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Abstract

The design of free-form structures is governed by structural and geometric considerations, the latter ones being closely
linked to the costs of fabrication. If some construction constraints have been studied extensively, the question of the
repeatability of nodes in free-form structures has rarely been addressed yet. In this paper, a family of surfaces that
can be optimized regarding typical geometrical constraints and that exhibit high node congruence is proposed. They
correspond to particular meshes of moulding surfaces and are called isogonal moulding surfaces by the authors. The
geometrical properties of these surfaces are discussed. In particular, it is shown how to derive Edge Offset Mesh from
them. It is also demonstrated that they represent all the possible meshes parallel to surfaces of revolution. Finally, the
reader is introduced to some computational strategies linked to isogonal moulding surfaces.

Keywords: Free-form architecture, parametric design, fabrication-aware design, gridshell, structural morphology

1. Introduction

Complex shapes play an increasing role in modern ar-
chitecture. The development of both NURBS modeling
and computer aided industrial processes has allowed new
formal possibilities. The term of free-form usually de-
scribes these new shapes that have emerged. The cre-
ation of formal freedom is however limited by physical
constraints linked to structural performance and fabrica-
tion. One of the designers’ concerns is indeed to assure the
ease of manufacturing of the different elements, leading to
what can be called geometric optimization. Two design
philosophies are opposing. The top-down approach, which
considers a given shape and tries to optimize its discrete
counterpart, has been given a lot of attention recently [11].
The bottom-up approach uses a concatenation of simple
shapes that have desirable properties. It offers a great
control over the properties of both structural layout and
facade from early stage, the drawback being that its formal
possibilities are restricted (see for example [19]). In this
paper, new tools for a bottom-up approach are provided.

The paper is organized as follows. Section 2 discusses
the different design methodologies for doubly curved sys-
tems. It also sums up the existing strategies for the geo-
metric optimization of free-form structures. Among typ-
ical criteria of optimization, a new one based on the re-
peatability of nodes is proposed. A new family of surfaces
that have high node congruence, called isogonal moulding
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surfaces, is introduced in Section 3. It is shown that these
surfaces admit Edge Offset Meshes, which are optimal in
terms of manufacturing. Numerical strategies related to
these shapes are proposed in Section 4. A conclusion fi-
nally discusses the potential of these structures in Section
5.

2. Geometric optimization of free-form structures

2.1. Geometric optimization objectives

The geometrical optimization aims at controlling the
properties of a discrete system. These properties can be
linked with the repeatability of panels and structural com-
ponents or to their intrinsic properties. The usual opti-
mization objectives are the following:

• Planarity of panels: Cutting a panel from a flat
sheet is indeed significantly less expensive than cre-
ating a complex doubly curved mould. This con-
straint was integrated from the very beginning of
free-form architecture [17]. Recent realizations us-
ing cold bent glass show that singly curved panels
are a good alternative to planar panels [2]. A more
detailed discussion on this topic is proposed in [16].
The link between planar quadrilateral meshes and
the developable surfaces is direct, since a developable
surface can be defined as the envelope of a family of
planes.

• Torsion-free nodes and Conical Mesh: A tor-
sion-free node is a node where the central plane of
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beams are all co-axial, as shown in Figure 1. From a
constructive point of view, these nodes can be given
an axis and are easier to produce. Moreover, they
are compatible with double layer grids [11]. A mesh
with torsion-free nodes is also called a Conical Mesh,
because all the faces belonging to the same node are
tangent to the same cone.

• Perfect nodes and Edge Offset Mesh: Even for
torsion-free layouts, the alignment of beams in three
dimensions is a sensitive topic. If one builds with
constant height elements (which is often the case
for steel gridshells), then only few meshes guarantee
that both the top and the bottom of the members
will perfectly match at any vertex. Such meshes are
known as Edge Offset Meshes,their nodes called per-
fect nodes and constitute a subset of Conical Meshes.
They have remarkable mathematical properties de-
scribed in [14].

• Uniform member length: This criterion is linked
to constraints on the maximal width of panels (min-
imization of material loss through cutting and max-
imal statically allowable span), but also to aesthetic
considerations. This optimization goal is less sensi-
tive to cost than the first ones. Nonetheless, some
buildings used a uniform member length to map a
doubly curved surface: this was the case of a circular
dome over a swimming pool in Neckarsulm [18], and
this is also a key characteristic of elastic gridshells
[1]. Different tools, including the compass method
used by the Institute for Lightweight Structures of
Stuttgart [13], have been developed for this purpose.

Figure 1: A torsion-free node, where central planes meet at the same
axis (arrow).

These design constraints can be solved by different
strategies. A common solution to deal with free-form ar-
chitecture is to use triangular panels. They are indeed
always planar, but their high valence implies heavy and

complex nodes. Moreover, no torsion-free layout for tri-
angular meshes exists apart from very specific cases. For
these reasons, translation surfaces were introduced in the
1990’s [17]. They guarantee planar quadrilateral panels,
leading to better connection details, less mullions and less
loss of material through cutting. The formal possibilities
offered by surfaces covered with planar quads have been
broaden with the introduction of scale-trans-surfaces [7].
However, the nodes of translation surfaces are generally
not torsion-free, which sets limits to the maximal span
of these structures, since only single layer structures are
possible.

The development of discrete differential geometry and
computer aided design allowed a better understanding of
the mathematical properties of Planar Quadrilateral (PQ)
meshes. In particular, the interest of using a network of
curvature lines has been explained in [11]: these networks
are indeed very close to PQ conical meshes and can be
computed on any smooth surfaces. It has also been shown
that properties of meshes with torsion-free nodes and pla-
nar panels can be written with simple formulæ on angles or
lengths [22]. Methods of energy minimization have there-
fore been used in order to approximate conical, circular
or PQ-meshes. These methods allow the manipulation of
meshes under geometrical constraints thanks to real-time
optimization [23, 3].

A simple assessment of these methods for geometrical
generation and optimization of form is proposed in Ta-
ble 1. One + sign means that only a partial answer to
the problem is provided. The ++ signs mean that the
problem is completely treated by the strategy offered. A
− sign shows that a solution performs poorly for a given
optimisation goal. The −− sign indicates that a strat-
egy is not suited for the considered optimisation task, and
should be used with consideration. Even though only ge-
ometrical constraints are presented, it can be noticed that
no method gives a fully satisfactory answer to all the op-
timisation objectives. This illustrates the problem that
designers have to face when starting a project: the choice
of the hierarchy between geometrical optimization targets
requires indeed a thorough knowledge of relative costs of
panels, connections and members.

Finally, it is noticed that conical PQ-meshes are highly
efficient for factors which are the most sensitive to cost.
Edge Offset Meshes are also of interest, but all their prop-
erties are not fully known yet. The link between Edge
Offset Meshes and Koebe polyhedra has been discussed in
[15], where answers on the design of Edge Offset Meshes
with hexagons are given. The question of the design free-
dom offered by Edge Offset Quadrilateral Meshes is still
open to this day. It was indeed stated in [14] that ”Edge-
Offset Meshes are discrete versions of Laguerre isothermic
surfaces [...]. Especially for applications in architectural
design it would be highly interesting to get more insight of
the possible shapes of Laguerre isothermic surfaces.”. The
design possibilities offered by isothermic surfaces are how-
ever broader than the one simply offered by surfaces of
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Optimisation Angles Length Panels Node Design
repetition uniformity planarity complexity freedom

Triangular Mesh – ++ ++ – – ++
Scale-trans surfaces – – ++ ++ – – –
PQ Conical Mesh + + ++ + +
Edge Offset Mesh + – ++ ++ –

Table 1: Assessement of different methods of geometrical optimisation.

translation.

2.2. New optimization goal and problem statement
The question of the regularity of connection details

seems to be of little concern. The main reason for this
is that automatic design processes manage the uniqueness
of each connection [10, 20]. However, this constrains the
choice of the technologies used at early stages in the de-
sign. Moreover, no scale effect can be used to save costs
on connections, which remains an important factor on the
economy of steel gridshells. This problem has been iden-
tified early in the design of free-form, and some structural
systems were proposed in order to deal directly with this
constraint. The most known is the elastic gridshell: the
structure is built from an initially flat grid with no initial
in-plane shear stiffness which is deformed in order to map
a given shape [13]. This procedure has been used for one of
the most significant designs of free-form of the modern era:
the Multihalle in Mannheim [9]. One unique connection
detail is used in order to map the free-form shape found
by inversion of an hanging net. This fact has guaranteed a
reasonable cost for these structures. Recent developments
in this field have broadened the possibilities of elastic grid-
shells with the introduction of composite materials, such
as GFRP [6, 1]. However, these structures feature very
slender elements and have therefore a limited span. They
also do not consider the geometry of the covering panels,
which have to be optimized separately.

The question of structures that would be optimal for
the classical optimization goals and with a high node con-
gruence is thus largely unexplored. The profusion and the
mathematical sophistication of the presented optimization
goals makes it also difficult for non-specialists to chose a
design strategy at early stages. In addition, no simple
way to generate good shapes (for example, the ones that
yield to quadrilateral Edge Offset Meshes) is given apart
from scale-trans surfaces and simple surfaces, such as de-
velopable surfaces or surfaces of revolution. This leads to
the two questions that are addressed in this article:

• Is there a family of intrinsically simple shapes that
can be optimal for all the geometrical criteria ex-
posed above, and especially for the repeatability of
connections?

• Is there a simple and intuitive way to generate
quadrilateral Edge Offset Meshes and other optimal
meshes?

3. Isogonal moulding surfaces

It will be shown that isogonal moulding surfaces offer
a positive answer to these questions. These surfaces are
indeed specific cases of Monge’s surfaces which define a
large family of forms which can be easily and naturally
meshed by PQ conical meshes. The intrinsic properties of
isogonal moulding surfaces are discussed in Section 3.4, in
particular, it is shown that they can be optimized towards
Edge Offset Meshes.

3.1. Monge’s surfaces

Monge’s surfaces (also known as generalised moulding
surface) are a family of surfaces introduced by the French
mathematician Gaspard Monge at the beginning of the
nineteenth century in his lectures on differential geometry
[12]. Several equivalent definitions of these surfaces are
given in lectures and are recalled in [15]. The generation
of Monge’s surfaces can be described by a kinematic pro-
cedure, represented on Figure 2. The surface is generated
by the sweeping of a planar curve, called generatrix (in
red on the Figure) along another curve, called rail-curve
(in blue). If the rail-curve is planar, then the surface is
called a moulding surface. There are some restriction on
the kinematic of the generatix, since it has to lay in the
normal plane of the rail curve and it has to follow a ro-
tation minimizing frame. Monge’s surfaces are therefore
a specific case of sweeping surfaces, which makes them a
very familiar set of surfaces for designers.

Figure 2: Kinematic shape generation of Monge’s surface: generatrix
(red) and parallel (blue).

The iso-curves of the surface are called respectively
generatrices and parallels. Generatrices and parallels are
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the curvature lines of Monge’s surfaces, and therefore form
a conjugate-curves network. A discrete version of these
lines is therefore close to a conical PQ-mesh [11]. Monge
also demonstrated [12] that generatrices are geodesics of
Monge’s surfaces, making them interesting for the design
of developable strips. Indeed, if geodesics are known to
be the shortest path between two points, another prop-
erty (which is actually more general) is that the normal
vector of a geodesic is the same as the normal vector of
the surface at any point. This explains their ”straightness
property”, which implies that when unrolled, developable
strips cut along geodesics remain almost straight, mini-
mizing the loss of material through cutting. This property
is well known and used in the construction industry, espe-
cially for the cutting pattern of tensile structures [8].

3.2. Discrete Monge’s surfaces

When both the generatrix and the rail curve are poly-
lines, the resulting surfaces are naturally called discrete
Monge’s surfaces. Discrete Monge’s surfaces are gener-
ated as depicted on Figure 3. Consider two consecutive
edges on the rail curve Ei,j and Ei,j+1. The next par-
allel of the discrete Monge’s surface is generated with an
offset of Ei,j by a vector V. The resulting line Ei+1,j is
intersected with P , the bissecting plane of Ei,j and Ei,j+1,
which give the new vertex of the parallel. The next edge
Ei+1,j+1 is chosen to be parallel to Ei,j+1. This generation

Ei,j

Ei+1,j

Ei+1,j+1

Ei,j+1

V

Ei,j Ei,j+1

Ei+1,j Ei+1,j+1

P

P

h h

ω1 ω2

ω3ω4

ω1

ω2

ω3

ω4

Figure 3: Generation of a discrete Monge surface by edge offset:
perspective (left) and top view (right).

principle implies that there is a local symmetry for each
node. It follows that the angles between the generatrix
and two consecutive edges of a parallel are equal. These
surfaces have therfore intrinsic properties that make them
interesting for construction purpose:

• the panels are planar trapezoids. The parallelism of
opposite edges makes the use of cost-effective stan-
dard opening mechanisms based on rack and pinions
possible;

• the trapezoids have a constant height, which is op-
timal for nesting the panels within a rectangular
bounding box;

• the nodes of discrete Monge’s surface are torsion-
free.

The first statements come directly from the generation
principle presented on Figure 3. The last proposition
can be proven by recalling that any conical mesh respects
Equation (1), as proven in [22].

ω1 + ω3 = ω2 + ω4 (1)

where ωi are the angles between consecutive edges around
a vertex. Here, due to symmetry with respect to the bis-
secting plane, one gets:{

ω1 = ω2

ω3 = ω4

(2)

which proves that discrete Monge’s surfaces are indeed
PQ-Conical Meshes.

The consequence of these propositions is that all
Monge’s surfaces can be considered as optimal for the most
typical optimization goals. Indeed, they guarantee both
faces planarity and torsion-free nodes. Nonetheless, the
user has an intuitive understanding on how to generate
them. This makes them interesting for typical applica-
tions of free-form structures such as glazed gridshells, an
illustration of which is given in Figure 4. Some notorious
examples of built moulding surfaces exist, like the SAGE
Music Centre [4] or the Odate Dome [21]. This illustrates
that moulding surfaces have entered the formal vocabulary
of some architects. However, the property of conical mesh
for Monge’s surfaces did not seem to have been discussed
before.

Figure 4: Free-form as a Monge’s surface, the surface is covered with
planar panels and torsion-free nodes.

3.3. Moulding surfaces

The concept of moulding surface was first introduced
by Gaspard Monge, as a specific case of Monge’s surface
[12]. They were later studied by Gaston Darboux [5]. The
design of moulding surfaces thus follows the simple proce-
dure described in previous Section with a planar curve for
the generatrix and a planar curve for the rail. Discretizing
the surface following lines of curvature, it is noticed that
the parameter influencing the angle at a vertex are limited.
Indeed, as one can see on Figure 5, the only values of in-
terest are the subdivision angle αi of the rail (in blue) and
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the slope βj of the generatrix (in red) within the normal
plane of the rail. A consequence is that for a given parallel
of a discrete moulding surface, the angles of a vertex only
depend on the subdivision angle of the rail. It follows that
a moulding surface where the rail is a polyline with only
one angle has a unique set of vertex angles for each parallel
and therefore, that the nodes along the same parallel are
identical.

BΨNΨ

αi

βj

αi

βj

BΨ

NΨ

Figure 5: The angle of subdivision of the rail curve αi and the slope
of the generatrix with respect to the discrete rotation minimizing
frame βj are the only parameters influencing the vertex angles.

3.4. Isogonal moulding surfaces

Consider a moulding surface where the rail curve is an
isogonal line, i.e. a line with a constant angle subdivision.
We call the resulting surface an isogonal moulding surface.
Following statements can be made:

• for a given parallel of an isogonal moulding surface,
all the vertices are identical;

• all the panels between two given consecutive par-
allels of an isogonal moulding surface are isosceles
trapezoids;

• all the edges between two given consecutive parallels
of an isogonal moulding surface are identical; The
faces of isogonal moulding surfaces are inscribed in
a circle, creating so-called circular meshes and the
possibility to build with constant height nodes.

Isogonal moulding surfaces are therefore both circular and
conical meshes. Indeed, isosceles trapezoids are the only

trapezoids with a circumcircle and it has been seen in Sec-
tion 3.2 that all discrete Monge’s surfaces, and thus all
discrete moulding surfaces are conical meshes.

The introduction of isogonal moulding surfaces gives
therefore a simple way to compute quad meshes that are
conical and circular meshes. They have a constant face or
a constant vertex offset, giving interesting properties for
fabrication. Therefore, the gain in cost of the connections
for gridshells is made both by repeatability and by an in-
trinsic ease of manufacturing. Beyond the fact that a lot
of nodes are identical, it seems that all nodes can be pro-
duced with the same rules, especially if the generatrix is
an isogonal figure as well.

Although limited, the formal universe of isogonal
moulding surfaces reveals archetypal shapes shapes in ar-
chitecture, and some doubly-curved surfaces can easily be
reinterpreted with this family of shapes. Figure 6 shows
the rendering of a barrel vault interpreted as an isogo-
nal moulding surface. The structure can be covered with
planar quadrilateral panels and features remarkable off-
set properties. The rail curve is an parabolic arch with

Figure 6: Free-form generated as an isogonal moulding surface.

20 nodes, there are 34 arches. Without geometrical ratio-
nalization, there would be 680 types of nodes. A regular
isogonal moulding surface would have 34 types of nodes.

If there are P peaks and V valleys on the generatrix,
then the number of different node types can be reduced
with an appropriate isogonal subdivision of the generatrix.
The number of different node types can be approached by
Equation (3). The case of Figure 6 is illustrated on Figure
7: there are 2 peaks and 2 valleys, which reduces the total
number of nodes to 8.

Nnodes '
Nparallels
2 (P + V )

(3)

Isogonal moulding surfaces can also be used to generate
doubly-curved facades using a horizontal rail curve. The
parallelism property implies that all the parallels (same
family as the blue curve) are horizontal, simplifying the
connection of the surface with an underlying structural
layout. The generatrices (in red) can easily withstand
loads such as self-weight, since they lay in a vertical plane
and are likely to be main structural elements. The length
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1/2 peak 1 valley 1 peak 1 valley 1/2 peak

NΨ

BΨ

Figure 7: Peaks and valleys on the generatrix used on Figure 6

repetition property is here key to cost reduction: if the
surface is an isogonal moulding surface, all the main struc-
tural elements will be identical. An example of application
of these properties is the construction-aware design of sta-
dia.

Figure 8: A vertical doubly-curved facade as an isogonal moulding
surface, all the generatrices are equal.

3.5. Mesh parallelism

The remarkable properties of isogonal moulding sur-
faces can also be interpreted with elementary mesh par-
allelism. Figure 9 shows three parallel meshes. These
meshes have the same combinatoric (same number of ver-
tices, faces, edges and connectivity) and their respective
edges are parallels [11]. It can be easily seen that isogonal

Figure 9: Illustration of mesh parallelism for a single planar polygon:
all the figures are parallel to each other because their respective edges
are parallel.

moulding surfaces are parallel to surfaces of revolution. In-
deed, Figure 10 illustrates that a curve with no inflection
point is parallel to a discrete curve on a circle. The appli-
cation of this idea to the rail curve of an isogonal moulding
surface gives the result. As a matter of fact, surfaces of
revolution are particular cases of moulding surfaces where
the rail-curve is a circle.

Figure 10: A spline and a portion of circle with the same integral
of curvature. It is possible to compute parallel isogonal curves for
these two curves.

The property of node repeatability is well-known for
surfaces of revolution, provided that the parallels are isog-
onal curves: these meshes are called canonical meshes of
surfaces of revolution. The repeatability of nodes in isog-
onal moulding surfaces can be explained with respect to
this mesh-parallelism property. More importantly, isog-
onal moulding surfaces represent all the possible meshes
parallel to the canonical mesh of surfaces of revolution. As
particular cases of isogonal moulding surfaces, the faces of
surfaces of revolution are trapezoids, and they feature a
network of planar parallel curves. By definition, the prop-
erty of parallelism is preserved on parallel meshes: all the
parallel meshes of surfaces of revolution have trapezoidal
faces and have a network of planar parallel curves. This
is an alternative definition of moulding surfaces (see for
example [12]), which proves that all the parallel meshes to
surfaces of revolution are moulding surfaces. Mesh paral-
lelism also preserves the angles, in particular, the angles of
a parallel: all the possible meshes parallel to an isogonal
moulding surface are therefore isogonal moulding surfaces.

This gives a very well-defined design framework with
limited formal possibilities. However, the possible shapes
of moulding surfaces are more diverse than the ones of sur-
faces of revolution. Figure 11 shows some isogonal curves
that are parallel and will yield parallel meshes if associated
to the same generatrix. The mesh generated on the left of
the figure is a surface of revolution, whereas the others are
isogonal moulding surfaces. These meshes can be built us-
ing identical nodes. The computational method presented
in Section 4 makes the exploration of the formal possibil-
ities of isogonal moulding surfaces intuitive and fully in-
teractive. These tools have a practical interest for a form-
finding purpose in a bottom-up approach. The numerical
application also shows the trade-off between uniformity of
vertices and uniformity in members lengths.

3.6. Edge Offset Mesh and moulding surfaces

Mesh parallelism can also be used to derive exact edge
offset mesh from isogonal moulding surfaces. It has been
shown in [15] that edge offset meshes feature vertices where
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Figure 11: A set of parallel isogonal curves; if chosen as rail for moulding surfaces with a given generatrix, the resulting meshes will feature
the same properties.

all edges are tangent to the same right circular cone. This
makes them interesting from a technological perspective.
They are parallel to meshes whose edges are tangent to a
sphere known as Koebe meshes. The polyhedra of Figure
12 are Koebe meshes: their edges are tangent to a sphere,
and, as a result, their faces have touching incircles. Many
Koebe meshes exist, from Platonic solids such as the cube
displayed on the left to more complex polyhedra.

As explained in Section 3.4, all the parallel meshes to
meshes with a rotational symmetry are isogonal moulding
surface. This means that all the possible shapes parallel to
the canonical Koebe Meshes, such as the ones displayed on
Figure 12 represent a subset of isogonal moulding surfaces.
This section thus aims at explaining which moulding sur-
faces are constructible with edge offset mesh, and what
kind of limitations this implies for a design purpose.

Figure 12: Canonical Koebe Meshes, the edges are tangent to a
sphere and the incircles of the faces form a circle packing.

The construction of a Koebe mesh with a rotational
symmetry is equivalent to a circle packing problem be-
tween two meridians of a sphere, as illustrated on Fig-
ure 13. Given ∆θ an angular subdivision of the parallel,

or equivalently two meridians (displayed in red) and λ0,
the latitude of the tangency point between an edge of the
Koebe Mesh and the sphere (displayed in blue and dashed
lines on the left of the Figure), the problem becomes one-
directional and can thus be solved very efficiently. The
problem is indeed the construction of a circle that is tan-
gent to the three aforementioned circles, which has two so-
lutions (one circle on each side of the blue dashed circle).
It is then possible to establish a non-linear recurrence for
the admissible values of the latitude λ defining tangency
points between consecutive circles. Introducing ti = tan λi

2

and the constant Kθ = 1 + 2 sin2 ∆θ
2 , the solution of this

recurrence follows.

ti+1 =
2ti ±

(
1− t2i

)√
1−K2θ

(1−Kθ) ti + 1 +Kθ
(4)

Recalling Figure 5 and the fact that the angles at a vertex
of an isogonal moulding surface are only influenced by the
slope of the generatrix in the normal plane of the rail,
the recurrence relation leads to admissible values of λ, i.e.
of admissible slopes for the subdivision of the generatrix.
These values can be used on any isogonal moulding surface,
leading to a propagation method which implementation is
discussed in Section 4. The result is a method to generate
edge offset meshes with a total control of the shape.

4. Application and computational aspects

4.1. Isogonal subdivision of a convex planar curve

The main challenge left with the design of isogonal
moulding surfaces is the isogonal subdivision of a planar
curve. A strategy that guarantees an isogonal subdivision
of a smooth convex curve is proposed in this section. The
method can be interpreted graphically, as pictured in Fig-
ure 14. The basic algorithm steps follow:
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Δθ

λ0

Figure 13: Perspective view of the parameters of the circle pack-
ing problem: for two given meridians (continuous) and one parallel
(dotted), a unique solution exists.

1. Find the tangent vectors TA and TB at the ends of
the curve, and measure their angle αAB (if the curve
is closed and convex, chose αAB = 2π);

2. Divide αAB by the desired number n of inner nodes.
Create the vectors (Ti)

n−1
i=1 , where each Ti is ob-

tained by a rotation of TA by an angle of αAB · i/n
;

3. Find the points corresponding to the tangency to the
(Ti)

n−1
i=1 on the initial curve;

4. Intersect the corresponding lines with each other.

A B

A B

A B

TA

TA

TB TB

αAB

Steps 1&2

Step 3

Step 4

Figure 14: A graphical method for the isogonal subdivision of a
planar curve.

With this formulation, only angles that are a unit fraction
of the total angular variation of the tangent vector are
admissible.

αext =
αAB
n

(5)

It is possible to be even more specific: the points of
tangency Pi found at step 3 form a partition of the curve
with a constant integral of curvature.

αext = (Ti,Ti+1) =

∫ Pi+1

Pi

κds (6)

Intuitively, the consequence is that areas with low curva-
ture will feature longer elements, which can already be no-
ticed on Figures 6 and 14. This criterion also means that
fully numerical approaches based on the integral of curva-
ture are applicable to the search of isogonal polylines.

It has to be noticed that the algorithm can be made
more flexible by letting the user prescribe an angle of sub-
division and a first point of tangency. The last two steps
of the method described above can be implemented with
the prescribed value of the subdivision angle.

4.2. Isogonal subdivision of a planar curve
Consider now the case of a curve that is not convex and

more precisely with varying curvature signs. The strategy
proposed above does not apply directly, but it can be gen-
eralised. Indeed, the procedure to follow is simple:

1. Find the inflection points of the curve and use them
to make a partition of the curve ;

2. Apply the procedure described in Section 4.1 for each
part.

By doing so, one is sure that each part will have an isog-
onal subdivision. The last problem to solve is to know
whether it is possible or not to have the same subdivision
for each part with the simple graphical method described
above. Equation (6) gives an answer to this problem: it is
possible to have the same subdivision angle for two parts
whose integral of curvature are commensurable (their ratio
must be a rational number). This restriction is too strong
for a general purpose. For this reason, a propagation al-
gorithm where the user chooses the angle of subdivision is
more convenient. The algorithm implemented follows the
same principle of tangency point and adapts the sign of the
subdivision angle by checking the sign of the curvature.

The algorithm proposed hereinabove has been im-
plemented as a PythonScript in the drawing software
Rhinoceros. The benchmark for the isogonal subdivision
algorithm studies two typical curves. The first one is a
parabola and has no inflection point. The second one is
a fourth order spline with four inner inflection points re-
calling a sine function. Both curves are shown on Figure
15. The inflection points and tangency points are found
by means of a binary search algorithm.

As seen on Table 2, the computation time is low, even
for a large number of subdivisions. It can be noticed that
the convergence of the algorithm does not vary linearly
with the number of inner nodes: doubling the number of
inner nodes will not double the computation time. The
partition into several domains with the inflection points
makes the computation slower for the sine curve. These
examples show that the algorithm proposed allows a real-
time manipulation of isogonal planar curves and isogonal
moulding surfaces.

4.3. Computation of edge offset meshes from moulding
surface

The computation of edge offset meshes from isogonal
moulding surfaces is closely linked to the construction of a
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Figure 15: Benchmark curves (continuous) with end points and in-
flection points, and the result of our algorithm (dashed lines).

Type Number of inner nodes Computation
of curve time [s]

Parabola

25 0.04
50 0.06
100 0.12
200 0.21

Pseudo-Sine

25 0.10
50 0.11
100 0.17
200 0.27

Table 2: Computation time for the isogonal subdivision algorithm,
the computation was performed on a computer with 2.4 GHz and 2
GB memory.

Koebe mesh with a rotational symmetry, see Section 3.6.
Such a mesh can be determined with two given meridians
on a sphere, or equivalently, with a subdivision angle of
the parallels, as a starting point. Due to its symmetries,
the problem to solve can be represented on a plane, as
shown in Figure 16. Consider the bisecting plane of the two
meridians. The projection of these curves into the plane
gives an ellipse (dashed figure), whereas the meridian in
the bisecting plane is a circle (thick continuous line). The
Koebe Mesh has its edges tangent to the sphere, which
means that the projection of an edge on a meridian (blue
continuous line) has to be tangent to the ellipse. In the
plane displayed on Figure 16, the projection of an edge
along a parallel is a point (in blue on the figure). The
condition of edge tangency for Koebe mesh means that
this point has to be on the central meridian (thick black
circle). The symmetry of the problem guarantees indeed
that the contact has to be on the central meridian and on
the two pre-determined meridians. By this mean, starting
from a point P1, one is able to find a point P2 so that the
line (P1P2) is tangent to the ellipse at the point P ′1. The
procedure can be repeated to construct other points P ′2
and P3, and so on.

For a given point P1 and a propagation direction (either
towards the North pole N or the South pole S), there is
one unique way to construct a valid trapezoid that respect
the rotational symmetry and the edge offset property. This

P1

P2

P3

Pʹ1

Pʹ2

N

S

O

Figure 16: Propagation technique for a sphere, the dashed line is the
projection of a meridian within the plane of the central meridian

leads to the incremental construction of the sets of points
(Pi)

n
i=1 on the circle and (P ′i )

n−1
i=1 on the ellipse. The key

information for the construction of edge offset mesh on
moulding surface is the computation of the slope of the
generatrix, which is the slope of the line (Pi−1Pi). This
calculation gives therefore admissible values of the slope
of the generatrix for the construction of an edge offset
mesh. The computation is very efficient, since the problem
is fundamentally one-directional.

Once the problem of the Koebe mesh on the sphere is
solved, it is possible to apply this approach to any mould-
ing surface. The procedure follows:

1. Subdivide the rail curve into an isogonal figure;

2. Measure the initial slope of the generatrix;

3. Determine the propagation direction (North pole or
South pole);

4. Solve the equivalent problem on the sphere with
these initial values (the result is a set of tangent vec-
tors);

5. Find the tangency points on the generatrix, a suit-
able curve for an edge offset mesh being the envelope
of the tangent lines.

The simplicity of this formulation leads to good computa-
tional performances, the calculation time being typically
below one second, even for meshes with thousands of faces.
A set of typical values of computation is given in Table 3,
the geometry considered is a mesh on a sphere with a sym-
metry with respect to the equator, as the mesh displayed
on Figure 12. In this case, the computation time is mainly
governed by the isogonal subdivision of the rail curve.

The method presented hereinabove is not free from sim-
plifications and from hypothesis. The first one is that the
generatrix has to exhibit curvature in order to use the
propagation technique. If it is not the case, the algorithm
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∆θ ∆λ Number of Faces Computation
time [s]

5◦

30◦ 504 0.19
60◦ 936 0.20
120◦ 2232 0.24
160◦ 3384 0.32

15◦

30◦ 72 0.18
60◦ 120 0.20
120◦ 264 0.22
160◦ 384 0.16

Table 3: Computation time for the Edge Offset Mesh algorithm for
a sphere.

will fail to find admissible values for the slope of the gener-
atrix. This is rather an intrinsic limitation of these surfaces
than a weakness of the algorithm. For example, a cylinder
cannot be given an edge offset mesh, since its Gaussian
map is a circle.

Another difficulty in the use of the edge offset mesh al-
gorithm is that the procedure described does not allow to
cover the entire sphere with a quad mesh. Graphically, it
can be seen on Figure 16 that the ellipse and the circle get
closer as one moves away from the equator, which means
that each ”step” is smaller. Figure 12 shows this narrow-
ing of the faces as the latitude is larger. Numerically, this
means that the algorithm, as it is presented here, would
not converge if the normal of the generatrix is the same as
the normal of the plane containing the rail curve, which
corresponds to the poles in the case of a sphere. From
a practical point a view, it is therefore necessary to pre-
scribe a minimal angle between these normals to stop the
computation. An illustration of the practical limitations
of Koebe mesh on moulding surfaces with respect to this
point is given on Figure 17, where a torus is meshed with
our algorithm. The narrowing of the elements towards
the top of the small circle is clearly visible, and would be
likely to be considered undesired from an architectural and
technological point of view. The mesh exhibited is still an
edge offset mesh, but it does not only feature quad ele-
ments. This simple shape illustrates some of the intrinsic
limitation of edge offset meshes in practical cases.

4.4. Gridshells with planar faces

In this section, an evaluation of the design possibilities
offered by moulding surfaces, isogonal moulding surfaces
and edge offset meshes for gridshells with planar faces is
proposed. In particular, the analytical link between the
discrete mesh and the smooth surfaces leads to some re-
marks on the malleability of edge offset meshes.A case
study is proposed for two archetypical examples of doubly
curved shapes in architecture: domes and barrel vaults.

Moulding surfaces are indeed well-suited for the genera-
tion of domes. The form generation principle is illustrated
on Figure 18: the rail curve is vertical and the generatrix

Figure 17: Edge offset mesh on a torus, a particular case of isogonal
moulding surface where the algorithm proposed in this article does
not provide a mesh with quads only due to intrinsic limitations of
the shape.

is a curve with no inflection point. The surface generated
is cut by an horizontal plane in order to illustrate pos-
sible real life application. Three geometries of dome are
considered: the rail curve (in blue) is a third order spline
and remains unchanged, whereas the generatrix (in red)
varies. This gives three geometries: an oblong shape, a
nearly-spherical one and an intermediate shape. A rela-
tively coarse and a fine edge offset mesh have been gen-
erated on each shape, the coarse meshes can be seen on
Figure 19. The computation of the meshes is instanta-
neous.

Figure 19: Perspective view of the three domes as edge offset meshes.

The number of subdivisions of the rail-curve is iden-
tical for the three geometries, which implies that all the
three edge offset meshes are parallel to each other and de-
rive from the same Koebe mesh on the sphere. The aspect
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Figure 18: Dome as a moulding surface: top view and isometric view.

ratio of a panel is defined as the ratio of its length (max-
imum of the mean value of the lengths of two opposite
edges) over its width (minimum of the mean value of the
lengths of two opposite edges). In Table 4, a comparison
between the aspect ratio of the panels L/l and the ratio
of principal curvatures at the apex of the dome R1/R2 is
made. It appears that these quantities are very similar,
especially when the mesh is refined. For 50 subdivisions
of the rail curve, the difference between these quantities
is below 2%. This simple example shows that the ratio
of principal curvatures is likely to be a key factor in the
anisotropy of edge offset meshes. Keeping this in mind,
some precautions can be taken to improve the quality of an
edge offset mesh, or controlling intuitively its anisotropy:

• Reduce the variation of curvature of the rail curve;

• Avoid areas with low gaussian curvature, as they are
hard to cover with edge offset meshes;

• Even the curvature between parallel and generatrix
in order to deal with eventual mesh anisotropy.

Number of
subdivisions of Type of Dome L/l R1/R2

the rail curve

15
Oblong 3.50 3.60

Intermediate 1.88 2.01
Quasi-spherical 1.12 1.13

50
Oblong 3.53 3.60

Intermediate 2.02 2.01
Quasi-spherical 1.13 1.13

Table 4: Relation between aspect ratio of the panels L/l and the
ratio of the curvatures R1/R2.

Isogonal moulding surfaces are also of interest for the
generation of shapes with varying curvature, such as cor-
rugated barrel vaults. Figure 20 demonstrates this possi-
bility: the rail curve (in blue) is a B-spline of degree 3 with
a rise over span ratio of 37.5 %. The generatrix is a sine
curve which is also divided as an isogonal polyline (with

the exception of the inflection points, where flat node are
introduced). The structure features nearly 700 nodes, but
thanks to the isogonal moulding surface properties and to
the symmetries of the shape, only 8 types of nodes are
used. Height lengths of members are required to span be-
tween any parallels.

Figure 20: Corrugated barrel vault as an isogonal moulding surface.

It can be noticed on Figure 20 that the panels are
longer towards the supports of the structure, which can
be explained by equation (6): the isogonal subdivision has
to define a constant integral of curvature for the rail curve.
The Figure 21 shows that the curvature is bigger on the top
of the rail curve, which is a well known fact for curves such
as parabolæ for example. The dots represent the points of
tangency found with our algorithm. This phenomenon of
shortening of elements in areas of high curvature can be
problematic if the variations are important. In this case,
the designer can choose to divide straight lines by adding
intermediary elements or to divide the rail curve with two
angles, instead of only one.

4.5. Form-finding procedure

The shape of Monge’s surface depends on both the rail
curve and generatrix. In order to modify a design, one can
therefore use different options, that are similar to those
dictating the design of scale-trans surfaces [7]:

• modify the control points of the rail curve;
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Figure 21: Curvature graph of the rail curve in Figure 20, the dots
represent the tangency points found with the algorithm presented in
this paper.

• modify the control points of the generatrix;

• adjust the position of the generatrix within the nor-
mal plane of the rail curve.

The different offset properties of isogonal moulding sur-
faces make it easy to generate mesh offset: the struc-
tural engineers can work with the mid-lines of the beams,
whereas offsets can be used to produce shop drawings of
glass panels. The process can be fully automated with
limited scripting effort.

5. Conclusion

The use of parametric tools allows the design of com-
plex shapes. The development of NURBS modeling has
triggered a real transformation of the industry. The explo-
ration of the typical construction constraints is now made
easier with methods working on general shapes. However,
the limit between what could be called a ”simple” free-
form and a complex one remains blurred and the question
of surfaces that are inherently good from a geometrical
prospective is still an open question. With this work, a
family of intrinsically simple shapes that the designers can
easily and intuitively manipulate was proposed, as shown
in Section 4. Monge’s surfaces and their discrete counter-
part are indeed a rich family of PQ conical meshes that can
be generated very easily in modeling software applications.

It was shown that circular meshes and edge-offset
meshes of moulding surfaces require a subdivision of the
rail curve with a constant integral of curvature, which is
an original illustration of the trade-off between length uni-
formity and vertex uniformity in doubly curved structures.
Isogonal moulding surfaces also represent all the possible
meshes parallel to canonical meshes on surfaces of revolu-
tion.

The authors also consider isogonal moulding surfaces
as the first example of surfaces where high node congru-

ence can be achieved, opening new possibilities for manu-
facturing. The performance of these forms is illustrated in
Table 5. In this sense, they can be compared to translation
surfaces, which triggered reflections on face planarity and
led to powerful geometrical procedures. Both types of sur-
faces suffer from the same limitations regarding the formal
freedom left to the designers: not every shape can be de-
scribed as a moulding surface (example: an ellipsoid), but
archetypal shapes such as domes, stadia or barrel vaults
could be reinterpreted easily with this family of meshes.

The remarkable properties of isogonal moulding sur-
faces and of Monge’s surfaces assure an easy manufactur-
ing of all kinds of structural systems, from construction of
formwork with planks for concrete shells to steel gridshells
or even double layer grid structures. The great amount
of combined properties and the interactivity of the tools
shown in this paper allow the designers to explore various
structural systems at early stages of design while keeping
the same network of discrete lines. These structural possi-
bilities should be investigated in the future. The bottom-up
strategy described in this article is complementary with
more general approaches such as PQ meshes computed
from curvature lines. Both strategies will lead to different
projects and shapes, but they are both valid and interest-
ing.
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