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recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HAL-Ecole des Ponts ParisTech

https://core.ac.uk/display/48319851?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://halshs.archives-ouvertes.fr/halshs-01207185


 
 

 

 
 
 
 
 

WORKING PAPER N° 2015 – 31 
 
 

 

 

 

 
 

 

 

Utilitarian population ethics and births timing 
 

 
 
 

Grégory Ponthière 
 
 
 
 
 
 
 

 
 
 
 
 

JEL Codes: D63, J13, I31 
Keywords: Population ethics, Utilitarianism, Fertility, Birth timing 
 

 
 
 

 

PARIS-JOURDAN SCIENCES ECONOMIQUES 

48, BD JOURDAN – E.N.S. – 75014 PARIS 
TÉL. : 33(0) 1 43 13 63 00 – FAX : 33 (0) 1 43 13 63 10 

www.pse.ens.fr 

 
CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE – ECOLE DES HAUTES ETUDES EN SCIENCES SOCIALES 

ÉCOLE DES PONTS PARISTECH – ECOLE NORMALE SUPÉRIEURE – INSTITUT NATIONAL DE LA RECHERCHE AGRONOMIQUE 



Utilitarian Population Ethics and Births Timing∗

Gregory Ponthiere†

July 3, 2015

Abstract

Births postponement is a key demographic trend of the last decades.
To examine its social desirability, we study how utilitarian criteria rank
histories equal on all dimensions except the age at which individuals give
birth to their children. We develop a T -period dynamic overlapping gen-
erations economy with a fixed living space, where individual welfare is
increasing in the available space per head, and where agents have children
in one out of two fertility periods. When comparing finite histories with
an equal total number of life-periods, classical, average and critical-level
utilitarian criteria select the same fertility timing, i.e. the one leading to
the most smoothed population path. When comparing infinite histories
with stationary population sizes, utilitarian criteria may select different
birth timings, depending on individual utility functions. Those results
are compared with the ones obtained when agents value coexistence time
with their descendants. Finally, we identify conditions under which a shift
from an early births regime to a late births regime is socially desirable.
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1 Introduction

In Reasons and Persons, Parfit (1984) emphasized some major shortcomings
faced by utilitarian social welfare criteria in the context of different numbers
choices. On the one hand, the classical utilitarian social welfare function suf-
fers from the Repugnant Conclusion: for any large population, there exists a
much larger population with a much lower welfare per head, but which yields a
larger aggregate welfare than the former population, and which is thus regarded
as strictly better under classical utilitarianism. On the other hand, average
utilitarianism suffers from the Mere Addition Paradox: the addition, to some
population, of a given number of persons with a welfare slightly lower than the
initial average welfare is regarded as socially undesirable under average utilitar-
ianism, even if the welfare of the initial population is left unaffected.
Following Parfit’s pioneer work, utilitarian population ethics has been devel-

oped in various directions. The search for alternative social welfare criteria that
can escape from the two counterintuitive results mentioned above has received
a strong attention. That research program has produced various new social
welfare criteria, such as critical-level utilitarianism (Blackorby and Donaldson
1984), number-dampened utilitarianism (Hurka 1983, Ng 1986), and critical-
band utilitarianism (Blackorby et al 2005).1 Besides new utilitarian social
welfare criteria, new paradoxes and impossibility results have also been pro-
duced (Arrhenius and Bykvist 1995, Bykvist 2007, Arrhenius 2013). Moreover,
utilitarian population ethics has been applied to some complex ethical dilem-
mas, such as the treatment of future generations (Broome 1992, Arrhenius and
Bykvist 1995), or the trade-off between the addition of new persons and the
extension of the life of existing persons (Broome 2004, Arrhenius 2008).
Most of the population ethics literature relies on an abstract representation

of human societies, which is often reduced to two dimensions: (1) a population
size; (2) a level of utility for each person. More recently, economists revisited
utilitarian population ethics within economic environments, where other dimen-
sions of life are modeled. Renstrom and Spataro (2011) applied the critical-level
utilitarian criterion to the question of the optimal population growth in a dy-
namic overlapping generations (OLG) economy with physical capital accumu-
lation, which was first formulated by Samuelson (1975) under average utilitari-
anism. Jouvet and Ponthiere (2011) revisited the trade-off between adding new
persons and extending the life of existing persons in a dynamic OLG economy
with a fixed living space. Boucekkine and Fabbri (2013) reconsidered Parfit’s
Repugnant Conclusion within a dynamic economic model of endogenous growth.
More recently, Boucekkine et al (2014) examined the extent to which equalizing
the consumption of all individuals in all generations can be the optimal solution
to a utilitarian social planning problem consisting in choosing the optimal age
structure dynamics under the constraint of a given initial age structure.
Besides theoretical developments, the population ethics literature also evolves

through the new challenges it faces. New phenomena can raise new ethical

1For other utilitarian criteria under a variable population, see Blackorby et al (2005).
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dilemmas. One of those new phenomena consists of the recent postponement of
births. Since the 1970s, demographers have observed a significant postponement
of parenthood. That postponement is illustrated on Figure 1.2
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Figure 1: Average age of women at first birth (period)

In the case of Sweden, for instance, the average age of women at first birth
has increased from age 24 in 1970 to age 29 in 2010. The postponement of births
is a fundamental evolution of the last decades, which, as such, raises several
questions, about its causes, its consequences, and about its social desirability.
Is the postponement of births socially desirable?
The goal of this paper is to study the social desirability of births postpone-

ment in the long-run. For that purpose, we study, within a dynamic framework,
whether the postponement of births is socially desirable or not from the per-
spective of utilitarian population ethics. As this is well-known, utilitarian ethics
answers questions about social desirability of actions or policies by means of the
calculus of social welfare under those different actions or policies (without em-
phasis on individual choices). In the present context, we propose to examine
how utilitarian population ethics criteria would rank histories that are equal on
all dimensions except one: the timing of births. The problem can be presented
as follows. Suppose that a life includes not one, but several fertility periods,
during which one can give birth to children. The question that we ask is the
following: which fertility profile is optimal from a utilitarian perspective?
To illustrate the problem, Figure 2 shows, for a lifetime equal to four periods

and including two fertility periods (periods 2 and 3), two possible alternatives,
coined "early births" and "late births" respectively. One can also refer to those
two societies as two distinct islands, i.e. Early Island and Late Island. The
fertility rates n and m denote, respectively, the number of children born during
the first and the second reproduction periods. As shown on Figure 2, the fertility

2Source: The Human Fertility Database (2012).
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timing implies two major differences. A first difference concerns the coexistence
time between the parent and the child. At each point in time, four generations
coexist when births are early, whereas only two cohorts coexist when births are
late. Moreover, whereas children can coexist with their grand-parents on Early
Island, this is not the case on Late Island, where grandparents are dead when
the grandchildren are born. Another difference lies in how the current cohort
size is related to the past cohort size. In Early Island, the size of a newborn
cohort is directly related to the size of the cohort that is born at the previous
period. However, on Late Island, the size of a newborn cohort is related to the
size of the cohort born two periods before, which generates a different population
dynamics.

EARLY BIRTHS LATE BIRTHS

n births m births

Figure 2: early births versus late births

In order to study the social desirability of birth postponement, we will focus
here on an economy with a fixed living space.3 That living space is a common
resource, which is used, at a given point in time, by all individuals who are
alive at that time. One can regard that economy with fixed living space as
a "spaceship economy", in line with Boulding’s metaphor of the Earth as a
spaceship (Boulding 1966). On that spaceship, individual welfare is assumed
to depend positively on the available space per head, space being here equally
distributed among the living individuals.4 The positive effect of space per head
on individual welfare can be interpreted in several ways. One may consider that
space consumption matters for its own sake, so that a too large population can
lead to welfare-reducing congestion (Marshall 1890).5 Another interpretation
consists of considering that space is used in production, so that a too large
population can also reduce welfare through output reduction (Hardin 1968).

3See Pestieau and Ponthiere (2014) for the study of the optimal fertility profile in an
economy with physical capital accumulation, in line with Samuelson (1975).

4See Cramer et al (2004) on the negative effects of congestion on individual welfare.
5 Indeed, as noticed by Marshall (1890), the existence of phases of increasing returns to scale

for non-natural production factors, if combined with a suffi ciently large amount of natural
resources, could make the "population problem" disappear, except if a too large population
density reduces individual welfare through congestion.
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The timing of births being an inherently dynamic issue, we will study the
social desirability of birth postponement in a dynamic framework where dis-
tinct generations overlap with each others. The advantage of that framework
is that it includes, in addition to information about population size and utility,
information about the age-structure of the population, and on the duration of
overlap between generations, which is most relevant for the issue at stake. We
develop a T -period dynamic overlapping generations economy where individual
temporal welfare depends positively on the available space per head, and where
agents have children in one out of two reproduction periods.
Then, we compare, by means of various utilitarian population ethics criteria,

such as classical utilitarianism (CU), average utilitarianism (AU) and critical-
level utilitarianism (CLU), two economies that have exactly the same initial
conditions, the same longevity, but differ regarding the fertility timing: in one
economy, all births take place early in life (i.e. Early Island), whereas in the
other economy, all births take place later on in life (i.e. Late Island).
The welfare comparisons are carried out in four stages. In a first stage, the

comparison focuses on finite histories, i.e. histories where an equal finite num-
ber of life-periods is lived by humans. Then, in a second stage, we compare
infinite histories, i.e. histories where an infinite number of life-periods is lived
by humans, by focusing on histories with a constant long-run population size.
In a third stage, the robustness of those comparisons is examined by introducing
an additional determinant of human well-being: the coexistence time with de-
scendants, which varies across the different births timing (see Figure 2). Finally,
we examine the social desirability of a sudden transition from an early births
regime to a late births regime, which amounts to compare histories differing in
the timing of births and in their starting points.
Anticipating on our results, we first show, when comparing finite histories

with an equal number of life-periods but different fertility timing, that CU, AU
and CLU criteria select the same fertility timing, which is the one leading to
the most smoothed population pattern over time. That optimal birth timing
depends on the initial age-structure within the reproductive age-group. When
the comparison focuses on infinite histories with constant long-run population
sizes, the fertility timing recommended by CU, AU and CLU depends on the
form of the temporal utility function, as well as on the initial age-structure.
Those results are qualitatively robust to the introduction of coexistence concerns
across generations, except insofar as those coexistence concerns push towards
earlier births, in such a way as to allow for longer periods of coexistence between
humans. Hence the socially optimal birth timing depends, at the end of the day,
on how congestion and coexistence concerns are weighted against each other.
Regarding the social desirability of a transition from an early births regime to a
late births regime, we show that such a transition is, for an equal total number
of life-periods, socially desirable when individuals have no coexistence concerns,
but may be undesirable under strong coexistence concerns.
In sum, the major contribution of this paper is to provide, by means of a

general dynamic overlapping generations model, a formal analysis of the social
desirability, from a utilitarian perspective, of the postponement of births. Our
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key findings are: (1) the social desirability of birth postponement depends, in
general, on the postulated population ethics criterion; (2) the social desirability
of birth postponement depends strongly on the initial age structure of the pop-
ulation; (3) the social desirability of births postponement varies also depending
on the importance of spacial congestion and coexistence concerns within indi-
vidual’s preferences; (4) the conclusions that can be drawn are sensitive to the
precise framing of the model, in the sense that a study of the desirability of dif-
ferent simultaneous histories is not formally similar to a study of the desirability
of a sudden transition from one births regime to another regime.
By its findings, the present paper contributes to the recent renewal of the

optimal fertility literature. In a canonical paper, Golosov et al (2007) revisited
the optimal fertility by extending Pareto effi ciency to situations of varying pop-
ulation sizes. Their extension gave birth to two concepts: A-effi ciency (focusing
on the well-being of each individual alive in all situations under comparison) and
P -effi ciency (which treats alive and potential individuals in symmetric ways).
More recently, Conde-Ruiz et al (2010) proposed to revisit optimal fertility, by
means of the concept of Millian effi ciency (constrained A-effi ciency). In com-
parison with the present study - which is based on utilitarian criteria -, those
two recent papers rely on more general normative foundations. However, both
Golosov et al (2007) and Conde-Ruiz et al (2010) rely on a framework with a
unique fertility period, in the sense that individuals have all their children at
the same point in their life. The present study, on the contrary, relies on a
framework that allows also for the study of the optimal timing for births.
The rest of the paper is organized as follows. Section 2 presents the frame-

work. Section 3 compares histories with different birth timings, in the case of
finite histories with an equal total number of life-periods. Section 4 compares
histories with different birth timing in the case of infinite histories with a con-
stant asymptotic population sizes. Section 5 considers an extended model where
individuals value coexistence with their descendants. Section 6 examines the so-
cial desirability of a transition, at a given point in time, from an early births
regime to a late births regime. Section 7 concludes.

2 The framework

We consider an economy where time is discrete, and goes from t = −T to t =∞.
That economy takes the form of a T -period dynamic overlapping generations
economy (OLG): at any point in time, T distinct generations coexist. The
specificity of that economy is that it involves a fixed living space. That fixed
living space can be regarded as the Earth or any planet, or even a "spaceship",
where living conditions allow humans to reproduce themselves.

2.1 Assumptions

Here are the assumptions that we will make throughout this paper.
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Assumption A1 A place of finite surface Q is available for the life of a popu-
lation.

Assumption A2 Only living persons occupy a part of the space Q.

Assumption A3 Each person alive at time t enjoys an equal share of the total
available space: qt = Q

Lt
, where Lt denotes the population size at time t,

whereas qt denotes the space available per person.

Assumption A4 Each person lives exactly T periods of life for sure.

Assumption A5 At each period, the temporal welfare of all persons who are
not alive (either non-existing or dead) is normalized to zero.

Assumption A6 At each period, the temporal welfare of a person who is alive
depends on the space available per person, according to the function:

us = u(qs) = (qs)
σ

+ α ∀s < t+ T

where 0 ≤ σ ≤ 1 and α ≷ 0 is the intercept of the temporal utility
function.

Assumption A7 Lifetime welfare is the sum of temporal utilities: w =
∑T
s=1 us.

Assumption A8 Each person gives birth either to n > 0 children in the second
period of his life, or to m > 0 children in the third period of his life.

Assumption A9 The population age-structure at t = −1 is
{
N−T , N−(T−1), ..., N−1

}
where N−T , N−(T−1), ..., N−1 > 0.

Assumption A1 is standard: the fixity of land is a major ingredient of dis-
cussions on the "population problem" in early political economy (see Botero
1588, Cantillon, 1755, Malthus 1798). Assumption A2 is made for analytical
simplicity. Assumption A3 amounts to suppose that, at a particular point in
time t, all living persons, whatever their age is, occupy an equal amount of
space, defined as the total space divided by the number of persons alive at that
time. That assumption allows us to abstract from problems of intragenerational
distribution of space. Assumption A4 states that all individuals, whatever the
point in time at which they are born, will all enjoy the same longevity, equal to
T periods. Assumption A5 is a standard normalization. Assumption A6 reflects
the fundamental trade-offbetween the quantity and the quality of life.6 It states
that individuals derive some disutility from congestion, in line with Cramer et
al (2004). Adding one person tends, ceteris paribus, to reduce the welfare of all

6 Indeed, adding a person to the population would, under a fixed temporal utility us = α,
necessarily increase the sum of individual utilities. However, once u(qs) is decreasing in the
population size, adding a person to the population does not necessarily increase the sum of
individual utilities, leading to a trade-off between the quantity of life (i.e. the population size)
and the quality of life (i.e. u(qs)).

7



other persons, leading, at the aggregate level, to a quantity/quality trade-off.7

Assumption A7 is standard in the literature. Assumption A8 states that agents
can have children either in the second period of their life, or in the third period
of their life. The existence of a double reproduction period is the specificity of
this framework. Assumption A9 provides conditions on the initial age structure
of the population, at time t = −1.

2.2 Problem setting

The comparison of economies with distinct fertility timings is a special case of
more general comparisons, which focus on what we can call histories. A history
includes, conditionally on an initial age structure, all demographic information:
period-specific fertility rates n and m, and longevity T .

Definition 1 Given an initial age structure
{
N−T , N−(T−1), N−(T−2), ..., N−1

}
prevailing at t = −1, a history is a triplet {T, n,m} where T is the duration of
each life, and n and m are period-specific fertility rates.

A history includes all relevant piece of information in order to fully char-
acterize population dynamics, conditionally on the initial age structure of the
population.
There exist lots of possible histories. A particular family of histories consists

of histories that involve exactly the same total number of life-periods. These
particular histories are called lifetime-equal histories.

Definition 2 Given an initial age structure
{
N−T , N−(T−1), N−(T−2), ..., N−1

}
prevailing at t = −1, two histories {T, n,m} and

{
T̃ , ñ, m̃

}
are lifetime-equal

if and only if these exhibit an equal total number of life-periods for people born
at t ≥ 0.

The reason why we will focus here on lifetime-equal histories is merely that
we would like to examine the social desirability of birth postponement ceteris
paribus, that is, for a given total number of births. Put it differently, our focus on
lifetime-equal histories allows us to compare histories that differ only regarding
the temporal locations of births, without differing on the total number of births.
The demography of our economy can be described as follows. The total

number of life-periods for all cohorts born at t ≥ 0, denoted by P0→, is:

P0→ = T [N0 +N1 +N2 +N3 + ...+N∞]

7Note that Q can also be interpreted as an amount of fully renewable natural resource, in
the sense that, at the beginning of each period, an amount Q of the resource is available for all
living persons. However, we prefer, throughout this paper, to keep the spatial interpretation
of Q, since its constancy over time would amount, under the alternative interpretation, to
assume a constant consumption technology for the fully renewable resource, which is a strong
assumption.
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where Nt denotes the number of individuals born at time t. The size of cohort
t, i.e. the number of persons born at a period t, can be written as:

Nt = nNt−1 +mNt−2

where n and m are, respectively, the early and late fertility rates. The total
fertility rate (TFR) equals n+m. Multiplying and dividing P by N−1 yields:

P0→ = TN−1

[
N0 +N1 +N2 +N3 + ...+N∞

N−1

]
Let us now define the cohort growth factor as gt ≡ Nt

Nt−1
. Using that defini-

tion, the total number of life-periods P0→ can be written as:

P0→ = TN−1 [g0 + g0g1 + g0g1g2 + ...+ g0g1g2...g∞]

Hence, given that gt ≡ Nt
Nt−1

= nNt−1+mNt−2
Nt−1

= n+ m
gt−1

for t ≥ 0, P0→ can
be rewritten as:

P0→ = TN−1

 g0 + g0

(
n+ m

g0

)
+ g0

(
n+ m

g0

)(
n+ m

g1

)
+...+ g0

(
n+ m

g0

)(
n+ m

g1

)
...
(
n+ m

g∞−1

) 
= TN−1g0

 1 +
(
n+ m

g0

)
+
(
n+ m

g0

)(
n+ m

g1

)
+...+

(
n+ m

g0

)(
n+ m

g1

)
...
(
n+ m

g∞−1

) 
= TN−1g0 + TN−1g0

( ∞∑
t=1

t∏
s=1

(
n+

m

gs−1

))

Note that the second term is a sum of an infinite number of terms. An infinity
of life-periods is somewhat problematic for social welfare comparisons. Various
solutions can be used to escape from that problem. One could, when aggregating
the welfare associated to all those life-periods, assign a weight that is decreasing
with time. However, as stressed by Ramsey (1928), such a way to proceed
is completely arbitrary. Therefore we will, in the rest of this paper, focus on
two kinds of histories: first, finite histories, where only a finite total number
of periods are lived by humans (Section 3); second, infinite histories, where we
focus only on the well-being prevailing when the population size is stabilized at
a strictly positive level (Section 4).

3 Birth timing and welfare: finite histories

This section examines how a utilitarian social planner ranks, conditionally on
a given initial age structure

{
N−T , N−(T−1), N−(T−2), ..., N−1

}
prevailing at

t = −1, histories that are equal on all dimensions except regarding the timing
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of births. For that purpose, we will assume, throughout this section, that only
a finite total number of life-periods P is lived.8

Assumption A10 Only a finite number of life-periods will be lived by people
born at t ≥ 0:

P0→ = TN−1g0 + TN−1g0

( ∞∑
t=1

t∏
s=1

(
n+

m

gs−1

))
<∞

Assumption A10 imposes some restrictions on the levels of the two fertility
rates n and m. To see this, let us consider two histories {T, n, 0} and {T, 0,m}
equal on all dimensions except fertility timing. The only difference is that, in
one history (early births case), we have n > 0 and m = 0, whereas, on the other,
we have n = 0 and m > 0 (late births case).
If n > 0,m = 0, the total number of life-periods P0→ is equal to:

P0→ = TN−1 [g0 + g0g1 + g0g1g2 + ...+ g0g1g2...g∞]

= TN−1n
[
1 + n+ n2 + ...+ n∞

]
Hence, a finite total number of life-periods requires n < 1. Then, the total
number of life-periods beyond t ≥ 0 in the early births case is:

P0→ =
TN−1n

1− n

If n = 0,m > 0, the total number of life-periods P0→ is equal to:

P0→ = TN−1 [g0 + g0g1 + g0g1g2 + ...+ g0g1g2...g∞]

= TN−1

[
m

g−1
+

m

g−1

m

g0
+

m

g−1

m

g0

m

g1
+ ...

]
= TN−2m+ TN−2m

[
m

g0
+

m2

g0g1
+

m3

g0g1g2
+ ...

]
= TN−2m+ TN−2m

[
m

g0
+m+

m2

g0
+m2 + ...

]
= TN−2m+ TN−2m

(
1 +

1

g0

)[
m+m2 + ...+m∞

]
as gt = m

gt−1
, which implies gtgt−1 = m.

8By "finite histories", we mean histories with a finite total number of periods lived by
(some) individuals. Note that it remains true that, in our OLG economy, time goes from −T
to ∞, despite of the fact that only a finite number of those periods are lived by some persons.
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Hence, a finite total number of life-periods requires m < 1. Then, the total
number of life-periods beyond t ≥ 0 in the late births case is:

P0→ = TN−2m+
TN−2m

2
(

1 + 1
g0

)
1−m

=
TN−2m

(
1 + m

g0

)
1−m

=
TN−2m

(
1 + N−1

N−2

)
1−m

The following lemma states the condition, on the fertility rates n and m,
such that two histories {T, n, 0} and {T, 0,m} are lifetime-equal.

Lemma 1 Suppose an initial age structure
{
N−T , N−(T−1), N−(T−2), ..., N−1

}
prevailing at t = −1. Take two histories {T, n, 0} and {T, 0,m} with a finite
number of life-periods for people born at t ≥ 0. Those histories are lifetime-equal
histories if and only if:

m = n
N−1

N−1 +N−2(1− n)
=⇒ m < n

Proof. Equalizing P0→ in {T, n, 0} and {T, 0,m} yields:

TN−1n

1− n =
TN−2m

(
1 + N−1

N−2

)
1−m

⇐⇒
n
1−n
m
1−m

=
N−2 +N−1

N−1

Given that N−2+N−1
N−1

> 1, we have m < n. Let us now write the level of

m such that the two histories are lifetime-equal. We need
n

1−n
m

1−m
= N−2+N−1

N−1
.

Hence:
n

1− nN−1 = m

[
(N−2 +N−1) +

nN−1
1− n

]
Hence the equality of P0→ in {T, n, 0} and {T, 0,m} requires

m =
n

(1− n)
[
(N−2 +N−1) + nN−1

1−n

]N−1
m = n

N−1
N−1 +N−2(1− n)

The intuition behind Lemma 1 goes as follows. As reproduction takes place
after two life-periods in history {T, 0,m}, instead of one life-period in history
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{T, n, 0}, there is a larger dependency on the size of past cohorts in the former.
Given that the fertility rates are below the replacement level, so that the size
of cohorts tends to shrink over time, it is clear that, under the same fertility
rates n = m, there would be, after a given time period, more total life-periods
lived in {T, 0,m} than in {T, n, 0}. Hence the equality of the total number of
life periods for people born at t ≥ 0 in {T, n, 0} and {T, 0,m} requires a lower
fertility in {T, 0,m}. Given that longevity T is equal across histories, Lemma 1
states that equal births can only be achieved with unequal fertility rates.
In order to carry out our welfare comparisons, we will use the three following

utilitarian criteria, which are known as classical utilitarianism (CU), average
utilitarianism (AU) and critical-level utilitarianism (CLU).

Definition 3 • Classical utilitarianism (CU):

{T, n,m} �CU
{
T̃ , ñ, m̃

}
⇐⇒

∞∑
t=0

Nt

t+T−1∑
s=t

u(qs) ≥
∞∑
t=0

Ñt

t+T−1∑
s=t

u(q̃s)

• Average utilitarianism (AU):

{T, n,m} �AU
{
T̃ , ñ, m̃

}
⇐⇒

∞∑
t=0

Nt

t+T−1∑
s=t

u(qs)

∞∑
t=0

Nt

≥

∞∑
t=0

Ñt

t+T−1∑
s=t

u(q̃s)

∞∑
t=0

Ñt

• Critical-level utilitarianism (CLU):

{T, n,m} �CLU
{
T̃ , ñ, m̃

}
⇐⇒

∞∑
t=0

Nt

t+T−1∑
s=t

[u(qs)− û] ≥
∞∑
t=0

Ñt

t+T−1∑
s=t

[u(q̃s)− û]

where û is the critical utility level for continuing existence, making a life-
period neutral, while �i denotes the standard preference relation (binary,
reflexive and transitive) for the type-i planner. As usual, � and ∼ denote
strict preference and indifference.

The CU social welfare function ranks histories depending on which one leads
to the largest sum of lifetime well-being for all individuals born at t ≥ 0. On the
contrary, AU ranks histories according to the average lifetime well-being enjoyed
among individuals born at t ≥ 0. Finally, CLU ranks histories according to the
sum of lifetime well-being net of a critical level û making a life-period neutral
from a social perspective. Note that CLU vanishes to CU when the critical
utility level for continuing existence û is equal to 0.9

9Note that the nature of the intercept of the temporal utility function α is quite different
from the nature of the critical utility level for continuing existence û. Indeed, whereas the for-
mer is a purely descriptive parameter, capturing how individuals value longevity with respect
to congestion, the latter is an ethical parameter, which reflects the preferences of the social
planner.
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3.1 Classical utilitarianism

According to classical utilitarianism (Bentham 1789), actions should be chosen
in such a way as to produce the "greatest happiness of the greatest number", in
conformity with the Principle of Utility. Obviously, the selection of a particular
timing for births should also satisfy the Principle of Utility. Proposition 1
presents the preferences of a CU social planner in terms of fertility timing.10

Proposition 1 Assume A1-A10 and 0 ≤ σ ≤ 1. Suppose an initial age struc-
ture

{
N−T , N−(T−1), N−(T−2), ..., N−1

}
. Consider two lifetime-equal histories

{T, n, 0} and {T, 0,m}. We have:

{T, n, 0} �CU (�CU ) {T, 0,m}

if and only if:

∞∑
t=1

ntN−1

t+T−1∑
s=t

(q̄s)
σ ≥ (≤)


∞∑
t=1

(
nN−1

N−1+N−2(1−n)

)t
N−2

t+T−1∑
s=t

(q̂s)
σ

+

∞∑
t=1

(
nN−1

N−1+N−2(1−n)

)t
N−1

t+T−1∑
s=t

(q̌s)
σ


where

q̄s ≡
Q

T−s−1∑
z=0

N−(T−s−z) + (N−1)
∑s
r=1 n

r

q̂s ≡
Q

T−s−1∑
z=0

N−(T−s−z) +

s∑
r=1,3,...

N−2

(
nN−1

N−1+N−2(1−n)

)(r+1)/2
+

s∑
z=2,4,...

N−1

(
nN−1

N−1+N−2(1−n)

)z/2
q̌s ≡

Q
T−s−1∑
z=0

N−(T−s−z+1) +
nN2
−1

N−1+N−2(1−n) +

s∑
r=1,3,...

N−2

(
nN−1

N−1+N−2(1−n)

)(r+1)/2
+

s∑
z=2,4,...

N−1

(
nN−1

N−1+N−2(1−n)

)z/2


Proof. See the Appendix.
In general, CU is known to have a populationist bias, and to lead to ex-

cessive population sizes (e.g. in the Repugnant Conclusion). Here, however,
despite the fact that the total fertility rate (TFR = n + m) is strictly larger
under history {T, n, 0} that under history {T, 0,m} (because of Lemma 1), CU
may, under some initial age-structure conditions, regard late births as better
than early births. That result is surprising. Note, however, that, given that

10Note that the formulas are here shown for the case where T is an even natural number.
Obviously, similar formulas can be derived for the case where T is an odd number.
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histories {T, n, 0} and {T, 0,m} are lifetime-equal, the constancy of longevity
for all individuals implies that those two histories involve also the same number
of births, despite the fact that the total fertility rate is larger under history
{T, n, 0} than under history {T, 0,m}. Thus the CU ranking on births timing
has nothing to do with the number of births. It has to do with the temporal
location of those births. The CU planner selects the birth timing that leads to
the most smoothed population pattern, in such a way as to minimize the social
disutility from congestion.
Obviously, in the special case where space does not matter for well-being,

that is, σ = 0, then CU considers any two lifetime-equal histories as equally
good, since in that case space congestion does not matter, so that the timing of
births does not matter either.

Corollary 1 Assume A1-A10. Suppose an initial age structure {N−T , ..., N−1}.
Consider two lifetime-equal histories {T, n, 0} and {T, 0,m}. Under σ = 0, we
have: {T, n, 0} ∼CU {T, 0,m}.

Proof. See the Appendix.
Another important observation from Proposition 1 is that the CU ranking

of lifetime-equal histories does not depend at all on the preference parameter
α, that is, the intercept of the temporal utility function. The intuition behind
that result lies in the fact that, given that the histories under comparison are
lifetime-equal, the number of life periods in each history under comparison is
the same, which neutralizes the influence of the parameter α.

Whether history {T, n, 0} is, in general, regarded as better or worse than a
lifetime-equal history {T, 0,m} from a classical utilitarian perspective depends
crucially on the initial age structure of the population, i.e. {N−T , ..., N−1}. To
illustrate this, let us focus on a simple 3-period example (i.e. T = 3). Let
us compare two lifetime-equal histories, with either n = 0.5 and m = 0, i.e.
history {3, 0.5, 0}, or n = 0 and m = n N−1

N−1+N−2(1−n) . Numerical simulations
show that, under initial conditions {N−3 = 100, N−2 = 100, N−1 = 30} leading
to m = 0.1875, as well as Q = 1, α = 0 and σ = 0.5, we obtain that the lifetime-
equal history with early births is, under CU, ranked above the lifetime-equal
history with late births:11

{3, 0.500, 0} �CU {3, 0, 0.1875}

This result is intuitive, since the TFR is larger on Early Island (0.500 > 0.1875).
However, under alternative initial conditions {N−3 = 100, N−2 = 100, N−1 = 100}
leading tom = 0.3333, we obtain the opposite ranking, that is, the lifetime-equal
history with later births is, under CU, ranked above the lifetime-equal history
with early births, despite it involves a lower TFR (0.3333 < 0.500):

{3, 0.500, 0} ≺CU {3, 0, 0.3333}
11Simulations cover the first 1000 cohorts, but cumulated social welfare is stabilized far

before the end of that time interval.
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Figures 3 and 4 show, for each comparison of lifetime-equal histories, the cumu-
lated social welfare across cohorts, in the case of Early Island and Late Island.

Figure 3: Cumulated social welfare
across cohorts under

{N−3 = 100, N−2 = 100, N−1 = 30} .
Early Island involves

n = 0.500,m = 0. Late Island involves
n = 0,m = 0.1875.

Figure 4: Cumulated social welfare
across cohorts under

{N−3 = 100, N−2 = 100, N−1 = 100} .
Early Island involves

n = 0.500,m = 0. Late Island involves
n = 0,m = 0.333.

Those few numerical simulations suffi ce to show that CU may, in some cases,
opt for histories involving a lower TFR, on the grounds that, under some initial
age structures, having fewer births along one’s life - but postponed births - may
lead to less space congestion, and, hence, to some welfare improvement. How-
ever, this result may not hold under alternative initial age structures, as shown
by our numerical example. At the end of the day, whether birth postpone-
ment is preferred or not under CU depends crucially on the initial age structure
that prevails in the population. The underlying intuition is that the initial
age structure determines the population dynamics induced by either early or
late fertility, and, hence, the pattern of spatial congestion. Given that an equal
number of persons are born in lifetime-equal histories, whether a history is more
socially desirable than another depends on which history yields the smoothest
population pattern, since this minimizes welfare losses due to congestion.

3.2 Average and critical-level utilitarianism

Let us now compare the above findings with what would prevail under other
standard utilitarian population ethics criteria, such as average utilitarianism
and critical-level utilitarianism.12

12On the origins of average utilitarianism, Gottlieb (1945) refers to Mill (1859), who was in
favour of birth control in the name of social welfare maximization. Note, however, that the
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Proposition 2 states that the ranking on histories under AU and CLU are
equivalent to the ranking on histories under CU.

Proposition 2 Assume A1-A10 and 0 ≤ σ ≤ 1. Suppose an initial age struc-
ture

{
N−T , N−(T−1), N−(T−2), ..., N−1

}
. Consider two lifetime-equal histories

{T, n, 0} and {T, 0,m}. We have:

{T, n, 0} �AU {T, 0,m} ⇐⇒ {T, n, 0} �CU {, T, 0,m}

and
{T, n, 0} �CLU {T, 0,m} ⇐⇒ {T, n, 0} �CU {T, 0,m}

Proof. See the Appendix.
The ranking of histories under AU and CLU is exactly the same as the one

under CU. That result may seem at first glance surprising: one may expect, for
instance, that AU recommends the history where births take place later on in
the lifecycle, i.e. {T, 0,m}, in the spirit of Malthus (1798), who defended birth
postponement as a solution to the population problem.
But this is not necessarily the case: it depends on the initial age structure{

N−T , N−(T−1), N−(T−2), ..., N−1
}
, exactly as under CU. The reason why CU,

AU and CLU yield the same ranking is that the two histories under comparison
are lifetime-equal, and have thus the same total number of births. Only the
temporal location of births differs across the two histories. Here again, AU
recommends - exactly as CU - the fertility timing that yields the most smoothed
population path, so as to minimize welfare losses due to congestion. Whether
this is achieved under an early fertility profile or a late fertility profile depends
on the initial age-structure within the reproductive group.
The dependency of the optimal birth timing on the initial age structure is in

line with the existing literature focusing on the selection, by a utilitarian social
planner, of the optimal age-structure dynamics. By means of a continuous time
dynamic model with linear production in labour, Boucekkine et al (2014) showed
that the optimal age structure dynamics in the Benthamite case is dependent
on the initial age structure that prevails in the economy. The reason for that
dependency on initial age-structure conditions in Boucekkine et al (2014) is close
to the one prevailing in our discrete time framework. The welfare dynamics
induced by a particular birth timing is dependent on the initial age structure
of the population on which age-specific fertility rates apply. Hence the optimal
birth timing depends also on the initial age structure.

4 Birth timing and welfare: infinite histories

Throughout this section, we depart from the finiteness assumption A10, and
consider instead a stationary economy, with a finite constant long-run popula-
tion size. Given that the population size is here stabilized at a strictly positive

distinction between total and average welfare dates back to Sidgwick (1874). Critical-level
utilitarianism was introduced by Blackorby and Donaldson (1984).
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level in the long-run, the total number of periods lived is now infinite, unlike in
the histories considered in Section 3.
The constancy of the population at periods t and t+ 1 requires:

t∑
s=t−T+1

Ns =

t+1∑
s=t−T+2

Ns ⇐⇒ Nt−T+1 = Nt+1

that is, the equality of births (RHS) and deaths (LHS). That condition can be
rewritten as:

Nt−T+1 = Nt−T+1

t+1∏
s=t−T+2

gs ⇐⇒
t+1∏

s=t−T+2
gs = 1

The corollaries of that condition for the two kinds of histories compared
are straightforward. When all births are early, gs = n ∀s, so that the condition
collapses to nT = 1 implying n = 1. When all births are late, we have gs = m

gs−1
,

so that the condition collapses to m = 1 (assuming that T is an even natural
number).13 These are the assumptions we will make throughout this section.

Assumption A11 The population converges asymptotically towards a positive
constant. Hence, when all births take place early in life, we have n = 1,
whereas, when all births take place later on in life, we have m = 1.

Once A10 is replaced by A11, the total number of life-periods becomes infi-
nite. The non-finiteness of total lifetimes is problematic for aggregated ethical
doctrines such as utilitarianism. Therefore, to overcome that diffi culty, we will,
in this section, limit social welfare comparisons to what prevails at the stationary
equilibrium, that is, at the constant long-run population level.14

The following lemma compares the levels of the long-run populations of
histories {T, 1, 0} and {T, 0, 1}.

Lemma 2 Suppose an initial age structure
{
N−T , N−(T−1), N−(T−2), ..., N−1

}
.

Let us compare the long-run population sizes under the infinite histories {T, 1, 0}
and {T, 0, 1} where T is assumed to be an even natural number. History {T, 1, 0}
has a larger (resp. equal, resp. smaller) long-run population than history
{T, 0, 1} if and only if N−1 R N−2.

Proof. See the Appendix.
It is only in the special case where the initial age-structure satisfies N−1 =

N−2 (i.e. uniform initial age-structure among reproductive age-groups) that

13That assumption is indeed necessary to have a constant long-run population when n = 0
and m = 1. Otherwise, if T is an odd natural number, then the population exhibits a two-
period cycle in the long-run.
14That exclusive focus on the stationary equilibrium involves some simplifications: it

amounts to extract the population problem from the time dimension. But it allows us to
compare non-finite histories, since that stationary equilibrium (stationary population and
space per head) will, by definition, reproduce itself forever.
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the two histories yield the same long-run population size. In general, those two
histories, despite the same longevity and the same initial conditions, as well as
the same total fertility rates TFR = n+m = 1, do not have the same long-run
population sizes.
In order to carry out our welfare comparisons, we will concentrate here on

the stationary equilibrium of the economy, i.e. the state achieved when the
population is stabilized and reproduces itself perpetually in the future. In the
context of welfare comparisons at the stationary equilibrium, the definition of
the utilitarian criteria needs to be adapted.15

Definition 4 •

• Long-run classical utilitarianism (LRCU):

{T, n,m} �LRCU
{
T̃ , ñ, m̃

}
⇐⇒ LTu(q) ≥ L̃T̃ u(q̃)

• Long-run average utilitarianism (LRAU):

{T, n,m} �LRAU
{
T̃ , ñ, m̃

}
⇐⇒ Tu(q) ≥ T̃ u(q̃)

• Long-run critical-level utilitarianism (LRCLU):

{T, n,m} �LRCLU
{
T̃ , ñ, m̃

}
⇐⇒ LT [u(q)− û] ≥ L̃T̃ [u(q̃)− û]

where û is the critical utility level for continuing existence, making a life-
period neutral, while �i denotes the standard preference relation (binary,
reflexive and transitive) for the type-i planner. As usual, � and ∼ denote
strict preference and indifference.

4.1 Classical utilitarianism

Let us now examine how a classical utilitarian planner ranks infinite histories
{T, 1, 0} and {T, 0, 1} with constant long-run population sizes but different fer-
tility patterns. The following proposition summarizes our results regarding the
comparison, from a classical utilitarian perspective, of two histories differing
only regarding the timing of births.

Proposition 3 Assume A1-A9 and A11. Suppose an initial age structure {N−T , ..., N−1}.
Consider two histories {T, 1, 0} and {T, 0, 1}:

• If α ≥ 0, then

15Note that we focus here only on the stationary equilibrium, and, hence, we neglect delib-
erately the transition towards that stationary equilibrium. Taking the transition into account
would require to select a pure discount rate. Given that our focus is not on intergenerational
justice - but only on the social desirability of births postponement -, we prefer to focus only
on the stationary equilibrium without considering the sensitivity of our results to the choice
of a pure discount rate.
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— If N−1 < N−2, {T, 1, 0} ≺LRCU {T, 0, 1}.
— If N−1 = N−2, {T, 1, 0} ∼LRCU {T, 0, 1}.
— If N−1 > N−2, {T, 1, 0} �LRCU {T, 0, 1}.

• If α < 0, then {T, 1, 0} �LRCU (�LRCU ) {T, 0, 1} iff

α
(
N−1−N−2

2

)
≥ (≤)

(
Q
T

)σ [(
(N−2+N−1)

2

)1−σ
− (N−1)

1−σ
]
.

Proof. See the Appendix
Proposition 3 states that, when an additional period of life is always worth

being lived at the individual level even under a strong congestion (i.e. α ≥ 0),
then the LRCU social planner ranks the two histories {T, 1, 0} and {T, 0, 1}
depending on which one leads to the largest long-run population size.
Such a size-based ranking does not prevail once adding a life-period is not

necessarily worthy (i.e. α < 0). In that case, the ranking between {T, 1, 0}
and {T, 0, 1} is ambiguous, except when the two histories have the same long-
run population size (i.e. N−1 = N−2), in which case we have {T, 1, 0} ∼LRCU
{T, 0, 1}. The reason is that, when α < 0, the LRCU ranking over histories
depends not only on the number of individuals living at the stationary equi-
librium, but, also, of the congestion dimension. Hence the best birth timing
depends on how quantities of life and qualities of life are weighted against each
other under early and late births.

4.2 Average utilitarianism

Let us now compare the LRCU ranking over {T, 1, 0} and {T, 0, 1} with what
prevails under average utilitarianism. Proposition 4 summarizes our results re-
garding the comparison, from an average utilitarian perspective, of two histories
differing on the timing of births.

Proposition 4 Assume A1-A9 and A11. Suppose an initial age structure {N−T , ..., N−1}.
Consider two histories {T, 1, 0} and {T, 0, 1}:

• If N−1 < N−2, {T, 1, 0} �LRAU {T, 0, 1}.

• If N−1 = N−2, {T, 1, 0} ∼LRAU {T, 0, 1}.

• If N−1 > N−2, {T, 1, 0} ≺LRAU {T, 0, 1}.

Proof. See the Appendix
The ranking in Proposition 4 is the exact opposite of the ranking in Propo-

sition 3 when α ≥ 0. The reason is that, while CU recommends the history with
the largest long-run population size under α ≥ 0, AU does the exact opposite,
and recommends the history with the lowest long-run population size. Note,
however, that the associated birth timing depends on the initial age structure
of the economy.
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4.3 Critical-level utilitarianism

The following proposition summarizes our results regarding the comparison of
two histories differing on the timing of births, from the point of view of critical-
level utilitarianism.

Proposition 5 Assume A1-A9 and A11. Suppose an initial age structure {N−T , ..., N−1}.
Consider two histories {T, 1, 0} and {T, 0, 1}.

• If α− û ≥ 0, then

— If N−1 < N−2, {T, 1, 0} ≺LRCLU {T, 0, 1}.
— If N−1 = N−2, {T, 1, 0} ∼LRCLU {T, 0, 1}.
— If N−1 > N−2 , {T, 1, 0} �LRCLU {T, 0, 1}.

• If α− û < 0, then {T, 1, 0} �LRCLU (�LRCLU ) {T, 0, 1} iff

(α− û)
[
N−1−N−2

2

]
≥ (≤)

(
Q
T

)σ [(
N−2+N−1

2

)1−σ
− (N−1)

1−σ
]
.

Proof. See the Appendix
When the net contribution of a life-period is always non-negative, that is,

when α − û ≥ 0, critical-level utilitarianism recommends the history with the
largest asymptotic population size. Here again, this depends on the initial
age-structure N−1 ≷ N−2. When the net contribution of a life-period may be
negative, the ranking between histories {T, 1, 0} and {T, 0, 1} becomes more
ambiguous, as there is a trade-off between adding new beings and reducing the
available space for existing ones.
In sum, when comparing infinite histories with constant long-run popula-

tion sizes, the social planner’s preference over different fertility timings varies
depending on the treatment of population size in the social objective. Another
crucial determinant of the social ranking depends on the level of the intercept α.
Moreover, the initial age-structure still plays an important role. But that role
is quite different from the one it played in the finite history case. Indeed, in the
comparison of finite histories, the best fertility timing is the one that leads to the
most regular population size dynamics given the postulated initial conditions.
On the contrary, when infinite histories with constant long-run population sizes
are compared, the initial age-structure determines which fertility timing leads
to the largest or the lowest long-run population size.

5 Valuing coexistence with dynasties

A major difference between societies with different birth timing lies in how long
the different cohorts coexist, that is, in the duration of the overlap between gen-
erations. Differences in intergenerational overlap can lead to various outcomes
in terms of congestion, as this was discussed above. However, different durations
of coexistence periods may also be valued for their own sake. For instance, an
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adult may be happy to see not only his children, but, also, his grand-children
and grand-grand children. Such a valuation of coexistence with the dynasty
has not been discussed so far, because assumption A6 made temporal welfare
independent from coexistence with the descendants. As a consequence, lifetime
welfare was only dependent on space (assumption A7).
Our study of the social desirability of births postponement has so far ne-

glected the occurrence of coexistence concerns within the dynasty. However,
from a normative perspective, the analysis of the social desirability of birth
timing should rely on individual’s actual preferences, and not only on some
aspect of these. This motivates the generalization of the previous analyses to
the case where individual well-being depends not only on space congestion, but,
also, on coexistence with descendants. Hence, for the sake of generality, it makes
sense to examine to what extent our previous results are robust to introducing
coexistence concerns. This constitutes the task of this section.
A first thing to stress is that coexistence time differs strongly across histories

with different birth timings. To see this, note first that the total period of
coexistence with descendants for an individual on Early Island is equal to:

(T − 1) (n) + (T − 2)(n2) + (T − 3)(n3) + ...+ (T − T + 1)(nT−1)

The first term consists of the duration of coexistence of the individual with
his n early children, equal to T − 1, multiplied by the number of early children.
The second term consists of the duration of coexistence with his n2 grand-
children, equal to T − 2, multiplied by the number of grand-children, etc.
On Late Island, the total period of coexistence with descendants is equal to:

(T − 2)(m) + (T − 4)(m2) + (T − 6)(m3) + ...+ (T − T + 2)(mT−2)

The first term consists of the duration of coexistence of the individual with
hism late children, equal to T−2, multiplied by the number of late children. The
second term consists of the duration of coexistence with his m2 grand-children,
equal to T − 2, multiplied by the number of grand-children, etc.

Note that the duration of coexistence with descendants is, for each genera-
tion, strictly shorter on Late Island, because of the postponement of births.
In order to discuss the social desirability of different fertility timing while

taking into account the value of coexistence with dynasties, let us replace as-
sumptions A6 and A7 by the following, which keeps the time-additivity but
accounts for valuing coexistence with descendants.16

Assumption A12 Individual lifetime welfare takes the following form:

w =

T∑
r=1

((qr)
σ + α) +

T∑
s=1

((T − s) (ns))
δ

+

T∑
s=1

((T − 2s) (ms))
δ

where 0 ≤ δ < 1 captures the taste for coexistence with descendants.
16Assumption A12 amounts to assume that agents care about coexistence with their de-

scendants, and not with their ancestors. That assumption is made for analytical simplicity.
Note that adding a concern for coexistence with both descendants and ancestors would only
reinforce our results towards making early births more socially desirable than late births.
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Note that, when individuals exhibit no concern for coexistence, then the
parameter δ is equal to zero, and we are back to the baseline framework studied
in the previous sections.
Let us now examine whether introducing a taste for coexistence with the

dynasties affects or not the utilitarian ranking on histories with different birth
timing. For that purpose, we will proceed as above, and distinguish between
finite histories and infinite histories.

5.1 Dynasties under finite histories

As above, we make assumption A10, which amounts to assume that fertility is
below the replacement level. By Lemma 1, we know that lifetime-equal histories
{T, n, 0} and {T, 0,m}must, under that condition, satisfy the condition: m < n.
The following proposition presents the preferences of a classical utilitarian social
planner in terms of fertility timing.

Proposition 6 Assume A1-A5, A8-A10 and A12 and 0 ≤ σ ≤ 1, 0 ≤ δ < 1.
Suppose an initial age structure

{
N−T , N−(T−1), N−(T−2), ..., N−1

}
. Consider

two lifetime-equal histories {T, n, 0} and {T, 0,m}.

{T, n, 0} �CU (�CU ) {T, 0,m}

iff:

∞∑
t=1

ntN−1

t+T−1∑
s=t

(q̄s)
σ

+
nN−1
1− n

(
((T − 1)n)δ + ((T − 2)n2)δ + ...+ (1nT−1

)δ
)

≥ (≤)

∞∑
t=1

(
nN−1

N−1 +N−2(1− n)

)t
N−2

t+T−1∑
s=t

q̂σs +

∞∑
t=1

(
nN−1

N−1 +N−2(1− n)

)t
N−1

t+T−1∑
s=t

q̌σs

+
nN−1
1− n

( (T − 2)nN−1
N−1 +N−2(1− n)

)δ
+ ...+

(
2

(
nN−1

N−1 +N−2(1− n)

)T−2)δ
Proof. See the Appendix.
In comparison with the absence of concerns for coexistence (case where δ =

0), CU now recommends early fertility for a larger number cases. Indeed, the
above condition differs from the condition stated in Proposition 1 in only two
terms. Given that coexistence is unambiguously larger under early births, and
given nN−1

N−1+N−2(1−n) < n, the second term of the LHS of the condition exceeds
the second term of the RHS, implying that introducing coexistence concerns
pushes, ceteris paribus, towards earlier births. The following corollary examines
the special case where σ equals 0.

Corollary 2 Assume A1-A5, A8-A10 and A12 and 0 ≤ δ < 1. Suppose an ini-
tial age structure {N−T , ..., N−1}. Consider two lifetime-equal histories {T, n, 0}
and {T, 0,m}. When σ = 0, we have {T, n, 0} �CU {T, 0,m}.
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Proof. See the Appendix.
In that special case, the early fertility timing is regarded as socially desirable.

The intuition is that, under σ equals 0, there is no need to smooth the population
pattern, unlike under 0 < σ. As a consequence, only the valuation of coexistence
with the dynasty matters. From that perspective, early birth timing does better.
Finally, note that the results of Proposition 6 also hold under other criteria,

such as AU or CLU, as stated in the following corollary.

Corollary 3 Assume A1-A5, A8-A10 and A12 and 0 ≤ δ < 1. Suppose an ini-
tial age structure {N−T , ..., N−1}. Consider two lifetime-equal histories {T, n, 0}
and {T, 0,m}. AU and CLU lead the same ranking on {T, n, 0} and {T, 0,m}
as CU.

Proof. See the Appendix.
Hence, the introduction of a value for coexistence with the dynasty affects

the social desirability of births timing in a manner that is invariant to the type
of utilitarian social criterion considered, since in all histories compared, only the
temporal location of births differs, and not the total number of births. That
effect makes early births more desirable. Note, however, that the smoothing
motive for birth postponement still remains (under σ > 0), so that introducing
a concern for coexistence with the dynasty does not suffi ce, on its own, to
generate a preference for early births.

5.2 Dynasties under infinite histories

In order to check the robustness of our results to the level of total fertility, we
now relax assumption A10, and replace it by assumption A11. As above, the
stationarity of the population size in the long-run implies that the two fertility
rates take their replacement levels, i.e. n = 1 andm = 1. Hence the two histories
under comparison are now: {T, 1, 0} and {T, 0, 1}.
The following proposition summarizes how a CU social planner would rank

those histories in the presence of a concern for dynastic coexistence.

Proposition 7 Assume A1-A5, A8-A9 and A11-A12. Suppose an initial age
structure {N−T , ..., N−1}. Consider two histories {T, 1, 0} and {T, 0, 1}.

• If α ≥ 0 and N−1 ≥ N−2, {T, 1, 0} �LRCU {T, 0, 1}.
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• Otherwise, {T, 1, 0} �LRCU (�LRCU ) {T, 0, 1} iff:

αT 2
(
N−1 −N−2

2

)
≥ (≤)TQσ

[(
T (N−2 +N−1)

2

)1−σ
− (TN−1)

1−σ
]

+
T (N−2 +N−1)

2

( (T − 2)nN−1
N−1 +N−2(1− n)

)δ
+ ...+

(
2

(
nN−1

N−1 +N−2(1− n)

)T−2)δ
−TN−1

(
((T − 1)n)δ + ((T − 2)n2)δ + ...+ ((T − T + 1)nT−1

)δ
)

Proof. See the Appendix.
In comparison to the situation without coexistence concerns, the number of

cases where the CU planner prefers early births is unambiguously larger. Indeed,
early births are now preferred even when the initial age-structure is uniform
across reproductive groups (i.e. N−1 = N−2). The reason has to do with the
larger coexistence possibilities allowed by the early fertility timing, which make
early births valuable even when this does not lead to the largest population size
in the long-run. However, under α < 0 or N−1 < N−2, it may still be the case,
despite the longer coexistence with the dynasty under early births, that late
fertility is regarded as socially more desirable than early fertility, on the ground
of a higher long-run population size. Hence the CU ranking involves here an
arbitrage between total number of persons and how long those persons coexist.
Let us now turn to average utilitarianism.

Proposition 8 Assume A1-A5, A8-A9 and A11-A12. Suppose an initial age
structure {N−T , ..., N−1}. Consider two histories {T, 1, 0} and {T, 0, 1}.

• If N−1 ≤ N−2, {T, 1, 0} �LRAU {T, 0, 1}.

• If N−1 > N−2, {T, 1, 0} �LRAU (�LRAU ) {T, 0, 1} iff:

(TN−1)
−σ

TQσ + Tα+ (T − 1)δ + (T − 2)δ + ...+ (T − T + 1)δ

≥ (≤)

(
T (N−2 +N−1)

2

)−σ
TQσ +

[
Tα+ (T − 2)δ + (T − 4)δ + ...+ (2)δ

]
Proof. See the Appendix.
A major difference with respect to the benchmark model without coexistence

concerns has to do with the fact that even an initial age-structure that involves
a high number of potential young mothers, it may still be the case that early
fertility is regarded as better. The reason has to do that, even if this leads to
a larger long-run population size, the larger congestion that is generated from
early births is compensated by the larger period of coexistence with the dynasty,
which supports early births. However, if N−1 > N−2, it may be the case that
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late births is socially desirable, on the grounds of a lower long-run population,
even though this reduces the coexistence between generations.
Finally, let us conclude our study by focusing on critical-level utilitarianism.

Proposition 9 Assume A1-A5, A8-A9 and A11-A12. Suppose an initial age
structure {N−T , ..., N−1}. Consider two histories {T, 1, 0} and {T, 0, 1}.

• If α− û ≥ 0 and N−1 ≥ N−2, {T, 1, 0} �LRCLU {T, 0, 1}.

• Otherwise, {T, 1, 0} �LRCLU (�LRCLU ) {T, 0, 1} iff:

(α− û)T 2
(
N−1 −N−2

2

)
≥ (≤)TQσ

[(
T (N−2 +N−1)

2

)1−σ
− (TN−1)

1−σ
]

+
T (N−2 +N−1)

2

( (T − 2)nN−1
N−1 +N−2(1− n)

)δ
+ ...+

(
2

(
nN−1

N−1 +N−2(1− n)

)T−2)δ
−TN−1

(
((T − 1)n)δ + ((T − 2)n2)δ + ...+ ((T − T + 1)nT−1

)δ
)

Proof. See the Appendix.
Coexistence concerns tend, here again, to support early births, thanks to

the larger coexistence time allowed by that fertility timing. It may still be the
case that late births are regarded as better than early births, but that case is
less plausible than in the absence of coexistence concerns.
Introducing a taste for coexistence with the descendants can affect which

birth timing is the most desirable from a social perspective. However, even
though coexistence concerns push towards earlier births, the arguments that
were developed in the previous sections are still at work. In finite histories, the
time at which agents make children is still a major instrument for smoothing
the population pattern, and minimize congestion problems. Moreover, in infinite
histories, the timing of births is still crucial to affect the long-run population
size. Therefore, the initial age-structure of the economy remains an essential
determinant of which birth timing is the most appealing.

6 The welfare consequences of a transition

Up to now, our analysis focused on the comparison of two hypothetical societies
differing in terms of birth timing. Whereas our analyses cast some light on
the social desirability of each alternative society from a utilitarian perspective,
one may also be interested in a slightly different kind of comparison, consisting
in comparing social welfare without a childbearing age transition and social
welfare with a childbearing age transition. In other words, instead of comparing
two hypothetical societies differing in terms of birth timing, we would like now
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to contrast an economy with early births with an economy in which cohorts
suddenly decide to postpone births.
The study of the desirability of a transition does not consist in comparing

histories {T, n, 0} and {T, 0,m} starting at the same time, but it consists in
comparing, from the perspective of the well-being of cohorts born at t ≥ 0, a
history {T, n, 0} starting at t = 0 with a history {T, 0,m} starting at t = 1, the
term "starting" referring to the first period of births. Hence, when denoting the
situations without and with the transition, we will use the following notations,
to emphasize the difference in the starting points of those histories:

without transition: {T, n, 0} starting at t = 0 ≡ {T, n, 0}|0→
with transition: {T, 0,m} starting at t = 1 ≡ {T, 0,m}|1→

The difference between the comparison of histories studied above and the
study of that transition can be seen by computing the number of births at each
period under the two situations. Without the childbearing age transition, that
is, under {T, n, 0}|0→, we have:

N0 = nN−1, N1 = nN0, N2 = nN1, N3 = nN2, ..., Nt = nNt−1

Let us now consider the case of a childbearing age transition, that is, {T, 0,m}|1→.
When the transition towards late births take place at time t = 0, the cohort
born at t = −1 suddenly decides not to have children at t = 0, but to adopt
instead a new fertility profile, (0,m), and will thus only have children at t = 1,
which is the point at which history starts in the transition case. Note that, in
that case, no one is born at t = 0, and the number of births follows the pattern:

N0 = 0, N1 = mN−1, N2 = 0, N3 = mN1, N4 = 0, ..., Nt = mNt−2

A major difference with respect to the previous analysis lies in the fact that,
once the transition has taken place, there are lots of periods (i.e. one out of two
periods) without any births. On the contrary, the analysis carried out in the
previous sections of the paper took place in a setting where there were always,
at each period, some new persons being added to the population. The analysis
of the transition requires to introduce periods without births, which makes this
situation really hypothetical. However, we will pursue that analysis, since it is
relevant for the study of the social desirability of birth postponement.
Let us now examine whether this transition from a fertility profile (n, 0)

to another fertility profile (0,m) is welfare-improving or not. This comparison
amounts to examine whether social welfare is larger under {T, 0,m}|1→ than
under {T, n, 0}|0→. Here again, we will focus on the comparison of histories
where an equal total number of life periods are lived, i.e. lifetime-equal histories.
The total number of periods lived is, without the transition (i.e. under the
history {T, n, 0}|0→), equal to:

TN−1n

1− n
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Under the transition (i.e. under the history {T, 0,m}|1→), the total number
of life-periods is equal to:

mTN−1 +m2TN−1 +m3TN−1 + ...+m∞TN−1 =
TN−1m

1−m

Hence, the equality in the total number of life periods lived for individuals born
beyond t ≥ 0 in histories {T, n, 0}|0→ and {T, 0,m}|1→ requires:

n = m < 1

Thus, the constraint that the histories under comparison are lifetime-equal
requires here an equality of age-specific fertility rates, unlike in the previous
comparisons, where we were comparing histories starting at the same point in
time (i.e. with newborn persons at t = 0 in each of these). Having clarified this
point, we can now study under which case a transition in terms of childbearing
age is welfare improving. Proposition 10 summarizes our results.

Proposition 10 Assume A1-A10. Suppose an initial age structure {N−T , ..., N−1}.
Consider the comparison of a history {T, n, 0}|0→ with a history {T, 0,m}|1→.
Suppose that {T, n, 0}|0→ and {T, 0,m}|1→ are lifetime-neutral. Under σ > 0,
we have:

{T, n, 0}|0→ ≺ CU {T, 0,m}|1→
{T, n, 0}|0→ ≺ AU {T, 0,m}|1→
{T, n, 0}|0→ ≺ CLU {T, 0,m}|1→

Proof. See the Appendix.
Proposition 10 states that, from a utilitarian perspective, and whatever the

precise population ethics criterion is (CU, AU or CLU), the childbearing age
transition is welfare improving when space congestion matters. The intuition
behind that result goes as follows. By postponing births, the cohort born at
t = −1 contributes to lower the population size at any posterior period of time.
As a consequence, that birth postponement tends to reduce space congestion,
and, hence, to increase welfare in all posterior periods. Moreover, given that
the two histories {T, n, 0}|0→ and {T, 0,m}|1→ are lifetime-equal, this birth
postponement does not prevent the existence of any person. Therefore, the
childbearing age transition leads to a Pareto improvement, since this makes all
individuals better off, without making any person worst off. In the light of
this, it follows mechanically that, whatever the utilitarian criterion we use, the
childbearing age transition is socially desirable.
That strong result relies on a particular restriction on individual preferences:

the absence of coexistence concerns. As shown by Proposition 11, the introduc-
tion of coexistence concerns makes things less clear. It may be the case, when
coexistence concerns are suffi ciently strong, that the childbearing age transition
is not socially desirable.
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Proposition 11 Assume A1-A5, A8-A9 and A11-A12. Suppose an initial age
structure {N−T , ..., N−1}. Consider the comparison of a history {T, n, 0}|0→
with a history {T, 0,m}|1→. Suppose that {T, n, 0}|0→ and {T, 0,m}|1→ are
lifetime-neutral. Suppose σ > 0.

• We have: {T, n, 0}|0→ �CU (�CU ) {T, 0,m}|1→ iff

∞∑
t=1

ntN−1


t+T−1∑
s=t

 Q
T−s−1∑
z=0

N−(T−s−z) + (N−1)
∑s
r=1 n

r


σ

+
TN−1n

1− n
(
((T − 1)n)δ + ((T − 2)n2)δ + ...+ ((T − T + 1)nT−1

)δ
)

≥ (≤)

∞∑
t=1

ntN−1


t+T−1∑
s=t

 Q
T−s−1∑
z=0

N−(T−s−z) + (N−1)
∑s
r=1,3,5,... n

(r+1)/2


σ

+
TN−1n

1− n
(
((T − 2)n)δ + ...+ ((T − T + 2)nT−2)δ

)
• We have also:

{T, n, 0}|0→ � AU {T, 0,m}|1→ ⇐⇒ {T, n, 0}|0→ �CU {T, 0,m}|1→
{T, n, 0}|0→ � CLU {T, 0,m}|1→ ⇐⇒ {T, n, 0}|0→ �CU {T, 0,m}|1→

Proof. See the Appendix.
Hence, whether the transition towards a postponement of births is socially

desirable or not depends on the relative strengths of congestion concerns and
coexistence concerns. When coexistence concerns are weak, we are back to
Proposition 10, and the transition is socially desirable, since this reduces spacial
congestion for each individual. If, on the contrary, coexistence concerns are
strong, this may make the childbearing age transition not socially desirable.

7 Conclusions

Our societies are witnessing, since the early 1970s, a postponement of births.
Our goal is here to determine whether births postponement is socially desirable
or not. For that purpose, we developed a simple dynamic overlapping gener-
ations framework where individual welfare depends on the available space per
head, and compared, in the light of standard utilitarian criteria, and condition-
ally on the same initial age structure, histories equal on all dimensions except
the fertility timing: either early births only or late births.
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What kind of fertility timing is socially desirable, and why? Our answer de-
pends on the assumption that we make regarding the future survival of Mankind.
If the human species will, like many other species in the past, become extinct
in the long-run, then birth timing affects social welfare through its influence
on the intertemporal population pattern. When comparing finite histories with
the same total number of life-periods, both CU, AU and CLU select the birth
timing that leads to the most smoothed population path. That socially de-
sirable birth timing can involve either early or late fertility, depending on the
initial age-structure that prevails within the reproductive age-group. However,
if one supposes that there will be a stabilization of the human population in
the future, then the birth timing has another function: it can lead to a higher
or a lower asymptotic population size, which can be socially desirable or not,
depending on the postulated individual and social welfare functions.
Those results were shown to be qualitatively robust to the introduction,

among the determinants of human welfare, of a concern for coexisting with the
descendants. That coexistence concern clearly supports early births rather than
late births, on the grounds of the larger duration of coexistence between gen-
erations under early births. Late births have indeed an unambiguous tendency
to shorten the period during which successive generations can coexist, and that
tendency may be regarded as a major shortcoming. However, the optimal birth
timing still depends, within that extended framework, on the fertility level (be-
low the replacement level or not), and, also, on the prevailing age structure.
We also examined the social desirability of a transition from a regime with

early births to a regime with late births. We showed that shifting from an
early births regime to a late births regime is welfare-improving when individ-
uals exhibit no coexistence concerns, but may not be socially desirable when
coexistence concerns are suffi ciently strong.
All in all, whether birth postponement is, from a utilitarian perspective,

socially desirable or not depends on whether welfare gains related to lower con-
gestion at the social level can dominate (or not) welfare losses from coexisting
less time with one’s own descendants (grandchildren, etc.). If concerns for co-
existence with the dynasty are strong, then birth postponement can hardly be
maximizing the greatest happiness of the greatest number, whatever the precise
way in which we specify the social welfare agregator.
Finally, it should be stressed that this paper exhibits some limitations. First

of all, we assumed here that the duration of life is certain and equal to a constant
T . This constitutes a significant simplification, in particular when considering
coexistence issues. Having stressed this, it remains nonetheless true that in-
troducing varying lifespan would make the comparison of demographic regimes
even more complex. We thus leave this for future research. Second, our analyses
focused on the comparison of histories in which all individuals have the same
fertility pattern (which, of course, varies across histories). It would be quite
interesting to consider the more general comparison of histories in which some
children are born early, and some other children are born late, that is, "mixed"
histories. This task is also left on the research agenda.
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9 Appendix

9.1 Proof of Proposition 1

Consider two lifetime-equal histories {T, n, 0} and {T, 0,m}. In history {T, n, 0},
total welfare for all individuals born at t ≥ 0 can be written as:

nN−1Tα+ nN−1

[
Q

N−(T−1) + ...+N−1(1 + n)

]σ
+nN−1

[
Q

N−(T−2) + ...+N−1(1 + n+ n2)

]σ
+...+ nN−1

[
Q

N−1 (n+ n2 + ...+ nT+1)

]σ
+n2N−1Tα+ n2N−1

[
Q

N−(T−2) + ...+N−1(1 + n+ n2)

]σ
+n2N−1

[
Q

N−(T−3) + ...+N−1 (1 + n+ n2 + n3)

]σ
+...+ n2N−1

[
Q

N−1 (n2 + n3 + ...+ nT+2)

]σ
+...
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This can be simplified to:

∞∑
t=1

ntN−1Tα+

∞∑
t=1

ntN−1


t+T−1∑
s=t

 Q
T−1∑
z=0

N−(T−s−z)


σ

=

∞∑
t=1

ntN−1Tα+

∞∑
t=1

ntN−1


t+T−1∑
s=t

 Q
T−s−1∑
z=0

N−(T−s−z) + (N−1)
∑s
r=1 n

r


σ

Let us suppose, for the sake of presentation, that T is an even number. Then,
in history {T, 0,m}, total welfare can be rewritten as:

mN−2Tα+mN−2

[
Q

N−(T−1) + ...+mN−2

]σ
+mN−2

[
Q

N−(T−2) + ...+mN−2 +mN−1

]σ
+mN−2

[
Q

N−(T−3) + ...+N−2 (m+m2) +mN−1

]σ
+...+mN−2

[
Q

N−2
(
m+m2 + ...+mT/2

)
+N−1

(
m+m2 + ...+mT/2

)]σ
+mN−1Tα+mN−1

[
Q

N−(T−2) + ...+mN−1

]σ
+mN−1

[
Q

N−(T−3) + ...+N−2 (m+m2) +mN−1

]σ
+mN−1

[
Q

N−(T−4) + ...+N−2 (m+m2) +N−1 (m+m2)

]σ
+...+mN−1

[
Q

N−2
(
m2 +m3 + ...+mT/2

)
+ ...+N−1

(
m+m2 + ...+m(T/2)+1

)]σ
+m2N−2Tα+m2N−2

[
Q

N−(T−3) + ...+N−2 (m+m2) +mN−1

]σ
+m2N−2

[
Q

N−(T−4) + ...+N−2 (m+m2) +N−1 (m+m2)

]σ
+m2N−2

[
Q

N−(T−5) + ...+N−2 (m+m2 +m3) +N−1 (m+m2)

]σ
+...+m2N−2

[
Q

N−2
(
m2 + ...+m(T/2)+1

)
+N−1

(
m2 + ...+m(T/2)+1

)]σ
+...
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This expression can be rewritten as:

∞∑
t=1

mtN−2Tα+

∞∑
t=1

mtN−1Tα

+

∞∑
t=1

mtN−2


t+T−1∑
s=t

 Q
T−1∑
z=0

N−(T−s−z)


σ+

∞∑
t=1

mtN−1


t+T−1∑
s=t

 Q
T−1∑
z=0

N−(T−s−z)


σ

=

∞∑
t=1

mtN−2Tα+

∞∑
t=1

mtN−1Tα+

∞∑
t=1

mtN−2

[
t+T−1∑
s=t

(q̂s)
σ

]
+

∞∑
t=1

mtN−1

[
t+T−1∑
s=t

(q̌s)
σ

]
where

q̂s ≡ Q/

[
T−s−1∑
z=0

N−(T−s−z) +

s∑
r=1,3,5,...

(N−2)m
(r+1)/2 +

s∑
z=2,4,6,...

(N−1)m
z/2

]

q̌s ≡ Q/

[
T−s−1∑
z=0

N−(T−s−z+1) +mN−1 +

s∑
r=1,3,5,...

(N−2)m
(r+1)/2 +

s∑
z=2,4,6,...

(N−1)m
z/2

]

When the two histories are lifetime equal, we have: m = n N−1
N−1+N−2(1−n) .

Total well-being in the second history can now be written as:

=

∞∑
t=1

(
nN−1

N−1 +N−2(1− n)

)t
N−2Tα+

∞∑
t=1

(
nN−1

N−1 +N−2(1− n)

)t
N−1Tα

+

∞∑
t=1

(
nN−1

N−1 +N−2(1− n)

)t
N−2

[
t+T−1∑
s=t

q̂σs

]
+

∞∑
t=1

(
nN−1

N−1 +N−2(1− n)

)t
N−1

[
t+T−1∑
s=t

q̌σs

]

Hence social welfare is larger in history {T, n, 0} than in history {T, 0,m} if
and only if:

∞∑
t=1

ntN−1Tα+

∞∑
t=1

ntN−1


t+T−1∑
s=t

 Q
T−s−1∑
z=0

N−(T−s−z) + (N−1)
∑s
r=1 n

r


σ

≷
∞∑
t=1

(
nN−1

N−1 +N−2(1− n)

)t
N−2Tα+

∞∑
t=1

(
nN−1

N−1 +N−2(1− n)

)t
N−1Tα

+

∞∑
t=1

(
nN−1

N−1 +N−2(1− n)

)t
N−2

[
t+T−1∑
s=t

q̂σs

]
+

∞∑
t=1

(
nN−1

N−1 +N−2(1− n)

)t
N−1

[
t+T−1∑
s=t

q̌σs

]
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That expression can be simplified as follows. Note that
∞∑
t=1

ntN−1Tα =

N−1Tα
(

1
1−n − 1

)
= nN−1Tα

1−n and that
∞∑
t=1

(
nN−1

N−1+N−2(1−n)

)t
Tα (N−2 +N−1) =

Tα (N−2 +N−1)

∞∑
t=1

(
nN−1

N−1+N−2(1−n)

)t
= TαnN−1

(1−n) . Hence we have:

∞∑
t=1

ntN−1Tα =

∞∑
t=1

(
nN−1

N−1 +N−2(1− n)

)t
N−2Tα+

∞∑
t=1

(
nN−1

N−1 +N−2(1− n)

)t
N−1Tα

and the condition thus becomes:

∞∑
t=1

ntN−1


t+T−1∑
s=t

 Q
T−s−1∑
z=0

N−(T−s−z) + (N−1)
∑s
r=1 n

r


σ

≷
∞∑
t=1

(
nN−1

N−1 +N−2(1− n)

)t
N−2

[
t+T−1∑
s=t

q̂σs

]
+

∞∑
t=1

(
nN−1

N−1 +N−2(1− n)

)t
N−1

[
t+T−1∑
s=t

q̌σs

]

9.2 Proof of Corollary 1.

Take the special case where space does not matter: σ = 0. The condition
becomes:

∞∑
t=1

ntN−1Tα+

∞∑
t=1

ntN−1T

≷
∞∑
t=1

(
nN−1

N−1 +N−2(1− n)

)t
N−2Tα+

∞∑
t=1

(
nN−1

N−1 +N−2(1− n)

)t
N−1Tα

+

∞∑
t=1

(
nN−1

N−1 +N−2(1− n)

)t
N−2T +

∞∑
t=1

(
nN−1

N−1 +N−2(1− n)

)t
N−1T

That condition can be simplified as:

∞∑
t=1

ntN−1 ≷ (N−2 +N−1)

∞∑
t=1

(
nN−1

N−1 +N−2(1− n)

)t
⇐⇒ N−1

(
n

1− n

)
≷ (N−2 +N−1)

(
nN−1

N−1 +N−2(1− n)− nN−1

)
⇐⇒ 1

1− n ≷
N−2 +N−1

(N−1 +N−2) (1− n)
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That condition is always valid. Hence, independently from initial conditions,
if space congestion does not matter, histories {T, n, 0} and {T, 0,m} bring the
same total welfare. This is not surprising, since these two lotteries are, by con-
struction, lifetime-equal, meaning that these yield to exactly the same number
of life periods, and, hence, in the absence of concern for congestion, this makes
the two lotteries equally good.

9.3 Proof of Proposition 2

Consider first the case of average utilitarianism. Assuming that the two histories
are lifetime equal, the total number of individuals born at t ≥ 0 in history
{T, n, 0} and in history {T, 0,m} is: TnN−1

1−n . In the light of this, the average
total welfare in history {T, n, 0} is:

∞∑
t=1

ntN−1Tα+

∞∑
t=1

ntN−1


t+T−1∑
s=t

 Q
T−s−1∑
z=0

N−(T−s−z)+(N−1)
∑s
r=1 n

r


σ

TnN−1
1−n

whereas the average total welfare in history {T, 0,m} is:
∞∑
t=1

(
nN−1

N−1+N−2(1−n)

)t
N−2Tα+

∞∑
t=1

(
nN−1

N−1+N−2(1−n)

)t
N−1Tα

TnN−1
1−n

+

∞∑
t=1

(
nN−1

N−1+N−2(1−n)

)t
N−2

TnN−1
1−n

[
t+T−1∑
s=t

q̂σs

]
+

∞∑
t=1

(
nN−1

N−1+N−2(1−n)

)t
N−1

TnN−1
1−n

[
t+T−1∑
s=t

q̌σs

]

Given that TnN−1
1−n divides both the LHS and the RHS of that condition, it is

straightforward to see that average welfare for individuals born at t ≥ 0 is larger
under history {T, n, 0} than in history {T, 0,m} if and only if the same condition
as under CU is satisfied. The same rationale can be used to show that CLU
yields exactly the same ranking as CU as far as the comparison of lifetime equal
histories is concerned.

9.4 Proof of Lemma 2

Let us compute the total long-run population size under the two histories
{T, n, 0} and {T, 0,m}. In general, the total population follows the dynam-
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ics:

L0 = N−(T−1) +N−(T−2) + ...+N−2 +N−1 +N0

L1 = N−(T−2) +N−(T−3) + ...+N−1 +N0 +N1

L2 = N−(T−3) +N−(T−4) + ...+N0 +N1 +N2

...

LT−2 = N−1 +N0 +N1 + ...+NT−2

LT−1 = N0 +N1 +N2 + ...+NT−1

...

Lt = Nt−T+1 + ...+Nt−1 +Nt

Under the history {T, 1, 0}, that evolution takes the form:

L0 = N−(T−1) +N−(T−2) + ...+N−2 +N−1 +N−1

L1 = N−(T−2) +N−(T−3) + ...+ 3N−1

L2 = N−(T−3) +N−(T−4) + ...+ 4N−1

...

LT−2 = TN−1

Lt = TN−1 for t ≥ T − 2

Under the history {T, 0, 1}, that evolution takes the form (we assume T is
an even number):

L0 = N−(T−1) +N−(T−2) + ...+N−2 +N−1 +N−2

L1 = N−(T−2) +N−(T−3) + ...+N−1 +N−2 +N−1

L2 = N−(T−3) +N−(T−4) + ...+N−1 +N−2 +N−1 +N−2

...

LT−2 = N−1 +N−2 +N−1 + ...+N−2

LT−1 = N−2 +N−1 +N−2 + ...+N−1

...

Lt =
T

2
N−2 +

T

2
N−1 =

TN−2(1 + N−1
N−2

)

2

Hence, the asymptotic population size under {T, 1, 0} and {T, 0, 1} are ranked
according to:

TN−1 ≷
TN−2(1 + N−1

N−2
)

2
⇐⇒ N−1 ≷ N−2

Hence, if N−1 > N−2, the asymptotic population under {T, 1, 0} exceeds the
one under {T, 0, 1}. If N−1 = N−2, the asymptotic population under {T, 1, 0}
equals the one under {T, 0, 1}. If , N−1 < N−2, the asymptotic population
under {T, 1, 0} is smaller than the one under {T, 0, 1}.
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9.5 Proof of Proposition 3

Social welfare at the stationary equilibrium is equal to (abstracting from time
indexes):

LTu(q) = LTu

(
Q

L

)
= LT

(
Q

L

)σ
+ LTα = L1−σTQσ + LTα

where L denotes the asymptotic population size, and q the asymptotic space
per head.
Under history {T, 1, 0}, that formula becomes:

TN−1Tu(q) = T 2N−1

[
α+

(
Q

TN−1

)σ]
= T 2N−1α+ T 2−σ (N−1)

1−σ
Qσ

Under the history {T, 0, 1}, that formula becomes:

LTu(q) =
TN−2(1 + N−1

N−2
)

2
T

α+

 Q

TN−2(1+
N−1
N−2

)

2


σ

=
T 2N−2(1 + N−1

N−2
)α

2
+

(
TN−2(1 + N−1

N−2
)

2

)1−σ
TQσ

Hence the ranking of the CU planner depends on:

T 2N−1α+T 2−σ (N−1)
1−σ

Qσ ≷
T 2N−2(1 + N−1

N−2
)α

2
+

(
TN−2(1 + N−1

N−2
)

2

)1−σ
TQσ

That expression can be written as:

T 2α

(
N−1 −N−2

2

)
≷ QσT 2−σ

[(
(N−2 +N−1)

2

)1−σ
− (N−1)

1−σ
]

⇐⇒ α

(
N−1 −N−2

2

)
≷
(
Q

T

)σ [(
(N−2 +N−1)

2

)1−σ
− (N−1)

1−σ
]

If N−1 = N−2, the LHS and RHS are equal to 0, so that indifference holds. If
N−1 < N−2, and α > 0, the LHS is negative, while the RHS is positive (given
σ ≤ 1). Hence the history {T, 0, 1} is better. If N−1 > N−2, and α > 0, the
LHS is positive, while the RHS is negative (given σ ≤ 1). Hence the history
{T, 1, 0} is better. If N−1 < N−2, and α < 0, the LHS is positive, while the

RHS is positive (given σ ≤ 1), so that the ranking depends on α
(
N−1−N−2

2

)
≷(

Q
T

)σ [(
(N−2+N−1)

2

)1−σ
− (N−1)

1−σ
]
. If N−1 > N−2, and α < 0, the LHS

is negative, while the RHS is negative (given σ ≤ 1), the same indeterminacy
prevails.
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9.6 Proof of Proposition 4

Under {T, 1, 0}, average social welfare is:

Tu(q) = T

(
Q

TN−1

)σ
+ Tα

Under {T, 0, 1}, L equals
TN−2(1+

N−1
N−2

)

2 , so that average social welfare is:

Tu(q) = T

 Q

TN−2(1+
N−1
N−2

)

2


σ

+ Tα

Hence the ranking between {T, 1, 0} and {T, 0, 1} depends on:

T

(
Q

TN−1

)σ
+ Tα ≷ T

 Q

TN−2(1+
N−1
N−2

)

2


σ

+ Tα ⇐⇒ N−1 ≶ N−2

Simplifications yield: N−1 ≶ N−2. Hence if N−1 > N−2, {T, 0, 1} is preferred
over {T, 1, 0}. If N−1 < N−2, {T, 1, 0} is preferred over {T, 0, 1}. Indifference
holds under N−1 = N−2.

9.7 Proof of Proposition 5

Under history {T, 1, 0}, social welfare under CLU at the stationary equilibrium
is equal to (abstracting from time indexes):

LT [u(q)− û] = TN−1T [u(q)− û]

= TN−1T

(
Q

TN−1

)σ
+ TN−1T (α− û)

= T 2−σ (N−1)
1−σ

Qσ + T 2N−1 (α− û)

Under history {T, 0, 1}, that formula becomes:

LT [u(q)− û] =

(
N−2(1 + N−1

N−2
)

2

)1−σ
T 2−σQσ +

N−2(1 + N−1
N−2

)

2
T 2 (α− û)

Hence the ranking of the CLU planner depends on:

T 2−σ (N−1)
1−σ

Qσ+T 2N−1 (α− û) ≷
(
N−2(1 + N−1

N−2
)

2

)1−σ
T 2−σQσ+

N−2(1 + N−1
N−2

)

2
T 2 (α− û)

After simplifications, that expression becomes:

(α− û)

[
N−1 −N−2

2

]
≷
(
Q

T

)σ [(
N−2 +N−1

2

)1−σ
− (N−1)

1−σ
]
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If N−1 = N−2, the LHS and RHS are equal to 0, so that indifference holds. If
N−1 < N−2, and α − û > 0, the LHS is negative, while the RHS is positive
(given σ ≤ 1). Hence the history {T, 0, 1} is better. If N−1 > N−2, and
α− û > 0, the LHS is positive, while the RHS is negative (given σ ≤ 1). Hence
the history {T, 1, 0} is better. If N−1 < N−2, and α − û < 0, the LHS is
positive, while the RHS is positive (given σ ≤ 1), so that the ranking depends

on (α− û)
[
N−1−N−2

2

]
≷
(
Q
T

)σ [(
N−2+N−1

2

)1−σ
− (N−1)

1−σ
]
. If N−1 > N−2,

and α − û < 0, the LHS is negative, while the RHS is negative (given σ ≤ 1),
the same indeterminacy prevails.

9.8 Proof of Proposition 6

Under history {T, n, 0}, the cumulated social welfare for individuals born at
t ≥ 0 is:

nN−1Tα+ nN−1

[
Q

N−(T−1) + ...+ nN−1

]σ
+ nN−1

[
Q

N−(T−2) + ...+ n2N−1

]σ
+...+ nN−1

[
Q

nN−1 + n2N−1 + ...+ nT+1N−1

]σ
+ nN−1

(
((T − 1)n)δ + ((T − 2)n2)δ + ...+ (nT−1

)δ
)

+n2N−1Tα+ n2N−1

[
Q

N−(T−2) + ...+ nN−1 + n2N−1

]σ
+ n2N−1

[
Q

N−(T−3) + ...+ n3N−1

]σ
+...+ n2N−1

[
Q

n2N−1 + n3N−1 + ...+ nT+2N−1

]σ
+ n2N−1

(
((T − 1)n)δ + ((T − 2)n2)δ + ...+ (nT−1

)δ
)

+n3N−1Tα+ n3N−1

[
Q

N−(T−3) + ...+ n2N−1 + n3N−1

]σ
+ n3N−1

[
Q

N−(T−4) + ...+ n4N−1

]σ
+...+ n3N−1

[
Q

n3N−1 + n4N−1 + ...+ nT+3N−1

]σ
+ n3N−1

(
((T − 1)n)δ + ((T − 2)n2)δ + ...+ (nT−1

)δ
)

+...

This can be rewritten as:

nN−1Tα

1− n +

∞∑
t=1

ntN−1


t+T−1∑
s=t

 Q
T−s−1∑
z=0

N−(T−s−z) + (N−1)
∑s
r=1 n

r


σ

+
nN−1
1− n

(
((T − 1)n)δ + ((T − 2)n2)δ + ...+ ((T − T + 1)nT−1

)δ
)

Under history {T, 0,m}, the cumulated social welfare for individuals born
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at t ≥ 0 is:

mN−2Tα+mN−2

[
Q

N−(T−1) + ...+N−1 +mN−2

]σ
+mN−2

[
Q

N−(T−2) + ...+mN−2 +mN−1

]σ
+mN−2

[
Q

N−(T−3) + ...+N−2 (m+m2) +mN−1

]σ
+...+mN−2

[
Q

N−2
(
m+m2 + ...+mT/2

)
+N−1

(
m+m2 + ...+mT/2

)]σ
+mN−2

(
((T − 2)m)δ + ((T − 4)m2)δ + ...+ ((T − T + 2)mT−2)δ)

+mN−1Tα+mN−1

[
Q

N−(T−2) + ...+mN−2 +mN−1

]σ
+mN−1

[
Q

N−(T−3) + ...+N−2 (m+m2) +mN−1

]σ
+mN−1

[
Q

N−(T−4) + ...+N−2 (m+m2) +N−1 (m+m2)

]σ
+...+mN−1

[
Q

N−2
(
m2 +m3 + ...+mT/2

)
+ ...+N−1

(
m+m2 + ...+m(T/2)+1

)]σ
+mN−1

(
((T − 2)m)δ + ((T − 4)m2)δ + ...+ ((T − T + 2)mT−2)δ)

+m2N−2Tα+m2N−2

[
Q

N−(T−3) + ...+N−2 (m+m2) +mN−1

]σ
+m2N−2

[
Q

N−(T−4) + ...+N−2 (m+m2) +N−1 (m+m2)

]σ
+m2N−2

[
Q

N−(T−5) + ...+N−2 (m+m2 +m3) +N−1 (m+m2)

]σ
+...+m2N−2

[
Q

N−2
(
m2 +m3 + ...+m(T/2)+1

)
+N−1

(
m2 +m3 + ...+m(T/2)+1

)]σ
+m2N−2

(
((T − 2)m)δ + ((T − 4)m2)δ + ...+ ((T − T + 2)mT−2)δ)

+...

Substituting for m in the context of equal lifetime histories, that expression
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can be rewritten as:

∞∑
t=1

(
nN−1

N−1 +N−2(1− n)

)t
N−2Tα+

∞∑
t=1

(
nN−1

N−1 +N−2(1− n)

)t
N−1Tα

+

∞∑
t=1

(
nN−1

N−1 +N−2(1− n)

)t
N−2

[
t+T−1∑
s=t

q̂σs

]
+

∞∑
t=1

(
nN−1

N−1 +N−2(1− n)

)t
N−1

[
t+T−1∑
s=t

q̌σs

]

+

∞∑
t=1

N−2

(
nN−1

N−1 +N−2(1− n)

)t( (T − 2)nN−1
N−1 +N−2(1− n)

)δ
+ ...+

(
2

(
nN−1

N−1 +N−2(1− n)

)T−2)δ
+

∞∑
t=1

N−1

(
nN−1

N−1 +N−2(1− n)

)t( (T − 2)nN−1
N−1 +N−2(1− n)

)δ
+ ...+

(
2

(
nN−1

N−1 +N−2(1− n)

)T−2)δ
That expression can be rewritten as:

TαnN−1
(1− n)

+

∞∑
t=1

(
nN−1

N−1 +N−2(1− n)

)t
N−2

[
t+T−1∑
s=t

q̂σs

]
+

∞∑
t=1

(
nN−1

N−1 +N−2(1− n)

)t
N−1

[
t+T−1∑
s=t

q̌σs

]

+

( (T − 2)nN−1
N−1 +N−2(1− n)

)δ
+ ...+

(
(T − T + 2)

(
nN−1

N−1 +N−2(1− n)

)T−2)δ nN−1
(1− n)

Hence history {T, n, 0} has a larger or a lower social welfare than history
{T, 0,m} if and only if:

nN−1Tα

1− n +

∞∑
t=1

ntN−1


t+T−1∑
s=t

 Q
T−s−1∑
z=0

N−(T−s−z) + (N−1)
∑s
r=1 n

r


σ

+
nN−1
1− n

(
((T − 1)n)δ + ((T − 2)n2)δ + ...+ ((T − T + 1)nT−1

)δ
)

≷ nN−1Tα

(1− n)
+

∞∑
t=1

(
nN−1

N−1 +N−2(1− n)

)t
N−2

[
t+T−1∑
s=t

q̂σs

]
+

∞∑
t=1

(
nN−1

N−1 +N−2(1− n)

)t
N−1

[
t+T−1∑
s=t

q̌σs

]
( (T − 2)nN−1

N−1 +N−2(1− n)

)δ
+ ...+

(
(T − T + 2)

(
nN−1

N−1 +N−2(1− n)

)T−2)δ nN−1
(1− n)
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That inequality can be rewritten as:

∞∑
t=1

ntN−1


t+T−1∑
s=t

 Q
T−s−1∑
z=0

N−(T−s−z) + (N−1)
∑s
r=1 n

r


σ

+
nN−1
1− n

(
((T − 1)n)δ + ((T − 2)n2)δ + ...+ ((T − T + 1)nT−1

)δ
)

≷
∞∑
t=1

(
nN−1

N−1 +N−2(1− n)

)t
N−2

[
t+T−1∑
s=t

q̂σs

]
+

∞∑
t=1

(
nN−1

N−1 +N−2(1− n)

)t
N−1

[
t+T−1∑
s=t

q̌σs

]

+

( (T − 2)nN−1
N−1 +N−2(1− n)

)δ
+ ...+

(
(T − T + 2)

(
nN−1

N−1 +N−2(1− n)

)T−2)δ nN−1
1− n

9.9 Proof of Corollary 2

Fixing σ = 0 in the condition:

∞∑
t=1

ntN−1


t+T−1∑
s=t

 Q
T−s−1∑
z=0

N−(T−s−z) + (N−1)
∑s
r=1 n

r


σ

+
nN−1

(
((T − 1)n)δ + ((T − 2)n2)δ + ...+ ((T − T + 1)nT−1

)δ
)

1− n

≷
∞∑
t=1

(
nN−1

N−1 +N−2(1− n)

)t
N−2

[
t+T−1∑
s=t

q̂σs

]
+

∞∑
t=1

(
nN−1

N−1 +N−2(1− n)

)t
N−1

[
t+T−1∑
s=t

q̌σs

]
( (T − 2)nN−1

N−1 +N−2(1− n)

)δ
+ ...+

(
(T − T + 2)

(
nN−1

N−1 +N−2(1− n)

)T−2)δ nN−1
1− n

yields:(
((T − 1)n)δ + ((T − 2)n2)δ + ...+ ((T − T + 1)nT−1

)δ
)

≷
(

(T − 2)nN−1
N−1 +N−2(1− n)

)δ
+ ...+

(
(T − T + 2)

(
nN−1

N−1 +N−2(1− n)

)T−2)δ
The LHS is unambiguously larger than the RHS, sincem < n and coexistence

time is necessarily reduced by birth postponement. Hence the history {T, n, 0}
is preferred over {T, 0,m}.
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9.10 Proof of Corollary 3

Under AU, the condition for preferring {T, n, 0} over {T, 0,m} becomes:the
average total welfare in history {T, n, 0} is:

∞∑
t=1

ntN−1Tα+

∞∑
t=1

ntN−1


t+T−1∑
s=t

 Q
T−s−1∑
z=0

N−(T−s−z)+(N−1)
∑s
r=1 n

r


σ

+
nN−1(((T−1)n)δ+...+((T−T+1)nT−1)

δ
)

1−n


TnN−1
1−n

≷

∞∑
t=1

(
nN−1

N−1+N−2(1−n)

)t
N−2Tα+

∞∑
t=1

(
nN−1

N−1+N−2(1−n)

)t
N−1Tα

TnN−1
1−n

+

((
(T−2)nN−1

N−1+N−2(1−n)

)δ
+ ...+

(
(T − T + 2)

(
nN−1

N−1+N−2(1−n)

)T−2)δ)
nN−1
(1−n)

TnN−1
1−n

+

∞∑
t=1

(
nN−1

N−1+N−2(1−n)

)t
N−2

TnN−1
1−n

[
t+T−1∑
s=t

q̂σs

]
+

∞∑
t=1

(
nN−1

N−1+N−2(1−n)

)t
N−1

TnN−1
1−n

[
t+T−1∑
s=t

q̌σs

]

Simplifying by the total number of births leads to the same condition as in
Proposition 6. The same kind of argument holds for CLU.

9.11 Proof of Proposition 7

Under history {T, 1, 0}, social welfare at the stationary equilibrium is equal to
(abstracting from time indexes):

LTu(q) = TN−1Tu

(
Q

L

)
= TN−1T

(
Q

L

)σ
+ TN−1Tα+ TN−1

(
((T − 1)n)δ + ((T − 2)n2)δ + ...+ (1nT−1

)δ
)

= (TN−1)
1−σ

TQσ + TN−1Tα+ TN−1
(
((T − 1)n)δ + ((T − 2)n2)δ + ...+ (1nT−1

)δ
)
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Under the history {T, 0, 1}, that formula is:

LTu(q) =
TN−2(1 + N−1

N−2
)

2
T

α+

 Q

TN−2(1+
N−1
N−2

)

2


σ

+
TN−2(1 + N−1

N−2
)

2

( (T − 2)nN−1
N−1 +N−2(1− n)

)δ
+ ...+

(
2

(
nN−1

N−1 +N−2(1− n)

)T−2)δ
=

T 2N−2(1 + N−1
N−2

)α

2
+

(
TN−2(1 + N−1

N−2
)

2

)1−σ
TQσ

+
TN−2(1 + N−1

N−2
)

2

( (T − 2)nN−1
N−1 +N−2(1− n)

)δ
+ ...+

(
2

(
nN−1

N−1 +N−2(1− n)

)T−2)δ
Hence the ranking of the CU planner depends on:

(TN−1)
1−σ

TQσ + TN−1Tα+ TN−1
(
((T − 1)n)δ + ((T − 2)n2)δ + ...+ ((T − T + 1)nT−1

)δ
)

≷
T 2N−2(1 + N−1

N−2
)α

2
+

(
TN−2(1 + N−1

N−2
)

2

)1−σ
TQσ

+
TN−2(1 + N−1

N−2
)

2

( (T − 2)nN−1
N−1 +N−2(1− n)

)δ
+ ...+

(
2

(
nN−1

N−1 +N−2(1− n)

)T−2)δ
That expression can be written as:

T 2α

(
N−1 −N−2

2

)
≷ QσT 2−σ

[(
(N−2 +N−1)

2

)1−σ
− (N−1)

1−σ
]

+
T (N−2 +N−1)

2

( (T − 2)nN−1
N−1 +N−2(1− n)

)δ
+ ...+

(
2

(
nN−1

N−1 +N−2(1− n)

)T−2)δ
−TN−1

(
((T − 1)n)δ + ((T − 2)n2)δ + ...+ ((T − T + 1)nT−1

)δ
)

IfN−2 = N−1 and α ≥ 0, the LHS is equal to zero, while the RHS is negative,
so that history {T, 1, 0} is better. If N−1 > N−2, the LHS is positive, while the
RHS is, under α ≥ 0, negative, so that history {T, 1, 0} is better. If N−1 < N−2
and α ≥ 0, the LHS is negative, and the RHS is undetermined. Under α < 0, the
sign of the RHS is undetermined. Hence whether history {T, 1, 0} is preferred
depends on whether the above condition holds, which depends on how large α
is with respect to T .

44



9.12 Proof of Proposition 8

Average welfare in the long-run population is, under history {T, 1, 0}, to (ab-
stracting from time indexes):

Tu(q) = T

(
Q

L

)σ
+ Tα+

(
((T − 1)n)δ + ((T − 2)n2)δ + ...+ (1nT−1

)δ
)

= (TN−1)
−σ

TQσ + Tα+ (T − 1)δ + (T − 2)δ + ...+ (1)δ

whereas it is equal, under history {T, 0, 1}, to:

Tu(q) = T

(
Q

L

)σ
+ Tα+

(
((T − 2)m)δ + ((T − 4)m2)δ + ...+ (2mT−2)δ)

=

(
T (N−2 +N−1)

2

)−σ
TQσ +

[
Tα+ (T − 2)δ + (T − 4)δ + ...+ (2)δ

]
Hence the ranking of the AU planner depends on:

(TN−1)
−σ

TQσ + Tα+ (T − 1)δ + (T − 2)δ + ...+ (1)δ

≷
(
T (N−2 +N−1)

2

)−σ
TQσ +

[
Tα+ (T − 2)δ + (T − 4)δ + ...+ (2)δ

]
When N−2 = N−1, the first terms of the LHS and RHS are equal, so that the
LHS exceeds the RHS. Hence history {T, 1, 0} is better. If N−2 > N−1, the LHS
is also larger than the RHS, so that history {T, 1, 0} is better. However, when
N−2 < N−1, the first term of the RHS exceeds the first term of the LHS, but
the second term of the RHS is smaller than the second term of the LHS, so the
ranking is ambiguous.

9.13 Proof of Proposition 9

Under history {T, 1, 0}, social welfare at the stationary equilibrium is equal to
(abstracting from time indexes):

LTu(q) = TN−1T

[
u

(
Q

L

)
− û
]

= TN−1T

(
Q

L

)σ
+ TN−1T (α− û) + TN−1

(
((T − 1)n)δ + ((T − 2)n2)δ + ...+ (1nT−1

)δ
)

= (TN−1)
1−σ

TQσ + TN−1T (α− û) + TN−1
(
((T − 1)n)δ + ((T − 2)n2)δ + ...+ (1nT−1

)δ
)

Under history {T, 0, 1}, that formula becomes:

T 2N−2(1 + N−1
N−2

)

2
(α− û) +

(
TN−2(1 + N−1

N−2
)

2

)1−σ
TQσ

+
TN−2(1 + N−1

N−2
)

2

( (T − 2)nN−1
N−1 +N−2(1− n)

)δ
+ ...+

(
(T − T + 2)

(
nN−1

N−1 +N−2(1− n)

)T−2)δ
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Hence the ranking of the CLU planner depends on:

(TN−1)
1−σ

TQσ + TN−1T (α− û) + TN−1
(
((T − 1)n)δ + ((T − 2)n2)δ + ...+ (1nT−1

)δ
)

≷
T 2N−2(1 + N−1

N−2
)

2
(α− û) +

(
TN−2(1 + N−1

N−2
)

2

)1−σ
TQσ

+
TN−2(1 + N−1

N−2
)

2

( (T − 2)nN−1
N−1 +N−2(1− n)

)δ
+ ...+

(
2

(
nN−1

N−1 +N−2(1− n)

)T−2)δ
That expression can be rewritten as:

(α− û)T 2
(
N−1 −N−2

2

)
≷ TQσ

[(
T (N−2 +N−1)

2

)1−σ
− (TN−1)

1−σ
]

+
T (N−2 +N−1)

2

( (T − 2)nN−1
N−1 +N−2(1− n)

)δ
+ ...+

(
2

(
nN−1

N−1 +N−2(1− n)

)T−2)δ
−TN−1

(
((T − 1)n)δ + ((T − 2)n2)δ + ...+ ((T − T + 1)nT−1

)δ
)

If N−2 = N−1 and α − û ≥ 0, the LHS is equal to zero, while the RHS
is negative, so that history {T, 1, 0} is better. If N−1 > N−2, the LHS is
positive, while the RHS is, under α − û ≥ 0, negative, so that history {T, 1, 0}
is better. If N−1 < N−2 and α − û ≥ 0, the LHS is negative, and the RHS is
undetermined. Under α − û < 0, the sign of the RHS is undetermined. Hence
whether history {T, 1, 0} is preferred depends on whether the above condition
holds, which depends on how large α− û is with respect to T .

9.14 Proof of Proposition 10

Under classical utilitarianism, total welfare for individuals born at t ≥ 0 is,
without the transition:

∞∑
t=1

ntN−1Tα+

∞∑
t=1

ntN−1


t+T−1∑
s=t

 Q
T−s−1∑
z=0

N−(T−s−z) + (N−1)
∑s
r=1 n

r


σ
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whereas, under the transition, it is:

mN−1

(
α+

(
Q

mN−1 +N−1 +N−2 + ...+N−(T−2)

)σ)
+mN−1

(
α+

(
Q

mN−1 +N−1 +N−2 + ...+N−(T−3)

)σ)
+mN−1

(
α+

(
Q

m2N−1 +mN−1 +N−1 +N−2 + ...+N−(T−4)

)σ)
+mN−1

(
α+

(
Q

m2N−1 +mN−1 +N−1 +N−2 + ...+N−(T−5)

)σ)
+...+mN−1

(
α+

(
Q

mT/2N−1 + ...+m2N−1 +mN−1

)σ)
+m2N−1

(
α+

(
Q

m2N−1 +mN−1 +N−1 +N−2 + ...+N−(T−4)

)σ)
+m2N−1

(
α+

(
Q

m2N−1 +mN−1 +N−1 +N−2 + ...+N−(T−5)

)σ)
+...+m2N−1

(
α+

(
Q

m(T/2)+1N−1 + ...+m2N−1

)σ)
+...

This can be rewritten as:

∞∑
t=1

mtN−1Tα+

∞∑
t=1

mtN−1


t+T−1∑
s=t

 Q
T−s−1∑
z=0

N−(T−s−z) + (N−1)
∑s
r=1,3,5,...m

(r+1)/2


σ

Hence the transition is socially desirable iff:

∞∑
t=1

ntN−1Tα+

∞∑
t=1

ntN−1


t+T−1∑
s=t

 Q
T−s−1∑
z=0

N−(T−s−z) + (N−1)
∑s
r=1 n

r


σ

≷

∞∑
t=1

mtN−1Tα+

∞∑
t=1

mtN−1


t+T−1∑
s=t

 Q
T−s−1∑
z=0

N−(T−s−z) + (N−1)
∑s
r=1,3,5,...m

(r+1)/2


σ

47



Substituting for n = m and simplifying yields:

∞∑
t=1

ntN−1


t+T−1∑
s=t

 Q
T−s−1∑
z=0

N−(T−s−z) + (N−1)
∑s
r=1 n

r


σ

≷

∞∑
t=1

ntN−1


t+T−1∑
s=t

 Q
T−s−1∑
z=0

N−(T−s−z) + (N−1)
∑s
r=1,3,5,... n

(r+1)/2


σ

Given that coexisting generations are always less numerous after the transi-
tion, we have that the RHS necessarily exceeds the LHS, leading to a socially
desirable transition. The same argument holds when considering AU and CLU.

9.15 Proof of Proposition 11

When coexistence concerns, the condition becomes:

∞∑
t=1

ntN−1Tα+

∞∑
t=1

ntN−1


t+T−1∑
s=t

 Q
T−s−1∑
z=0

N−(T−s−z) + (N−1)
∑s
r=1 n

r


σ

+

∞∑
t=1

ntN−1
(
((T − 1)n)δ + ((T − 2)n2)δ + ...+ ((T − T + 1)nT−1

)δ
)

≷

∞∑
t=1

ntN−1Tα+

∞∑
t=1

ntN−1


t+T−1∑
s=t

 Q
T−s−1∑
z=0

N−(T−s−z) + (N−1)
∑s
r=1,3,5,... n

(r+1)/2


σ

+

∞∑
t=1

ntN−1

( (T − 2)nN−1
N−1 +N−2(1− n)

)δ
+ ...+

(
(T − T + 2)

(
nN−1

N−1 +N−2(1− n)

)T−2)δ
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Simplifications yield:

∞∑
t=1

ntN−1


t+T−1∑
s=t

 Q
T−s−1∑
z=0

N−(T−s−z) + (N−1)
∑s
r=1 n

r


σ

+

∞∑
t=1

ntN−1
(
((T − 1)n)δ + ((T − 2)n2)δ + ...+ ((T − T + 1)nT−1

)δ
)

≷

∞∑
t=1

ntN−1


t+T−1∑
s=t

 Q
T−s−1∑
z=0

N−(T−s−z) + (N−1)
∑s
r=1,3,5,... n

(r+1)/2


σ

+

∞∑
t=1

ntN−1

( (T − 2)nN−1
N−1 +N−2(1− n)

)δ
+ ...+

(
(T − T + 2)

(
nN−1

N−1 +N−2(1− n)

)T−2)δ
The transition towards later births is not necessarily good: it is still true that
the first term of the LHS is lower than the first term of the RHS. But the
second term of the LHS is larger than the second term of the RHS. Hence the
comparison depends on the relative strength of congestion versus coexistence
concerns. The same condition holds for AU and CLU.

49


