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Abstract
We present a novel algorithm, IlluminationCut, for rendering images using the many-lights framework. It handles
any light source that can be approximated with virtual point lights (VPLs) as well as highly glossy materials.
The algorithm extends the Multidimensional Lightcuts technique by effectively creating an illumination-aware
clustering of the product-space of the set of points to be shaded and the set of VPLs. Additionally, the number
of visibility queries for each product-space cluster is reduced by using an adaptive sampling technique. Our
framework is flexible and achieves around 3−6 times speedup over previous state-of-the-art methods.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Color, shading, shadow-
ing, and texture—

1. Introduction

Rendering photo-realistic images efficiently is a challenging
task in computer graphics. As the complexity of scenes, ma-
terials and lighting increases, so does the need for fast and
accurate rendering methods. Unbiased algorithms such as
Metropolis light transport [VG97] or bidirectional path trac-
ing [VG95] result in the best quality images and handle the
widest range of illumination types but take long time to con-
verge due to their stochastic nature. Several solutions have
been proposed to speed up rendering and to alleviate noise
quickly but most of them do not retain the unbiased property
of pure path tracing algorithms. Such solutions include Pho-
ton Mapping [Jen01], point-based illumination [Chr08] and
many-lights methods such as Instant Radiosity [Kel97].

This paper proposes a new algorithm belonging to the
family of instant radiosity methods. These methods have
been successfully used for both real-time and high quality
off-line rendering (see [DKH∗13]). By tracing light paths
from the original light sources, they place virtual point lights
(VPLs) on the surfaces at every reflection point of the path
(i.e., where the light path hits an object). These VPLs are
then used to approximate global illumination, where the ra-
diance of each point to be shaded (points in the scene hit
by the rays traced from the camera) is calculated by sum-
ming up the illumination from each individual VPL. In high
quality off-line rendering, typically hundreds of thousands

of VPLs are needed to approximate an image. With such
a vast number of light sources, calculating the radiance in
brute-force manner is prohibitively expensive.

One efficient solution is to cluster all the VPLs into a
small number of groups, which are then treated as individ-
ual VPLs. Current state-of-the-art clustering algorithms are,
e.g., Lightcuts [WFA∗05] and LightSlice [OP11]. Lightcuts
builds a tree on the VPLs where each node of this tree repre-
sents a cluster of VPLs in the subtree of that node. For each
point to be shaded, it descends in the tree to select a set of
nodes (a ‘cut’) which is taken to be the VPL clustering for
that point. While the method is robust and able to bound the
error resulting from treating each cluster as a single VPL,
the cut is recomputed for every point and descending in the
tree is expensive for complex lighting situations.

LightSlice first groups all points to be shaded into a
small number of roughly equal-sized clusters, called point-
clusters, based on their geometric proximity. Then it uses
visibility and shading information to obtain a clustering of
the VPLs for each of these point-clusters. Thus all the points
in the same point-cluster have the same clustering of the
VPLs. The main advantage of the method is its speed, since
it is able to detect occluded clusters and amortize the cost
of creating VPL clusterings across points in a point-cluster.
However, it has no error bound and as the construction of the
point-clusters is not adapted to the illumination of the scene,
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Figure 1: Partial light transport matrices, with rectangles denoting product-space clusters. Red stripes denote parts that could
be improved. (a) Lightcuts creates clusters that could be merged; (b) LightSlice creates clusters that should be merged or
refined; (c) Multidimensional Lightcuts only merges and refines clusters limited to points originating from the same pixel; (d)
IlluminationCut merges and refines clusters for any set of points and VPLs.

it is prone to failure if the radiance of points within a group
is highly varying.

Lightcuts constructs a different clustering of VPLs for
each point; LightSlice clusters all the points to be shaded
into a number of point-clusters for which the same cluster-
ing of VPLs is computed. Our idea is based on the following
observation: instead of clustering points or VPLs indepen-
dently, what is required is clustering their product-space,
namely to cluster all point-VPL pairs. Each cluster in this
product-space consists of a subset of points (to be shaded)
paired with a subset of VPLs.

In fact, both Lightcuts and LightSlice can be seen as con-
structing constrained product-space clusterings. Each cluster
created by Lightcuts consists of a single point paired with a
set of VPLs. This constraint is wasteful as two points which
are very similar could have been grouped together in many
product-space clusters. See Figure 1 (a).

LightSlice, on the other hand, constructs a product-space
clustering where the same set of points are grouped to-
gether in any cluster. For efficiency reasons each point-
cluster is large, which severely limits how well the VPL-
clusters paired to them can be adapted to each individual
point in the point-cluster. Furthermore, as the initial cluster-
ing of points used only geometric information, these clusters
cannot be completely adapted to illumination, and are likely
to introduce artifacts on the cluster boundary. See Figure 1
(b).

Our contribution. Our proposed method, IlluminationCut,
targets high fidelity off-line rendering by constructing an
illumination-aware clustering of the product-space of all
point-VPL pairs. We create illumination-aware product-
space clusters without any a priori constraints on either the
points or the VPLs that can appear in product-space clus-
ters. These clusters capture similar point-VPL pairs such that
shading every point in a cluster by using a single represen-
tative VPL instead of all VPLs in the cluster causes error
that remains under a threshold. Treating cluster pairs enables
us to amortize calculations that were previously carried out

separately for each point in Lightcuts; and to construct non-
uniform clusters with different subsets of points with differ-
ent subsets of VPLs, which is more adaptive clustering than
that of LightSlice. Our method is further extended by adap-
tive visibility sampling, reducing the number of rays traced
for each product-space cluster without introducing high er-
ror. See Figure 1 (d).

IlluminationCut builds on the Multidimensional Light-
cuts approach [WABG06], in that they both utilize two hi-
erarchies (trees), one on points and one on VPLs to con-
struct product-space clusters with bounded error by simul-
taneously descending on the trees. The difference is that the
latter has to maintain a heap and repeatedly builds a tree only
for points that originate from the same pixel (e.g., for use in
spatial anti-aliasing). It does not exploit possible similarity
among points originating from different pixels and so does
not improve upon Lightcuts if there is only one point per
pixel. See Figure 1 (c).

Our results improve on both the quality and the efficiency
of previous methods. We achieve 3− 6 times speed-up by
reducing the number of visibility queries, dramatically de-
creasing the computations needed to construct clusters, as
well as eliminating the need for maintaining a heap during
rendering.

Organization. In Section 2 we review previous work on
global illumination with VPLs. A detailed description of our
algorithm is given in Section 3. Experimental results and
comparison with state-of-the-art methods are presented in
Section 4. Finally, limitations and future work are discussed
in Section 5.

2. Previous Work

Many-light methods have gained much attention recently
due to the fact that they can produce high quality images
in a fraction of the time taken by Monte Carlo methods. The
family of many-light methods is derived from the original
technique [Kel97] where each point is shaded using the di-
rect contribution of a set of VPLs. See the SIGGRAPH 2012
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course notes on the many-lights problem [KHA∗12] and the
EG state-of-the-art report [DKH∗13] for a detailed descrip-
tion and recent advances.

Real-time techniques. The many-lights framework can
be used for rendering images in real time with incremental
updating of VPLs, though this is limited to few hundreds
of VPLs [LSK∗07]. Other methods achieving interactive
frame rates include calculating level of details structures ef-
ficiently [HREB11] and imperfect shadow maps [RGK∗08].
For a summary see [Rad08].

Extensions and limitations. To render participating me-
dia, virtual ray and virtual beam lights have been intro-
duced in [NNDJ12a,NNDJ12b], respectively. Limitations of
VPL-based algorithms, like clamping [KK06] of VPL con-
tributions due to the singularities or the limitation of only
representing diffuse global illumination, can be solved us-
ing virtual spherical lights [HKWB09] instead of virtual
point lights. To handle more efficiently highly glossy ma-
terial [KFB10], Davidovič et al. [DKH∗10] use row-column
sampling with an adaptive ray-casting strategy. Other tech-
niques such as specular gathering [DKL10] combine path
tracing techniques and VPL global illumination. These
methods greatly increase the rendering time compared to
pure many-lights algorithms.

Good fidelity off-line rendering requires a large number
of VPLs (typically hundreds of thousands of VPLs). There
are two main approaches that avoid computing the radiance
for all point-VPL pairs.

Sampling. To decrease the complexity of the problem,
one can sample the VPLs according to their contribution to
the image [GS10]. The method proposed in [GKPS12] cal-
culates the exact illumination at a sparse set of locations and
builds the probability distribution of the incoming light at
each sample. These distributions are then used to importance
sample the VPLs. [SIMP06] uses stochastic sampling of the
VPLs to achieve real-time global illumination.

Clustering. The second set of methods clusters the VPLs
and/or the points that are shaded. Hašan et al. [HPB07] stud-
ied the light transport matrix, where each row represents a
point to be shaded and each column represents a VPL. The
clustering of the VPLs is done according to a reduced ma-
trix (sampled from the full matrix) and finally every sample
is shaded using this clustering. This technique captures suc-
cessfully the global lighting and it is very efficient but fails to
cluster local lighting properly. Ou and Pellacini [OP11] have
further studied the light transport matrix to propose Light-
Slice. The family of methods based on Lightcuts [WFA∗05]
build a tree on the VPLs, and construct a clustering by select-
ing a set of nodes in this tree with an upper bound on the er-
ror caused by each cluster. Several modifications have been
proposed to reduce the computations performed by Light-
cuts in different scenarios. For the case of multiple point
samples per pixels (e.g., used in anti-aliasing) Multidimen-
sional Lightcuts [WABG06] extends Lightcuts by building

a tree on the samples for each pixel (see Section 1). Bidi-
rectional Lightcuts [WKB12] aims to handle a broader va-
riety of materials and to reduce the bias present in instant
radiosity methods. None of the methods exploit the similar-
ity of points originating from different pixels. The methods
in [BD08,WXW11] reduce the calculations for constructing
clusters by maintaining a common cut for a group of spa-
tially clustered pixels. These methods have to balance the
trade-off between the number of points a common cut can
represent and the amount of refinement performed for each
point when calculating a clustering from the common cut.
Reconstruction cuts [WFA∗05] aims to decrease the num-
ber of visibility queries by interpolating radiosity for pixels
in small image patches. In contrast, IlluminationCut is able
to reduce the number of visibility queries without introduc-
ing interpolation errors. Pixelcuts [KSW11] only clusters
the points to be shaded and try to minimize the calculations
for each cluster by only calculating shading for one repre-
sentative point. This method is primarily suited for low in-
tensity global illumination. IlluminationCut improves over
these methods by creating product-space clusters that are
more general and so can exploit similarity among points in a
more efficient way.

Visibility estimation. To further speed up render-
ing [PGSD13] caches visibility queries. The authors in
[BELD13] propose a novel framework for stochastic evalu-
ation of visibility. VisibilityCluster [WC13] first clusters the
pixels and the VPLs separately and creates pairs of these
clusters. Then it calculates approximate visibility for these
pairs and uses this information to improve the importance
sampling of VPLs.

3. Algorithm

In this section we introduce notations, data structures and the
algorithms used in our method. Denote by S the set of VPLs
and by P the set of points to be shaded (i.e., points in the
scene hit by the rays traced from the camera).

Preliminaries. Given a set of Lambertian VPLs S, the radi-
ance L(p,ω) at point p in direction ω can be computed as a
discretization of the rendering equation:

L(p,ω) = ∑
s∈S

Ms(p,ω) ·Vs(p) · Is ·Gs(p) (1)

Is is the intensity of the light s and Vs(p) denotes the visibil-
ity between s and p. Ms(p,ω) is the BRDF which depends on
the material at p. We use Lambertian and Blinn micro-facet
BRDFs. They have the form 1

π
kdiff cosθ and 1

2π
kspec(n +

2)cos(β)n cosθ respectively, where each component of kdiff
and kspec has values between 0 and 1, and n is the specu-
lar coefficient. The angles β,φ and θ are denoted in the fig-
ure below where ω

′ is the view direction ω reflected with
the surface normal Np, and Ns is the normal of the light s.
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With these notations β is the
angle between ω

′ and s− p,
φ is the angle between Ns and
p− s while θ denotes the an-
gle between Np and s− p. The
geometric term Gs(p) captures
the light attenuation Gs(p) =
cos(φ)/d(p,s)2, where d(p,s)
is the Euclidean distance be-
tween p and s.

Overview. The method first constructs a cluster hierarchy
on P, called the point tree and on S, called the light tree.
Then using these trees, Phase I computes a coarse but fast
approximation for every point p ∈ P. In Phase II, this ap-
proximate image is used to guide a top-down search of both
trees simultaneously to construct the list of desired product-
space clusters (R1,Q1), . . . ,(Rk,Qk). Here each (Ri,Qi) is a
product-space cluster composed of the set of points Ri ⊆ P
and the set of VPLs Qi ⊆ S. Finally, for all product-space
clusters (Ri,Qi), illumination contribution from Qi is added
to the radiance of each point p ∈ Ri.

Light and point trees. For the light tree we use the same
structure as Lightcuts [WFA∗05]. For the point tree, we use a
compressed octree, which differs from a simple octree by the
fact that paths without branching are contracted into a single
edge. Then each node in the tree represents a unique cluster
of the points in its bounding box. To ensure that the points
located in the same node face approximately in the same di-
rection, we make a slight modification: the subdivision of
the first 3 levels into octants correspond to the subdivision
of the space of normals of the points (these are unit vectors
in R3) and the remaining levels follow the standard octree
subdivision rule. The points in P are stored in an array. In
our implementation the octree is constructed by repeatedly
subdividing the bounding box of the scene along planes per-
pendicular to the three axes. Thus recursively, at each subdi-
vision, the points corresponding to a node are partitioned in-
place into two contiguous subarrays. As a result the points in
the array are in z-order (also called Morton-order [Gar82]).
The construction ensures that each node in the tree contains
points located in a contiguous part of the array. Therefore
retrieving points associated to a node is efficient since one
has to only iterate over a subarray.

Our algorithm stores additional auxiliary data with the
nodes of both trees. These are the bounding box of the points
inside the node and representative lights/points. The latter
are sampled in the same way as Multidimensional Lightcuts
(the sampling ensures that the algorithm remains unbiased
in the Monte Carlo sense). For each light tree node we also
store the bounding cone of the light directions of VPLs as-
sociated with that node. Each node of the point tree stores
the maximum/minimum BRDF components in the subtree
of the node (kspec_max,kdiff_max,nmin,nmax). We also need

to associate color data (color) with the nodes of the point
tree.

Clusters and representatives. We will identify the nodes
of the tree with the points they contain, e.g., the root of the
light tree is simply denoted by v(S). Let us denote by Q a
cluster of lights Q ⊆ S and its corresponding octree node
as v(Q). Denote the radiance at p caused by lights in Q as
LQ(p,ω).

LQ(p,ω) = ∑
s∈Q

Ms(p,ω) ·Vs(p) · Is ·Gs(p) (2)

For a node v(Q) let rep(Q) ∈ Q denote its representative
light, and then compute the approximate radiance at p from
lights in Q with representative rep(Q) as:

L̃Q(p,ω) = Mrep(Q)(p,ω) ·Grep(Q)(p) ·Vrep(Q)(p) · ∑
s∈Q

Is

(3)

For a cluster R denote the radius of the enclosing ball of its
bounding box by r(R), and by d(R,Q) the distance between
the enclosing balls of clusters R and Q.

Phase I: Computing approximate shading. Our algorithm
needs an estimate of the radiance of each point p ∈ P.
It is computed by descending in both trees until for a
pair of point and VPL nodes (v(R),v(Q)), the condition
max(r(R),r(Q)) < 0.1 · d(R,Q) is satisfied and the aperture
of the light node’s cone is less than 20◦; we then add the con-
tribution of the VPL cluster Q to each point in R. This crite-
ria attempts to ensure, though without any guaranteed bound
on the error, that this estimated radiance roughly matches
the value that would result from exhaustively evaluating the
radiance for every point-VPL pair in (R,Q). Notice that for
shading a pair (R,Q) we only take into account the represen-

Figure 2: Approximate images for various scenes. These im-
ages are used to guide the search for product-space clusters
in Phase II.
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Algorithm 1: IlluminationCut
Data: W: stack of pairs; light and point trees for S, P

1 Function IlluminationCut()
2 W ←∅
3 W .pushback(v(P),v(S))
4 while notEmpty(W) do
5 (v(R),v(Q)) = W .pop()
6 if IsIllumAwarePair(v(R),v(Q)) then
7 foreach p ∈ R do
8 L(p,ω) += L̃Q(p,ω)

9 else
10 if r(Q)> r(R) then
11 if v(Q) has no children then
12 foreach p ∈ R do
13 L(p,ω) += L̃Q(p,ω)

14 else
15 foreach u ∈ children(v(Q)) do
16 W .pushback(u,v(R))

17 else
18 if v(R) has no children then
19 foreach p ∈ R do
20 L(p,ω) += L̃Q(p,ω)

21 else
22 foreach u ∈ children(v(R)) do
23 W .pushback(v(Q),u)

24
25 Function IsIllumAwarePair(v(R),v(Q))
26 return δ · v(R).color > LUB(v(R),v(Q))

tative point’s BRDF and do not shade every point individu-
ally. This necessarily introduces error to our approximation
image (e.g., the texture can vary within clusters). However,
since this image is only used as an error upper bound it does
not have a significant effect on the final image (Section 5
contains a more detailed discussion). Furthermore, instead
of adding the calculated contribution of Q to all the points in
v(R), we can simply accumulate it in the node and later with
a tree traversal, distribute it to the leaves (each containing a
point of P). We also store the minimum of the approximate
radiances of the points in a node v(R) as v(R).color. This is
used in Phase II.

In Figure 2 we show the images rendered with this ap-
proximation to illustrate how they capture illumination.

Illumination-aware pairs. A set of points R ⊆ P and a set
of lights Q⊆ S form an illumination-aware pair if

max
p∈R
|L̃Q(p,ω)−LQ(p,ω)|< δ ·min

p∈R
L(p,ω) (4)

where δ is the error threshold, e.g., 1%.

The definition ensures that for any point p ∈ R, using Q
as a light cluster would result in a small error. This is the
most conservative error bound but other variations, e.g., av-
erage of L(p,ω) could be used as well. In order to evaluate
this condition one requires the knowledge of the true radi-
ance a priori. This is estimated using the approximate image
calculated in Phase I; i.e., use the minimum radiance in the
approximate image of points belonging to R. This minimum
was stored in each node as v(R).color in Phase I.

The left-hand side of Equation (4), denoted
LUB(v(R),v(Q)), can be upper bounded in a similar
manner as Multidimensional Lightcuts. Let Mmax and Gmax
be the upper bounds on the material and geometric terms
over all point-VPL pairs in (R,Q). As the visibility term can
be upper bounded by 1, LUB(v(R),v(Q)) can be written as:

LUB(v(R),v(Q)) = Mmax ·Gmax ∑
s∈Q

Is (5)

We show how to calculate Gmax = cos φmax
r2

min
where rmin =

minp∈R,s∈Q d(p,s) and φmax is the angle between the light
normals and light directions for which the cosine function
attains its maximum value. rmin is set to d(R,Q). For φmax,
we use the same technique as described in Multidimensional
Lightcuts. First, we simplify the problem by calculating the
bounding box of all possible light-point vectors between R
and Q then apply a linear transform to this bounding box
such that the direction of the light node’s cone is aligned
with the z axis. This transformation enables the direct eval-
uation of φmax. Calculating Mmax can be done in a similar
fashion by using the surface normal and the reflected view
ray ω

′ of rep(R) in the role of the cone direction (the sur-
face normals and reflected view rays for points in a node are
located in a small cone due to our octree construction). See
the details in [WABG06].

Phase II: Rendering with illumination-aware pairs.
Once we have an approximate radiance for each point p ∈ P
as well as the minimum radiance of all the points in a sub-
tree rooted at v (stored as v.color), we again traverse the two
trees simultaneously top-down to construct the illumination-
aware pairs. For each illumination-aware pair (R,Q), add the
illumination contribution of the VPL cluster Q to each point
in R. See Algorithm 1. The straightforward way of adding
the illumination contribution of Q to each point in R is by
computing L̃Q(p,ω) separately via a shadow test from each
p to rep(Q) and then using Equation (3). We refer to this
method as IlluminationCut.

Adaptive sampling. Algorithm 1 computes, for each
illumination-aware pair (R,Q), the contribution L̃Q(p,ω) of
Q to each point p ∈ R by performing a visibility query from
p to rep(Q). Instead, one can use an adaptive sampling tech-
nique that reduces the number of visibility queries to be con-
siderably less than the number of points in R, denoted by |R|.
Given an illumination-aware pair (R,Q), we have access to

c© 2015 The Author(s)
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Algorithm 2: Adaptive sampling for a pair (R,Q)

1 Function AdaptiveSampling(R,Q)
2 if Q is a leaf or |R|< 8 then
3 foreach p ∈ R do
4 L(p,ω) += L̃Q(p,ω)

5 else
6 vs: the number of samples
7 if |R|> 32 then
8 vs← 16
9 else

10 vs← 8

11 compute R′, with |R′|= vs
12 if Vrep(Q)(q) = 1 for all q ∈ R′ then
13 foreach p ∈ R do
14 L(p,ω) += L̃Q(p,ω) with
15 Vrep(Q)(p) set to 1

16 else if Vrep(Q)(q) = 0 for all q ∈ R′ then
17 return
18 else
19 foreach Ri defined by R′ do
20 AdaptiveSampling(Ri,Q)

the points in R as a subarray in z-order; we refer to this sub-
array as R, this ambiguity shall not cause a problem. Take a
subset R′ of R dividing it into at most 16 equal length sub-
arrays and calculate the visibility between points of R′ and
the representative light rep(Q). If all points in R′ are visi-
ble or all are occluded, use this visibility for shading R; if
not, then we recurse on the subarrays Ri defined by R′ . We
note that choosing R′ in this manner makes the algorithm bi-
ased. Though errors are unlikely, as the subarrays consist of
spatially proximate points. See Algorithm 2. We refer to this
method as IlluminationCut-Sampling.

4. Discussion

In this section we present experimental results for sev-
eral scenes with complex lighting, highly glossy materials
and varying geometric complexity. Timings are for a server
equipped with Intel(R) Xeon(R) E5-2680 CPUs utilizing in
total 20 cores running at 2.8 GHz, with 74 GB of memory.

Implementation. We compare our algorithm with two
well-known methods: Lightcuts [WFA∗05] and Light-
Slice [OP11]. Since the authors of LightSlice published their
code, we have ported their implementation into the ray-
tracing system Intel Embree 2.3 [WFWB13, WWB∗14]. We
have improved their Lightcuts implementation with the ag-
glomerative clustering method presented in [Mik10]. The
code is written in C++ with a very efficient ray-tracing en-

gine. Due to recent advantages in packeted ray-tracing algo-
rithms and their implementations, shading and other calcula-
tions account for a significant portion of the overall render-
ing time in our system; e.g., approximately 20% of the total
time for Lightcuts is used by ray tracing (see [WPS∗03]).

High resolution images are available in supplemental ma-
terial. The code can be downloaded at the website of the au-
thors.

Scenes. We test the algorithms on a collection of scenes, all
of them having highly glossy materials except for Sponza,
which is completely diffuse. The outdoor scene San Miguel
is our largest scene, consisting of 10M triangles lit by an en-
vironment map. Many of the VPLs are placed on walls fac-
ing outward; therefore this scene is exploiting the weakness
of our algorithm and Lightcuts, namely that occluded clus-
ters are not quickly discarded. Banquet has a grid of point
light sources directed towards the ceiling and lights inside
the lamps, both creating a challenging global illumination
setup as there is significant indirect lighting. It also contains
a strip of area lights running around the ceiling. Sponza has
all its original point light sources facing the ceilings on the
side corridors and a moderately dark environment map. The
light filtering through the gaps around the curtains are chal-
lenging to capture properly. Kitchen is lit by upward facing
spotlights located inside the lamps and an area light under
the shelf.

Parameters. For Lightcuts the error bound is set to 1% (as
in earlier work [OP11]). We give the results of both Illumi-
nationCut and IlluminationCut-Sampling, setting the error
to 1.5% in the former case and to 1% in the latter. Light-
Slice is run with approximately 1500 slices and with vary-
ing columns. The number of slices determines the size of the
reduced light transport matrix while the number of columns
determines the number of clusters used for rendering a point.
For the sake of compactness we refer to these algorithms in
the figures as LC(1%), LS(3200), IC(1.5%) and IC-S(1%).
The images have 1600× 1200 resolution and use 1 sample
per pixel for a clear comparison of the quality of cluster-
ings obtained by the different methods. We give a second
table with comparison for anti-aliased images with 9 sam-
ples per pixel to show how the methods behave in this case.
For each scene, around 650K VPLs are generated by tracing
light paths from the original light sources up to depth 10.
Our implementation uses clamping by setting the point-VPL
distance not smaller than 5% of the scene radius. Due to the
consequent energy loss, we use the image rendered with all
VPLs as our reference image.

Performance. Table 1 shows the results with various statis-
tics for 1 sample per pixel. We set the error bound of Light-
cuts to 1% and adjusted the other methods (error bound or
column number) to provide similar RMSE quality. We note
that all algorithms exhibit small variations in quality due to
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Banquet San Miguel Sponza Kitchen

Scenes
Triangles 0.74M 10.5M 0.28M 0.17M
VPLs 638K 677K 641K 551K

LC(1%)

Preproc. time (s) 56.05 109.22 80.57 89.80
Render time (s) 116.71 749.41 233.31 183.07
Avg # of rays 947 5161 2294 1597
RMSE 0.010468 0.011369 0.005913 0.010336
Rel. Error 2.740256 2.770336 4.316007 8.957002
Upper bound 2878 14202 6183 4313

LS

Render time (s) 365.74(230) 227.88(41) 263.35(129) 116.61(67)
Avg # of rays 2879 2722 2849 1362
RMSE 0.016666 0.028958 0.011842 0.013217
Rel. Error 3.469874 7.718524 4.048875 10.411767
Columns 3200 3200 3200 1600
Speedup 0.3 3.3 0.9 1.6

IC(1.5%)

Preproc. time (s) 58.28 112.48 82.07 93.02
Render time (s) 36.94 186.12 71.83 43.04
Avg # of rays 1301 5561 3064 1258
RMSE 0.010401 0.012534 0.005747 0.012562
Rel. Error 2.442368 3.137196 4.113609 9.543214
Upper bound 90 236 69 216
Speedup 3.1 4.0 3.3 4.2

IC-S(1%)

Preproc. time (s) 58.32 112.40 82.31 92.31
Render time (s) 23.30 78.58 23.89 30.26
Avg # of rays 463 1849 720 602
RMSE 0.010097 0.012956 0.006997 0.011005
Rel. Error 2.639261 3.807332 4.382032 9.087991
Upper bound 155 362 102 350
Speedup 5.0 9.6 9.7 6.1

Table 1: Rendering statistics for 1600× 1200 resolution images with 1 sample per pixel. The parameters are set to achieve
approximately equal RMSE error, except for LightSlice which fails to resolve certain artifacts.

randomness. We provide the running times for the prepro-
cessing and the rendering phase. For our method and Light-
cuts, the preprocessing consists of building the light tree
while for LightSlice there is no view independent prepro-
cessing phase. The normalized RMSE and average relative
error provides numerical difference against the VPL refer-
ence image. Both our method and Lightcuts are using simi-
lar error upper bound calculations. In order to compare the
reduction of such calculations we have included in the table
the number of upper bound calculations averaged over the
number of pixels. We also give average number of shadow
rays per pixel. Note that these are not identical, since lights
facing away are not tested and additional shadow rays are
traced in other parts of the algorithms. The latter happens
for Phase I and for building the reduced light transport ma-
trix in LightSlice. The error images are calculated by taking
the channel-wise Euclidean distance between the image, and
the VPL reference image, and multiplying it by a factor of
16. For LightSlice we report in parenthesis the time to clus-
ter the reduced matrix because that is single threaded and it
is a significant part of the rendering causing the main bottle-

neck of the algorithm. We also include highlights of typical
errors (see Figure 3).

Comparison to Lightcuts. In general, the quality of our re-
sults is similar to Lightcuts with 3− 6 times speedup. Both
methods adapt well to the scenes, keeping the error low with
the upper bounding methods and both methods oversam-
ple shadowed areas. The only visible artifacts are the non
smooth shading of uniform surfaces, e.g., in San Miguel.
Note that as Embree is a high performance ray tracing kernel
we gain speed-up by significantly reducing the cost of clus-
tering. In Figure 4 we illustrate the number of upper bound
calculations for each point p∈ P. The images are using false
coloring with a logarithmic scale. In Lightcuts, for each p
we add 1 at each upper bound calculated while shading the
point. In IlluminationCut, when an upper bounding calcula-
tion is carried out for an illumination-aware cluster we add
to each p in the cluster the inverse of the number of points
in the cluster. This shows the amortized cost of clustering
and it is consistent since an upper bounding calculation still
increases the total value by 1, just as in Lightcuts.
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Banqet San Miguel Sponza Kitchen

Reference

LC

LC Error

LS

LS Error

IC

IC Error

IC-S

IC-S Error

Table 2: The images rendered with the 4 methods (LC,LS,IC,IC-S) with error images for 1600×1200 resolution with 1 samples
per pixel.
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Reference LC LS IC

Reference LS Reference IC-S

Figure 3: Typical errors of the four methods (LC, LS, IC, IC-S). The first row shows that LC and IC both fail to reproduce
smooth color gradients in complex illumination (the pink color is the result of light reflected on the lamps). LS performs better
but it introduces blocking artifacts. Sponza shows that if within a point-cluster the radiance of points changes drastically LS
has no means to adapt to it. San Miguel demonstrates that IC-S might fail to detect small shadows.

1 150 4000 21K

Figure 4: The logarithm of the number of upper bound cal-
culations per point for Kitchen and Sponza for LC (left) and
IC (right). IC amortizes the cost of upper bounding calcula-
tions very efficiently but suffers from descending too deep in
the tree for dark areas, just as Lightcuts.

Comparison to LightSlice. LightSlice performs less effi-
ciently in our highly glossy environments. Its ability to ex-
plore the structure of VPLs and to adapt to occluded lights
reduces the number of rays traced. But this comes with a
cost. Clustering the reduced matrix becomes the bottleneck
and clustering the points into slices causes blocking artifacts,
especially on glossy surfaces. The method fails to handle

complex lighting situations, since using randomly sampled
representatives easily miss important details. Consider, e.g.,
Sponza, where it is unable to calculate a good shading for the
floor in a reasonable time while the other parts of the image
are very close to the reference.

High fidelity images. We have set our error threshold for
Lightcuts to 1% which closely matches the parameters used
in previous work [WFA∗05, OP11]. Despite that, the qual-
ity of our images are not matching the reference. In order to
show that our methods are capable of producing nearly in-
distinguishable results we have set more strict error thresh-
olds. See the result for Banquet in Table 3. Note that we still
maintain our speed up over Lightcuts while the quality is the
same. LightSlice converges very slowly to the correct solu-
tion if one only varies the number of columns. On the other
hand, using more slices requires prohibitively large memory.

LC(0.1%) LS(6400) IC(0.15%) IC-S(0.1%)
R. time (s) 602.98 720.46 180.57 178.83
RMSE 0.00315 0.01490 0.00319 0.00425
Rel. Err. 1.12375 2.37685 1.08088 1.18171

CT LS IC IC-S

Table 3: Results for Banquet where the images are visually
indistinguishable from the reference. For concision, we only
include times for rendering and error images.
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Maximum cut size. The original Lightcuts method sets the
maximum cut size to 2000. We now present the results of
Lightcuts with this additional constraint. For Banquet the re-
sults remained basically unchanged. For San Miguel the ren-
dering time becomes similar to our method but the quality
is significantly worse. For Sponza this results in degradation
of quality while for Kitchen the quality remains unchanged.
We believe that maximum cut size is effective mainly if one
can properly set it prior to rendering a scene. In Table 4 we
included results with setting the maximum cut size to 2000.

Banquet San Mig. Sponza Kitchen
R. time (s) 103.88 175.54 99.34 82.47
RMSE 0.01066 0.02548 0.00632 0.01581
Rel. Err. 3.04835 8.95983 5.16506 10.10555

Table 4: Lightcuts with maximum cut size set to 2000.

Speed up. The ray tracing kernel used in our imple-
mentation is more highly optimized than the renderer
(see [WWB∗14] for details on the ray tracing kernel). There-
fore the speed up achieved by the method is less if these two
components are similarly efficient. In order to have a more
objective comparison we have measured the proportion of
different components in our implementation of Lightcuts.
Approximately 20% is spent on ray tracing, 60% on upper
bounding computations and the remaining 20% is spent on
shading and heap maintenance. The upper bounding calcu-
lations in our method are only a fraction of Lightcuts’, there-
fore we achieve on average 3 times speedup over Lightcuts.

Memory. See Table 5 for the peak memory consumption
(in GB) of the four algorithms LC(1%), LS(800), IC(1.5%),
IC-S(1%) run on Banquet with 1 sample per pixel and
1600× 1200 resolution. Lightcuts is the most efficient on
memory consumption, followed by our method. For the lat-
ter the point tree consumes most memory, scaling linearly
with the number of points (e.g., 9 samples per pixels would
require extra 8 GB of memory). We note that in order to al-
leviate the memory consumption one could partition the tree
into a few subtrees and process them independently. Light-
Slice, due to the light transport matrix storage (the size of
it is the number of slices times the number of VPLs), has a
very high memory consumption.

# VPLs: 50K 300K 600K 1.2M
LC(1%) 0.31 0.62 1.02 1.74
LS(800) 2.95 14.18 29.53 55.10
IC(1%) 1.35 1.65 2.24 2.70

Table 5: Peak memory requirements for Banquet (in GB).

Scalability. In Figure 5 we plot the rendering times of four
methods (LC(1%), LS(1600), IC(1.5%), IC-S(1%)) with
varying number of VPLs for Banquet (1 sample per pixel,

1600× 1200 resolution). Our method consistently outper-
forms Lightcuts and LightSlice. The rendering times of both
LC and IC are sub-linear in the number of VPLs. For LS,
above a certain number of VPLs, the construction and clus-
tering of the reduced light transport matrix becomes the
dominant cost, therefore scaling approximately linearly.
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Figure 5: Render times with varying number of VPLs for
San Miguel (top) and for Banquet (bottom).

Anti-aliasing. We have found that increasing the number
of samples increases the quality of the images rendered with
LightSlice. Given a VPL-cluster, the method uses different
representative lights of the light cluster for shading the dif-
ferent samples in a pixel. See Table 6 for the results of the
methods with 9 samples per pixel. This technique smooths
the errors, thus enables LightSlice to achieve better quality
with only 800 columns, improving its rendering time signif-
icantly. For Kitchen, LightSlice now outperforms our algo-
rithm but it is still not well-suited for highly glossy envi-
ronments (e.g., Banquet) and challenging illumination (e.g.,
Sponza). In these cases IlluminationCut-Sampling performs
better. Our method can be further enhanced for the case of
multiple samples per pixel, in a similar way as Multidimen-
sional Lightcuts, by limiting the number of traced rays and
shadings. Namely, in each illumination-aware pair use only a
single representative for the points originating from the same
pixel. This would result in fewer visibility queries but likely
increase the error on surfaces with non-uniform textures.

5. Limitations and future work

We have presented an implementation of a flexible and effi-
cient framework handling highly glossy materials. It is sev-
eral times faster than Lightcuts and has similar speedup as
LightSlice while guaranteeing low perceptual error which
can be set a priori to rendering.
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The usage of an octree for the point tree can cause block-
ing artifacts, however with low error threshold these disap-
pear. The approximate image used in our algorithm has er-
rors and it is not progressively refined (contrary to Light-
cuts), thus it might introduce errors in Phase II. This effect,
however, is unnoticeable since even a 100% error in the ap-
proximate image only results in at most 1% additional error
(per cluster) in the final image. IlluminationCut reduces cal-
culations by exploiting the similarity of points, therefore it is
less efficient for scenes where the shaded points have highly
varying properties (e.g., heterogeneous BRDFs or spatial in-
coherence). Our current implementation requires the BRDFs
to belong to a family with a low number of parameters since
otherwise bounding these parameters for nodes of the octree
would become prohibitively expensive.

The construction method of the point tree is not important
(to some extent) for Algorithm 1 to extract pairs of clusters.
Thus one step further would be to utilize a complex metric
for the point tree, e.g., incorporating material properties as
well. Such a strategy could be useful in a scene with highly
varying materials since it would enable tighter error bounds
for the individual clusters.
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[KHA∗12] KŘIVÁNEK J., HAŠAN M., ARBREE A., KELLER C.
D. A., WALTER B.: Optimizing realistic rendering with many-
light methods. In SIGGRAPH 2012 Course (2012). 3

[KK06] KOLLIG T., KELLER A.: Illumination in the presence
of weak singularities. In Monte Carlo and Quasi-Monte Carlo
Methods 2004, Niederreiter H., Talay D., (Eds.). Springer Berlin
Heidelberg, 2006, pp. 245–257. 3

[KSW11] KHUNGURN P., SARANURAK T., WATCHAROPAS C.:
Pixelcuts: Scalable approximate illumination from many point
lights. Chiang Mai Journal of Science (Special Issue) 38, 1
(2011), 8–16. 3

[LSK∗07] LAINE S., SARANSAARI H., KONTKANEN J.,
LEHTINEN J., AILA T.: Incremental instant radiosity for
real-time indirect illumination. In Proceedings of Eurograph-
ics Symposium on Rendering (2007), Eurographics Association,
pp. 277–286. 3

[Mik10] MIKSIK M.: Implementing lightcuts. In CESCG (2010).
6

[NNDJ12a] NOVÁK J., NOWROUZEZAHRAI D., DACHS-
BACHER C., JAROSZ W.: Virtual ray lights for rendering scenes
with participating media. ACM Transactions on Graphics
(Proceedings of SIGGRAPH) 31, 4 (July 2012). 3

[NNDJ12b] NOVÁK J., NOWROUZEZAHRAI D., DACHSBACHER
C., JAROSZ W.: Progressive Virtual Beam Lights. Computer
Graphics Forum 31, 4 (2012), 1407–1413. 3

[OP11] OU J., PELLACINI F.: Lightslice: matrix slice sampling
for the many-lights problem. ACM Trans. Graph. 30, 6 (2011),
179. 1, 3, 6, 9

[PGSD13] POPOV S., GEORGIEV I., SLUSALLEK P., DACHS-
BACHER C.: Adaptive quantization visibility caching. Computer
Graphics Forum 32, 2 (2013). EUROGRAPHICS 2013. 3

[Rad08] RADAX I.: Instant Radiosity for Real-Time Global Illu-
mination. Tech. rep., Institute of Computer Graphics and Algo-
rithms, Vienna University of Technology, 2008. 3

c© 2015 The Author(s)
Computer Graphics Forum c© 2015 The Eurographics Association and John Wiley & Sons Ltd.



N. Bus & N. H. Mustafa & V. Biri / IlluminationCut

[RGK∗08] RITSCHEL T., GROSCH T., KIM M. H., SEIDEL H.-
P., DACHSBACHER C., KAUTZ J.: Imperfect Shadow Maps
for Efficient Computation of Indirect Illumination. ACM Trans.
Graph. (Proc. of SIGGRAPH ASIA 2008) 27, 5 (2008). 3

[SIMP06] SEGOVIA B., IEHL J. C., MITANCHEY R., PÉROCHE
B.: Bidirectional instant radiosity. In EGSR (2006), pp. 389–398.
3

[VG95] VEACH E., GUIBAS L.: Bidirectional estimators for
light transport. In Photorealistic Rendering Techniques, Sakas
G., Müller S., Shirley P., (Eds.), Focus on Computer Graphics.
Springer Berlin Heidelberg, 1995, pp. 145–167. 1

[VG97] VEACH E., GUIBAS L. J.: Metropolis light transport. In
SIGGRAPH ’97: Proceedings of the 24th annual conference on
Computer graphics and interactive techniques (1997), pp. 65–76.
1

[WABG06] WALTER B., ARBREE A., BALA K., GREENBERG
D. P.: Multidimensional lightcuts. In ACM SIGGRAPH 2006
Papers (2006), SIGGRAPH ’06, pp. 1081–1088. 2, 3, 5

[WC13] WU Y.-T., CHUANG Y.-Y.: Visibilitycluster: Average
directional visibility for many-light rendering. Visualization and
Computer Graphics, IEEE Transactions on 19, 9 (Sept 2013),
1566–1578. 3

[WFA∗05] WALTER B., FERNANDEZ S., ARBREE A., BALA
K., DONIKIAN M., GREENBERG D. P.: Lightcuts: a scalable
approach to illumination. ACM Trans. Graph. 24, 3 (July 2005),
1098–1107. 1, 3, 4, 6, 9

[WFWB13] WOOP S., FENG L., WALD I., BENTHIN C.: Em-
bree ray tracing kernels for cpus and the xeon phi architecture. In
ACM SIGGRAPH 2013 Talks (2013), SIGGRAPH ’13, pp. 44:1–
44:1. 6

[WKB12] WALTER B., KHUNGURN P., BALA K.: Bidirectional
lightcuts. ACM Trans. Graph. 31, 4 (July 2012), 59:1–59:11. 3

[WPS∗03] WALD I., PURCELL T. J., SCHMITTLER J., BENTHIN
C., SLUSALLEK P.: Realtime Ray Tracing and its use for Interac-
tive Global Illumination. In Eurographics State of the Art Reports
(2003). 6

[WWB∗14] WALD I., WOOP S., BENTHIN C., JOHNSON G. S.,
ERNST M.: Embree: A kernel framework for efficient cpu ray
tracing. ACM Trans. Graph. 33, 4 (July 2014), 143:1–143:8. 6,
10

[WXW11] WANG G., XIE G., WANG W.: Efficient search of
lightcuts by spatial clustering. In SIGGRAPH Asia 2011 Sketches
(New York, NY, USA, 2011), SA ’11, ACM, pp. 26:1–26:2. 3

c© 2015 The Author(s)
Computer Graphics Forum c© 2015 The Eurographics Association and John Wiley & Sons Ltd.



N. Bus & N. H. Mustafa & V. Biri / IlluminationCut

Banquet San Miguel Sponza Kitchen

LC(1%)

Preproc. time (s) 53.70 92.53 82.36 68.16
Render time (s) 1031.02 6665.94 2007.74 1522.25
RMSE 0.010991 0.012007 0.006238 0.012434
Rel. Error 2.543368 2.681210 3.279278 9.397545

LS(800)

Render time (s) 346.61 399.48 332.62 221.34
RMSE 0.016470 0.026163 0.005793 0.008920
Rel. Error 4.010837 6.959285 2.938075 8.923159
Speedup 3.0 16.7 6.0 6.9

IC(1.5%)

Preproc. time (s) 55.14 95.35 84.90 70.48
Render time (s) 281.11 1567.65 665.01 360.33
RMSE 0.008770 0.011267 0.005986 0.011585
Rel. Error 2.280708 2.772934 2.815512 9.152297
Speedup 3.7 4.3 3.0 4.2

IC-S(1%)

Preproc. time (s) 55.20 95.21 83.57 70.10
Render time (s) 117.58 444.25 143.87 170.65
RMSE 0.008096 0.010349 0.005480 0.012178
Rel. Error 2.257898 2.686910 2.791644 9.766247
Speedup 8.8 15.0 14.0 8.9

Reference images

LC(1%)

Error LC(1%)

LS(800)

Error LS(800)

IC(1.5%)

Error IC(1.5%)

IC-S(1%)

Error IC-S(1%)

Table 6: Statistics for images of 1600×1200 resolution with 9 samples per pixel.
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