
Auto-Adaptive Multi-Sensor Architecture

Ali Isavudeen, Nicolas Ngan, Eva Dokladalova, Mohamed Akil

To cite this version:

Ali Isavudeen, Nicolas Ngan, Eva Dokladalova, Mohamed Akil. Auto-Adaptive Multi-Sensor
Architecture. IEEE International symposium on circuits and systems, ISCAS 2016, May 2016,
Montréal, Canada. IEEE ISCAS 2016 proceedings, 2016, <http://iscas2016.org/>. <hal-
01265219>

HAL Id: hal-01265219

https://hal-upec-upem.archives-ouvertes.fr/hal-01265219

Submitted on 1 Feb 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

https://hal.archives-ouvertes.fr
https://hal-upec-upem.archives-ouvertes.fr/hal-01265219

Auto-Adaptive Multi-Sensor Architecture

Ali Isavudeen1,2, Nicolas Ngan
1Sagem Défense et Sécurité

Groupe Safran, Argenteuil, France
Email: {ali.isavudeen, nicolas.ngan}@sagem.com

Eva Dokladalova, Mohamed Akil
2Laboratoire Informatique Gaspard Monge, Equipe A3SI

CNRS-UMLV-ESIEE (UMR 8049), Noisy-le-Grand, France
Email : {eva.dokladalova, mohamed.akil}@esiee.fr

Abstract—To overcome luminosity problems, modern embed-
ded vision systems often integrate technologically heterogeneous
sensors. Also, it has to provide different functionalities such
as photo or video mode, image improvement or data fusion,
according to the user environment. Therefore, nowadays vision
systems should be context-aware and adapt their performance
parameters automatically. In this context, we propose a novel
auto-adaptive architecture enabling on-the-fly and automatic
frame rate and resolution adaptation by a frequency tuning
method. This method also intends to reduce power consumption
as an alternative to existing power gating method. Performance
evaluation in a FPGA implementation demonstrates an inter-
frame adaptation capability with a relative low area overhead.

I. INTRODUCTION

From decades, the ability of computer vision systems
increases thanks to the multiplication of integrated sensors.
Multi-sensor systems enable many high-level vision applica-
tions such as stereo vision, data fusion [1] or 3D stereo view
[2]. Also smart camera networks take advantage of the multi-
sensor concept for large-scale surveillance applications [3].
More and more vision systems involve several heterogeneous
sensors such as color, infrared or intensified low-light sensor
[4] to overcome the variable luminosity conditions or improve
the application robustness.

Frequently, the considered vision system accomplishes
various tasks such as video streaming, photo capture or high
level processing (i.e. face detection, object tracking, ...). Each
one of these tasks imposes different performance computing
ability to the hardware resources, according to the applicative
context and used sensor. That is why, nowadays vision systems
have to be context-aware and to possess the ability to adapt
their performance according to the user environment [5]. Fig. 1
illustrates the differences between video and photo user mode
parameters: latency, frame rate, resolution, image quality and
power consumption. While a video mode needs a high frame
rate and low latency, a photo mode rather expects a higher
resolution and higher image quality.

In this context, we expect the system architecture adapt
itself on-the-fly to the required frame rate or resolution while
minimizing the use-case transition time when the user mode
changes. In addition, the frame rate and the resolution of the
involved sensors are not supposed to be known in advance.
Numerous adaptable architectures exist for high-performance
image processing [6]–[8] and also even for energy aware
heterogeneous vision systems [2], they do not enable such
dynamic adaptation of the frame rate or the resolution.

In this paper, we propose a novel pixel frequency tuning
approach for heterogeneous multi-sensor vision systems. The

Resolution

Frame rate

PowerImage quality

Latency

Photo capture Video streaming

low

high

Fig. 1: Photo and video use-case requirements

presented architecture enables dynamic auto-adaptation of the
frame rate and the resolution. The frequency tuning method is
also used to reduce power as an alternative to existing clock
or power gating method in stream-oriented computing [9].

The paper is organized as follows. Section II provides the
overall description of the proposed auto-adaptive architecture.
The adaptation process is presented in section III while perfor-
mance evaluation of the proposed solution is given in section
IV. Section V draws the overall conclusion of this paper.

II. AUTO-ADAPTIVE MULTI-STREAM ARCHITECTURE

We consider a multi-sensor vision system which is sup-
posed to have heterogeneous input streams (Fig. 2). Each
input stream differs in either resolution, frame rate or both
parameters. It is processed in data-flow oriented Processing
Elements (PE), organized in a pipelined structure. The input
frames are buffered in frame memory before entering the
pipeline. Internal frame synchronisation signal triggers the read
operation of the input frames from the frame buffer.

Adaptation layer

O
u

tp
u

t

St
re

am

FR_ : Frame Rate, Res_ : Resolution

Multi-Stream Processing SoCSensing Display

1

FR_1, Res_1

In
p

u
t

 S
tr

ea
m

 1

H
ig

h
-l

ev
el

 P
ro

ce
ss

in
g

PE PE PE PE

Adaptive Pipeline

PE PE PE

Adaptive Pipeline

1

FR_N, Res_N

In
p

u
t

 S
tr

ea
m

 N

Fr
am

e
 B

u
ff

er
in

g

PU

PU

Fig. 2: Heterogeneous streams vision system

Let consider standard processing pipelines, typically tai-
lored for a fixed resolution and they support only a fixed

frame rate. Within a frame period time, the pipeline switches
between processing state and idle state. Figure 3 illustrates
the processing timing analysis. The global idle state is divided
into pre-processing and post-processing idle states. The pre-
processing idle state is used for flushing local registers of the
PEs between two consecutive frames. In data-flow processing,
the post-processing idle state is intended to prepare the wave-
form required for the vertical blanking of some specific display
protocol (i.e. Video Graphics Array (VGA)). Often, the length
of the pre- and post-processing idle states is oversized.

Let call slack-time the span of the post-processing idle
state. An unoptimized slack-time can significantly decrease the
performance of the pipeline. We propose to closely tune the
pixel clock frequency (Fpix) to minimize the slack-time, by
reconfiguring the parameters of a reconfigurable Phase-Locked
Loop (PLL), according to the user context.

timeline

Frame
Sync.

Frame
Sync.

1 32

Frame
Sync.

1 32

Overall Idle state

1
Pre-processing
idle state

3
Post-processing idle
state (« slack-time »)2 Frame processing

Fig. 3: Processing and idle state timeline

This frequency tuning is handled automatically by the
architecture. The principle is based on an on-chip monitoring
system and an adaptation layer. Figure 4 depicts an example of
a three PEs-based pipeline endowed with the adaptation layer.
The on-chip monitoring system is based on a Stream Header
concept already proposed in [10]. However, its utilization is
quite different in this framework.

Each image frame of an input stream is headed by the
Stream Header before entering our architecture. Initially, it
contains information about the frame rate, the frame width and
the frame height of the input stream (Fig. 2). The architecture
is aware of the input stream’s characteristics once the Stream
Header read.

The reader should notice that the pixel datapath between
PEs is supposed to handle both grey level and color pixels.
Thus, the data size is designed to support the worst-case pixel
granularity. A specific datapath for the Stream Header is used
to reach other components involved in the adaptation process
outside of the pipeline. At the end point of the pipeline, a
demultiplexer lets only the Stream Header go through the
adaptation layer while both the Stream Header and the pixel
stream are presented in the pixel datapath. Stream Headers of
all pipelines of the architecture are timely multiplexed to enter
the adaptation layer one-by-one, since this latter is common
for all pipelines.

Five other components of the architecture are involved in
the adaptation process : the Parameter Updater (PU), the frame
Synchronization Generator, the PLL Controller, the DMA Con-
troller and the Adaptation Controller (AC). At each component,
a Header Decoder picks up the data that the component needs
from the Stream Header while a Header Encoder adds the
Monitoring-Data (MD) that the component produces. Thereby,
the Header Decoder and the Header Encoder are specific to the
component that they are used for.

Adaptation layer

Param.
Updater PE0

D E

PE1

D E

PE2
D E

Adaptation
Controller

DE

DMA
Ctrl.

D

Sync.
Gen.

D

PLL
Ctrl.

D

Stream

IN
Stream

OUT

Stream
Header

D EHeader Decoder Header Encoder

D E

pipeline k

p
ip

el
. L

p
ip

el
. k

p
ip

el
. 1 … …

p
ip

el
. k

p
ip

el
. 1

p
ip

el
. L… …

clk_out[1..k..L] frame sync.

Fig. 4: Adaptive pipeline architecture

III. AUTO-ADAPTATION PROCESS

Frame rate and resolution modification will lead to the
adaptation of several processing parameters. The key element
enabling this adaptation is the Stream Header.

A. Stream Header : on-chip monitoring
The Stream Header is composed of Monitoring-Data. It

collects MDs from some components to supply them to other
ones. The number of MDs in the Stream Header depends on
the complexity of the architecture.

As the Stream Header uses the pixel stream datapath, each
MD is embedded into one pixel width. The Stream Header
begins with two start pixels (SP0 and SP1) and it ends with
one stop pixel (STP). Figure 5 gives details on the Stream
Header. A Monitoring-Data pixel is divided into two parts :
MD-Code and MD-Value. MD-Code is SC-bit wide whereas
MD-Value is SV -bit wide. Let SP the size of a pixel in bits.
We have SP = SC + SV .

Clk

Input
Str. Header MD0 MD1 MD2 MD3

Output
Str. Header MD0 MD1 MD2 MD3 MD4 MD5

One cycle latency Added MD pixels

SP0 SP1 STP

SP0 SP1 STPDLY

Delay pixel

MD-Code MD-Value

Sc Sv

Fig. 5: Stream Header description and timing analysis

The Stream Header crosses each adaptation component
with one cycle latency (Fig. 5). The last MD of the input
Stream Header is followed by MDs that the component wants
to add to the Stream Header.

Some computational delays may be added to the trans-
mission of the Stream Header. This delay is used to cover
the time that the component needs for any configuration or to
compute the Monitoring-Data to be added. A delay is filled
with an empty MD pixel (DLY). In the given example, MD4
and MD5 are added after one cycle delay.

B. Adaptation engine
Parameter Updater
The Parameter Updater (PU) is the entry point of the input

frames (Fig. 4). This component has local registers where
the current frame rate, frame width and frame height of the
architecture are saved. The PU compares the parameters of the

input stream with the saved ones in local registers. In case of
differences between them, the local registers are updated by
the new values.

Moreover, the Parameter Updater sets an update flag in
the MD of the corresponding parameter. This update flag
is a single bit information included in the MD-Value of
the considered parameter. It will be used later to quickly
identify a changed parameter without computing any further
comparisons.

Also, The PU adds an identification number of the pipeline
(pipeline ID) in the Stream Header. This pipeline ID is used
by the adaptation layer to recognize the source of the Stream
Header.

Once leaving the Parameter Updater, the Stream Header
goes through the pipeline and the adaptation layer. Then it
comes back to the Parameter Updater thanks to the specific
Stream Header datapath. As long as the stop pixel of the
Stream Header has not reached the Parameter Updater, the
input pixels are not introduced in the pipeline. The stop pixel
of the Stream Header enables the assertion of a ready signal
to let the input pixels move into the pipeline. This ready signal
asserts the end of the adaptation process.

Processing Element
Each Processing Element uses the frame width and the

frame height of the input stream to set their local processing
parameters. These parameters mostly concern the size of pixel
or line buffers.

Pixel and line counters are used to determine the end
of a frame line and the end of a whole frame during the
processing. A third clock-cycle counter is used to measure
the slack-time. The end of frame triggers the beginning of the
slack-time counter. This counter is stopped by the next frame
synchronization signal. The slack-time of a given frame period
is added in the Stream Header of the next frame. Among slack-
times of all PEs, only the least value matters for the concern
of the adaptation process. Hence, throughout the pipeline, each
PE adds its slack-time in the Stream Header only if it is lower
than the previous PE’s one.

DMA Controller
Memory slots of the frame memory are designed to support

the worst-case frame resolution used in this architecture. As
like as the PEs, the DMA Controller picks the frame width
and the frame height from the Stream Header to configure the
DMA operations. The starting addresses of DMA operations
remain unchanged while the lengths are updated.

Synchronization generator
The synchronization signal triggers the beginning of a

frame period. This period is determined thanks to a counter
whose recycling period can be dynamically modified. The
Synchronization Generator uses the frame rate information
from the Stream Header to adapt the period of the counter,
that is to say the frame period. It converts the frame rate
into number of cycles of the counter according to Ncounter =
Fclk,counter/Framerate.

C. Pixel clock frequency tuning
The pixel clock frequency (Fpix) is tuned accurately so

that it is neither lower nor higher than the required frequency.
Obviously, if Fpix is lower than the required value, then the
pipeline will not be able to achieve the processing of the whole

frame within the frame period. Meanwhile, a high Fpix will
lead to an extra dynamic power consumption.

Frame Sync

Compute
Fpix,req

Increase
Fpix

Decrease
Fpix

PLL
Reconfig.

new
Param. ST < STth- ST > STth+

yes

no

Fig. 6: Pixel frequency tuning rule

The pixel clock frequency tuning rule is presented in figure
6. The frequency is tuned thanks to a feedback loop on
the measured slack-time. Receiving the Stream Header, the
Adaptation Controller first checks if any parameter has been
updated by the Parameter Updater. In case of new parameters,
the AC computes the required minimum pixel clock frequency
(Fpix,req) from the values of the frame rate and the resolution
according to Fpix,req = Width × Height × Framerate +
blanking. Some additional cycles are added (blanking) to
handle the monitoring latency and line or frame blanking. The
number of blanking cycles can be approximated to a given
percentage of the frame period.

If the parameters have not been updated, the AC compares
the slack-time (ST) to given low and high slack-time thresh-
olds (resp. STth− and STth+). If the slack-time is lower
than STth− or higher than STth+, the AC fires respectively a
frequency increase or decrease request. A PLL reconfiguration
will be performed only in case of new Fpix,req or frequency
increase and decrease requests. The PLL Controller computes
the required frequency multipliers and dividers according to
the input clock frequency of the PLL and the required value
of Fpix,req. The output clock to be reconfigured (fig. 2) is
identified thanks to the pipeline ID.

IV. HARDWARE PROTOTYPING AND EVALUATION

A. Experimental prototype
The proposed architecture has been implemented on an

Altera Cyclone V FPGA (5CGX). We used an experimental
prototype with two heterogeneous input streams (color and
infrared) and 2 pipelines for each stream. The first pipeline
(3 PEs) realizes image restoration while the second one (4
PEs) performs image enhancement. The pipelines have been
stressed with several values of frame rate and resolution. The
pixel size of the prototype is SP = 36bits with SC = 4bits
and SV = 32bits. The Stream Header implementation is given
in table I. The most significant bits of the frame rate’s, the
frame width’s and the frame height’s MD-Value are used as
the update flag of the respective parameter.

MD MD-Code Size MD MD-Code Size

SP0 1111 X Frame width 0010 14 bits
SP1 1010 X Frame height 0011 14 bits
STP 1110 X Slack-time 0100 32 bits

Delay pixel 0000 X Fpix,req 0101 9 bits
Frame rate 0001 10 bits Pipeline ID 0110 4 bits

TABLE I: Stream Header implementation

Start pixels, stop pixel and delay pixel do not use the MD-
Value. Only their MD-Code is decoded to recognize them.
Hence, the size of their data is not specified in table I. Fpix

increase or decrease commands has the same MD-Code as
Fpix,req but their MD-value is 32 bits wide.

B. Resources utilization
Area overhead of the adaptation engine depends on the

pipeline configuration of the case study. Table II gives area
overhead of our prototype (4 pipelines, 14 PEs).

Component ALUT Register Memory (bit)

Adaptation Controller 224 115 0
PLL Controller 58 21 0

PE adaptation logics (14) 1246 1918 0
Parameter Updaters (4) 28 76 0
Extra adaptation logics 24 16 2304

Total (% FPGA) 1580(2,8%) 2146(0,9%) 2304(0,03%)

TABLE II: Adaptation engine’s area overhead

The extra logics added to the DMA Controller and the Syn-
chronization Generator are given as Extra adaptation logics.
This term also includes pipeline switching logics (multiplexers
& demultiplexers). This area result shows an overall overhead
less than 4% of the FPGA for a realistic color-infrared dual-
stream vision system. An affordable low area overhead per
PE (ALUT:89,Regs:137,Mem:0) enables a high scalability for
multi-stream systems.

C. Adaptation latency evaluation
Latency penalties due to the adaptation process are reported

in table III. Both lines of the table shows the latency cost in
terms of clock cycles for each step of the auto-adaptation (resp.
Parameter Updater, Processing Element, Adaptation Controller,
DMA and Synchronization Generator and PLL Controller).
TPE represents the latency of one PE. In case of new parame-
ters, the most costly adaptation step is the PLL reconfiguration
(TPLL). An average PLL reconfiguration time of 257 clock
cycles have been measured. Two more cycles are used to
compute PLL frequency dividers and multipliers.

Event TPU TPE TAC Tdma−sg TPLL Ttot

No changes 15+tmux 3 6 5 2 31
New Fpix,req 15+tmux 3 6 5 259 288

TABLE III: Adaptation process latency cost

In TPU , an additional tmux multiplexing time has to be
considered in case of Stream Headers queuing at pipeline
switching multiplexers stage. This additional time restraints
somewhat the scalability of this solution from a latency point-
of-view. For usual resolutions and frame rates (QVGA to
1080p and 15 to 100 fps), the adaptation latency remains
under 0.4% of the frame period time. Thereby, the presented
adaptation process can be performed within an inter-frame time
for most of usual configurations.

D. Power analysis
Power savings expected by frequency tuning method have

been measured thanks to the Power Monitor tool provided by
Altera. Figure 7 exposes the power analysis results. For a given
frame rate and resolution, several pixel clock frequencies have
been tested. Power consumption with the required minimum
frequency has been compared to the one with higher frequen-
cies.

30,72
24

51,8450

35

75
70

55

100

85
80

120

0

20

40

60

80

100

120

20 25 30 35 40 45 50 55

P
ix

e
l c

lo
ck

 f
re

q
u

e
n

cy
 (

M
H

z)

Pixel bandwidth (Mpixel/s)

676 mW
778 mW

881 mW
+ 2 mW

+ 9 mW

+ 6 mW
+ 7 mW

+ 13 mW

+ 11 mW
+ 13 mW

+ 21 mW

+ 17 mW
SVGA@50fps

VGA@100fps

1080p@25fps

Fig. 7: Power savings by frequency tuning

Thanks to the frequency tuning method the overall power
consumption can be cut up to 2%. One should notice that this
percentage is underestimated due to the efficiency of the Power
Monitor.

V. CONCLUSION

In this paper an auto-adaptive architecture based on a on-
chip monitoring for heterogeneous image streams has been
proposed. This architecture enables runtime auto-adaptation
of the frame rate and the resolution in a data-flow process-
ing thanks to a frequency tuning method. This method also
attempts to reduce the overall power consumption. Latency
penalties and area overhead of the adaptation engine have been
evaluated in a FPGA implementation. Performance evaluation
demonstrates an inter-frame adaptation capability with a rela-
tively low-cost adaptation engine. Promising results for power
consumption cutting have been observed. Future works will
focus on an efficient adaptive solution for frame buffering in
a heterogeneous pixel streams context.

REFERENCES
[1] R. Luo, M.-H. Lin, and R. Scherp, “Dynamic multi-sensor data fusion

system for intelligent robots,” IEEE Journal of Robotics and Automa-
tion, vol. 4, no. 4, pp. 386–396, Aug 1988.

[2] U. A. Khan, M. Quaritsch, and B. Rinner, “Design of a heterogeneous,
energy-aware, stereo-vision based sensing platform for traffic surveil-
lance,” in WISES, July 2011, pp. 47–52.

[3] J. SanMiguel, C. Micheloni, K. Shoop, G. Foresti, and A. Cavallaro,
“Self-reconfigurable smart camera networks,” Computer, vol. 47, no. 5,
pp. 67–73, May 2014.

[4] H. Ngo, L. Tao, M. Zhang, A. Livingston, and V. Asari, “A visibility
improvement system for low vision drivers by nonlinear enhancement
of fused visible and infrared video,” in CVPR, June 2005, pp. 25–25.

[5] H. W. Gellersen, A. Schmidt, and M. Beigl, “Multi-sensor context-
awareness in mobile devices and smart artifacts,” Mobile Networks and
Application, vol. 7, no. 5, pp. 341–351, Oct. 2002.

[6] T.-Y. Cheng, T.-H. Chen, J. Chen, and S.-Y. Chien, “Coarse-grained
reconfigurable image stream processor architecture for high-definition
cameras and camcorders,” in ISOCC, Nov 2010, pp. 95–98.

[7] F. Pelissier and F. Berry, “Design of a real-time embedded stereo
smart camera,” in Advanced Concepts for Intelligent Vision Systems,
ser. LNCS. Springer, 2010, vol. 6474, pp. 344–356.

[8] J. van der Horst, R. van Leeuwen, R. K. H. Broers, and P. Jonker, “A
real-time stereo smartcam, using fpga, simd and vliw,” in 2nd Workshop
on Applications of Computer Vision. Springer, May 2006.

[9] M. Hosseinabady and J. L. Nunez-Yane, “Energy optimization of fpga-
based stream-oriented computing with power gating,” in FPL, 2015.

[10] N. Ngan, E. Dokladalova, and M. Akil, “Dynamically adaptable noc
router architecture for multiple pixel streams applications,” in IEEE
Int. Symp. on Circuits and Systems, ISCAS, 2012, pp. 1006–1009.

