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OPERADS, QUASIORDERS, AND REGULAR LANGUAGES

SAMUELE GIRAUDO, JEAN-GABRIEL LUQUE, LUDOVIC MIGNOT, AND FLORENT NICART

Abstract. We generalize the construction of multi-tildes in the aim to provide double multi-

tilde operators for regular languages. We show that the underlying algebraic structure involves

the action of some operads. An operad is an algebraic structure that mimics the composition

of the functions. The involved operads are described in terms of combinatorial objects. These

operads are obtained from more primitive objects, namely precompositions, whose algebraic

counter-parts are investigated. One of these operads acts faithfully on languages in the sense

that two different operators act in two different ways.
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Introduction

Following the Chomsky-Schützenberger hierarchy [Cho56], regular languages are defined to be

the formal languages that are generated by Type-3 grammars (also called regular grammars). These

particular languages have been studied from several years since they have many applications in

several areas such as pattern matching, compilation, verification, and bioinformatics. Their gener-

alization as rational series links them to various algebraic or combinatorial topics like enumeration

(manipulation of generating functions), rational approximation (for instance Pade approximation),

representation theory (modules viewed as automata), and combinatorial optimization ((max, +)-

automata).

One of the main specificity of regular languages is that they can be represented by various tools:

regular grammars, automata, regular expressions, etc. Whilst they can be represented by both

automata and regular expressions [Kle56], these two tools are not equivalent. Indeed, Ehrenfeucht

and Zeiger [EZ76] showed a one parameter family of automata whose shortest equivalent regular

expressions have a width exponentially growing with the numbers of states. Note that it is possible

to compute an automaton from a regular expression E such that the number of its states is

a linear function of the alphabet width (i.e., the number of occurrences of alphabet symbols)

of E [Ant96,CZ01,Glu61,MY60].

In the aim to increase expressiveness of regular expressions for a bounded length, Caron et

al. [CCM11] introduced the so-called multi-tilde operators and applied these to represent finite

languages. Investigating the equivalence of two multi-tilde expressions, they define a natural

notion of composition which endows the set of multi-tilde operators with a structure of operad.

This structure has been investigated in [LMN13].

Originating from the algebraic topology [May72,BV72], operad theory has been developed as a

field of abstract algebra concerned by prototypical algebras that model classical properties such as

commutativity and associativity [LV10]. Generally defined in terms of categories, this notion can be

naturally applied to computer science. Indeed, an operad is just a set of operations, each one having

exactly one output and a fixed finite number of inputs, endowed with the composition operation.

An operad can then model the compositions of functions occurring during the execution of a

program. In terms of theoretical computer science, this can be represented by trees with branching

rules. The whole point of the operads in the context of the computer science is that this allows

to use different tools and concepts from algebra (such as morphisms, quotients, substructures,

generating sets).

In order to illustrate this point of view, let us recall the main results of our previous pa-

per [LMN13]. In this paper, we first showed that the set of multi-tilde operators has a structure of

operad. We used the concept of morphism in the aim to choose the operad allowing us to describe

in the simplest way a given operation or a property. For instance, the original definition of the

action of the multi-tildes on languages is rather complicated. But, via an intermediate operad

based on set of boolean vectors, the action was described in a more natural way. In the same way,

the equivalence problem is clearer when asked in a operad based on antisymmetric and reflexive

relations which is isomorphic to the operad of multi-tildes: two operators are equivalent if and

only if they have the same transitive closure. The transitive closure being compatible with the

composition, we defined an operad based on partial ordered sets as a quotient of the previous

operad and we showed that this representation is optimal in the sense that two different operators

act in two different ways on languages. This not only helps to clarify constructions but also to
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ask new questions. For instance, how many different ways do n-ary multi-tildes act on languages?

Precisely, the answer is the number of posets on {1, . . . , n+1} that are compatible with the natural

order on integers.

The goal of this paper is to generalize this construction to regular languages. We investigate

several operads (based on double multi-tildes, antireflexive relations or quasiorders) allowing to

represent a regular language as an n-ary operator acting on a n-tuple of symbols (α1, . . . , αn)

where the αi are symbols or ∅. These operators generalize the multi-tildes and the investigated

properties involve their underlying operads. Such a generalization induces the definition of new

parametrized operators that allow to increase the number of regular languages denoted by an

expression with a fixed alphabetical width i.e., the number of occurrences of its symbols. One of

the main properties of such a family of operators is that the expressions can be easily translated

in terms of ε-automata. This paper is the first step of this process: multi-tildes were shown to

be able to replace the operators of sum and catenation; this work shows that they may replace

the Kleene star too. The notion of precomposition is the keystone of this modus operandi; using

functors and category theory, the next step is to link the notion of operad and the conversions

between expressions and automata.

This paper is organized as follows. First we recall in Section 1 several notions concerning

operad theory and multi-tilde operations. In Section 2, we observe that many of the operads

involved in [LMN13] and in this paper have some common properties. More precisely, they can be

described completely by means of shifting operations. This leads to the definition of the category of

precompositions together with a functor to the category of operads. We also define and investigate

the notion of quotients of precompositions. These structures serve as model for the operads defined

in the sequel. To illustrate how to use these tools, we revisit in Section 3 the operads defined

in [LMN13] and describe them in terms of precompositions. In Section 4, we define the double

multi-tilde operad DT as the graded tensor square of the multi-tilde operad. We construct also

an isomorphic operad ARef based on antireflexive relations and a quotient based on quasiorders

QOSet. In Section 5, we describe the action of the operads on the languages. In particular, we

show that any regular language can be written as pn(α1, . . . , αn) where the αi are letters or ∅ and

pn is an n-ary operation belonging to ARef, DT , or QOSet. Finally, we prove that the action of

QOSet on regular languages is faithful, that is two different operators act in two different ways.

The operad studied in this paper fit into the following diagram

ARef ≃ H(ARAS, ARAS) ≃ DT

QOSet ARAS ≃ RAS ≃ T

POSet

(0.1)

where arrows (resp. ։) are injective (resp. surjective) morphisms of operads.

Acknowledgements. The authors would like to thank the referee for his comments improving

the quality of the paper.
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1. Some combinatorial operators in language theory

We recall here some basic notions about the theory of operads and set our notations for the

sequel of the paper. In particular, we recall what are operads, free operads, and modules over an

operad. We conclude this section by presenting the operad of multi-tildes introduced in [LMN13].

1.1. Nonsymmetric operads. Since we shall consider in this paper only nonsymmetric operads,

we shall call these simply operads. Operads are algebraic graded structures which mimic the

composition of n-ary operators. Let us recall the main definitions and properties. LetP =
⊔

n>1Pn

be a graded set (
⊔

means that the sets are disjoint); the elements of Pn are called n-ary operators.

The set P is endowed with maps

◦i : Pn ×Pm → Pn+m−1, (1.1)

where 1 6 i 6 n, called partial compositions and satisfying for all p1 ∈ Pn, p2 ∈ Pm, and p3 ∈ Pp

the two following rules.

(1) Associativity 1: if 1 6 i < j 6 n, then

(p1 ◦i p2) ◦j+m−1 p3 = (p1 ◦j p3) ◦i p2. (1.2)

(2) Associativity 2: if j 6 m, then

(p1 ◦i p2) ◦i+j−1 p3 = p1 ◦i (p2 ◦j p3). (1.3)

Moreover, in an operad, there is a special element 1 ∈ P1 called unit and satisfying for all p ∈ Pn

the following rule.

(3) Unitality relation: if 1 6 i 6 n, then

p ◦i 1 = p = 1 ◦1 p. (1.4)

The reader could refer to [LV10,MSS02] for a complete description of the structures.

Consider two operads (P, ◦, 1) and (P′, ◦′, 1′). A morphism of operads is a graded map φ : P→

P′ such that φ(1) = 1′ and

φ(p1 ◦i p2) = φ(p1) ◦′
i φ(p2) (1.5)

for all p1 ∈ Pn, p2 ∈ Pm and 1 6 i 6 n. If Q ⊂ P, the suboperad of P generated by Q is the

smallest subset of P containing Q and 1 which is stable by composition.

Let G =
⊔

n>1Gn be a graded set. The set Free(G)n is the set of planar rooted trees with n

leaves and where any internal node with n children is labeled on Gn. The free operad on G is

obtained by endowing the set Free(G) =
⊔

n>1 Free(G)n with the partial compositions ◦i where

p1 ◦i p2 is the tree obtained by grafting the ith leaf of p1 on the root of p2. Observe that Free(G)

contains a copy of G which is the set of the trees with only one internal node (the root) labeled

on G; for simplicity we will identify it with G. Moreover, Free(G) is clearly generated by G.

The universality means that for any map ϕ : G → P there exists a unique operad morphism

φ : Free(G) → P such that φ(g) = ϕ(g) for each g ∈ G.

A graded equivalence relation ≡ on P is an operad congruence if for all p1, p2, p′
1, p′

2 ∈ P,

p1 ≡ p′
1, and p2 ≡ p′

2 imply p1 ◦i p2 ≡ p′
1 ◦i p′

2. The set P/≡ is then naturally endowed with

a structure of operad, called quotient operad. Note that if φ : P → P′ is a surjective morphism

of operads then the equivalence defined by p1 ≡ p′
1 if and only if φ(p1) = φ(p1) is an operad

congruence.
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The Hadamard product H(P,P′) of two operads (P, ◦) and (P′, ◦′) is the operad defined as

follows. The elements of arity n of H(P,P′) are pairs (p, p′) where p ∈ Pn and p′ ∈ P′
n and its

partial compositions are defined by

(p1, p′
1) ◦i (p2, p′

2) := (p1 ◦i p2, p′
1 ◦′

i p′
2), (1.6)

for all (p1, p′
1) ∈H(P,P′)n, (p2, p′

2) ∈H(P,P′)m, and 1 6 i 6 n.

Consider a set S together with a left action of an operad P. That is, each p ∈ Pn defines a map

p : Sn → S. (1.7)

We say that S is a P-module if the action of P is compatible with the composition in the following

sense. For any p1 ∈ Pn, p2 ∈ Pm, 1 6 i 6 n, and s1, . . . , sn+m−1 ∈ S, one has

p1(s1, . . . , si−1, p2(si, . . . , si+m−1), si+m, . . . , sn+m−1) = (p1 ◦i p2)(s1, . . . , sn+m−1). (1.8)

Furthermore, if for each n > 1 and p , p′ ∈ Pn there exist s1, . . . , sn ∈ S such that p(s1, . . . , sn) ,

p′(s1, . . . , sn), we say that the module S is faithful.

1.2. Multi-tildes and related operads. In [LMN13], we have defined several operads. Let us

recall briefly the main constructions. First we defined the operad of multi-tildes T =
⊔

n Tn. A

multi-tilde of Tn is a subset of {(x, y) : 1 6 x 6 y 6 n} ⊂ N2. Note that
⊔

n means that sets

belonging in two different graded components Tn and Tm are considered as different operators. Let

i > 0 and n > 1, for any pair (x, y) of positive integers, we define

i,n
�(x, y) :=





(x, y) if y 6 i − 1,

(x, y + n − 1) if x 6 i 6 y,

(x + n − 1, x + n − 1) otherwise.

(1.9)

The actions of the operators are extended to sets E of pairs of positive integers by

i,n
�(E) := {

i,n
�(x, y) : (x, y) ∈ E}. (1.10)

We have shown the following result:

Theorem 1 ( [LMN13]). The set T endowed with the partial compositions

◦i :

{
Tn × Tm → Tn+m−1

T1 ◦i T2 7→
i,m
�(T1) ∪

0,i
�(T2),

(1.11)

is an operad.

We have also defined the operators

i,n

�(x) :=

{
x if x 6 i,

x + n − 1 otherwise,
(1.12)

and have extended these respectively to pairs and sets of pairs by

i,n

�(x, y) = (
i,n

�(x),
i,n

�(y)) (1.13)

and
i,n

�(E) = {
i,n

�(x, y) : (x, y) ∈ E}, (1.14)



6 SAMUELE GIRAUDO, JEAN-GABRIEL LUQUE, LUDOVIC MIGNOT, AND FLORENT NICART

where x and y are positive integers and E is a set of pairs of positive integers. The operad (T , ◦)

is isomorphic to another operad (RAS,^) whose underlying set is the set RAS =
⊔

n RASn where

RASn denotes the set of Reflexive and Antisymmetric Subrelations of the natural order 6 on

{1, . . . , n + 1}. The partial compositions of RAS are defined by

R1^iR2 :=
i,m

�(R1) ∪
0,i

�(R2), (1.15)

if R1 ∈ RASn and R2 ∈ RASm. The isomorphism of operads φ : T → RAS satisfies, for all T ∈ Tn,

φ(T ) = {(x, y + 1) : (x, y) ∈ T } ∪ {(x, x) : x ∈ {1, . . . , n + 1}}. (1.16)

See [LMN13] for more details.

2. Breaking operads

The objective of this section is to introduce new algebraic objects, namely the precompositions.

The precompositions are a kind of representation of a certain monoid denoted by
e

which can be

described in terms of infinite matrices. We present here a functor from the category of precom-

positions to the category of operads. We shall use this functor in the sequel to reconstruct some

already known operads and to construct new ones.

2.1. Some monoids of infinite matrices. We consider the set M∞ of infinite matrices with

a finite number of non-zero diagonals whose entries belong to the boolean semiring B. A typical

element (aij)i,j∈Z of M∞ is a finite linear combination of elements Dλ
k :=

∑
i∈Z λiEi+k,i where

λ = (λi)i∈Z and Ek,ℓ = (δi,kδj,ℓ)i,j∈Z and δi,j = 1 if i = j and 0 otherwise is the Kronecker symbol

i.e., the matrix Ek,ℓ has 1 at the cell (k, ℓ) and 0 elsewhere.

Observing that

Dλ
kDλ′

k′ =

(
∑

i∈Z

λiEi+k,i

)(
∑

i∈Z

λ′
iEi+k′,i

)
=
∑

i∈Z

λi+k′ λ′
iEi+k+k′ ,i = D

λ•k′ λ′

k+k′ , (2.1)

with λ •k′ λ′ = (λi+k′ λ′
i)i∈Z, we deduce that M∞ is stable by product. So

Proposition 1. The space M∞ is an algebra.

Remark 1. Notice that when the entries belong to C instead of B, the algebraic structure of M∞

is very rich and has many connexions with the study of infinite Lie algebras (see e.g. [Kac94]).

Here, for our purpose, we consider only the structure of monoid; the unit of M∞ is Id :=

D
(...,1,1,1,... )
1 =

∑
i∈ZEi,i. In particular, we define the submonoid P ∞ generated by the matrices

mi,n =
∑

j6i

Ej,j +
∑

i<j

Ej+n−1,j (2.2)

for each i ∈ Z and each n > 0. With these notations we have

mi,1 = Id, (2.3)

for any i.

Let ] − ∞, i] be the vector such that ] − ∞, i]j = 1 if j 6 i and 0 otherwise, and ]i, ∞[=

(1−] − ∞, i]j)j∈Z. With these notations one has

mi,n = D
]−∞,i]
1 + D]i,∞[

n . (2.4)
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Lemma 1. The two following identities hold:

• if i 6 j then

mi,nmj,n′ = mj+n−1,n′mi,n, (2.5)

• if 0 6 j < n′ then

mi+j,nmi,n′ = mi,n+n′−1. (2.6)

Proof. From (2.4), one has

mi,nmj,n′ =
(

D
]−∞,i[
0 + D

]i,∞[
−1

)(
D

]−∞,j]
0 + D

]j,∞[
n′−1

)

= D
]−∞,i]
0 D

]−∞,j]
0 + D

]−∞,i]
0 D

]j,∞[
n′−1 + D

[i,∞]
n−1 D

]−∞,j]
0 + D

[i,∞]
n−1 D

]j,∞[
n′−1 .

But i 6 j implies ] − ∞, i]•0] − ∞, j] =] − ∞, i], ] − ∞, i]•n′−1]j, ∞[= [. . . , 0, 0, 0, . . . ], ]i, ∞[•0] −

∞, j] =] − ∞, j + n − 1]•n−1]i, ∞[ and ]i, ∞[•n′−1]j, ∞[=]j, ∞[. Hence, (2.1) implies

mi,nmj,n′ = D
]−∞,i]
0 + D

]−∞,j+n−1]•n−1]i,∞[
n−1 + D

]j,∞[
n+n′−2 = mj+n−1,n′mi,n.

This proves formula (2.5).

Now, from (2.4), we obtain

mi+j,nmi,n′ = (D
]−∞,i+j]
0 + D

]i+j,∞[
n−1 )(D

]−∞,i]
0 + D

]i,∞[
n′−1)

= D
]−∞,i+j]
0 D

]−∞,i]
0 + D

]−∞,i+j]
0 D

]i,∞[
n′−1 + D

]i+j,∞[
n−1 D

]−∞,i]
0 + D

]i+j,∞[
n−1 D

]i,∞[
n′−1

But, since 0 6 j < n′, one has ] − ∞, i + j]•0] − ∞, i] =] − ∞, i], ] − ∞, i + j]•n′−1]i, ∞[=

]i + j, ∞[•0] − ∞, i] = [. . . , 0, 0, 0, . . . , ] and ]i + j, ∞[•n′−1]i, ∞[=]i, ∞[. Hence, (2.1) allows us to

recover (2.6):

mi+j,nmi,n′ = D
]−∞,i]
0 + D

]i,∞[
n+n′−2 = mi,n+n′−1.

�

Proposition 2. (Presentation of P ∞)

The monoid P ∞ is isomorphic to the monoid
e

generated by the symbols {
i,n
� : i ∈ Z, n > 1} and

the relations

i,1
� = 1e for any i ∈ Z. (2.7)

i,n
�

j,n′

� =
j+n−1,n′

�
i,n
� if i 6 j, (2.8)

i+j,n
�

i,n′

� =
i,n+n′−1
� if 0 6 j < n′. (2.9)

Proof. First let us prove that the map ϕ sending
i,n
� to mi,n can be extended as a morphism of

monoids from
e

to P ∞. It suffices to show that ϕ(
i,1
�) = Id for any i ∈ Z, ϕ(

i,n
�)ϕ(

j,n′

�) =

ϕ(
j+n−1,n′

� )ϕ(
i,n
�) if i 6 j and ϕ(

i+j,n
� )ϕ(

i,n′

�) = ϕ(
i,n+n′−1
� ) when 0 6 j < n′. These equalities are

respectively the consequences of (2.3), (2.5), and (2.6). Hence, ϕ is extended to an into morphism

of monoids, called also ϕ. It remains to prove that ϕ is into.

Using (2.8) and (2.9), any element of
e

can be written as

i0,n0

� · · ·
iℓ,nℓ

�
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for some i0 < · · · < nℓ and n0, . . . , nℓ > 1. Therefore, since ϕ is a morphism, any element of P ∞

can be written into the form mi0,n0 · · ·miℓ,nℓ
. Furthermore, we observe that

mi0,n0 · · ·miℓ,nℓ
=

∑

j6i0

Ej,j +
∑

i0<j6i1

Ej+n0−1,j +
∑

i1<j6i2

Ej+n0+n1−1,j + · · ·

+
∑

iℓ−1<j6iℓ

Ej+n0+···+nℓ−1−ℓ,j +
∑

iℓ<j

Ej+n0+···+nℓ−ℓ−1,j .

As a consequence, it is easy to check that the factorization is unique . Hence, since the image of
i0,n0

� · · ·
iℓ,nℓ

� by ϕ is mi0,n0 · · ·miℓ,nℓ
, each element of P ∞ admits a unique preimage and so ϕ is

injective. It follows that the ϕ is an isomorphism. �

Now, let us consider the algebra M∞ of the matrices (aij)i,j∈N\{0} with a finite number of

non-zero diagonals. Let π : M∞ −→ M∞ be the projection sending (aij)i,j∈Z to (aij)i,j∈N\{0} and

mi,n = π(ni,n) =
∑

0<j6i Ej,j +
∑

j>i,j>0 Ej+n−1,j . Remarking that π(mi,n +mj,n′) = ni,n + nj,n′ ,

the restriction of π to P ∞ is a morphism of monoid from P ∞ to the submonoid P∞ of M∞

generated by the matrices ni,n. We notice also that n−i,n =
∑

j>1 Ej+n−1,j = n0,n for any i > 0.

Furthermore, we have

Proposition 3. The monoid P∞ is isomorphic to the quotient
e

of the monoid
e

by the relations
−i,n
� =

0,n
� for any i > 0. That is the monoid defined by generators {

i,n
� : i ∈ Z, n > 1} and

relations:

i,n
� =

0,n
� for any i < 0, (2.10)

i,1
� =

0,1
� = 1e for any i, (2.11)

i,n
�

j,m
� =

j+n−1,m
�

i,n
� if i 6 j or i, j 6 0, (2.12)

i+j,n
�

i,m
� =

i,n+m−1
� if 0 6 j < m. (2.13)

Remark 2. We have explained the construction when the entries are taken in B. One can make a

similar construction for any semiring K and obtain monoids P ∞(K) and P∞(K). In all the case,

the monoid P ∞(K) is isomorphic to P ∞ and the monoid P∞(K) is isomorphic to P∞.

2.2. Precompositions. Let (S, ⊕) be a commutative monoid endowed with a filtration S =⋃
n>1 Sn with

S1 ⊂ S2 ⊂ · · · ⊂ Sn ⊂ · · · (2.14)

and such that each Sn is a submonoid is S. We will denote by 0S the unit of S.

A precomposition is a monoid morphism ◦ :
e

→ Hom(S, S) satisfying

◦(
i,n
�) : Sm → Sn+m−1, (2.15)

◦(
i,n
�)|Sm

= IdSm
if i > m + 1, (2.16)

where |Sm
denotes the restriction to Sm. For simplicity, we denote by

i,n
� the map ◦(

i,n
�). Observe

that the maps
i,k
� have the following intuitive meaning. If s is an element of Sm,

i,n
�(s) is an

element of Sn+m−1 obtained by inserting in s a gap of length n − 1 at position i. Axioms (2.11),

(2.12), and (2.13) can be understood in the light of this interpretation.
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Example 1. We consider the set V of infinite vectors with only a finite numbers of non zero

entries. This set, endowed with the sums is a monoid. If Vn denotes the set of the vectors v such

that m > n implies vm = 0, each Vn is a submonoid of V . We define a precomposition by setting
i,n
�v = ni,nv. For instance,

n2,3 = E1,1 + E2,2 +
∑

j>3

Ej+2,j =




1 0 0 0 0 · · · 0 · · ·

0 1 0 0 0 · · · 0 · · ·

0 0 0 0 0 · · · 0 · · ·

0 0 0 0 0 · · · 0 · · ·

0 0 1 0 0 · · · 0 · · ·

0 0 0 1 0 · · · 0 · · ·
...

. . .
...




.

Hence,

n2,3




v1

v2

v3

v4

v5

v6

...




=




v1

v2

0

0

v3

v4

...




Notice that ni,nv for i 6 0 is obtained by shifting down the entries of v of n − 1 cells and by

replacing the first n − 1 entries by zero. For instance:

n0,3




v1

v2

v3

v4

v5

v6

...




=




0

0

v1

v2

v3

v4

...




Let ◦ :
e

→ Hom(S, S) and ⊲ :
e

→ Hom(S′, S′) be two precompositions. A map φ : S → S′

is a precomposition morphism from ◦ to ⊲ if it is a monoid morphism and satisfies

φ : Sn → S′
n, (2.17)

i,n
⊲→(φ(x)) = φ(

i,n
�(x)). (2.18)

We denote by Hom(◦, ⊲) the set of precomposition morphisms from ◦ to ⊲.

It is easy to check that the class PreComp of precompositions endowed with the arrows Hom(◦, ⊲)

for each ◦, ⊲ ∈ PreComp is a category.

Let ◦ be a precomposition, We define on S the binary operators ◦
(n)
k by

s ◦
(n)
i s′ =

i,n
�s ⊕

0,i
�s′.

We recall that ⊕ denotes the binary operation of the monoid S.
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Lemma 2. We have

• For each n, m > 1, 1 6 i < j 6 n, s, s′′ ∈ S and s′ ∈ Sm, we have

(s ◦
(m)
i s′) ◦

(n)
j+m−1 s′′ = (s ◦

(n)
j s′′) ◦

(m)
i s′. (2.19)

• For each 0 < j 6 m, 0 < i 6 n, and s, s′, s′′ ∈ S, we have

(s ◦
(m)
i s′) ◦

(n)
i+j−1 s′′ = s ◦

(n+m−1)
i (s′ ◦

(n)
j s′′). (2.20)

Proof. We have

(s ◦
(m)
i s′) ◦

(n)
j+m−1 s′′ =

j+m−1,n
�

i,m
�s ⊕

j+m−1,n
�

0,i
�s′ ⊕

0,j+m−1
� s′′.

But (2.12) implies
j+m−1,n
�

i,m
� =

i,m
�

j,n
� and

j+m−1,n
�

0,i
� =

0,i
�

j−i+m,n
� . Since i < j and s′ ∈ Sm,

(2.18) implies
j−i+m,n
� s′ = s′. Furthemore by (2.13), one has

0,j+m−1
� s′′ =

i,m
�

0,j
�s′′. Hence, we

deduce

(s ◦
(m)
i s′) ◦

(n)
j+m−1 s′′ =

i,m
�

j,n
�s ⊕

i,m
�

0,j
�s′′ ⊕

0,i
�s′ = (s ◦

(n)
j s′′) ◦

(m)
i s′.

This proves (2.19).

Now let us prove (2.20). We have

(s ◦
(m)
i s′) ◦

(n)
i+j−1 s′′ =

i+j−1,n
�

i,m
�s ⊕

i+j−1,n
�

0,i
�s′ ⊕

0,i+j−1
� s′′.

But from (2.13), one has
i+j−1,n
�

i,m
� =

i,m+n−1
� , (2.12) implies

i+j−1,n
�

0,i
� =

0,i
�

j,n
� and

0,i+j−1
� =

0,i
�

0,j
�. Hence,

(s ◦
(m)
i s′) ◦

(n)
i+j−1 s′′ =

i,m+n−1
� s ⊕

0,i
�

j,n
�s′ ⊕

0,i
�

0,j
�s′′.

This proves (2.20). �

Observe also that we have

0S ◦
(n)
1 s = s ◦

(n)
i 0S = s (2.21)

for each i > 0, n > 1, and s ∈ S.

2.3. From precompositions to operads. Let us consider a precomposition ◦ :
e

→ Hom(S, S).

From the commutative monoid S, we define

Sn :=
{

a(n)
s : s ∈ Sn

}
, (2.22)

and S :=
⊔

n>1 Sn.

Claim 1. Each Sn is naturally endowed with a structure of monoid. Furthermore, we have

S1  S2  · · · Sn  · · ·

where the arrows  denote injective morphisms of monoids.

Hence, S is nothing else but the inductive limit of the Sn

S = lim
−→
Sn.

Now for any 1 6 i 6 n, we define the binary operator ◦i : Sn × Sm → Sk+m−1 by

a(n)
s ◦i a

(m)
s′ := a

(n+m−1)

s◦
(m)
i

s′
. (2.23)

Proposition 4. The set S endowed with the partial compositions ◦i is an operad.



OPERADS, QUASIORDERS, AND REGULAR LANGUAGES 11

Proof. From (2.21), the unit of the structure is 1S := a
(1)
0S

. The associativity properties follows

from (2.19) and (2.20). �

Example 2. Let us consider again the precomposition of Example 1. The binary operators ◦
(m)
i

are described in terms of infinite matrices by

v ◦
(m)
i v′ = ni,nv + n0,iv

′ =




v1

...

vi−1

vi + v′
1

v′
2
...

v′
m

vi+1 + v′
m+1

vi+2 + v′
m+2

...




.

Remark that each symbol a
(m)
v can be identified with a vector w of size m such that vi = wi for

each i 6 m. Hence, the compositions are given by




v1

...

vn


 ◦i




v′
1
...

v′
m


 =




v1

...

vi−1

vi + v′
1

v′
2
...

v′
m

vi+1

...

vn




.
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For instance, we can illustrate (1.2) by remarking

(v ◦i v′) ◦j+m−1 v′′ =




v1

...

vi−1

vi + v′
1

v′
2
...

v′
m

vi+1

...

vj−1

vj + v′′
1

v′′
2
...

v′′
p

vj+1

...

vn




= v ◦i (v′ ◦j v′′).

for i < j, v ∈ Bn, v′ ∈ Bm, and v′′ ∈ Bp.

We denote by OP(◦) the operad (S, ◦i) as defined in the construction. For any φ ∈ Hom(◦, ⊲),

we define

φOP : OP(◦) → OP(⊲) (2.24)

by

φOP(a(n)
s ) = a

(n)
φ(s). (2.25)

We check that the following result holds:

Claim 2. The arrow OP : PreComp → Operad which associates with each precomposition ◦ the

operad OP(◦) and with each homomorphism φ ∈ Hom(◦, ⊲) the operad morphism φOP is a functor.

2.4. Quotients of precompositions. Let ◦ :
e

→ Hom(S, S) be a precomposition and γ : S → S

be an idempotent (that is, γ2 = γ) monoid morphism sending Sn to Sn and satisfying:
i,n
�γ = γ

i,n
�.

We define γ : S→ S by γa
(n)
s := a

(n)
γs .

Lemma 3. The two following assertions hold:

(1) for each s ∈ Sn, s′ ∈ Sm, and 1 6 i 6 n,

γ
(

γ(a(n)
s ) ◦i γ(a

(m)
s′ )

)
= γ

(
a(n)

s ◦i a
(m)
s′

)
, (2.26)

(2) γ(s1) = γ(s′
1) and γ(s2) = γ(s′

2) implies

γ(a(n)
s1

◦i a(m)
s2

) = γ(a
(n)
s′

1
◦i a

(m)
s′

2
). (2.27)
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Proof. (1) We have γ(a
(n)
s ) ◦i γ(a

(m)
s′ ) = a

(n)
γs ◦i a

(m)
γs′ = a

(n+m−1)
s′′ with

s′′ = γ(s) ◦
(m)
i γ(s′) =

i,m
�(γs) ⊕

0,i
�(γs′) = γ

(
i,m
�(s) ⊕

0,i
�(s′)

)
.

Hence γ
(

γ(a
(n)
s ) ◦i γ(a

(m)
s′ )

)
= a

(n+m−1)
s′′′ with

s′′′ = γ

(
γ

(
i,m
�(s) ⊕

0,i
�(s′)

))
= γ

(
i,m
�(s) ⊕

0,i
�(s′)

)

= γ

(
i,m
�(a(k)

s ) ⊕
0,i
�(a

(m)
s′ )

)
= s′′.

(2) Suppose γ(s1) = γ(s′) and γ(s2) = γ(s′
2) then we have

γ(a(n)
s1

◦i a(m)
s2

) = γγ(a(n)
s1

◦i a(m)
s2

) = γ(a(n)
γs1

◦i a(m)
γs2

) = γ(a
(n)
γs′

1
◦i a

(m)
γs′

2
) = γ(a

(n)
s′

1
◦i a

(m)
s′

2
).

�

Consider now the equivalence relation ∼γ on S defined for any s, s′ ∈ S by s ∼γ s′ if and

only if γ(s) = γ(s′). By definition of γ, ∼γ is a monoid congruence of S and hence, S/∼γ
is a

monoid. Consider also the equivalence relation ≡γ on OP(◦) defined for any a
(n)
s , a

(n)
s′ ∈ OP(◦) by

a
(n)
s ≡γ a

(n)
s′ if and only if s ∼γ s′. Lemma 3 shows that ≡γ is actually an operadic congruence

and hence, that OP(◦)/≡γ
is an operad.

Let the precomposition

⊙ :
m

→ Hom
(
S/∼γ

, S/∼γ

)
(2.28)

defined for any ∼γ-equivalence class [s]∼γ
by

i,n
�

(
[s]∼γ

)
:= [

i,n
�(s)]∼γ

. We then have

Theorem 2. The operads OP(◦)/≡γ
and OP(⊙) are isomorphic.

Proof. Let us denote by ◦γ
i the composition map of OP(◦)/≡γ

. Let the map

φ : OP(◦)/≡γ
→ OP(⊙) (2.29)

defined for any ≡γ-equivalence class [a
(n)
s ]≡γ

by

φ([a(n)
s ]≡γ

) := a
(n)
[s]∼γ

. (2.30)

Let us show that φ is an operad morphism. For that, let [a
(n)
s ]≡γ

and [a
(m)
s′ ]≡γ

be two ≡γ equivalence

classes. One has

φ([a(n)
s ]≡γ

◦γ
i [a

(m)
s′ ]≡γ

) = φ([a(n)
s ◦i a

(m)
s′ ]≡γ

) = φ([a
(n+m−1)
s′′ ]≡γ

) = a
(n+m−1)
[s′′]∼γ

, (2.31)

where s′′ :=
i,m
�(s) ⊕

0,i
�(s′). We moreover have

φ([a(n)
s ]≡γ

) ⊙i φ([a
(m)
s′ ]≡γ

) = a
(n)
[s]∼γ

⊙i a
(m)
[s′]∼γ

= a
(n+m−1)
[s′′′]∼γ

, (2.32)
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where [s′′′]∼γ
:=

i,m
�([s]∼γ

) ⊕
0,i
�([s′]∼γ

). Now, by using the fact that ∼γ is a monoid congruence,

one has

[s′′′]∼γ
=

i,m
�([s]∼γ

) ⊕
0,i
�([s′]∼γ

)

= [
i,m
�(s)]∼γ

⊕ [
0,i
�(s′)]∼γ

= [
i,m
�(s) ⊕

0,i
�(s′)]∼γ

= [s′′]∼γ
.

(2.33)

This shows that (2.31) and (2.32) are equal and hence, that φ is an operad morphism.

Furthermore, the definitions of ∼γ and ≡γ imply that φ is a bijection. Therefore, φ is an operad

isomorphism. �

3. Multi-tildes and precompositions

In [LMN13], we investigated several operads allowing to describe the behaviour of the multi-

tilde operators. In this section, we show that some of them admit an alternative definition using

the notion of precomposition.

3.1. The operad T revisited. For any m > 1, let ST
m be the set of subsets of {(x, y) : 1 6 x 6 y 6 m} ⊂

N2. Noting that ST
m ⊂ ST

m+1 we define ST :=
⋃

m>1 ST
m. Considering the binary operation ∪ as

a product, the pair (ST , ∪) defines a commutative monoid whose unit is 1ST = ∅ ∈ ST
1 . This

monoid is generated by the set {{(x, y)} : 1 6 x 6 y}.

Now define ◦ :
e

→ Hom(ST , ST ) by ◦(
i,n
�) :=

i,n
� where each homomorphism

i,n
� is defined

by its values on the generators

i,n
�({(x, y)}) :=





{(x, y)} if y < i,

{(x, y + n − 1)} if x 6 i 6 y,

{(x + n − 1, y + n − 1)} otherwise.

(3.1)

Remark that ◦ is a monoid morphism. Indeed,

(1) The set of the homomorphisms
i,n
� generates a submonoid of Hom(ST , ST ) (with IdST as

unit)

(2) By construction,
i,n
� : ST

m → ST
m+n−1 and

i,n
�|ST

m
= IdST

m
if m < i.

(3) The operators
i,n
� satisfy (see [LMN13])

•
i,n
� =

0,n
� for each i < 0,

•
i,1
� =

0,1
� = IdST for each i,

•
i,n
�

j,n′

� =
j+n−1,n′

�
i,n
� if i 6 j or i, j 6 0,

•
i+j,n
�

i,n′

� =
i,n+n′−1
� if 0 6 j < n′.

Hence ◦ is a precomposition. More precisely, the operad T can be seen as the operad constructed

from the precomposition ◦:

Proposition 5. The operads T and OP(◦) are isomorphic.
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Proof. The isomorphism is given by the map from Tm to Sm sending any element T to a
(k)
T . �

3.2. The operad RAS revisited. In [LMN13], we considered an operad RAS on reflexive and

antisymmetric relations that are compatible with the natural order on integers (i.e., (x, y) ∈ RAS

implies x 6 y). Since the elements (x, x) do not play any role in the construction, we propose here

an alternative construction based on antireflexive and antisymmetric relations.

For any m > 1, let S^m be the set of subsets of {(x, y) : 1 6 x < y 6 m + 1} ⊂ N2. By

construction we have S^n ⊂ S^m+1. Endowed with the binary operation ∪, the set S^ :=
⋃

m>1 S^m
is a commutative monoid generated by {{(x, y)}16x<y}.

Let us define ⋄ :
e

→ Hom(S^, S^) by ⋄(
i,n
�) :=

i,n

� with

i,k

�({(x, y)}) :=





{(x, y)} if y 6 i,

{(x, y + n − 1)} if x 6 i < y,

{(x + n − 1, y + n − 1)} otherwise.

(3.2)

Figure 1 illustrates the action of the operator
i,n

� as an operation cutting one triangle representing

the set of all the couples (x, y) with 1 6 x < y 6 m + 1 into two triangles and a rectangle and

putting them back into a larger triangle.

i

i

y

x i

i

i + n

i + n

y

x

R
i,n

�R

Figure 1. Action of RAS on pairs.

Similarly to Section 3.1, we consider the submonoid of Hom(S^, S^) generated by the elements
i,n

� . We have
i,n

� : S^m → S^n+n−1 and
i,n

�|S^m = IdS^m
when m < i. Furthermore, the elements

i,n

� satisfy the properties

•
i,n

� =
0,n

� for each i < 0,

•
i,1

� =
0,1

� = IdS^ for each i

•
i,n

�
j,n′

� =
j+n−1,n′

�
i,n

� if i 6 j or i, j 6 0

•
i+j,n

�
i,n′

� =
i,n+n′−1

� if 0 6 j < n′.

The map ⋄ is a monoid morphism and so a precomposition. We set ARAS := OP(⋄) = (S^, ⋄).

The operad ARAS is an alternative construction for the operad RAS as shown by:
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Proposition 6. The operads RAS and ARAS are isomorphic.

Proof. The isomorphism is given by the map from RASn to S^m sending any element R to a
(m)
R\∆

where ∆ := {(x, x) : x ∈N}. �

3.3. The operad POSet revisited. The operad POSet is defined as a quotient of the operad

RAS. In [LMN13], we showed that POSet is optimal in the sense that two of its operators have

two different actions on languages.

Denote by γ : S^ → S^ the transitive closure. Remarking that γ(R) : S^n → S^n and
i,n

�γ =

γ
i,n

�, we apply the result of Section 2.4 and define the precomposition � :
e

→ Hom(S^/≡γ
, S^/≡γ

)

by setting
i,n

�([R]) :=

[
i,n

�(R)

]
where [] : S^ → S^/≡γ

denotes the natural morphism sending each

element R of S^ to its equivalence class [R].

The operad OP(�) gives an alternative way to define the operad POSet using precompositions.

Proposition 7. The operads POSet, OP(�) and ARAS/≡γ
are isomorphic.

Proof. The isomorphism is given by the map from POSetn to S�n sending any element P to a
(n)
[(P \∆)]

where ∆ = {(x, x) : x ∈N}. �

4. The operad of double multi-tildes

In [LMN13], we proved that the action of T on symbols allows us to denote all finite languages.

In this section, we propose an extension of the operad T in order to represent infinite languages.

New operators are required in order to describe the Kleene star operation ∗. In the last section

of [LMN13], we introduced an operad T ∗ generated by T together with an additional operator

⋆ (denoting the Kleene star ∗). Albeit this operad allows the manipulation of regular languages,

the equivalence of the operators, w.r.t. the action over languages, is difficult to model. In this

section, we introduce a new operad DT which is composed of two kinds of multi-tildes: right

and left multi-tildes. The ∗ operation will be realized by a combination of right and left multi-

tildes operations. Furthermore, we show that the expressiveness of these operators is higher than

operators of T ⋆ for a given number of symbols. We start by considering that the two types of

operators are independently composed. More precisely,

DT :=H(T , T ). (4.1)

We mimic the construction of [LMN13] linking multi-tildes and reflexive antisymmetric relations

in order to construct a new operad ARef, which elements are antireflexive relations, isomorphic

to DT .
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4.1. DT and antireflexive relations. We consider the graded set

SARef :=
⋃

n>1

SARef
n , (4.2)

where SARef
n is the set of subsets of {(x, y) : 1 6 x, y 6 n + 1, x , y} ⊂ N2. Endowed with the

binary operation ∪, the set SARef is a commutative monoid generated by {(x, y) : x , y}. We

define the map ^ :
e

→ Hom(SARef , SARef) by ^(
i,n
�) =

i,n

� where

i,n

�({(x, y)}) :=





{(x, y)} if x, y 6 i,

{(x, y + n − 1)} if x 6 i and i < y,

{(x + n − 1, y)} if i < x and y 6 i,

{(x + n − 1, y + n − 1} otherwise.

(4.3)

We easily check that ^ is a precomposition and we set ARef := OP(^). Observe that a graphical

representation of the action of ARef can be obtained from those of ARAS by replacing triangles

by squares (see Figure 2).

i

i

y

x i

i

i + n

i + n

y

x

R
i,n

�R

Figure 2. Action of ARef on pairs.

Proposition 8. The operad ARef is isomorphic to H(ARAS, ARAS).

Proof. Let us denote rev(x, y) = (y, x). If R ∈ ARef we will denote rev(R) = {rev(x, y) : (x, y) ∈

R}, R< = {(x, y) ∈ R : x < y}, and R> = {(x, y) ∈ R : x > y} = rev((rev(R))<) (note that R =

R< ∪ R>). Let Φ : H(ARAS, ARAS) → ARef be the map defined by Φ(a
(n)
R1

, a
(n)
R2

) = a
(n)
R1∪rev(R2).

This map is a bijection which inverse is Φ−1(a
(n)
R ) = (a

(n)
R< , a

(n)
rev(R>)).

Let us prove that a
(n)
R ^ia

(m)
R′ = Φ(Φ−1(a

(n)
R )^iΦ

−1(a
(m)
R′ )). We have

Φ(Φ−1(a
(n)
R )^iΦ

−1(a
(m)
R′ )) = Φ(Φ−1(a

(n+m−1)
R′′ )) = Φ(a

(n+m−1)
R′′< , a

(n+m−1)
rev(R′′>) ),

where R′′ =
i,m

�(R) ∪
0,i

�(R′). Let ∗ ∈ {<, >}. Since,
i,k′

�(R∗) = (
i,m

�(R))∗ and
0,i

�(R′∗) =

(
0,i

�(R′))∗, we have (
i,m

�(R∗) ∪
0,i

�(R′∗)) = (R′′)∗. In other words, R′′∗ =
i,m

�(R∗) ∪
0,i

�(R′∗).

Hence,

Φ(Φ−1(R)^iΦ
−1(R′)) = Φ(a

(n+m−1)
R′′< , a

(n+m−1
rev(R′′>)) = a

(n+m−1
R′′<∪R′′> = a

(n+m−1)
R′′ = a

(n)
R ^ia

(m)
R′ .

This proves that ARef is an operad isomorphic to H(ARAS, ARAS). �
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Corollary 1. The operads DT , ARef, H(RAS, RAS), and H(ARAS, ARAS) are isomorphic.

In the aim to illustrate the isomorphism between ARef and DT , we recall that the graded

map ζ : Tn → RASn defined by ζ(R) = {(x, y + 1) : (x, y) ∈ R} ∪ {(1, 1), . . . , (n + 1, n + 1)}

is an isomorphism of operads. According to the definition of ARAS, we obtain explicitly an

isomorphism from T to ARAS by a slight modification of ζ: ζA(R) = a
(n)
ζ(R)\∆. Since ARAS

and T are isomorphic, this is also the case for DT and ARef (because ARef is isomorphic to

H(ARAS, ARAS)). From the construction described in Proposition 8, the map ξ : DT → ARef

defined by ξ(R1, R2) = a
(n)
ζA(R1)∪rev(ζA(R2)), when (R1, R2) ∈ DT n, explicits the isomorphism.

Example 3. Consider P1 = ({(1, 3), (2, 2), (3, 4)}, {(2, 3)}) ∈ DT 5 and P2 = ({(2, 3), (3, 4)}, {(1, 2), (3, 4)}) ∈

DT 4. We have

ξ(P1) = a
(5)
{(1,4),(2,3),(3,5),(4,2)} and ξ(P2) = a

(4)
{(2,4),(3,5),(3,1),(5,3)}.

Remark that

P1 ◦2 P2 = ({(1, 3), (2, 2), (3, 4)} ◦2 {(2, 3), (3, 4)}, {(2, 3)} ◦2 {(1, 2), (3, 4)})

= ({(1, 6), (2, 5), (6, 7), (3, 4), (4, 5)}, {(2, 6), (2, 3), (4, 5)}),

and then

ξ(P1 ◦2 P2) = a
(8)
{(1,7),(2,6),(6,8),(3,5),(4,6),(7,2),(4,2),(6,4)}.

Let us now compute ξ(P1)^2ξ(P2):

ξ(P1)^2ξ(P2) = a
(5)
{(1,4),(2,3),(3,5),(4,2)}^2a

(4)
{(2,4),(3,5),(3,1),(5,3)} = a

(8)
R

with

R =
2,4

�({(1, 4), (2, 3), (3, 5), (4, 2)}) ∪
0,2

�({(2, 4), (3, 5), (3, 1), (5, 3)})

= {(1, 7), (2, 6), (6, 8), (7, 2), (3, 5), (4, 6), (4, 2), (6, 4)}.

We observe that ξ(P1 ◦2 P2) = ξ(P1)^2ξ(P2).

Graphically, the composition ^i can be illustrated in two steps corresponding to the operators
ik′

�

and
0,i

� by drawing the graph of the relations. For instance, we start with the two graphs of the

relations {(1, 4), (2, 3), (3, 5), (4, 2)} and {(2, 4), (3, 5), (3, 1), (5, 3)}:

1

2

3 4

5

6 1

2

3 4

5

We rename the vertices 3 → 6, 4 → 7, . . . , 6 → 9 in the graphs of {(1, 4), (2, 3), (3, 5), (4, 2)}

and the vertices 1 → 2, . . . , 5 → 6 in the graph of {(2, 4), (3, 5), (3, 1), (5, 3)}.

1

2

6 7

8

9 2

3

4 5

6
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Then we identify the vertices which have the same label in the two graphs:

1

2

3

4 5

6 7

8

9

4.2. An operad on quasiorders. A quasiorder is a reflexive and transitive relation. If R is a

relation we denote by γ(R) its transitive closure. We also set γA(R) = γ(R) \ {(n, n) : n > 1}

and γR(R) = γ(R) ∪ {(n, n) : n > 1}. Note that γR(R) is the smallest quasiorder which contains

R. Since γA : SARef → SARef is an idempotent monoid morphism sending SARef
n to SARef

n and

satisfies
i,n

�γA = γA
i,n

�, following Section 2.4, we construct the precomposition

� :
m

→ Hom
(

SARef/≡
γA

, SARef/≡
γA

)
(4.4)

defined by
i,n

�([R]) :=

[
i,n

�(R)

]
where [] denotes the natural morphism SARef → SARef/≡

γA

sending each relation to its class. Hence, we consider the operad OP(�).

Alternatively, consider the set QOSetn of quasiorder of {1, . . . , n+1} and QOSet :=
⋃

n QOSetn.

Consider also the partial composition defined by Q�iQ
′ = γ(

i,m

�(Q) ∪
0,i

�(Q′)) if Q ∈ QOSetn,

Q′ ∈ QOSetm and i 6 n.

Theorem 3. The pair (QOSet,�) is an operad isomorphic to OP(�).

Proof. Consider the map η : QOSet → OP(�) given by η(Q) = a
(n)
[Q\∆]. The map η is a graded

bijection and its inverse is given by η−1(a
(n)
[R]) = γR(R). Remarking that

η−1(a
(n)
[R′]�ia

(n)
[R′′ ]) = γR(R′

�iR
′′)

= γ(
i,m

�(γR(R′))) ∪
0,i

�(γR(R′′))

= γR(R′)^iγ
R(R′′)

= η−1(a
(n)
[R′])^iη

−1(a
(n)
[R′′]),

(4.5)

we prove that the set QOSet inherits from OP(�) of a structure of operad. �

Example 4. Let us give an example. Consider, as in Example 3, the antireflexive relations

R1 = {(1, 4), (2, 3), (3, 5), (4, 2)} and R2 = {(2, 4), (3, 5), (3, 1), (5, 3)}. We have

γR(R1) = {(1, 4), (2, 3), (3, 5), (4, 2), (1, 2), (2, 5), (4, 3), (1, 3), (4, 5), (1, 5), (1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6)}

and

γR(R2) = {(2, 4), (3, 5), (3, 1), (5, 3), (5, 1), (1, 1), (2, 2), (3, 3), (4, 4), (5, 5)}.
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We have

γR(R) = γR(
2,4

�(R1) ∪
0,2

�(R2))

= γR({(1, 7), (2, 6), (6, 8), (7, 2), (3, 5), (4, 6), (4, 2), (6, 4)})

= {(1, 7), (2, 6), (6, 8), (7, 2), (3, 5), (4, 6), (4, 2), (6, 4),

(1, 2), (2, 8), (2, 4), (4, 8), (7, 8), (7, 4), (6, 2), (1, 8), (1, 4), (7, 6), (1, 6)

(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6), (7, 7), (8, 8), (9, 9)}.

Also,

γ(
2,4

�(γR(R1)) ∪
0,2

�(γR(R2))) = γ({(1, 7), (2, 6), (6, 8), (7, 2), (1, 2), (2, 8), (7, 6), (1, 6), (7, 8), (1, 8),

(1, 1), (2, 2), (6, 6), (7, 7), (8, 8), (9, 9)}

∪{(3, 5), (4, 6), (4, 2), (6, 4), (6, 3), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6)})

= {(1, 7), (2, 6), (6, 8), (7, 2), (1, 2), (2, 8), (7, 6), (1, 6), (7, 8), (1, 8), (3, 5), (4, 6),

(4, 2), (6, 4), (6, 2), (2, 4), (4, 8), (7, 4), (1, 4),

(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6), (7, 7), (8, 8), (9, 9)}

= γR(R)

4.3. Infinite matrices again. We consider the set R of infinite matrices indexed by N \ {0},

whose entries are in the boolean semiring B and which have only a finite number of non zero

entries. Consider the map which sends a set s ∈ SARef to the matrix Ms such that Ms[i, j] = 1

is (i, j) ∈ s and 0 otherwise. Through this map, SARef
n is in a one to one correspondence with a

finite subset S̃n ⊂ R. More precisely,

S̃n = {(mi,j)i,j>0 : mi,j = 0 if i > n + 1 or j > n + 1 or i = j}.

Furthermore each S̃n is stable for the sum and is isomorphic to the monoid SARef
n and we observe

that the precomposition ˜̂ defined by ˜̂ (
i,n
�)(M) = ni,kM tni,n is isomorphic to ^.

Example 5. We have

M{(1,4),(2,3),(3,5),(4,2)} =




0 0 0 1 0 · · ·

0 0 1 0 0 · · ·

0 0 0 0 1 · · ·

0 1 0 0 0 · · ·
...

...
...

...
...




.

And we check that

n24M{(1,4),(2,3),(3,5),(4,2)}
tn24 =




0 0 0 0 0 0 1 0 · · ·

0 0 0 0 0 1 0 0 · · ·

0 0 0 0 0 0 0 0 · · ·

0 0 0 0 0 0 0 0 · · ·

0 0 0 0 0 0 0 0 · · ·

0 0 0 0 0 0 0 1 · · ·

0 1 0 0 0 0 0 0 · · ·
...

...
...

...
...

...
...

...




= M{(1,7),(2,6),(6,8),(7,2)}

= M 2,4

�{(1,4),(2,3),(3,5),(4,2)}

.
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Each symbol a
(m)
M can be assimilated with a (m+1)×(m+1) matrix M (m) which is obtained by

considering only the entries Mi,j of M such that i, j 6 m+1. Hence, the composition a
(n)
M ◦i a

(m)
M ′ is

obtained by summing two (m+n)×(m+n) matrices: (ni,mM tni,m)
(n+m)

and (n0,iM
′ tn0,i)

(n+m)
.

Example 6. One has

M
(5)
{(1,4),(2,3),(3,5),(4,2)} ◦2 M

(4)
{(2,4),(3,5),(3,1),(5,3)} =




0 0 0 1 0 0

0 0 1 0 0 0

0 0 0 0 1 0

0 1 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0




◦2




0 0 0 0 0

0 0 0 1 0

1 0 0 0 1

0 0 0 0 0

0 0 1 0 0




=




0 0 0 0 0 0 1 0 0

0 0 + 0 0 0 0 1 + 0 0 0 0

0 0 0 0 1 0 0 0 0

0 1 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0

0 0 + 0 0 1 0 0 + 0 0 1 0

0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0




= M
(9)
{(1,7),(2,6),(3,5),(4,2),(4,6),(6,4),(6,8),(7,2)}.

This is coherent with Example 3.

Set M+ = M + M2 + · · · . Remarking that M+
s = Mγ(s), we deduce that if M ∈ S̃n then

M+ = M + M2 + · · · still belongs to S̃n. Let S̃n

+
= {M+ : M ∈ S̃n} and S̃+ =

⋃
n S̃n

+
. The set

S̃+ endowed with the operation M ⊕ M ′ = (M + M ′)+ is a monoid isomorphic to QOSet. Hence,

one easily checks that

Proposition 9. The homomorphism �̃ ∈ Hom(
e

, Hom(S̃+, S̃+)) defined by �̃(
i,k
�)(M) = (ni,kM tni,k)

+

is a precomposition isomorphic to �.

5. Action on languages

The aim of this section is to describe regular languages by using the operads defined above.

More precisely, we show that the set of regular languages is a module on each of these operads.

Furthermore, we prove that each regular language can be expressed by an operator acting on

symbols or ∅. Finally, we show that the operad QOSet is optimal in the sense that its action is

faithful.

5.1. Action of ARef. We recall that a grammar G is a 4-tuple (Σ, Γ, S, P ) where Σ is a terminal

alphabet, Γ a nonterminal alphabet, S ∈ Γ an axiom and P a set of productions. The set of

productions is a relation that contains couples of the form X → α, with X in Γ and α in (Σ ∪ Γ)∗.

We denote by ⇒ the catenation stability closure of → i.e., the transitive and reflexive closure of

the relation →. The language denoted by G is the set L(G) = {w ∈ Σ∗ | S1 ⇒ w}.
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An ε-automaton is a 5-tuple (Q, Σ, δ, i, F ) where Q is a set of states, Σ is an alphabet, δ is a

transition function from Q × (Σ ∪ {ε}) to 2Q, i ∈ Q is an initial state and F ⊂ Q is a set of final

states. The transition function δ can be extended for any integer n as the function δε,n from Q

to 2Q as follows: for any q ∈ Q, δε,0(q) = δ(q, ε), δε,n+1(q) =
⋃

q′∈δ(q,ε) δε,n(q′). The transition

function δ can also be extended as the function δ′ from 2Q × Σ∗ as follows: for any Q ⊂ Γn, for

any word w in Σ∗,

δ′(q, ε) = {q} ∪ {q′ | q′ ∈ δε,n(q) for some n} ,

δ′(Q, w) =
⋃

q∈Q,q′∈δ′(q,w)

δ′(q′, ε), δ′(q, aw) = δ′(δ(q, a), w).

The language recognized by a ε-automaton is the set {w | δ′(i, w) ∩ F , ∅}.

We associate to each element a
(n)
R ∈ ARefn a list of productions P(a

(n)
R ) defined by

(1) Si → aiSi+1 for each 1 6 i 6 k,

(2) Si → Si′ if (i, i′) ∈ R,

(3) Sk+1 → ε,

and we construct the grammar G
(n)
R := (An, Γn, S1, P(a

(n)
R )) with An := {ai : 1 6 i 6 n} and

Γn := {Si : 1 6 i 6 n + 1}.

Example 7. Let a
(5)
{(1,4),(2,3),(3,5),(4,2)}, we have

P(a
(5)
{(1,4),(2,3),(3,5),(4,2)}) =





S1 → a1S2,

S1 → S4,

S2 → a2S3,

S2 → S3,

S3 → a3S4,

S3 → S5,

S4 → a4S5,

S4 → S2,

S5 → a5S6,

S6 → ε.

Lemma 4. The language L(G
(n)
R ) denoted by the grammar G

(n)
R is regular.

Proof. It is sufficient to remark that L(G
(n)
R ) is recognized by the ε-automaton A(a

(n)
R ) = (Γn, An, δ

(n)
R , S1, {Sn+1})

where the transitions δ
(n)
R are

Si
ai→ Si+1 for each 1 6 i 6 k,

Si
ε

→ Sj for each (i, j) ∈ R.

�

Note that the automaton A(a
(n)
R ) is just an interpretation of the relation R by adding transitions.

Example 8. We obtain the automaton A(a
(5)
{(1,4),(2,3),(3,5),(4,2)}) from the graph of the relation

{(1, 4), (2, 3), (3, 5), (4, 2)}
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1

2

3 4

5

6

by adding transitions:

S1

S2

S3 S4

S5

S6
ε

ε
εε

a
1

a 2

a3

a
4

a
5

If L1, . . . , Ln are languages, we define G
(n)
R (L1, . . . , Ln) = L(G

(n)
R )|ai=Li

, that is the language

L(G
(n)
R ) denoted by the grammar G

(n)
R where each letter ai is replaced by the language Li.

Example 9. Using the same relation than in Example 8 we find

L(G
(5)
R ) = (a1 + ε)(a3 + a2a3)∗(a5 + a2a5 + (a3 + a2a3)a4a5) + a4a5.

Therefore, if L1, . . . , L5 are five languages,

G
(5)
R (L1, . . . , L5) = (L1 + ε)(L3 + L2L3)∗(L5 + L2L5 + (L3 + L2L3)L4L5) + L4L5.

It is easy to see that this construction is compatible with the partial compositions in ARef.

Indeed,

G
(n+m−1)
R◦iR′ (L1, . . . , Ln+m−1) = G

(n)
R (L1, . . . , Li−1, G

(m)
R′ (Li, . . . , Li+m−1), Li+m, . . . , Ln+m−1),

(5.1)

for each a
(n)
R ∈ ARefn, a

(m)
R′ ∈ ARefm, and i 6 n. Indeed,

P(a
(n+m−1)
R◦iR′ ) =





Sj → ajSj+1 for each 0 6 j 6 n + m − 1,

Sℓ → Sℓ′ if (ℓ, ℓ′) =
i,m

�((j, j′)) for (j, j′) ∈ R,

Sℓ → Sℓ′ if (ℓ, ℓ′) =
0,i

�((j, j′)) for (j, j′) ∈ R′,

Sn+m → ε.

Hence, we have

P

(
a

(n+m−1)
R◦iR′

)
= {Sj → ajSj+1 : 0 6 j 6 n + m − 1}

∪{Sℓ → Sℓ′ : Sj → Sj′ ∈ P(a
(n)
R ) and (ℓ, ℓ′) =

i,m

�((j, j))}

∪{Sℓ → Sℓ′ : Sj → Sj′ ∈ P(a
(m)
R′ ) and (ℓ, ℓ′) =

0,i

�((j, j))}

∪{Sn+m−1 → ε}

We deduce that

L(G
(n+m−1)
R◦iR′ ) = G

(n)
R (a1, . . . , ai−1, G

(m)
R′ (ai, . . . , ai+m−1), ai+m, . . . , an+m−1).

This implies (5.1).
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Remark 3. Alternatively, the construction on grammars can be described in terms of automata.

The automaton A(a
(n+m−1)
R◦iR′ ) is obtained by replacing the transition Si

ai→ Si+1 in A(a
(n)
R ) by a copy

of the automaton A(a
(m)
R′ ) and hence relabeling the vertices and edges.

Setting a
(n)
R .(L1, . . . , Ln) = G

(n)
R (L1, . . . , Ln) we define an action of the operad ARef on languages.

Theorem 4. The sets 2Σ∗

and Reg(Σ) are ARef-modules.

Proof. The fact that 2Σ∗

is a ARef-module is a direct consequence of (5.1).

Remarking that L(G
(n)
R ) ∈ Reg(An) (Lemma 4), we deduce that G

(n)
R (L1, . . . , Ln) ∈ Reg(Σ) when

L1, . . . , Ln ∈ Reg(Σ). Equivalently, Reg(Σ) is ARef-module. �

Note that the action of ARef can be defined directly from DT . For any (a
(n)
T1

, a
(n)
T2

) ∈ DT n, we

construct the grammar G
(n)
T1,T2

:= (An, Γn, S1, PDT (a
(n)
R )) where the production rules PDT

(
a

(n)
R

)

are

(1) Si → aiSi+1 for each 1 6 i 6 n,

(2) Si → Si′ if (i′, i − 1) ∈ T2 or (i, i′ − 1) ∈ T1,

(3) Sn+1 → ε.

Example 10. Let ((13)(24)(34), (23)) ∈ DT 5. The grammar G
(5)
(13)(22)(34),(23) is





S1 → a1S2,

S1 → S4,

S2 → a2S3,

S2 → S3,

S3 → a3S4,

S3 → S5,

S4 → a4S5,

S4 → S2,

S5 → a5S6,

S6 → ε.

(5.2)

Note that we recover the grammar G
(5)
{(1,4),(2,3),(3,5),(4,2)}.

In general we have

Proposition 10. For each (a
(n)
T1

, a
(n)
T2

) ∈ DT n, G
(n)
T1,T2

= G
(n)
ξ(T1,T2).

Here ξ denotes the morphism from DT to ARef as defined in Section 4.1.

5.2. Operadic expressions for regular languages. The following proposition shows that any

regular language admits an expression involving an operator of ARef and symbols of the alphabet

or ∅.

Proposition 11. Each regular language L ∈ Reg(Σ) can be written as

L = a
(n)
R (α1, . . . , αn)

for some n > 1, a
(n)
R ∈ ARefn, and α1, . . . , αn ∈ {{a} : a ∈ Σ} ∪ {∅}.
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Proof. First note that {a} = a
(1)
∅ ({a}), {ε} = a

(1)
{(1,2)}(∅), and ∅ = a

(1)
∅ (∅).

Suppose now that L, L′ ∈ Reg(Σ) are two regular languages satisfying

L = a
(n)
R (α1, . . . , αn) and L′ = a

(m)
R′ (α′

1, . . . , α′
m)

for some m > 1, a
(n)
R ∈ ARefn, a

(m)
R′ ∈ ARefm; and α1, . . . , αn, α′

1, . . . , α′
m ∈ {{a} : a ∈ Σ} ∪ {∅}.

We have

L+L′ = a
(n+m+1)
R′′ (α1, . . . , αn, ∅, α′

1, . . . , α′
m) with R′′ = R∪

0,n+1

� R′∪{(1, n+2), (n+1, n+m+2)},

(5.3)

LL′ = a
(n+m+1)
R′′ (α1, . . . , αn, ∅, α′

1, . . . , α′
m) with R′′ = R ∪

0,n+1

� R′ ∪ {(n + 1, n + 2)}, (5.4)

L∗ = a
(n)
R∪{(n+1,1),(1,n+1)}(α1, . . . , αn). (5.5)

The property is obtained by a straightforward induction. �

Remark 4. Note that in Formula (5.4), the symbol ∅ is important for the computation of the

catenation. For instance, we have

a+b+ = a
(1)
{(2,1)}(a) · a

(1)
{(2,1)}(b) = a

(3)
{(2,1),(2,3),(4,3)}(a, ∅, b) , a

(2)
{(2,1),(3,2)}(a, b) = (a+b+)+.

But in some cases it may be omitted. For instance,

a
(1)
{(1,2)}(a) · a

(1)
{(1,2)}(b) = a

(2)
{(1,2),(2,3)}(a, b) = ε + a + b + ab.

Let us give some examples. First we illustrate the construction described in the proof of Proposition

11.

Example 11. Consider the languages L = b(ab∗) + a∗. We have {a} = a
(1)
∅ (a), {b} = a

(1)
∅ (b). So

b∗ = a
(1)
(2,1),(1,2)(b), ab∗ = a

(3)
(4,3),(3,4)(a, ∅, b) and b(ab∗) = a

(5)
(6,5),(5,6)(b, ∅, a, ∅, b).

On the other hand a∗ = a
(1)
(2,1),(1,2)(a), hence

L = a
(7)
(6,5),(5,6),(8,7),(7,8),(6,8),(1,7)(b, ∅, a, ∅, b, ∅, a).

Manipulating the relations allows to obtain some languages from others. We give here few

constructions.

Example 12.

• Consider a language L = a
(n)
R (α1, . . . , αn) with R ∈ ARefn and αi ∈ {{a} : a ∈ Σ}. We

define RP := R ∪ {(i, n + 1) : 1 6 i 6 n}. The language a
(n)
RP

(α1, . . . , αn) is the set of the

prefixes of L.

For instance, consider L = a
(3)
(4,1),(1,4)(a, b, c) = (abc)∗ we have L = a

(3)
(4,1),(1,4),(2,4),(3,4)(a, b, c) =

(abc)∗{ε, a, ab}.

• For a more general regular language L, Proposition 11 implies that there exists n > 0, R ∈

ARefn, and αi ∈ {{a} : a ∈ Σ} ∪ {∅} satisfying L = a
(n)
R (α1, . . . , αn). An admissible posi-

tion is an integer 1 6 i 6 n+1 such that there exists a path i1 = 1
β1→ i2

β2→ i3 · · · ip−1

βp
→ ip =

in+1 in A(a
(n)
R ) with either βi = ε either βi = ai with αi , ∅ such that iℓ = i for some

1 6 ℓ 6 p−1. The set of admissible positions is denoted by Adm(R; α1, . . . , αn). We define

RP := R ∪ {(i, n + 1) : i ∈ Adm(R; α1, . . . , αn), i , n + 1}. The language a
(n)
RP

(α1, . . . , αn)
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is the set of the prefixes of L.

For instance consider L = a
(8)
(1,4),(3,6),(6,1),(6,9)(a, b, ∅, c, d, a, ∅, b). We have L = (ab + cd)+,

A(a
(8)
(1,4),(3,6),(6,1),(6,9)) =

S1

S2

S3

S4

S5 S6

S7

S8

S9

ε

ε

ε

ε

a
b

c

d

a
b

∅ ∅

and

Adm({(1, 4), (3, 6), (6, 1), (6, 9)}; a, b, ∅, c, d, a, ∅, b) = {1, 2, 3, 4, 5, 6}.

So RP = {(1, 4), (3, 6), (6, 1), (6, 9), (1, 9), (2, 9), (3, 9), (4, 9), (5, 9)}. We check that a
(8)
RP

(a, b, ∅, c) =

(ab + cd)∗(ε + a + c) = Pref(L). Graphically,

A(a
(8)
Rp

) =

S1

S2

S3

S4

S5 S6

S7

S8

S9

ε

ε

ε

ε

a
b

c

d

a

b

∅ ∅

ε

ε
ε

ε

ε

Indeed the language recognized by this automaton is (a1a2a3a4a5 + a1a2 + a4a5)∗(ε + a1 +

a1a2 + a1a2a3 + a1a2a3a4 + a4 + (a1a2a3a4a5 + a1a2 + a4a5)(ε + a6a7a8)). Setting ai = αi

in this expression, we find (ab + cd)∗(ε + a + ab + c + (ab + cd)) = (ab + cd)∗(ε + a + c)

as expected.

• Symmetrically, the language of the suffixes of L is obtained by considering the relation

RS := R ∪ {(1, i) : i ∈ Adm(R; α1, . . . , αn), i , 1}. From the example above we obtain
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RS = {(1, 4), (3, 6), (6, 1), (6, 9), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6)}. Graphically,

A(a
(8)
RS

) =

S1

S2

S3

S4

S5 S6

S7

S8

S9

ε

ε

ε

ε

a
b

c

d

a

b

∅ ∅

ε
ε

ε ε
• The language of the factors of L is obtained by first computing the prefixes and then the

suffixes. Applying this construction to L = a
(8)
(1,4),(3,6),(6,1),(6,9)(a, b, ∅, c, d, a, ∅, b), we find

that the set of the factors of L is denoted by a
(8)
RF

(a, b, ∅, c, d, a, ∅, b) with

RF = {(1, 4), (3, 6), (6, 1), (6, 9), (1, 9), (2, 9), (3, 9), (4, 9), (5, 9), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6)}.

• The subwords of L are denoted by the expressions a
(n)
S (α1, . . . , αn) where S = R∪{(i, i+1) :

αi , ∅}. Applying the construction to L = a
(8)
(1,4),(3,6),(6,1),(6,9)(a, b, ∅, c, d, a, ∅, b), the lan-

guage of the subwords of L is a
(8)
(1,4),(3,6),(6,1),(6,9),(1,2),(2,3),(4,5),(5,6),(6,7),(8,9)(a, b, ∅, c, d, a, ∅, b).

The associated automaton is

A(a
(8)
S ) =

S1

S2

S3

S4

S5 S6

S7

S8

S9

ε

ε

ε

ε
a

b

c

d

a

b

∅ ∅

ε
ε

ε

ε

ε

ε

• The mirror image of L is obtained by computing a
(n)
M (αn, . . . , α1) where M = {(n+2−j, n+

2−i) : (i, j) ∈ R}. Let us again illustrate the construction on L = a
(8)
(1,4),(3,6),(6,1),(6,9)(a, b, ∅, c, d, a, ∅, b).
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The mirror image of L is a
(8)
(1,4),(3,6),(6,1),(6,9)(b, ∅, a, d, c, ∅, b, a). Graphically,

A(a
(8)
M ) =

S9

S8

S7

S6

S5 S4

S3

S2

S1

ε

ε

ε

ε

a
b

c

d

a

b

∅ ∅

The language recognized by A(a
(8)
M ) is (ε+a1a2a3)(a4a5(ε+a6a7a8)+a7a8)+. Specializing

to a1 = b, a2 = ∅, a3 = a, a4 = d, a5 = c, a6 = ∅, a7 = b, and a8 = a, we recover the

language (dc + ba)+ that is the mirror image of L.

Some more examples:

Example 13. Let a1, . . . , an be n letters. We have

• a
(n)
{(n+1,1),(1,n+1)}(a1, . . . , an) = (a1 · · · an)∗.

• a
(n)
{(i,j):i,j}(a1, . . . , an) = (a1 + · · · + an)∗.

• a
(n)
{(n+1,1)}∪{(i,n+1):16i6n}(a1, . . . , an) = (a1 + a1a2 + · · · + a1 · · · an)∗.

• a
(n)
{(n+1,1)}∪{(1,i+1):16i6n}(a1, . . . , an) = (an + an−1an + · · · + a1 · · · an)∗.

• a
(n)
{(i+1,i):16i6n}(a1, . . . , an) = {w ∈ {a1, . . . , an}∗ : w = a1w′an and w = uaiajv implies j 6

i + 1}.

5.3. Action of QOSet. Let a
(n)
R ∈ ARefn. If we compare the grammars G

(n)
R and G

(n)
γR (γR

being the transitive cloture of R), we observe that Si → Sℓ ∈ P (a
(n)
γ̃R) implies there exists i1 =

i, i2, . . . , ip = ℓ such that Sih
→ Sh+1 ∈ P (a

(n)
R ) for each 1 6 h < ℓ. Hence, the languages L(G

(n)
R )

and L(G
(n)
γR) are equal.

Example 14. Consider R = {(1, 2), (2, 3)}, we have γ̃(R) = {(1, 2), (2, 3), (1, 3)}. We have

P (a
(2)
R ) =





S1 → a1S2,

S1 → S2,

S2 → a2S3,

S2 → S3,

S3 → ε,

and P (a
(2)
γ̃R) =





S1 → a1S2,

S1 → S2,

S1 → S3,

S2 → a2S3,

S2 → S3,

S3 → ε.

Hence, L(G
(n)
R ) = {ε, a1, a1a2, a2} = L(G

(n)
γR).

This allows to consider the action of OP(�) defined by a
(n)
[R](L1, . . . , Ln) := a

(n)
R (L1, . . . , Ln).

Alternatively, the action of QOSet is defined by Q(L1, . . . , Ln) = a
(n)
Q\∆(L1, . . . , Ln). Observ-

ing that the operads QOSet and OP(�) are isomorphic and that the isomorphism η satisfies
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η(Q)(L1, . . . , Ln) = a
(n)
[Q\∆](L1, . . . , Ln) = a

(n)
Q\∆(L1, . . . , Ln) = Q(L1, . . . , Ln), the action of QOSet

is compatible with the partial compositions. Hence, Theorem 4 implies

Corollary 2. The sets 2Σ∗

and Reg(Σ) are QOSet-modules.

Now, we prove that the operad QOSet is optimal in the sense that two different operators act

in two different ways on regular languages. That is:

Theorem 5. If Σ is an alphabet with at least two letters then Reg(Σ) is a faithful QOSet-module.

Proof. Let Q1 , Q2 ∈ QOSetn be two quasiorders. Without loss of generality, we suppose that

there exists (i, j) ∈ Q1 such that (i, j) < Q2. Let Σn = {a1, . . . , an} be an alphabet. The construc-

tions above shows that the word a1a2 . . . ai−1ajaj+1 . . . an belongs to Q1({a1}, {a2}, . . . , {an}) but

not to Q2({a1}, {a2}, . . . , {an}). Setting aℓ = aℓ−1b for each ℓ > 0, this shows the result for an

alphabet of size at least 2. �

Note that the number of elements of QOSetn is known up to n = 17 (see [Slo11] sequence

A000798):

4, 29, 355, 6942, 209527, 9535241, 642779354, 63260289423, . . .

Example 15.

• Let us examine the four operators of QOSet1:

Q1 = {(1, 1), (2, 2)}, Q2 = {(1, 1), (1, 2), (2, 2)}, Q3 = {(1, 1), (2, 1), (2, 2)}, Q4 = {(1, 1), (1, 2), (2, 1), (2, 2)},

The four languages are Q1(a1) = a1, Q2(a1) = ε + a1, Q3 = a
+
1 (= a1a∗

1), and Q4 = a∗
1.

• Let us examine the 29 operators of QOSet2:

Q \ ∆ Q(a1, a2) Q \ ∆ Q(a1, a2) Q \ ∆ Q(a1, a2)

∅ a1a2 {(1, 2)} a2 + a1a2 {(1, 3)} ε + a1a2

{(2, 3)} a1 + a1a2 {(2, 1)} a
+

1
a2 {(3, 1)} (a1a2)+

{(3, 2)} a1a
+

2
{(1, 2), (2, 1)} a∗

1
a2 {(1, 3), (3, 1)} (a1a2)∗

{(2, 3), (3, 2)} a1a∗

2
{(1, 2), (3, 2)} (ε + a1)a+

2
{(2, 1), (2, 3)} a

+

1
(ε + a2)

{(1, 3), (2, 3)} (ε + a1 + a2) {(3, 1), (3, 2)} (a1a
+

2
)+ {(3, 1), (2, 1)} (a+

1
a2)+

{(1, 3), (1, 2)} ε + a2 + a1a2 {(1, 2), (2, 3), (1, 3)} ε + a1 + a2 + a1a2 {(2, 1), (3, 2), (3, 1)} (a+

1
a

+

2
)+

{(1, 3), (3, 2), (1, 2)} (ε + a1)a+

2
+ ε {(3, 1), (2, 3), (2, 1)} (a+

1
(ε + a2))+ {(2, 1), (1, 3), (2, 3)} ε + a

+

1
(ε + a2)

{(1, 2), (3, 1), (3, 2)} ((a1 + ε)a+

2
)+

Q \ ∆ Q({a1}, {a2}) Q \ ∆ Q({a1}, {a2})

{(1, 2), (2, 1), (2, 3), (1, 3)} ε + a∗
1a2 {(1, 2), (2, 1), (3, 2), (3, 1)} (a∗

1a+
2 )+

{(1, 3), (3, 1), (1, 2), (3, 2)} ((ε + a1)a+
2 )∗ {(1, 3), (3, 1), (2, 1), (2, 3)} (a2

1(ε + a2))∗

{(2, 3), (3, 2), (2, 1), (3, 1)} (a+
1 a∗

2)+ {(2, 3), (3, 2), (1, 2), (1, 3)} (ε + a1)a∗
2

{(1, 2), (1, 3), (2, 3), (2, 1), (2, 3), (3, 1)} (a1 + a2)∗

We illustrate the proof of Theorem 5. Remarking that (3, 2) ∈ {(2, 3), (3, 2), (2, 1), (3, 1)},

(3, 2) < {(2, 1), (1, 3), (2, 3)}, we have a1a2a2 ∈ (a+
1 a∗

2)+ = {(2, 3), (3, 2), (2, 1), (3, 1)}(a1, a2)

and a1a2a2 < ε + a+
1 (ε + a2) = {(2, 1), (1, 3), (2, 3)}(a1, a2).
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5.4. Back to (simple) multi-tildes. The purpose of this section is to show that the restriction

of the action to (simple) multi-tildes is compatible with the action described in [LMN13]. In this

paper, the action of multi-tildes involve another operad: the operad of sets of boolean vectors

B =
⋃

n Bn with Bn = 2B
n

and B = {0, 1}. The composition is defined by

E ◦i F = {[e1, . . . , ei−1, eif1, . . . , eifm, ei+1, . . . , en] : [e1, . . . , em] ∈ E, [f1, . . . , fm] ∈ F}

for E ∈ Bn and F ∈ Bm. The action on the languages is defined by

E(L1, . . . , Ln) =
⋃

[e1,...,en]∈E

Le1
1 · · · Len

n .

We denote [x, z] = {y : x 6 y 6 z}. For each T ∈ Tn we set F(T ) = {S ⊂ T : (x, y), (z, t) ∈

S implies [x, y] ∪ [z, t] = ∅}. Finally we define V (T ) = {v(S) : S ∈ F(T )} with v(S) = (v1, . . . , vn)

where vj = 0 if j ∈
⋃

(x,y)∈S[x, y] and 1 otherwise. In [LMN13] we proved that V is an operadic

morphism and defined the action T (L1, . . . , Ln) = V (T )(L1, . . . , Ln).

Remark that T is isomorphic to the suboperad of DT generated by (a
(n)
T , a

(n)
∅ ) (the isomorphism

sends each T to (a
(n)
T , a

(n)
∅ ). So we have to prove that T (L1, . . . , Ln) = (a

(n)
T , a

(n)
∅ )(L1, . . . , Ln).

Equivalently,

T (a1, . . . , an) = L(GT,∅)(a1, . . . , an).

To this aim, we associate a set of boolean vectors to each grammar GT,∅ in the following way: we

consider the grammar G0,1(T ) which is obtained from GT,∅ by substituting to each rule Si → aiSi+1

the rule Si → 1Si+1 and to each rule Si → Sj the rule Si → 0j−iSj . Denote L0,1(T ) = L(G0,1(T )).

Each word of L0,1(T ) has a length equal to n. Remark that

L(GT,∅)(a1, . . . , an) = {a
e1
1 · · · aen

n : e1 . . . en ∈ L0,1(T )}.

Assimilating each word e1 . . . en ∈ L0,1(T ) to the boolean vector (e1, . . . , en) we prove the following

result:

Proposition 12. For any a
(n)
T ∈ Tn, we have a

(n)
T (L1, . . . , Ln) = (a

(n)
T , a

(n)
∅ )(L1, . . . , Ln).

Proof. Let us first recall that a closed multi-tilde is a multi-tilde T satisfying

(i, j), (j + 1, ℓ) ∈ T ⇒ (i, ℓ) ∈ T.

The normal form T̃ of a multi-tilde T is the smallest closed multi-tilde containing T as a subset (see

e.g. [CCM11]). From the definition of the action of T , we have a
(n)
T (L1, . . . , Ln) = a

(n)

T̃
(L1, . . . , Ln).

From the construction of GT,∅ we observe that L0,1(T̃ ) = L0,1(T ). Indeed, it is sufficient to remark

that one can add the rule Si → 0l−iSi in G0,1(T ), when Si → 0j−iSj and Sj → 0l−j are two rules

of G0,1(T ), without modifying the language.

Thus, we have to prove a
(n)
T (L1, . . . , Ln) = (a

(n)
T , a

(n)
∅ )(L1, . . . , Ln) for any closed multi-tilde T .

That is v = 0i1 10i2 · · · 10ip ∈ V (T ) (considering the vector as a word) if and only if v ∈ L0,1(T ).

The case when p = 1 means that v = 0i1 = 0n. For convenience, we set i0 = 1. Obviously

(i0, i1), (i0+i1+1, i0+i1+i2+1), . . . , (i0+i1+· · ·+iℓ−1+2(ℓ−1)+1, i0+i1+· · ·+iℓ+2(ℓ−1)+1) ∈ T

if and only if S1
∗

→ 0i1 1 . . . 10iℓSi0+i1+···+iℓ+2ℓ for any 0 6 ℓ 6 p (here E
∗

→ w means that we can

produce the word w from E by applying a finite sequence of rules). Equivalently v ∈ V (T ) if and

only if S1
∗

→ vSn+1 → v. This proves the result. �
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Conclusion and perspectives

We have described a faithful action of a combinatorial operad on regular languages. This means

that we describe countable operations providing a new kind of expressions for denoting regular

languages. One of the interest of the construction is that we propose expressions which are close

to the representation by automata. The obtained expressions are more expressive in the sense that

most of the complexity of the denoted language is concentrated at the operator. So this allows to

define several measures of the complexity of a language. For instance, let us define rankw(L) =

min{k : ∃Q ∈ QOSetk, α1, . . . , αk ∈ Σ ∪ {∅} such that L = Q(α1, . . . , αk)} and rankh(L) =

min{h : ∃k > 1, O ∈ DT k, α1, . . . , αk ∈ Σ ∪ {∅} such that L = O(α1, . . . , αk) and #O = h}.

The two ranks rankw and rankh can be respectively interpreted as the width and the height of

a language. The first one, rankw, is the minimal number of occurrences of symbols or ∅ in the

expression. The rank rankh expresses the minimal complexity of an operator involved for denoting

the languages. These measures will be investigated; in particular a parallel with the size of a

minimal (in terms of states or transitions) automaton should be established.

The operads considered in this paper are SET-operads, that are operads that can be constructed

from the category SET. We can also consider linear combinations of operators which consists to use

VECT-operads based on the category of the vector spaces. By this way, we guess that the infinite

matrices studied in our paper are good candidates to describe a weighted analogue of multi-tilde

operators for rational series.

Another perspective is the extension of the conversion methods from automata to expressions

using double multi-tildes. These conversions were studied in [CCM10] and in [CCM12]. By slightly

modifying the action of our operads, we aim to extend these algorithms of conversions, and con-

versely from expressions to automata e.g., the position functions [Glu61] or the expression deriva-

tives [Ant96,Brz64].

A last perspective, suggested by the referee, is the following. By the Alexandroff correspon-

dence [Ale37], quasiorders on finite sets are in bijection with finite topologies. The question consists

in investigating if the action of the operad of quasiorders QOSet on languages (see Section 5.3)

has a topological interpretation.
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