce the temporary notations

li = pn+i +

n+i−1∑
k=1

(pk + qk + rk)

hi = pn+i+1 +

n+i∑
k=1

(pk + qk + rk)− 1

for 1 ≤ i ≤ m. We may now proceed analogously to the above to obtain that
exactly one of the following three statements is true:

li ≤ τ(Ci) < τ(Li,1) < τ(L′i,1) ≤ hi
li ≤ τ(Ci) < τ(Li,2) < τ(L′i,2) ≤ hi
li ≤ τ(Ci) < τ(Li,3) < τ(L′i,3) ≤ hi

for all 1 ≤ i ≤ m.
According to the above, the subcollection C∗ contains either the subsets of Ti

and T ′i or the subsets of Fi and F ′i for 1 ≤ i ≤ n. Therefore we can define a truth
assignment f for the 3CNF formula φ as follows: f(xi) = TRUE if Ti ⊂ C∗ and
f(xi) = FALSE if Fi ⊂ C∗ for 1 ≤ i ≤ n. We claim that f is a satisfying truth
assignment for φ. Indeed, for each i, 1 ≤ i ≤ m, consider the true statement

li ≤ τ(Ci) < τ(Li,k) < τ(L′i,k) ≤ hi

where k is either 1, 2 or 3. By construction we have

Li,k,j = V ∪V′ ∪Ak ∪ Li,k ∪

 ⋃
1≤`≤i

C`

 ∪
 ⋃

1≤`≤i−1

C′`


for 1 ≤ j ≤ rn+i and

L′i,k,j = V ∪V′ ∪Ak ∪ Li,k ∪

 ⋃
1≤`≤i

C`

 ∪
 ⋃

1≤`≤i

C′`


for 1 ≤ j ≤ pn+i+1, where Ak = T` if λi,k = x` and Ak = F` if λi,k = x`. But
a careful examination of the configuration of subsets C and of the sbl τ shows
that none of the previous subsets contain the elements of Li,k. Since |Ci| = qn+i
and |Li,k| = qn+i, then it follows that all the elements of Ak must have been
introduced by previous subsets. Indeed, li ≤ τ(Ci) < τ(Li,k) < τ(L′i,k) ≤ hi and
hence Ci and Li,k are mapped by τ to a set of consecutive integers. Therefore, if
Ak = T` (resp. Ak = F`) then we must have chosen T` (resp. F`) in a previous
step, that is T`, T ′` ∈ C∗ (resp. F`,F ′` ∈ C∗). Then it follows that clause ci is
satisfied by its k-th literal. Hence, f is a satisfying truth assignment for φ and
the lemma is proved. ut



Proof (of Lemma 4). The proof is by induction. The result is obvious for n = 1.
For the inductive step, assume the statement holds for some natural number
n and let A be a (0, 1)-matrix of order n + 1. Since A is assumed to be a pet
matrix there exist permutation matrices P and Q such that PAQ ≤ n. Let
A′ = PAQ. As per(A) remains invariant under arbitrary permutation of the
lines of A we have per(A) = per(A′). If per(A′) = 0, we are done. Otherwise
per(A′) ≥ 1 and hence n 1’s appear on the main diagonal of A′. We designate
the matrix obtained from A′ by deleting the first row and the first column
permuted matrix by A′′. As the first row of A′ contains exactly one 1, we have
per(A′′) = per(A′) = per(A) ≤ 1, thereby proving the lemma. ut

Proof (of Lemma 5). The proof is by induction. The assertion is certainly valid
for n = 2 as all (0, 1)-matrix of order 2 are pet matrices but J2. For the inductive
step, assume the statement holds for some natural number n and let A be (0, 1)-
matrix of order n + 1. If A = 0 we are done. Otherwise, let αi be a row of A
with minimum row sum ri. Since A contains at most n+1 1’s, we certainly have
ri ≤ 1. We need to consider two cases:

– If ri = 0, let βj be a column of A with maximum column sum cj . Since
A 6= 0, we certainly have cj > 0. We now permute the lines of A so that row
αi and column βj are the first row and column of the permuted matrix. We
now delete the first row and column of this permuted matrix and apply the
induction hypothesis to this submatrix of order n.

– If ri = 1, we may permute the rows of A so that row 1 of the permuted
matrix contains a 1 in the (1, 1) position and O’s elsewhere. We now delete
the first row and column of this matrix and apply the induction hypothesis
to this submatrix of order n.

ut

Proof (of Lemma 7). The proof is by induction on m. First, the assertion is
certainly valid for m = 1 as

2α(21) (T (20) + 1) = 2× 4× (1 + 1)

= 16

and (
21

1∏
i=1

α(2i)

)
+

 1∑
i=1

21−i+1
1∏
j=i

α(2j)

 = (21 × α(21)) + (21 × α(21))

= (2× 4) + (2× 4)

= 16.



Suppose now that the assertion is true for 2m. Then

T (2m+1) = 2α(2m+1)T (2m) + 2α(2m+1)

= 2α(2m+1)

(2m
m∏
i=1

α(2i)

)
+

 m∑
i=1

2m−i+1
m∏
j=i

α(2j)

+ 2α(2m+1)

=

(
2m+1

m+1∏
i=1

α(2i)

)
+

 m∑
i=1

2m+1−i+1
m+1∏
j=i

α(2j)

+ 2α(2m+1)

=

(
2m+1

m+1∏
i=1

α(2i)

)
+

m+1∑
i=1

2m+1−i+1
m+1∏
j=i

α(2j)

− 2α(2m+1) + 2α(2m+1)

=

(
2m+1

m+1∏
i=1

α(2i)

)
+

m+1∑
i=1

2m+1−i+1
m+1∏
j=i

α(2j)

 .

ut

Proof (of Lemma 8). We need the following claims.

Claim 1.

α(2i) =
22

m+1+m−1

π

(
1 +O

(
21−m

))
.

Proof. We use the following well-known asymptotic (see e.g. [5]):(
2n

n

)
=

4n√
πn

(
1 +O

(
n−1

))
.

Therefore,

α(2m) = 22m−2
(

2m

2m−1

)2

= 22m−2

(
42

m−1

√
π2m−1

(
1 +O

(
21−m

)))2

= 22m−2

(
42

m−1

√
π2m−1

)2 (
1 +O

(
21−m

))2
= 22m−2

42
m

π2m−1
(
1 +O

(
21−m

))2
=

22
m+1+m−1

π

(
1 +O

(
21−m

))2
.



We now develop the error term to obtain

α(2m) =
22

m+1+m−1

π

(
1 +O

(
21−m

)) (
1 +O

(
21−m

))
=

22
m+1+m−1

π

(
1 +O

(
21−m

)
+O

(
21−m

)
+O

(
22−2m

))
=

22
m+1+m−1

π

(
1 +O

(
21−m

))
.

ut

Claim 2.
m∏
i=1

α(2i) = O

(
22

m+2−3

πm

)
.

Proof. According to Claim 1, we may write

m∏
i=1

α(2i) =

m∏
i=1

22
i+1+i−1

π

(
1 +O

(
21−i

))
=

(
1

2π

)m ( m∏
i=1

22
i+1

) (
m∏
i=1

2i

) (
m∏
i=1

(
1 +O

(
21−i

)))

=

(
1

2π

)m (
22

m+2−4
) (

2m+1 − 2
) ( m∏

i=1

(
1 +O

(
21−i

)))

=
22

m+2−3

πm

(
2m − 1

2m

) ( m∏
i=1

(
1 +O

(
21−i

)))

=
22

m+2−3

πm
(
1− 2−m

) ( m∏
i=1

(
1 +O

(
21−i

)))
.

But
∏m
i=1

(
1 +O

(
21−i

))
= O(1) and hence

m∏
i=1

α(2i) =
22

m+2−3

πm
O
(
1− 2−m

)
= O

(
22

m+2−3

πm

)
.

ut

Having disposed of the preliminary steps, write β(i) = 2m−i
∏m
j=i α(2j) so

that our goal reduces to evaluating
∑m
i=1 β(i). For 1 ≤ i < m, we first observe



that

2 β(i+ 1) = 2 2m−i−1
m∏

j=i+1

α(2j)

= 2m−i
m∏

j=i+1

α(2j)

≤ 2m−i
m∏
j=i

α(2j) (since α(i) ≥ 1)

= β(i).

Therefore

m∑
i=1

β(i) ≤
m∑
i=1

β(1)

2i−1

= 2β(1)

m∑
i=1

2−i

= 2β(1)
(
1− 2−m

)
≤ 2β(1).

Then it follows that

m∑
i=1

2m−i
m∏
j=i

α(2j) ≤ 2β(1)

= 2 2m−1
m∏
j=1

α(2j)

= 2m O

(
22

m+2−3

πm

)

= O

(
22

m+2+m−3

πm

)
.

ut


