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Sébastien Brisard. Overview of FFT-based homogenization techniques from the Galerkin point
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Introduction

 Homogenization requires the solution to the so-called “corrector problem”
 Traditional numerical methods (e.g. FEM) can be costly

 Conforming mesh
 Large linear system

 Grid-based methods are handy in such situations!
 FFT-based methods first introduced by Moulinec and Suquet (1994)
 Since about 2010, regain of interest for these methods
 Present talk: overview, biased towards a variational point of vew

 Brief recap on homogenization
 The Lippmann-Schwinger equation (LS): strong and weak forms
 Galerkin discretization of LS: consistent and asymptotically consistent discretizations
 3D application
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Homogenization in a nutshell

div (C :ε)+B=0
ε=sym gradu

+ Boundary Conditions

div (Ceff :ε)+B=0
ε=sym gradu

+ Boundary Conditions

Initial problem Homogenized problem

Separation of scales a≪R≪L
Homogenization

a

2RL

RVE
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Computation of the homogenized stiffness

Elastic equilibrium of RVE Boundary conditions
 Ensure that average strain is E
 Hilll's lemma must hold

Heterogeneous

div ( C :ε)=0
ε=sym gradu

BC(E ) Example: periodic BCs

u (x )=E⋅x+uper(x )

Well-suited to numerical homogenization
Kanit et al. (2003), Int J Sol Struct 40, 3647-3679

Can be complex!

Macroscopic stress

Σ=σ=Ceff :ε=C eff :E

Periodic
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The Lippmann-Schwinger equation (LS)

C0

The Lippmann-Schwinger equation
div (C :ε)=0

ε=E+sym graduper

(C−C0)
−1 : τ+Γ0∗τ=E

τ=(C−C 0):ε

Korringa (1973), J Math Phys 14, 509-513
Kröner (1974), Topics in Applied Continuum Mechanics, 22-38

Nemat-Nasser et al. (1982), Mech Mat 15, 163-181
Zeller and Dederichs (1973), Physica Status Solidi (B) 55, 831-842

div (C0 :ε+ϖ)=0

ε=sym graduper
ε=−Γ0∗ϖ

def.

The Green operator for strains

Reference material
 Arbitrary, homogeneous stiffness: 
 Interesting additional properties if reference material stiffer/softer than all phases

Hashin and Shtrikman (1962), J Mech Phys Sol 10, 335-342 Willis (1977), J Mech Phys Sol 25, 185-202
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LS as a variational problem

adiag (τ ,ϖ)=∫ϖ(x ): [C (x )−C0]
−1 : τ (x )d x

acirc (τ ,ϖ)=∬ϖ(x ) :Γ0(x−y ): τ (y )d x d y

a( τ ,ϖ)=adiag( τ , ϖ) + acirc(τ ,ϖ)

The bilinear form

a( τ ,ϖ)=f (ϖ)  for all ϖ∈V(C−C0)
−1 : τ+Γ0∗τ=E

Strong form Weak form: find τ∈V such that

V: space of square integrable, second order, symmetric tensors.

The linear form: f (ϖ)=E :∫ϖ
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Galerkin discretization of the LS equation

Find τ∈V such that adiag( τ , ϖ)+acirc( τ , ϖ)=f (ϖ)  for all ϖ∈V

Consistent discretization

Find τh∈V h such that adiag (τ
h , ϖh

)+ acirc
h

(τ
h , ϖh

) =f (ϖh
)  for all ϖh

∈V h

Asymptotically consistent discretization: exact evaluation is not necessary!

Space of cell-wise constant polarization fields

Evaluation over V h remains difficult!

Find τh∈V h such that adiag (τ
h , ϖh

)+ acirc(τ
h ,ϖh

) =f (ϖh
)  for all ϖh

∈V h

Asymptotically consistent approximation

Brisard and Dormieux (2010), Comp Mat Sci 49, 663-671

Brisard and Dormieux (2012), Comp Meth Appl Mech Eng 217-220, 197-212
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Asymptotically consistent approximations

 Periodic Green operator for strains is in fact given by an infinite Fourier series
 Various estimates of this series for cell-wise constant functions

 Truncation of high frequencies: Moulinec and Suquet (1994, 1998)
 Exact (up to round-off errors): Brisard and Dormieux (2010)
 Filtering of high frequencies:  Brisard and Dormieux (2012)
 Finite elements approximation: Yvonnet (2012)
 Finite differences approximation: Willot et al. (2014), Willot (2015)

 All these approximations can be fitted in the general framework introduced here!
 If appropriately implemented, they can be switched on-the-fly in a simulation.

Moulinec and Suquet (1994), CR Acad Sci II 318, 1417-1423
Moulinec and Suquet (1998), Comp Meth Appl Mech Eng 57, 69-94
Brisard and Dormieux (2010), Comp Mat Sci 49, 663-671
Brisard and Dormieux (2012), Comp Meth Appl Mech Eng 217-220, 197-212
Yvonnet (2012), Int J Num Meth Eng 92, 178-205
Willot et al. (2014), Int J Num Meth Eng 98, 518-533
Willot (2015), CR Acad Sci Mec 343, 232-245
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The underlying linear system

Discrete variational problem results in a linear system

Block-diagonal Block-circulant

(Adiag + Acirc) x=b

Solving the linear system
 Matrix is not sparse: matrix-free approach
 Use iterative linear solvers

 Fixed-point iterations: Moulinec and Suquet (1994, 1998)
 Augmented-Lagrangian: Michel et al. (2001)
 Conjugate Gradient: Brisard and Dormieux (2010)

 Use FFT to compute matrix-vector products (Moulinec and Suquet, 1994, 1998)

Moulinec and Suquet (1994), CR Acad Sci II 318, 1417-1423
Moulinec and Suquet (1998), Comp Meth Appl Mech Eng 157, 69-94

Michel et al. (2001), Int J Num Meth Eng 52, 139-160
Brisard and Dormieux (2010), Comp Mat Sci 49, 663-671
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Example: 3D microstructure (1/2)

Microstructural parameters
 Flat spheroids (1/8 aspect ratio)
 Dense packing (60%)
 Large model (10000 particles)
 Moderate contrast (inclusions 100 

times stiffer than matrix)

The simulation
 Home-made code

 Python + Cython + FFTW + MPI
 Very flexible implementation
 Soon to be open-sourced (contact me!)

 Simulations run on two servers
 Intel Xeon X5690, 3.47GHz, 192 Go
 Intel Xeon E5-2643, 3.30GHz, 762 Go

 Most simulations run on 16 cores
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Example: 3D microstructure (2/2)

10243
(approx. 6⋅109 dofs)

5123

2563



May 11th, 2015 CIGOS Paris 2015 - S. BRISARD, Overview of FFT-based homogenization techniques from the Galerkin point of view 12

Conclusion and outlook

 Summary
 General, unified framework for FFT-based homogenization techniques
 All avatars of this method (Moulinec & Suquet; Michel, Moulinec and Suquet; Yvonnet; Willot; 

Monchiet; …) fit into this unified framework
 Clear distinction between discretization and iterative solution of the discretized problem: 

any discrete Green operator can be combined with any iterative linear solver

 Work in progress
 A priori error estimates: with F. Legoll (Navier Laboratory, Ecole des Ponts ParisTech)
 A posteriori error estimates: with L. Chamoin (LMT, ENS Cachan)

 Open questions
 Matrix-free preconditioners
 What is the “best” discrete Green operator?
 What is the “best” reference material?



Thank you for your attention!
sebastien.brisard@ifsttar.fr
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