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Abstract: This paper is concerned with the macroscopic modeling and simulation of traffic flow
on junctions. More precisely, we deal with a generic class of second order models, known in the
literature as the GSOM family. While classical approaches focus on the Eulerian point-of-view,
here we recast the model using its Lagrangian coordinates and we treat the junction as a specific
discontinuity in Lagrangian framework. We propose a complete numerical methodology based
on a finite difference scheme for solving such a model and we provide a numerical example.
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1. INTRODUCTION

1.1 Motivation

In this paper, we are motivated by road network modeling,
thanks to macroscopic traffic flow models. First order
traffic flow models have been used for quite a long time
for modeling traffic flows on networks (see Garavello
and Piccoli (2006); Lebacque and Khoshyaran (2002) for
instance). In particular, the seminal LWR model standing
for Lighthill and Whitham (1955); Richards (1956) has
been widely used. However, first order models do not
allow to recapture accurately specific and meaningful
traffic flow phenomena. Thus we focus on the Generic
Second Order Models (GSOM) family which encompasses
a large variety of higher order traffic flow models. GSOM
models have been already well studied on homogeneous
sections but they have attracted little attention for their
implementation on junctions, as it is discussed in Section 3.
However, junctions are the main source of congestion for
traffic streams on a network.

In this paper, we want to develop a junction model
which is compatible with microscopic and macroscopic
descriptions, and satisfies classical constraints coming from
engineering, as for instance the invariance principle dis-
cussed in Lebacque and Khoshyaran (2005); Tampère et al.
(2011); Costeseque and Lebacque (2014a). The micro-
scopic representation of traffic flow is particularly suited
for traffic management methods, while staying compatible
with a macroscopic representation allowing global evalu-
ation. The key idea for conciliating both microscopic and
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macroscopic representations is to recast the macroscopic
model under its Lagrangian coordinates. Indeed the La-
grangian framework focuses directly on the particles and
incidentally it allows to keep track of individual behaviors
(see for instance Leclercq et al. (2007) in the case of first
order LWR model).

1.2 Organization of the paper

The article is organized as follows. In Section 2, the generic
class of second order macroscopic traffic flow models called
GSOM family, is introduced. In Section 3, we review and
discuss the literature for solving GSOM models posed
on junctions. Our aim is to show that the Lagrangian
framework is well-suited for designing the solution to
GSOM problems even if incorporating discontinuities. The
complete numerical methodology is described in Section 4
and a numerical example is given incidentally in Section 5.
Finally, we provide some conclusions on this work and give
some insights on future research in Section 6.

2. GSOM FAMILY

2.1 Formulation of GSOM models

In Lebacque et al. (2005, 2007), the authors introduce a
general class of macroscopic traffic flow models called the
Generic Second Order Models (GSOM) family. Assume
that ρ(t, x) stands for the density of vehicles at location
x ∈ R and time t ≥ 0. Any model of the GSOM family
can be stated in conservation form as follows

∂

∂t

(

ρ
ρI

)

+
∂

∂x

(

ρv
ρvI

)

=

(

0
ρϕ(I)

)

, on (0, +∞)×R, (1)



with the initial conditions
{

ρ(0, x) = ρ0(x), on R,

I(0, x) = I0(x), on R.

The speed is defined by v := I(ρ, I) where I denotes the
speed-density Fundamental Diagram (FD) which depends
on the choice of the GSOM model. It is usually assumed
to be non-increasing with respect to its first variable. The
flow-density FD is then defined by

F : (ρ, I) 7→ ρI(ρ, I). (2)

The variable I(N(t, x)) ∈ R
m, for some m ∈ N, represents

an attribute which is specific to the vehicle N located
at position x and time t. This attribute (which is later
denoted I(t, x) by abuse of notation) can represent, for
instance, the driver aggressiveness, the driver destination
or the vehicle class. The function ϕ : I 7→ ϕ(I) accounts
for the dynamics of the attribute I.

The GSOM family recovers a wide range of existing models
among which there is the LWR model of Lighthill and
Whitham (1955); Richards (1956), a GSOM model with
no specific driver attribute (I = κ for any κ ∈ R),

{

∂tρ + ∂x(ρv) = 0 on (0, +∞)× R,

ρ(0, x) = ρ0(x), on R
(3)

and the ARZ model (Aw and Rascle (2000) and Zhang
(2002)) for which the driver attribute is taken as the
difference between actual speed and the equilibrium speed
Ve(ρ) depending only on the density, that is I = v−Ve(ρ).
The speed-density FD boils down to I(ρ, I) = I + Ve(ρ).

The interested reader is referred to Lebacque and Khosh-
yaran (2013) and references therein for more details on
other examples.

2.2 A note on Supply-Demand functions

It is worth noticing that the notions of supply and demand
functions defined in Lebacque (1996) for the classical LWR
model (3) and expanded to the case of the LWR model on
junctions in Lebacque and Khoshyaran (2002), could be
also extended to the GSOM family, as it was shown in
Lebacque et al. (2007). These functions built on the flow-
density FD are essential to build monotone finite volume
schemes for solving the hyperbolic system (1). Supply and
demand functions are also particularly relevant for traffic
flow modeling through junctions.

If F denotes the flow-density FD defined in (2) (by ex-
tension of notation, we will consider F(., .; x) as the flow-
density FD at position x ∈ R), then equilibrium demand
and supply functions are defined as follows







∆ (ρ, I; x) := max
0≤k≤ρ

F
(

k, I; x−
)

,

Σ (ρ, I; x) := max
k≥ρ

F
(

k, I; x+
) (4)

where x+ (resp. x−) denotes the upper (resp. lower) limit.

In the case of GSOM models, the extension of local traffic
supply and demand definitions is far from being straight-
forward. Indeed, it has been pointed out in Lebacque et al.
(2007) that downstream supply depends on the upstream
driver attribute (which has not already passed through the

considered point). The upstream demand and downstream
supply at a point x and time t are defined such that

{

δ(x, t) := ∆
(

ρ(x−, t), I(x−, t); x
)

,

σ(x, t) := Σ
(

ρ(x, t), I(x+, t); x
)

,
(5)

with

ρ(x, t) := I−1
{

I
(

ρ(x+, t), I(x+, t); x+
)

, I(x−, t); x+
}

.
(6)

Then the passing flow at location x, time t is given by the
celebrated Min formula

q(t, x) = min {δ(t, x), σ(t, x)} .

I

I(., I−)

I(., I+)

v := I(ρ+, I+)

ρ̄ := I−1(v, I−)ρ+

ρ

Fig. 1. The downstream supply depends on the upstream
driver attribute. Here, we have defined I+ := I(x+, t),
I− := I(x−, t) and ρ+ := ρ(x+, t).

Let us introduce the modified demand for the GSOM
models as follows

Ξ (ρ, I1, I2; x) := Σ
(

I−1
{

I
(

ρ, I2; x+
)

, I1; x+
}

, I2; x
)

,
(7)

such that (5)-(6) boil down to

σ(x, t) := Ξ
(

ρ(x, t), I(x+, t), I(x−, t); x
)

.

2.3 Lagrangian setting of the GSOM family

The common expression of GSOM models in Eulerian
coordinates (t, x) is given by (1). However, it is well-known
that Lagrangian framework (t, n) is particularly conve-
nient for dealing with flows of particles and it is especially
true in traffic flow modeling (see Leclercq et al. (2007); van
Wageningen-Kessels et al. (2013) and references therein).

Assume that N(t, x) ∈ R describes the label of vehicle at

position x and time t. We set the spacing r :=
1

ρ
and the

speed-spacing FD as follows

V(r, I) := I

(

1

r
, I

)

for any (r, I) ∈ (0, +∞)× R
m. (8)

If we set the following change of coordinates






N(t, x) :=

∫ +∞

x

ρ(t, ξ)dξ,

T := t

such that

{

∂N = −r∂x,

∂T = ∂t + v∂x

where v denotes the speed of particles, then the GSOM
model (1) can be recast in Lagrangian form as follows

{

∂T r + ∂NV(r, I) = 0 on (0, +∞)× R,

∂T I = ϕ(I) on (0, +∞)× R,
(9)

with initial conditions
{

r(0, n) = r0(n), on R,

I(0, n) = I0(n), on R.



One can notice also that we have r = −∂NX where
X (T, N) denotes the position of particle N at time T which
solves the following Hamilton-Jacobi equation

{

∂TX = V (−∂NX , I) ,

∂T I = ϕ(I).
(10)

3. BRIEF REVIEW OF THE LITERATURE

There already exist a few works on the Lagrangian model-
ing of junctions based on GSOM models; see for instance
Moutari and Rascle (2007); van Wageningen-Kessels et al.
(2013); Khoshyaran and Lebacque (2008). However, some
of these works are based on very specific examples ex-
tracted from the GSOM family. But it is not straightfor-
ward to extend the numerical methodologies presented in
these papers to the generic GSOM model (9).

In Khoshyaran and Lebacque (2008), the authors consider
the Godunov scheme applied to (9). The authors extend
this particle discretization to networks, addressing the
problem of junction modeling through a supply-demand
approach. The authors make the choice to introduce an
internal state model (see Lebacque et al. (2008); Khosh-
yaran and Lebacque (2009)) and assume that the particles
share the same attribute once they have passed. By the
way, the authors deal also with densities and flows which
is not particularly convenient with GSOM models in the
Lagrangian framework. Hopefully, dealing with spacing
instead of density will ease the resolution of the model.

While boundary conditions can be treated within the
framework of supply-demand flows methodology (see
Lebacque et al. (2005, 2007) and Khoshyaran and Lebacque
(2008)), expressions of upstream and downstream bound-
ary conditions into Lagrangian coordinates can be ob-
tained in the framework of variational approach for GSOM
models (see Lebacque and Khoshyaran (2013)). It will be
developed in next section.

4. METHODOLOGY FOR THE LAGRANGIAN
MODELING OF JUNCTIONS

In this section, we describe the numerical scheme adapted
for the generic Lagrangian GSOM model (9) posed on a
junction. We partially follow Lebacque and Khoshyaran
(2013) in which the authors describe boundary conditions
for the Hamilton-Jacobi equation (10) associated to the
Lagrangian GSOM model (9).

We set a junction as the union of NI incoming and NO

outgoing branches that intersect at a unique point called
the junction point (or the node in the traffic literature).
We also define I := J1, NIK (resp. J := JNI +1, NI +NOK)
the set of incoming (resp. outgoing) links.

4.1 Lagrangian discretized model

Let us introduce ∆t and ∆N the time and particle steps
respectively. We set It

n := I(t∆t, n∆N), for any t ∈ N and
any n ∈ Z.

We have the choice between two Finite Difference schemes:
either we deal with the discrete particle spacing defined as

rt
n := r(t∆t, n∆N), for any (t, n) ∈ N× Z,

where r solves the Lagrangian GSOM model (9), or we
consider the discrete particle position that reads

X t
n := X (t∆t, n∆N), for any (t, n) ∈ N× Z,

where (X , I) solves the Hamilton-Jacobi problem (10)
associated to (9). Notice that the spatial extension of
particle n ∈ Z is [X t

n,X t
n−1[.

In the first case, we would have to solve the following
numerical scheme for (9)















rt+1
n := rt

n +
∆t

∆N

[

V t
n−1 − V t

n

]

,

V t
n := V

(

rt
n, It

n

)

,

It+1
n = It

n + ∆tϕ
(

It
n

)

(11)

while in the second case, i.e. for (10) the appropriate
numerical scheme is defined as follows















X t+1
n = X t

n + ∆tV t
n ,

V t
n := V

(

X t
n−1 −X

t
n

∆N
, It

n

)

,

It+1
n = It

n + ∆tϕ
(

It
n

)

(12)

Notice that both approaches are very similar and give back
the same results. Indeed, one can remark that if we have

rt
n :=

X t
n−1 −X

t
n

∆N
, (13)

then (11) is simply deduced from (12). By the way,
knowing the spacing at each numerical steps, it is easy
to compute the position of all particles, given the leader
particle trajectory as a boundary condition.

It is worth noting that both schemes are first order
schemes. The first one (11) can be interpreted as the sem-
inal Godunov scheme (see Godunov (1959)) applied with
demand and supply and the second discrete model (12) is
an explicit Euler scheme.

In order to the numerical schemes (11) and (12) be
monotone, time and label discrete steps need to satisfy
a Courant-Friedrichs-Lewy (CFL) condition given by

∆N

∆t
≥ sup

N,r,t

|∂rV(r, I(t, N))| . (14)

For deducing a particle (Lagrangian) discretization of a
traffic flow model on a junction, it is necessary to take
into consideration different elements:

(i) the link model, which is given by either (11) or (12);
(ii) the upstream (resp. downstream) boundary condi-

tions for any incoming (resp. outgoing) link;
(iii) the internal junction model, say the way particles are

assigned from incoming road i ∈ I to outgoing road
j ∈ J and eventually the internal dynamics of the
junction point;

(iv) link-junction and junction-link interfaces.

These constituting elements are addressed in what follows.

4.2 Downstream boundary condition

We assume that we are located at the downstream bound-
ary of a given outgoing road j ∈ J . Assume the exit point
S located at xS . The downstream boundary data at xS is
given by the downstream supply σ which is discretized as
σt at time step t. Let n be the last particle located on the



link (or at least a fraction η∆N of it is still on the link,
with 0 < η ≤ 1). See Figure 2.

rt
n∆N

xS

n− 1

X t
n

r∗r∗ rcrit(I)

σt

V(., I)

r

n

Fig. 2. Illustration of downstream boundary condition.

We define the spacing associated to particle n as

rt
n :=

xS −X
t
n

η∆N
.

The fraction η is instantiated at the first time step tn

following the exit of particle (n− 1), as follows

η =
xS −X

tn

n

rtn

n ∆N
.

Now, we have to distinguish two cases:

• either V(rt
n, It

n) ≤ σtrt
n: in this case, the downstream

supply is sufficient to accommodate the demand on
the link. The spacing is conserved.
• or V(rt

n, It
n) > σtrt

n: in this case, the demand on the
link cannot be fully satisfied since the downstream
supply limits the outflow. Then, we have to solve

V(rt
n, It

n) = σtrt
n

and we choose the smallest value i.e. rt
n = r∗ (see

Figure 2). It means that we select the solution corre-
sponding to the congested phase.

Then, we still update the position of particle n as usual,
using (12). We also need to update the fraction η if the
particle has not totally exited the link i.e. if X t+1

n < xS .
The updated fraction is computed as follows

η ← η −
∆t

rt
n∆N

V
(

rt
n, It

n

)

.

4.3 Upstream boundary conditions

We assume that we are located at the upstream boundary
of a given incoming road i ∈ I. Consider the entry point E
located at position xE . The boundary data is constituted
by the upstream demand δ which is discretized as δt for
time step t. Let n be the last particle entered in the link.
The next particle (n + 1) is still part of the demand. See
Figure 3. Assume that particle (n + 1) will enter in the
link at time (t + ε)∆t.

δt

nn + 1

rt
n+1∆N

r∗ r∗rcrit(I)

V(., I)

r

xE X t
n

Fig. 3. Illustration of upstream boundary condition.

We want to adapt to the upstream boundary condition,
the methodology developed for the downstream boundary
condition (which is detailed in Section 4.2) by introducing
a proportion η of the particle that has already entered
the link. The problem we face is that, unlike for the
downstream where we know exactly the position of the
last particle which has exited the link, we do not know
precisely the position of the next particle which will enter
the link. The situation at upstream is not exactly the
inverse of what happens at the downstream that is why
the algorithm is not so simple. Thus, we have to position
the next particle that will enter the link.

More precisely, if one consider that the last particle that
has entirely entered the link at time t is labeled n, we
introduce a fraction ηt of the particle (n + 1) which has
already got into the link at time t. If we denote by qt the
effective flow at the upstream entry and at time t then the
proportion ηt+1 at time (t + 1) is given by

ηt+1 =
qt(1− ε)∆t

∆N

where we assume that the particle n has entirely entered
the link at time tn := (t + ε)∆t (see Figure 4).

εt+1
n+1∆t

qt

(t− 1)∆t

tn

(n + 1)

xE

(n)

x

∆t xE X t
n

ηrt
n+1∆N

nn + 1

σtδt

t

(t + 1)∆t

t∆t

tn+1

Fig. 4. Illustration of new upstream boundary condition.

Then we have to compute the flow qt. If one consider a
fictitious “junction” model just upstream the entry point,
in which particles are stored before being injected into the
link whenever it is possible, then we can deduce a stock
model which is similar to an internal junction model. If
F t is the number of particles stored inside the fictitious
junction, then the evolution of the stock is given by

F t+1 = F t + (δt − qt)∆t, (15)

where δt is the (cumulative) demand and qt is the effective
flow of particles which enters the link. Notice that the
particle is generated at time (t + ε)∆t if and only if

F t + (δt − qt)∆t = ∆N.

Then, with a simple test, we can distinguish two cases:

• if F t > 0, then there is a (vertical) queue just
upstream the entry point and we get

qt = min

(

σt, Qmax(It
n+1),

F t

∆t
+ δt

)

,

where Qmax(It
n) is the maximal flow obtained for the

flow-density FD corresponding to the attribute It
n.

• if F t = 0, then there is no queue and the flow is simply
given by the minimum between the (local) upstream
demand δt which is given and the (local) downstream
demand σt, say

qt = min
(

σt, δt
)

.



We recall that the demand is defined according to (7),

say σt = Ξ

(

1

rt
n

, It
n+1, It

n; xE

)

.

In summary, the algorithm is composed as follows

(1) assume that we know the flow qt−1 passing through
the entry point at time (t− 1)∆t,

(2) we update the fraction ηt
n+1 of particle (n + 1) which

has already entered the link at time t such that

ηt
n+1 =

qt−1εt
n∆t

∆N

where εt
n∆t = t∆t − tn and tn is the exact date at

which the rear of particle (n) enters the link at xE .
(3) we also compute the spacing at time t according to

particle (n + 1)

rt
n+1 =

X t
n − xE

ηt
n+1∆N

,

and the exact position of particle (n + 1) and time t

X t
n+1 = X t

n − rt
n+1.

(4) then we can compute the trajectory of particle (n+1)
for following time steps as follows

X t+1

n+1 = X t
n+1 + ∆tV

(

rt
n+1, It

n+1

)

,

and we distinguish two cases:
• if X t+1

n+1 ≤ xE , then we go back to the first step
and we itemize in time.
• if X t+1

n+1
> xE , then (the rear of) particle (n + 1)

has entirely entered the link and we compute the
exact time of its entry tn+1 as follows

tn+1 =
(

t + (1− εt+1

n+1

)

∆t,

with

εt+1

n+1 =
X t+1

n+1 − xE

X t+1

n+1
−X t

n+1

.

Then we itemize by considering next particle (n+
2) (if it has been generated) and so on.

The algorithm in this case is more complex than in
the case of “pure” Lagrangian described in Lebacque
and Khoshyaran (2013) but we can manage the exact
arrival time of particles in the upstream buffer. Thus, the
methodology can be directly applied to treat any junction-
link interface as we will see in what follows.

4.4 Internal state junction model

We consider a point-wise junction model with an inter-
nal state (first introduced in Khoshyaran and Lebacque
(2009)) that is used as a buffer between incoming and
outgoing branches of the junction. We recall that this
buffer has internal dynamics and we can define an internal
supply which depends on the number of stored particles.
In Eulerian framework, the internal state has some specific
attributes such as






Nz(t), total number of particles in the junction,

Nz,j(t), number of particles going on (j),

Iz(t), driver attribute in the junction.

Notice that the link-junction (resp. junction-link) interface
is treated as a downstream (resp. upstream) boundary
condition. Thus, we apply the algorithms described above,

considering the local supply (resp. demand) of the buffers
inside the junction point which are defined according to
the number of stored particles.

There exists different strategies to deal with the assign-
ment of particles through the junction. We can assume
that we know

• either the assignment coefficients (αi,j)
i,j

say the

proportion of particles coming from any road i ∈ I
that want to exit on road j ∈ J . Thus, a particle
n ∈ Z entering from (i) may exit on road (j) with a
probability αi,j ;
• or the outgoing branch on which the particle n ∈ Z

will exit;
• or the origin-destination (OD) information (on a

complex network) for any particle n ∈ Z. Coupled
with an assignment model, one can compute the path
of each particle.

Moreover we can distinguish (at least) two different cases
for describing the internal dynamics of the junction. In-
deed, one can consider that once particles have entered the
junction, whatever are their origins, they are immediately
assigned to the buffer corresponding to their wished outgo-
ing branch j ∈ J . But it is also possible to consider that
inside the junction point, any particle has a non-trivial
travel time before to join their exit, which can be affected
by the total number of particle inside the junction point
or by the “physical” conflicts that can appear between the
internal lanes of the junction point.

5. NUMERICAL EXAMPLE

5.1 Instantiation

Let us consider a junction with two incoming and two out-
going roads and the Colombo 1-phase model (see Lebacque
et al. (2007)). It is noteworthy that with this choice, the
speed-spacing FD V(·, ·) is non-decreasing w.r.t. its second
argument. The distribution of particle attribute I(·, ·) is
displayed on Figure 5.
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Fig. 5. Particle attribute values I(·, ·).

We consider initial and boundary conditions which cor-
respond respectively to the initial positions of particles
on the considered network, the upstream demands on
each incoming link and the downstream supplies on the



outgoing links. They are not displayed here by lack of
available space. We assume that the junction point has
a finite storage capacity.

5.2 Numerical result

The numerical solution to (10) is obtained thanks to (12).
We then obtain the trajectories of each particle. For a
better graphical representation, we consider the discrete
traffic density ρ(·, ·) defined as the inverse of the discrete
spacing rt

n for any t ∈ N, n ∈ Z (see also (13)). The density
for the incoming link is plotted in Figure 6.
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Fig. 6. Numerical density values ρ(·, ·).

The reader can notice that our numerical method can
accurately recapture the shock wave due to the congestion
and then the rarefaction wave, due to the decrease of the
upstream demand, that mitigates the traffic jam later on.
However, one can remark the numerical viscosity.

6. CONCLUSION AND FUTURE RESEARCH

In this paper, we have discussed a totally new numerical
method to deal with the family of GSOM models posed
on a junction. The generic GSOM model is recast in the
Lagrangian framework and we have a careful look at the
boundaries conditions for links and junctions. Notice that
in our scheme vehicles are discretized into packets of ∆N
particles. Hence, our scheme can be seen as a microscopic
car-following model for the particular choice of ∆N = 1.

Recent models like Bressan and Yu (2014) and Bressan
and Nguyen (2014) can be fully recast into the framework
described in our article and solved using our algorithm. In-
deed, the attribute is given by the assignment coefficients
which are hopefully advected with the traffic flow (if users
do not change their minds).

By the way, we highlight below some interesting research
directions. The discrete model (12) can be replaced by an
implicit scheme or more complex time integration schemes
(see for instance Treiber and Kanagaraj (2014)). Such
numerical schemes can be justified mainly if we consider
a source term at the r.h.s. in (9, say ϕ(I) 6= 0. In the
particular case of ϕ = 0, explicit Euler scheme is very
satisfying.

Another direction of research would be to numerically
compare our method and the variational approach (see

Costeseque and Lebacque (2014b)) adapted for junction
modeling, which has not been done right now.
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