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Les informations de sensibilité fournies par les dérivées sont indispensables en science dans de nombreux 11 

domaines. En analyse numérique, calculer très précisément la valeur des dérivées d’une fonction d’un 12 

simulateur physique peut relever du défi. La méthode classique des Différences Finies (DF) est une solution 13 

simple à mettre en œuvre pour estimer la valeur d’une dérivée. Cependant, elle reste très sensible 14 

numériquement et coûteuse en temps de calcul. A contrario la méthode de la Différentiation Algorithmique 15 

(DA) est une aide puissante pour le calcul des dérivées d’une fonction décrite au moyen d’un programme 16 

informatique. Quelle que soit la complexité des algorithmes mis en œuvre dans l’expression d’une fonction, elle 17 

calcule précisément sa dérivée en minimisant les efforts de développement. 18 

Cet article montre l’apport de la DA en comparaison des DF sur le problème du calage d’un modèle hydraulique 19 

à surface libre 1D de classe industrielle. Le calage du modèle est réalisé par un optimiseur mathématique 20 

déterministe nécessitant le calcul précis de la sensibilité de la cote d’eau par rapport au  frottement sur le fond 21 

de la rivière. Deux cas tests réels de comparaison sont présentés. Ils permettent de valider la supériorité attendue 22 

de la DA comme outil d’aide à l’obtention d’un calage optimal. 23 

KEY WORDS: Modèle Hydraulique à surface libre, Calage, Différentiation Algorithmique 24 

 25 

Algorithmic Differentiation for the optimal calibration of 26 

a shallow water model 27 

The information on sensitivity provided by derivatives is indispensable in many fields of science. In numerical 28 

analysis, computing the accurate value of the derivatives of a function can be a challenge. The classical Finite 29 

Differences (FD) method is a simple solution to implement when estimating the value of a derivative. However, 30 

it remains highly sensitive numerically and costly in calculation time. Conversely, the Algorithmic 31 

Differentiation Method (AD) is a powerful tool for calculating the derivatives of a function described by a 32 

computer program. Whatever the complexity of the algorithms implemented in the expression of a function, AD 33 

calculates its derivative accurately and reduces development efforts. 34 

This article presents the contribution of AD in comparison to FD in the problem of calibrating an industrial 35 

class 1D shallow water model. Model calibration is performed by a deterministic mathematical optimiser 36 

requiring accurate calculation of the sensitivity of the water surface profile in relation to the friction on a river 37 

bed. Two comparative real test cases are presented. They permit validating the better performance expected 38 

from AD as a tool used to obtain optimal calibration. 39 

KEY WORDS: Shallow Water Model, Calibration, Algorithmic Differentiation 40 

I INTRODUCTION 41 

Computing sensitivities of a numerical model is a key ingredient in Scientific Computing. The 42 

derivatives that express these sensitivities must be computed with the best possible accuracy for applications 43 

such as inverse problems, data assimilation, optimisation, or Uncertainty Quantification. When the model is 44 

given as a computer program, several options exist to obtain its derivatives. Finite Differences (FD) is easily 45 

implemented but returns approximate derivatives whose poor accuracy will degrade performance of the 46 

complete application. A much better option is to create a new program that computes the exact, analytical 47 

derivatives of the model. This new program can be written “by hand”, but this is a long and error-prone 48 
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process. Keeping the derivative model up to date with modifications of the original model is cumbersome. 49 

Alternatively, Algorithmic Differentiation (AD) [Griewank and Walther, 2008] is a way to automate the 50 

creation of the derivative program, thus providing accurate derivatives for a minimal development effort.  51 

This article presents the application of the TAPENADE AD tool [Hascoët and Pascual, 2013] developed by 52 

INRIA, on the 1D shallow water model MASCARET [Goutal et al., 2012]. It validates the use of the 53 

differentiated code for an inverse problem of parameter estimation. 54 

Regarding shallow water programs like MASCARET, the type of river bed is modelled by a friction 55 

coefficient. This coefficient takes into account the friction of the fluid on the bottom as well as other 56 

phenomena not modelled elsewhere such as turbulence and channel bends. This article presents the 57 

application of AD to an inverse problem, namely the automatic calibration of the friction coefficient based 58 

on a water surface profile measured during flooding at steady discharge. This permits testing both the AD 59 

TAPENADE software with an industrial calculation code and improving the current method used to calibrate 60 

the friction coefficient in MASCARET. 61 

Initially, after having introduced the MASCARET 1D water flow calculation, the problem of calibrating 62 

the friction coefficient is presented (cf. Section II). Section III focuses on the presentation of the optimisation 63 

algorithm chosen to carry out this task. Then, Section IV describes the principle and use of AD. In Section V, 64 

the results obtained from the different test cases are presented and discussed. Finally, the conclusions and 65 

outlook are presented in Section VI. 66 

II THE WATER MODELLING SYSTEM  67 

The calculation code on which the works presented here is based is the MASCARET 1D free surface 68 

modelling software. This software is part of the open-source hydro-computing system TELEMAC-69 

MASCARET (www.openmascaret.org). Applications of this system are many, from flood modelling and 70 

flood plain modelling to the calculation of flood waves resulting from dam breaches, sediment transport and 71 

water quality. It is composed of three main kernels: steady subcritical flow, unsteady subcritical flow and 72 

unsteady super-critical flow. The steady subcritical flow kernel is the target of this study. 73 

II.1 Saint-Venant 1D equations 74 

As mentioned above, we focus only on 1D steady flows. The equations governing this type of flow are 1D 75 

Barré St-Venant equations given by the following formulations [Chanson, 2004]: 76 
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where A represents the wetted section (m2), Q the flow rate (m3/s), aq the inflow, Z the free water surface 79 

(m), fS the head losses resulting from the friction of the fluid on the walls, sS the singular head losses 80 

(narrowing, etc.). 81 

Term fS of the momentum equation (2) is calculated using empirical friction laws such as that of Strickler 82 

(19th century) whose relation is given below: 83 
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 84 

where R denotes the hydraulic radius (wetted surface divided by the wetted perimeter in m) and K , the 85 

Strickler coefficient modelling the nature of the channel bed (m1/3/s). 86 

In the MASCARET hydraulic calculation, the river bed is divided into two zones, the main channel and the 87 

flood plain. The main channel is the main flow zone. The flood plain is the secondary zone: this zone 88 

participates in the flood flow, though it has a specific friction coefficient due to the different natures of the 89 

soils. This coefficient is defined by the cross-section and by the bed, and is constant per friction zone, whose 90 

sizes and numbers are determined by the study data. The friction coefficient takes into account the friction of 91 

the walls on the fluid and the dissipation phenomena not modelled elsewhere (turbulence, etc.). Thus it 92 

cannot be determined directly by the study data and must be adjusted using the water surface profiles 93 



measured for a given flow rate. Done manually, this model calibration step is time consuming, but it is 94 

indispensable to ensure the quality of the study. That is why an automatic calibration method using measured 95 

elevation data has already been integrated in MASCARET. 96 

This automatic calibration method is based on a first order unconstrained optimisation method known as 97 

“gradient descent optimisation”, with a gradient approximated by finite difference. The disadvantages of this 98 

approach are: 99 

 The velocity of convergence to the minimum sought can prove slow. 100 

 In certain cases, its accuracy can be poor. 101 

 The values of the friction coefficients obtained can exceed the values prescribed. 102 

Therefore the objective of this work is to propose a more efficient automatic calibration algorithm 103 

capable of eliminating the limitations mentioned, using Algorithmic Differentiation methods. 104 

II.2 Automatic calibration  105 

Automatic calibration is an inverse method used to find an “admissible” constant friction coefficient K  106 

per zone, resulting in the calculation of a water surface profile close to the water surface profile measured for 107 

a steady flow. The optimal search for this coefficient is done by minimising a cost function calculating the 108 

difference between the level computed by the numerical model and the measured level: 109 
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 110 

where floodN represents the number of floods, 
c

measN the number of measures linked to these floods, 
c

jα a 111 

weighting coefficient that can be set to less than 1 when a measure is deemed uncertain, 
meas

jZ the water 112 

level measured at point j  and 
calc

jZ the height calculated by the model. 113 

Generally, optimisation methods are used to solve minimisation problems. The former can be very 114 

different according to the form of the function to be minimised (convex, quadratic, nonlinear, etc.), its 115 

regularity and the dimension of the space studied [Nocedal and Wright, 2006]. Many deterministic 116 

optimisation methods are known as gradient descent methods, among which the best known is the Newton 117 

method, which is the approach used in this work [Gilbert and Lemaréchal, 1989]. This minimisation process 118 

will quickly find, when successful, a better solution in comparison with the value of the initial guess. 119 

III THE BFGS QUASI-NEWTON METHOD  120 

As mentioned above, the optimisation method chosen to minimise the cost function (4) is based on the 121 

application of the Newton method to the gradient of the functional J , to find the zeros and then the extremes, 122 

thus the minimum. This method involves the calculation of the first and second derivatives of the cost 123 

function. The main disadvantage of this type of approach is the use of the second derivative (Hessian) of the 124 

cost function )(2 KJ . Indeed, at each iteration of the Newton algorithm, it is necessary to calculate the 125 

Hessian and solve a linear system of the matrix )(2 KJ . For large problems, the resolution of the linear 126 

system is out of reach. An alternative is to use algorithms such as the Quasi-Newton algorithm which 127 

provides Hessian approximations that improve as the iterations progress, for a reasonable cost. Therefore the 128 

method chosen to perform this work is the constrained Broyden Fletcher Goldfarb Shanno Quasi-Newton 129 

Method (BFGS). 130 

Using a constrained optimisation method makes it possible to impose boundaries when seeking the 131 

parameter to be calibrated. Although the friction coefficient takes into account dissipation phenomena that 132 

cannot be represented in the numerical model, it is directly dependent on the type of surface composing the 133 

river bed. Thus an interval of acceptable “physical” values exists for searching the friction coefficient as a 134 

function of the type of soil. 135 

The optimisation method used involves calculating the gradient of the cost function. One could compute an 136 

accurate gradient by manually differentiating the calculation code. However this would be time-consuming 137 

and error-prone, as this implies writing a code of a size similar to the original code (more than 10,000 lines 138 



of FORTRAN for MASCARET steady flow kernel). Nonetheless, AD software tools can alleviate this cost 139 

[Griewank and Walther, 2008]. 140 

IV ALGORITHMIC DIFFERENTIATION  141 

Algorithmic Differentiation of programs is a powerful technique for evaluating the derivatives of functions 142 

described by computer programs. Contrary to traditional approaches, such as derivation by finite differences, 143 

AD provides accurate derivatives at a relatively cheap cost, for a simple mathematical formula as well as for 144 

a program with more than 100000 lines of code. By calculating an exact derivative, AD thus plays a key role 145 

in developing a new optimisation method for the automatic calibration of the friction coefficient. This 146 

section describes the principle of AD. Then, after having presented the TAPENADE software [Hascoët and 147 

Pascual, 2013], used to differentiate the kernel of the steady calculation of MASCARET, its application is 148 

described in the framework of implementing the optimal calibration of a shallow water model [Cunge et al., 149 

1980; Fread and Smith, 1978]. 150 

IV.1 Principle of Algorithmic Differentiation  151 

Every calculation program, or at least its run-time trace, can be seen as a sequence of assignments 152 

involving only unary (trigonometric function, square root, etc.) and binary (additions, multiplications, etc.) 153 

operations. Therefore, the program can be seen as a composition of elementary functions, to which one can 154 

apply the chain rule of calculus to obtain its derivative with analytic accuracy. 155 

 Consider a mathematical function F : 156 

YX

F mn



:
                                                                         (5) 157 

Assume F  is implemented as a sequence of r computer program instructions, each of them implementing 158 

an elementary function. Call 
lf  the elementary function corresponding to instruction l : 159 

(X)fff=F(X)=Y rr 11 ... 
                                                      (6) 160 

By applying the chain rule of calculus to equation (6), the Jacobian matrix A  of F , which is a nm  161 

matrix, writes as the product of the derivatives of the 
lf . 162 
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Explicit evaluation of equation (7) can be extremely costly, as each derivative involved is a matrix roughly 164 

of size qq , where q  is the number of elementary variables active at the time of the instruction, i.e. of the 165 

order or larger than m  and n . Therefore, AD rather focuses on computing two useful projections of A , from 166 

which it may even be easier to retrieve the full A  if necessary. This results in the two so-called “modes” of 167 

AD: 168 

 The tangent mode computes δXA=δY .  for any arbitrary vector 
nδX  . In other words, it 169 

computes a directional derivative which is the first-order variation of the output for a small 170 

variation of the input in direction δX . From equation (7), it is clear that δXA=δY .  is most 171 

efficiently computed from right to left, leading to only matrix-vector products. The total cost of 172 

evaluating δY  is only a small multiple of evaluating F . If δX  is taken as an element of the 173 

Cartesian basis, δY  is a column of the Jacobian A . The full A  can be obtained by repeated calls 174 

to the tangent code on the input space's Cartesian basis. Notice that tangent mode implies the same 175 

computation order as the original program, and therefore derivative computations can be 176 

introduced into the original code by inserting a derivative instruction before each original 177 

instruction. Implementation of the tangent mode is therefore straightforward. Table 1 (middle) 178 

shows the tangent differentiated code of a simple code shown on the left, which computes the 179 

norm of a 3D vector. Derivative variable names are built with an appended “d”. One can see the 180 

straightforward structure of the tangent code. This tangent code must be run three times to obtain 181 

the three components of the gradient. 182 



 The adjoint mode computes AYδ=Xδ .**
 for any arbitrary (transposed) vector 

mYδ *
. In other 183 

words it computes the gradient with respect to X  of a scalar function, which is the weighted sum 184 

of all elements of Y  with weightings Yδ*
. From equation (7), it is clear that Xδ*

 is most 185 

efficiently computed from left to right, since this leads only to vector-matrix products. Just like for 186 

the tangent mode, the total cost of evaluating Xδ*
 is only a small multiple of evaluating F . If 187 

Yδ*
 is taken as an element of the Cartesian basis, Xδ*

 is a row of the Jacobian A . The full A  188 

can be obtained by repeated calls to the adjoint code on the output space's Cartesian basis. 189 

Therefore, the adjoint mode tremendously outperforms the tangent mode when 1=m , which is 190 

the case in most optimization or inverse problems applications. The computation order for the 191 

derivatives is reversed from the original program's order, which makes implementation of the 192 

adjoint mode a technical challenge (see [Hascoët and Pascual, 2013]). In particular, intermediate 193 

values from the original computation must be made available to the derivative computation in 194 

reversed order, leading to difficult memory problems and trade-offs [Naumann, 2012]. Table 1 195 

(right) shows the adjoint differentiated code of the same simple code. Derivative variable names 196 

are built with an appended “b”. One can see the reversed structure of the adjoint code, and the 197 

somewhat counter-intuitive shape of the derivative instructions. However, this adjoint code returns 198 

the three components of the gradient in only one run. 199 

 200 

Table 1: Algorithmic differentiation of a simple code 201 

Original code Tangent code Adjoint code 

s = x*x sd = 2.0*x*xd s = x*x 

s = s + y*y s = x*x s = s + y*y 

s = s + z*z sd = sd + 2.0*y*yd s = s + z*z 

n = SQRT(s) y = s + y*y n = SQRT(s) 

 sd = sd + 2.0*z*zd sb = 0.5*nb/SQRT(s) 

 s = s + z*z nb = 0.0 

 nd = 0.5*sd/SQRT(s) zb = zb + 2.0*z*sb 

 n = SQRT(s) yb = yb + 2.0*y*sb 

  xb = xb + 2.0*x*sb 

  sb = 0.0 

 202 

For further details on AD and the associated research, the reader can refer to [Griewank and Walther, 203 

2008], [Naumann, 2012], to the proceedings of the AD conferences, and to the AD community website 204 

www.autodiff.org. 205 

IV.2 Algorithmic Differentiation implementation approaches 206 

AD tools rely mostly on two different approaches, Operator Overloading and Source Transformation: 207 

 The Operator Overloading approach is possible only on languages that support overloading, such as 208 

C++, ADA and FORTRAN 90. Examples of AD tools of this kind are ADOL-C [Walther and 209 

Griewank, 2012], and dco [Lotz et al., 2011]. This AD method is the simplest to implement, since 210 

it requires only the definition of a new data-type, and of the overloaded arithmetic operations on 211 

this data type. Changes to the original code are minimal. However, efficiency is limited by the run-212 

time overhead of the overloading mechanism, and the reversed nature of the adjoint mode 213 

contradicts the natural order of overloading, causing extra run-time and memory overhead; 214 

 The Source Transformation approach is used for instance in the tools TAF [Giering et al., 2005], 215 

ADIC [Bischof et al., 1997], ADIFOR [Bischof et al., 1991], OpenAD [Utke et al., 2008], and 216 

TAPENADE [Hascoët and Pascual, 2013]. These tools target mainly C and Fortran 90 programs. 217 

Source transformation uses concepts from compilation, for example the generation and 218 

transformation of abstract syntax trees. Like in a compiler, the source program is parsed, analysed, 219 



and then transformed into a new differentiated source program. Sophisticated compilation 220 

techniques allow for optimisations that improve performance of the differentiated code. 221 

IV.3 The TAPENADE AD tool 222 

The AD tool chosen for this work is TAPENADE, developed by the ECUADOR team of INRIA [Hascoët 223 

and Pascual, 2013]. Tapenade is based on the source transformation approach. It globally analyses the code 224 

to which it is applied and fully rebuilds a differentiated program, adding instructions into the original 225 

program. It applies to both FORTRAN 90 and C. TAPENADE provides both tangent- and adjoint-mode AD. 226 

One reason for our choice is the direct access to the differentiated source, providing much flexibility and the 227 

opportunity to optimise the execution time of the adjoint by adjusting the differentiated program.  228 

Collaboration between EDF and INRIA helped in applying TAPENADE to MASCARET and provided 229 

feedback and experience on the problems encountered, thus bringing improvements to both tools. 230 

IV.4 Application of TAPENADE to MASCARET 231 

IV.4.1 Context 232 

As mentioned in section II.2, the search for an optimal friction coefficient during automatic calibration 233 

must be done by minimising the cost function (4). In our calibration experiments, we calibrate K  defined as 234 

iK  for each friction zone i , whereas what the simulation uses is an expanded expK  defined at each node 235 

p . By definition, for all node p  belonging to friction zone i : 236 

ip KexpK                                                                                (8) 237 

The cost function (4) becomes: 238 
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The gradient of Ĵ  with respect to K  is: 240 
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                            (10) 241 

where 
calc

jZ  is the water surface profile calculated from expK  by the model. The matrix 
dK

dexpK
 has a 242 

very simple structure, with one row per node and one column per friction zone. For each friction zone i , this 243 

column elements are 1 for nodes p  belonging to i  and 0 otherwise. 244 

IV.4.2 Choice of the AD mode 245 

The largest and most computationally-intensive part of equation (10) is the derivative of the water surface 246 

calculated at each point j  of the grid as a function of the friction coefficients at each node: 247 

dexpK

dZ calc

j
                                                                                 (11) 248 

As is usually the case, it is fortunately not needed to compute this large matrix explicitly. Equation (10) 249 

actually amounts to multiplying this matrix on the left and on the right as follows: 250 

 on the left, it is multiplied with a single-row matrix, i.e. a transposed vector, whose element of rank 251 

j  is: 252 
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assuming there is a measurement available at each point. If not, set 
c

j  to 0. 254 



 on the right, it is multiplied with 
dK

dexpK
 which has one column per friction zone. Our first 255 

applications have only a few friction zones. 256 

As the left multiplier is a single-row matrix, we are aware that adjoint differentiation can compute the 257 

complete 
dK

Jd ˆ
 in a single run of the adjoint code. On the other hand, since the right multiplier has one 258 

column per friction zone, the code produced by tangent differentiation must run once per friction zone to 259 

compute the full 
dK

Jd ˆ
. 260 

However, our first applications have less than 10 friction zones and experience shows that adjoint codes 261 

are almost always 2 to 5 times slower than tangent codes, due to their sophisticated architecture. Moreover, 262 

the present architecture of MASCARET doesn’t lend itself easily to isolating the computation of the left 263 

row-vector multiplier. For these reasons, we feel it is wise to use the tangent mode of AD for our first 264 

calibration experiments, and in the future slightly refactor MASCARET and switch to the adjoint mode when 265 

it comes to larger cases. 266 

IV.4.3 Actual differentiation and derivatives validation 267 

 Actual differentiation by TAPENADE of the steady subcritical kernel of MASCARET requires some 268 

technical adaptions, as is often the case for codes of this size ( 140000  lines of code). Differentiation itself 269 

produces a long message log, most of which can be discarded after a first careful look. The remaining 270 

messages are about limitations of the AD tool that must be worked around by modifying the source (e.g. 271 

array initializations), or limitations of AD that require post-processing of the differentiated code. In the latter 272 

category, differentiation of MASCARET introduces temporary arrays for intermediate variables and boolean 273 

masks, whose size could not be determined at differentiation time. The end-user is requested to provide these 274 

sizes in a special-purpose separate module. 275 

As a research tool, TAPENADE also contains a number of errors. Collaboration between the AD tool 276 

developers and MASCARET developers is essential, resulting often in improvements to the AD tool and 277 

sometimes in clarifications to the MASCARET source. 278 

When it finally compiles, the differentiated code must be incorporated in a calling context which is similar 279 

to that of the original code, except for additional variables that hold the input and output derivatives. This 280 

can be seen as the task of the final user but on this occasion we could test an experimental feature of the AD 281 

tool which generates a new calling context from the existing one by declaring, allocating, initializing and 282 

freeing the differentiated variables. This is an ongoing development, as adjoint differentiation of dynamic 283 

memory management is still an active research subject. 284 

Once the differentiated code actually produces derivatives, it is necessary to check their correctness. 285 

Validation of the derivatives is usually performed in two steps: 286 

 Validation of the tangent derivatives produced by AD, against derivatives approximated by Finite 287 

Differences. 288 

 Validation of the adjoint derivatives against the (validated) tangent derivatives. Reusing the notation 289 

of section IV.1, given any two vectors δX  and Yδ*
, the scalar δXYδ .A.*

 can be computed in 290 

two ways, either through tangent mode or through adjoint mode. The result must be the same up to 291 

machine precision. 292 

We performed these two tests on MASCARET for the steady river test cases, with satisfying results. Even 293 

if for this work, we decided not to use the adjoint for the final calibration experiments, we did validate both 294 

tangent and adjoint codes:  295 

 The maximum difference between the gradient calculated by FD and that obtained by AD is of the 296 

order of 
410

.  297 

 The maximum difference observed between the gradient calculated by the tangent and adjoint modes 298 

is of the order of machine precision (
1410 ). 299 

Finally, the runtime of the tangent code is roughly twice the run time or the original code, whereas the 300 

adjoint code is roughly seven times slower than the original code. This varies with the test case but conforms 301 

to what is commonly expected. This validates a posteriori our choice of using the tangent mode for the 302 



following calibrations, and indicates to switch to the adjoint mode when calibrating a larger number of 303 

parameters. 304 

V VALIDATION OF THE AUTOMATIC CALIBRATION METHOD  305 

In order to validate the automatic calibration method developed during this work, two cases of real 306 

application were studied. Since the new algorithm allows bounding the search for optimal friction 307 

coefficients, in order to avoid all outliers and non-physical values, it is performed in 25 to 45  m1/3/s for the 308 

main channel and in 5 to 20  m1/3/s for the flood plain.  309 

The results obtained with the method developed here were compared with those obtained using the old first 310 

order calibration method with a gradient calculated by FD. The comparison between the two approaches is 311 

performed by focusing on the speed of convergence of the different methods used, the final value of their 312 

cost function and, of course, the values of the friction coefficients obtained. 313 

V.1 Calibration of the reach of the Rhone close to the Bugey nuclear power plant  314 

V.1.1 Context and available data  315 

This first case study corresponds to a 5 km section of the Rhone River located near the Bugey nuclear 316 

power plant. Upstream and downstream of the model, the boundary conditions used are the imposed flow 317 

rate and water level, respectively. In addition, for this case, 30 inflows distributed along the river were taken 318 

into account. The geometry of this calculation case is not described as it not the purpose of the present study. 319 

Regarding the calibration, 8 friction zones of variable size were considered and 28 water level measures 320 

were available (cf. figure 1) for an upstream flow rate of 446 m3/s and a downstream water level of 188.10 321 

m. Since the upstream flow rate for which observations were available was relatively low, the flow regime 322 

studied was non-overtopping. Therefore, only the friction coefficients of the main channel could be 323 

calibrated. 324 

Furthermore, since this case had already been the subject of a study, calibration data obtained manually 325 

were also available. The Strickler coefficient values per friction zone calibrated manually were (43 / 28.5 / 326 

39 / 34 / 45 / 27 / 35 / 35) m1/3/s. 327 

V.1.2 Comparison of results obtained during automatic calibration  328 

The purpose of this paragraph is to compare the results obtained with: 329 

 The automatic calibration method using the BFGS optimisation method. 330 

 The former calibration method using the gradient descent optimisation method. 331 

 A reference manual calibration.  332 

Figure 1 presents the water surface profiles obtained for these three different calibration methods. For the 333 

two automatic calibration methods, the Strickler coefficient was initialised at a value of 30 m1/3/s in each 334 

zone. 335 

 336 



 337 

Figure 1: Water height calculated using the friction coefficients of the main channel calibrated manually 338 

and automatically (BFGS, gradient descent optimisation). 339 

As shown in the figure above, the results obtained from the three calibration methods are very similar for 340 

the water surface profile calculated. This confirms the methodological choices that we present in this 341 

document. 342 

Figure 2 shows the friction coefficient values obtained with the three methods. 343 

 344 

Figure 2: Friction coefficient values by zone obtained with the three different calibration methods. 345 

From Figure 2, we draw the following observations: 346 

 The values resulting from the manual and automatic calibrations making use of the BFGS 347 

optimisation method are, generally speaking, quite close (about 10% in terms of relative error). 348 

 The magnitude of variability of the Strickler coefficients between two consecutive friction zones is 349 

greater for the two previous methods than for automatic calibration method using the gradient 350 

descent optimisation method. 351 



 The three calibration methods present an almost identical Strickler coefficient for the last friction 352 

zone. 353 

The last comment permits understanding why, despite the different sets of friction coefficients, the water 354 

surface profiles calculated are quite close for the three calibration methods. It is very clear in the light of 355 

these results that the downstream friction zone is that which has the greatest impact on the calibration of this 356 

case study. This can be explained, on the one hand, by the size of this friction zone, which comprises about 3 357 

km of the 5 km of the section studied; and on the other hand, by the resolution method used in the steady 358 

subcritical flow kernel of MASCARET which is performed from downstream to upstream for the calculation 359 

of the water surface profile along the length of the section studied. Furthermore, the results shown in Figure 360 

2 emphasise the complexity of determining a set of optimal friction coefficients. Indeed, the uniqueness of a 361 

solution of this type of problem is not mathematically proven and different sets of parameters can give 362 

analogous results. Thus it is important to set bounds on the search for optimal friction coefficients to avoid 363 

all the outliers and non-physical values. This is why the automatic calibration method developed here uses a 364 

constrained optimisation approach. 365 

Regarding the speed of convergence of the two automatic calibration methods (BFGS and gradient descent 366 

optimisation), Figure 3 highlights a faster convergence and accuracy for the automatic calibration method 367 

developed in this work in comparison to the old method. The BFGS method based on AD finds an optimal 368 

solution in less than 10 iterations whereas the old method reaches an equivalent result in 40 iterations. The 369 

manual calibration requires approximately 20 simulation runs to find a cost function between 10-1 and 10-2. 370 

For the total computation time, there is no noticeable difference to reach the same accuracy on the cost 371 

function for both methods. 372 

  373 

Figure 3: Value of the cost function according to number of iterations for the Quasi-Newton BFGS method 374 

and the gradient descent optimisation method. 375 

To conclude this first case of implementation, the automatic calibration method based on the constrained 376 

optimisation approach of the Quasi-Newton method BFGS presented better accuracy (after 40 iterations, the 377 

cost functions are constant with a value 
3104.3  m2 for the BFGS approach versus 

3106.4  m2 for the 378 

gradient descent optimisation method) with faster convergence in comparison to the old method used. 379 

To compare these initial findings, a second application case study was tested. It takes a 50 km section of 380 

the Garonne River and includes both the main channel and the flood plain. 381 



V.2 Calibration of a reach of the Garonne 382 

V.2.1 Context and available data  383 

The zone selected to perform this study was a section of the Garonne River between Tonneins, downstream 384 

of the confluence with the Lot River, and La Réole (limit of the hydrodynamic influence of the tide), i.e. 385 

about 50 km of river [Besnard and Goutal, 2011]. 386 

Upstream and downstream of the model, the boundary conditions used were imposed flow rate and water 387 

surface profile, respectively. The section studied was divided into 3 friction zones of variable size (cf. Figure 388 

4). 389 

To calibrate this case, two sets of flood data each composed of 3 measures were available. The first set of 390 

data concerned a non-overtopping flood with a flow rate of 255 m3/s and a downstream height of 4 m 391 

whereas the second set resulted from an overtopping flood with a flow rate of 2550 m3/s and a downstream 392 

height of 11.73 m. The geometry of the model is not described in this paper.  393 

Furthermore, since this case had already been the subject of a study, the calibration data obtained manually 394 

were also available. The Strickler coefficient values per friction zone calibrated manually were, for main 395 

channel and the flood plain, (40/32/33) m1/3/s and (10/12/12) m1/3/s, respectively. The water surface profile 396 

linked to these friction coefficient values is shown in the figure below: 397 

 398 

Figure 4: Water surface profile calculated with friction coefficients calibrated manually. 399 

V.2.2 Comparison of results obtained during automatic calibration  400 

For the two automatic calibration methods, the Strickler coefficients of the main channel and flood plain 401 

were initialised at the values of 30 m1/3/s and 15 m1/3/s respectively, in each zone. In this case, the automatic 402 

calibration determined the friction coefficients of the main channel and flood plain simultaneously with the 403 

two floods available. 404 

The results obtained with the two automatic calibration methods are presented in the following figure: 405 

 406 

 407 



 408 

Figure 5: Friction coefficient values of the main channel and flood plain obtained with different automatic 409 

calibration approaches. 410 

The first two observations mentioned in the presentation of the results of the previous test case remain 411 

valid for this new application. 412 

However, in comparison to the previous case, the results shown in Figure 5 highlight the need to set 413 

bounds when searching for the friction coefficient. Indeed, the friction coefficient value for a natural flood 414 

plain must be between 5 and 20 m1/3/s. In this case of application, contrary to the automatic calibration 415 

method based on the constrained BFGS Quasi-Newton method, this criterion is not complied with in the 416 

calibration based on the gradient descent optimisation method, for which the friction coefficient of the flood 417 

plain which extends from 13150 m to 21925 m was found equal to 31 m1/3/s. 418 

Regarding the speed of convergence of the two automatic calibration methods (BFGS and gradient descent 419 

optimisation), Figure 6 also highlights higher accuracy and speed of convergence for the number of 420 

iterations, for the automatic calibration based on the Quasi-Newton BFGS optimisation method than for the 421 

old method. After only 9 iterations, the cost function was 
6107  m2 for the BFGS method versus 0.14 m2 422 

for the gradient descent optimisation method. This last value is too high to consider the found Strickler 423 

coefficients as acceptable. 424 



 425 

Figure 6: Cost function values according to the number of iterations obtained with the different automatic 426 

calibration approaches.  427 

The case of the Garonne emphasised the efficiency of the constrained BFGS Quasi-Newton method when 428 

calibrating friction coefficients in the framework of a river, on the one hand by bounding the minimisation 429 

and on the other hand providing better accuracy and convergence speed. 430 

V.3 Synthesis: contribution of AD to the automatic calibration 431 

The real test cases of Bugey and Garonne show the superiority of the second order BFGS method over the 432 

first order gradient method as expected. Even if the cost function of the BFGS method is always smaller than 433 

for the gradient method, it is not easy to set a value of convergence criteria for the cost function from a 434 

practical point of view. This mainly depends on the number of floods/measurements and on the required 435 

accuracy for the computed water levels. Consequently, practical applications can have a wide range of values 436 

for the convergence criteria. 437 

Finally, in order to see more clearly the gain of using AD, the BFGS method is tested on a new set of data 438 

with FD. The following table compares the cost function values for 15 iterations of the BFGS algorithm. 439 

 440 

Table 2: Influence of the derivative method on the BFGS algorithm 441 

BUGEY GARONNE 

FD AD FD AD 

6.0910-3 4.2110-4 6.3910-1 3.9810-10 

VI  CONCLUSIONS AND OUTLOOK 442 

Evaluating derivatives for a given function (mathematical function and calculation code) can be a 443 

challenge. Algorithmic Differentiation proves a powerful technique for evaluating the derivatives of 444 

functions described by computer programs [Griewank and Walther, 2008]. 445 

This article presented the application of the AD tool TAPENADE [Hascoët and Pascual, 2013] to one of 446 

the hydraulic codes of MASCARET [Goutal et al., 2012], and validated its use for an inverse parametric 447 

optimisation problem. For 1D hydraulic programs like MASCARET, the nature of a river bed is modelled by 448 

a friction coefficient. This coefficient accounts for the friction of walls on fluid as well as other phenomena 449 

not modelled elsewhere such as turbulence and channel bends. The objective of this work was to apply AD 450 

to the inverse problem of optimal friction coefficient calibration. 451 

Automatic calibration is an inverse method used to obtain a constant “admissible” friction coefficient per 452 

zone, resulting in the calculation of a water surface profile close to that measured for a steady flow. The 453 



optimal search for this coefficient takes the form of minimising a cost function calculating the difference 454 

between the height calculated by the numerical model and the measured height. This led to choosing the 455 

constrained BFGS Quasi-Newton method to minimise the cost function. Using a constrained optimisation 456 

method allowed setting bounds when searching the parameter to be calibrated. The optimisation method 457 

employed involved calculating the gradient of the cost function, which was obtained through AD of the 458 

calculation code. 459 

The results obtained with the method developed were compared with those obtained with an old calibration 460 

method based on the gradient descent optimisation method with a gradient approximated by FD. The 461 

comparison was performed on two real case studies. 462 

These two cases of application highlighted the efficiency of the constrained BFGS Quasi-Newton method 463 

during the calibration of friction coefficients in comparison to gradient descent optimisation due to the 464 

setting of bounds for minimisation. Indeed, searching an optimal friction coefficient calibration is a complex, 465 

sometimes ill-posed problem for which different sets of parameters can provide analogous results. This 466 

question has not been investigated here, but to avoid any outliers or nonphysical values, it is important to set 467 

bounds on the search for optimal friction coefficients. Furthermore, in the light of the different results 468 

presented, the speed of convergence of the new calibration method is faster in terms of iterations and better 469 

accuracy is obtained. The automatic calibration method developed during this work will therefore be 470 

deployed in the upcoming version of the MASCARET software (version 8.1). 471 

For several decades, EDF R&D has developed numerical codes to respond to the problems encountered by 472 

the company. Innovative techniques such as AD may fit into the constant improvement of these tools.  473 

AD covers a wide array of applications. This work was conducted in the framework of inverse problems. 474 

However, other applications will also be explored: 475 

 Quantification of uncertainty. Certain methods allow exploring the range of variation of calculation 476 

code inputs using partial derivatives to deduce global sensitivity indices. 477 

 Variational data assimilation methods (“4DVAR” algorithm). As with automatic calibration, this 478 

type of algorithm requires the use of an optimisation method which in turn requires calculating the 479 

gradient of a cost function. 480 

 481 
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