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Abstract To better understand the impact of temperature
elevation on the response of the excavation damaged zone

around repository cells and galleries for radioactive waste

disposal, the combined effects of shear and temperature
elevation were investigated in the laboratory on the Cal-

lovo-Oxfordian claystone. To do so, a hollow cylinder

thermal triaxial cell with short drainage path specifically
developed for low permeability rocks was used. Once

properly saturated under stress conditions close to in situ,

the specimen was sheared along a constant effective mean
stress path mimicking the stress path followed during

gallery excavation. The shear stress was afterwards

released and an undrained heating test was performed on
the sheared specimen. It was observed that the temperature

increase under undrained conditions led to a thermal

increase in pore water pressure resulting in a decrease in
mean effective stress that brought back the sheared speci-

men to failure, evidencing a thermally induced failure.

Steady state radial permeability tests performed at various
stages of the test demonstrated that the overall permeability

of the sheared specimen was comparable to that before
shearing, confirming the excellent self-sealing properties of

the Callovo-Oxfordian claystone. This shows that, in spite

of being possibly remobilised by temperature elevation, the
EDZ will keep an overall permeability constant equal to

that of the massive rock, keeping the same isolation

properties.

Keywords Claystone ! Permeability ! Excavation
damaged zone ! Shear band ! Undrained heating ! Self
sealing

1 Introduction

The Callovo-Oxfordian (COx) claystone has been selected

as a potential host rock for deep geological repository of
high-level radioactive waste in France because of its low

permeability, good self sealing properties and good

radionuclide adsorption capacity. The host rock around the
repository cells containing the exothermic waste canisters

will be submitted to various coupled mechanical, hydraulic

and thermal phenomena including the development of an
excavation damaged zone (EDZ) that might affect the

overall rock permeability in the close field (Armand et al.

2014). The heat emitted by the high-level radioactive waste
will increase temperature in the host rock, with a maximum

admitted temperature of 90 "C around the waste canisters

in the French concept (ANDRA 2012). This temperature
elevation might have some effects on the crack network of

the EDZ. This problem was investigated in the framework
of the TIMODAZ European research project devoted to the

‘‘Thermal Impact on the Damaged Zone around a

radioactive waste disposal in clay host rocks’’ (Li et al.
2014). The temperature elevation might also lead to an

increase in pore pressure and a decrease in effective stress

in the EDZ due to thermal pressurisation (Mohajerani et al.
2012), resulting in possible thermo-mechanical failure

(Hueckel and Pellegrini 1991; Hueckel et al. 2009). In this

context, Monfared et al. (2012) investigated the thermal
reactivation of a pre-existing shear band in undrained

conditions in the Boom clay.
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The effects of cracks on water transfers have been

investigated by various authors in various clays and
claystones. The experimental investigation of Zhang

(2011) on fractured COx and Opalinus clay specimens

showed that the permeability of fractured specimens
decreased significantly by several orders of magnitude

upon hydration of the cracks, thanks to the hydration of

the smectite minerals in the clay matrix that resulted in
clogging the fractures. Davy et al. (2007) also observed

that the permeability of a confined cylindrical COx
specimen containing an artificial crack made by previ-

ously carrying out a Brazilian tensile test was compa-

rable to that of the intact claystone. Comparable
conclusions were drawn by Zhang (2011) on the Opali-

nus clay and the COx claystone and by Monfared et al.

(2012) on the Boom clay, confirming their good self
sealing capacity.

The effects of heating on the permeability of intact clays

have been investigated by Morin and Silva (1984); Delage
et al. (2000); Zhang (2013), among others. Data showed

that the change in water transfer with temperature was only

due to the changes in water viscosity, resulting in a con-
stant intrinsic permeability with respect to temperature

changes. This has been recently confirmed in the COx

claystone as well by Menaceur et al. (2015). Note however
that available literature data on the effects of temperature

on the permeability of damaged clays and claystones

materials are scarce. Recently, Monfared et al. (2014)
showed that the intrinsic permeability of a sheared Opali-

nus clay specimen remained almost equal to that of intact

specimens at both 25 and 80 "C, confirming the good self-
sealing properties of the Opalinus clay at elevated

temperature.

The present work aims at investigating the effect of
temperature elevation on a COx claystone specimen pre-

viously damaged by a shear test that resulted in the

development of a network of shear planes, following the
approach followed by Monfared et al. (2012) on the Boom

clay. Once sheared, the shear stress was released prior to

reactivate the shear bands by temperature elevation. Per-
meability tests run at various stages of the test allowed to

monitor possible changes in permeability due to damage

and temperature elevation. To do so, a thermal hollow
cylinder triaxial cell recently developed for this purpose

(Monfared et al. 2011a) was used. The two main charac-

teristics of this device are, on the one hand, a short drainage
path (half the thickness of the cylinder) allowing for good

saturation and drainage conditions and, on the other hand,

the possibility of running radial permeability tests at vari-
ous temperatures by establishing a water flow between the

inner and outer faces of the hollow cylinder through the

shear plane network.

2 Materials and Methods

2.1 The Callovo-Oxfordian Claystone

The Callovo-Oxfordian claystone is a marine sediment

from the Jurassic period, deposited 160 millions years ago
between the Callovian and the Oxfordian ages in the

western area of the Parisian basin. It has been since that

time submitted to various significant tectonic effects
including some horizontal stresses resulting from the

Alpine orogenese.

The mineralogical composition of the COx claystone
varies with depth with significant changes in carbonate and

clay contents. The COx total connected porosity varies

between 14 % in carbonated levels and 19.5 % in more
argillaceous levels (Yven et al. 2007). At the Underground

Research Laboratory (URL) at Bure, Eastern France, the

formation (at 490 m depth) is relatively homogenous and
made up of a clay matrix containing carbonates, quartz and

accessory minerals. The clay fraction (45–50 %) is made

up of mixed layers of interstratified illite/smectite
(20–24 %) and illite (17–21 %) with also small amounts of

kaolinite and chlorite. It also contains 20 % calcite, 22 %
quartz and 9 % of various other minerals such as feldspars,

pyrite, dolomite, siderite and phosphate (Gaucher et al.

2004). The smectite percentage in the clay fraction is
responsible for the swelling and self-sealing behaviour of

the COx claystone (Davy et al. 2007; Zhang and Rothfuchs

2008; Mohajerani et al. 2011).
In the present work, an experiment was performed on a

hollow cylinder specimen taken from a core (EST30734)

perpendicular to the bedding, extracted at the same level as
that of the URL. The specimen was carefully trimmed from

100 mm diameter core on a lathe. The initial characteristics

of the sample are presented in Table 1. The initial gravi-
metric water content of the sample was 7.4 %. The porosity

and degree of saturation were calculated by measuring the

sample volume by hydrostatic weighing. The initial total
suction was determined using a dew point potentiometer

(WP4, Decagon). As seen in Table 1, the sample is not

saturated at initial state with a degree of saturation of 94 %
corresponding to a suction of 6.1 MPa with a porosity of

17.5 %. The partial saturation of the specimen resulted

from the combined actions of coring, transport, storage and
trimming.

2.2 Experimental Device

The hollow cylinder triaxial cell specially designed

(Monfared et al. 2011a) to investigate the thermo-hydro-
mechanical behaviour of low permeability clays and

claystones was used. A global overview of the cell is
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presented in Fig. 1a, that schematically shows the hollow
cylinder specimen (external diameter uext = 100 mm,

internal diameter uint = 60 mm, height h = 70–80 mm)

inside the triaxial cell. The same confining pressure is
applied along both the external and internal lateral faces of

the sample. As shown in Fig. 1a, b, a major advantage of

this device is the presence of two lateral drainages in the
inner and the outer walls of the hollow cylinder sample

made up of two geotextile bands placed along the sample

with no connection with the upper and lower drainages.
These lateral drainages reduce the specimen drainage

length down to half of the thickness of the hollow cylinder

(10 mm). They also allow carrying out radial permeability
tests so as to capture the effects of shear bands on the soil’s

permeability. Compared to standard full cylinder triaxial

samples with drainage at top and bottom ends, the short
drainage path allows reducing the time needed to fully

resaturate an initially unsaturated claystone sample by a
factor of seven (Monfared et al. 2011a). Also, satisfactory

drainage conditions are achieved during mechanical and

thermal loading provided the strain rate and temperature
elevation rate are small enough.

Figure 1b also shows a schematic view of the hydraulic
connections between the sample, the pressure–volume

controllers (PVC) and the pressure transducers (PT). PVC1

is used to apply the confining pressure whereas the other
three PVCs are used to apply and control the pore fluid

pressure. The device is also equipped with two axial and

four radial local displacement transducers (LVDTs, accu-
racy ±1 lm) to monitor local strains. The heating system

consists of a heating electric belt placed around the cell

with a temperature regulator with an accuracy of ±0.1 "C.
Temperature is measured inside the cell close to the sample

by a thermocouple. An insulating layer covers the cell to

limit heat exchanges with the surrounding environment.
The shear stress is applied using an integrated piston

specially developed and manufactured (Fig. 1c). This pis-

ton is hydraulically activated by a pressure–volume con-
troller (maximum pressure of 60 MPa). As shown in

Fig. 1c, the piston is connected to the PVC, which controls
the movement of the piston and thus applies the shear

stress. The applied force is directly measured by a local

immersed force sensor installed at the end of the piston.

Table 1 Initial characteristics of the tested sample

Height (mm) Water content (%) Degree of saturation (%) Porosity (%) Dry unit mass (mg/m3) Suction (MPa)

EST30734 73.37 7.4 94 17.5 2.23 6.1

Lateral drainages

(b) 

(a) 

PT

PT
PVC4 PVC2

PVC3

PVC1

Sa
m

pl
e

Pressure transducer 

Porous disc 

PVC

Valve V1

(c) 
Fig. 1 a Hollow cylinder
triaxial cell, b general setting of
the connections with the
pressure volume controllers
(PVC), c system for applying
deviatoric stress
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2.3 Sample Resaturation

As shown by Monfared et al. (2011a), an interesting feature
of the hollow cylinder triaxial cell is to ensure good initial

saturation of samples of very low permeability (around

10-20 m2 in the case of the COx claystone) within a rea-
sonable period of time, thanks to a reduced drainage path.

As recalled by Delage et al. (2007) on the Boom Clay,

Monfared et al. (2011b) on the Opalinus clay and Moha-
jerani et al. (2011) on the COx claystone, it is important to

re-saturate specimens of swelling clays under stress con-

ditions close to the in situ ones to avoid further perturbation
due to swelling during hydration.

The in situ state of stress in the Bure URL has been

investigated in detail by Wileveau et al. (2007) who pro-
vided the following values:

– Vertical total stress rv = 12.7 MPa,
– Minor horizontal total stress rh = 12.4 MPa,

– Major horizontal total stress rH = 12.7–14.8 MPa,

– Pore pressure u = 4.9 MPa.

In their experiments in the hollow cylinder apparatus,

Mohajerani et al. (2014) adopted stress conditions close to

in situ, i.e. a confining stress of 12 MPa and a pore pressure
of 4 MPa. Under such high pressures, perforation of the

neoprene jacket resulting in test failure in various occa-

sions. To avoid this problem, it was decided here to carry
out the tests at lower stress and pore pressure, keeping the

same Terzaghi effective stress of 8 MPa but with a con-

fining pressure of 9 MPa and a pore pressure to 1 MPa.
This was done in a purpose of simplicity given the

uncertainty about the value of the Biot parameter b for the

COx claystone, with published values between 0.3 and 0.8
depending on the confining stress (see for instance Bemer

et al. 2004) and with a value of 0.6 generally adopted in
calculations (e.g. Gens et al. 2007). Actually, with a

b value of 0.6, the Biot effective stress corresponding to a

confining stress of 12 MPa with a pore pressure of 4 MPa
would be equal to 9.6 MPa. With a confining pressure of

9 MPa and a pore pressure of 1 MPa, the Biot effective

stress is smaller at 8.4 MPa. This difference, that would be
smaller with higher Biot coefficient, shows that the con-

ditions applied here are less close to in situ stress condi-

tions than that applied by Mohajerani et al. (2014). Better
stress conditions could be achieved once knowing the exact

value of the Biot parameter under the in situ stress

conditions.
Another issue is related to the effect of the back pressure

level on the quality of saturation. The conditions here are

probably less favourable that that adopted by Mohajerani
et al. (2014) given that air dissolution in water is enhanced

under higher back-pressure.

Once applied the confining stress, specimen saturation

was carried out by injecting demineralised water from the

back-pressure PVC, allowing to get back to the initial salt
concentration of the pore water.

Figure 2 shows the volume changes calculated from the

water injected from the PVC compared to that monitored
by local LVDT measurements during the saturation phase.

The two curves show a stabilisation after 2 days. A swel-

ling rate of 0.02 %/day is afterwards obtained from both
the LVDT measurements and the volume of water injected.

The higher total volume obtained from the injected water is

related the saturation of the soil specimen and of the porous
elements of the drainage system (upper and lower porous

discs, lateral geotextiles).

2.4 Radial Permeability Tests

Steady state radial permeability tests were carried out by
applying a pressure difference between the outer and the

inner lateral faces of the hollow cylinder specimen and by

measuring the inflow and outflow water fluxes using the
PVCs. This procedure is particularly adapted to investigate

the effects of shear bands on the permeability of sheared

hollow cylinder specimens. Permeability tests were carried
out on a specimen submitted to an initial back pressure of

1.0 MPa by closing the valves connected to the top and

bottom of the sample and by applying a pressure of
1.5 MPa through the external geotextile while maintaining

the pressure in the internal geotextile equal to 1.0 MPa.

Tests were carried out using demineralised water to avoid
any corrosion of the PVCs. This is not optimum given that

the salt concentration is then modified. A procedure using

an interface cell transmitting the pressure exerted by the
PVC on demineralised water to synthetic water would have

been preferable but it could not be developed in this study.
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Fig. 2 Volume changes and water exchanges during saturation

H. Menaceur et al.

123



In a standard fashion, the radial intrinsic permeability kr
(m2) was calculated using the flow rates as follows:

kr ¼
Qplw lnðRext=RintÞ

2phDu
ð1Þ

where Qp is the water flow; lw the water viscosity (equal to

8.90 9 10-4 Pa s at 25 "C and 3.55 9 10-4 Pa.s at 80 "C),
Rext and Rint the external and internal sample radius,
respectively (Rext = 50 mm; Rint = 30 mm); h the flow

height (h = 50 mm); and Du is the pressure difference

between the inner and outer walls of the sample
(Du = 0.5 MPa).

2.5 Experimental Programme

The sample was tested along a thermo-hydro-mechanical
path aimed at reproducing the stress state in the close field

of the excavated gallery. The path followed is shown in

Fig. 3. The test was aimed at investigating the possibility
of reactivating a shear band by thermal pressurisation and

at capturing the effect of the shear band formation on the

radial permeability.
Once resaturated close to the in situ stress state (point B

in Fig. 3), the sample was sheared at 25 "C (B–C) in

drained conditions along a constant mean effective stress p0

path. The axial deformation was afterwards kept constant,

resulting in a release in shear stress q (C–D) during the

radial permeability test at point C. Then, the sheared
sample was heated at 80 "C in undrained conditions (D–E).

Finally, the cell temperature was reduced to 25 "C and the

stress state was set at isotropic condition (point F:
p = 6.6 MPa) prior to running a drained heating test.

Radial steady state permeability tests were carried out after

initial resaturation [point (B)], right after shearing (C), after
shear stress release (D), after heating the sheared sample up

to 80 "C (E) and after cooling the sheared sample down to

25 "C (F).

3 Experimental Results

3.1 Initial Radial Permeability (Point B)

Two permeability tests were performed at point B to check

the repeatability of the procedure. The water exchanges

monitored by the upstream and downstream PVCs during
the first test are presented in Fig. 4a. The axial and radial

strains obtained from the local LVDT measurements are
plotted in Fig. 4b, c, with an almost similar response

observed for measurements in the same direction. Fig-

ure 4d shows the changes in specimen volume during the
test, calculated from both the water exchanges monitored

by the upstream and downstream PVCs and the local

LVDT measurements. Good correspondence is observed
between these two independent measurements, bringing

confidence in their quality and in the water tightness of the

system. The volume changes curves from LVDTs also
show that after a transient infiltration phase during the first

10 h, a constant infiltration rate of 1.2 9 10-3 % h-1 is

afterwards observed. This trend is typical of swelling clays
and claystones and has already been observed by Monfared

et al. (2011b) on the Opalinus clay, Mohajerani et al.

(2011) on the COx claystone and, on the Boom clay, by
Cui et al. (2009), Monfared et al. (2012) and Bésuelle et al.

(2014).

The flow curves of Fig. 4a show that the upstream PVC
injects water (at 1.5 MPa) into the sample (initial back

pressure 1 MPa) from the beginning of the test, as expec-

ted. However, one observes that it is necessary to wait for
3.5 h before monitoring any outflow with the downstream

PVC. Also, the downstream PVC indicates the occurrence

of water infiltration into the sample during the 3 first hours
through the internal phase submitted to the smallest 1 MPa

pressure. Combined observation of Fig. 4a, d shows that

this infiltration through the downstream face corresponds to
the transient phase of the swelling process observed in

Fig. 4d. This transient swelling phase is due to the release

of the effective stress profile along the radial path followed
by the water flow due to the application of the 1.5 MPa

pressure along the outer face of the sample. Once this

transient phase completed, a steady phase occurs with some
injected water kept within the sample, explaining the dif-

ference between the outflow and inflow after 25 h in

Fig. 4a.
Given that swelling still goes on at the end of the test

(after 30 h), the permeability calculation cannot be made

from inflow and outflow data without considering the part
of the flow taken to hydrate the swelling clay fraction. It is

p

q

T = 25°C p = 9 MPa
u = 1 MPa

A F      

C

T

D

E      
T = 80°C

B      

G      
T = 60°C

Fig. 3 Schematic view of the THM loading paths followed
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proposed to consider that this part of hydrating water

comes from both upstream and downstream flows. If one

denotes the flow contributing to clay hydration as Qs and
that contributing to water transfer and permeability as Qp

and under the (strong) hypothesis of having the same

contribution to swelling from both inflow and outflow, the
inner and outer flows (Qi and Qp respectively) can be

written as:

Qi ¼ Qp þ Qs=2 ð2Þ

Qo ¼ Qp & Qs=2 ð3Þ

providing the following value of Qp:

Qp ¼
Qi þ Qo

2
ð4Þ

However, observation of the slope of the inflow and

outflow curves in Fig. 4 and in other Figures indicates that

at the beginning, the infiltration rate is significantly larger
upstream than downstream, with a ratio of the slopes close

to 4. This is due to the larger release in effective stress of

0.5 MPa on the inflow side along which a back-pressure of
0.5 MPa is applied. It seems then appropriate to consider

that the inflow contribution to swelling is n times larger

than the outflow one. The same calculations as above leads
to the following expression:

Qp ¼
Qi þ nQo

nþ 1
ð5Þ

in which n is taken equal to 4.
The sensitivity of the calculated permeability to the

n value is examined in Table 2 by comparing results with

n = 1 and 4. Table also contains the calculations for the

other permeability tests carried out. Table shows that the
calculated permeability values are not very sensitive to the

value of n. It is proposed to adopt the value obtained with

n = 4, giving a value of radial permeability of
3.2 9 10-21 m2.

In the second test run under same conditions some time
later, Fig. 5a shows comparable response in terms of inflow

and outflow curves during the transient initial phase.

However, as seen in Fig. 5b, volume change stabilisation is
observed after 10 h with no steady state swelling as

observed previously and no water mobilised for clay

hydration. The same permeability value (5 9 10-21 m2) is
obtained for n = 1 or 4, slightly higher than previously.

3.2 Shearing Under Constant Effective Mean Stress
at Drained Conditions (Path B–C)

Once resaturated under in situ stress state at 25 "C, the
sample was loaded with a constant axial displacement rate

of 0.35 lm/min (chosen low enough to ensure drained

conditions, see Monfared et al. 2011a) while maintaining
the mean stress constant. This was achieved by controlling

the change in confining pressure (Dr3) following the

relation Dr3 ¼ & Dq
3 (where q is the shear stress r1 - r3).

The changes in axial, radial and volumetric strains with
respect to shear stress are presented in Fig. 6. One observes

that the shear stress reaches a maximum value of 11 MPa

at 0.52 % of axial strain and -0.25 % of radial strain. Note
however that strain localisation is suspected to start
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developing at the inflection point observed at a shear stress

value of 9 MPa of the q/ea stress strain curve. The section
of the curves at higher shear stress has been plotted in

dotted line because local displacement measurements no

longer represent the homogeneous deformation of the
specimen. In this regard, it is difficult to interpret the

transition from dilation to contraction observed at the same
q value on the volume change curve. This is even truer in

the post peak regime where the system is following the

mutual displacements of blocks along shear planes.

The photographs of the sample at the end of the test are

presented in Fig. 7. One observes a more apparent shear
band with an inclination of 67" with respect to horizontal,

among a network of other shear bands.

The effect of the shear bands on the overall specimen
permeability was investigated by carrying out radial per-

meability tests after shearing at point C, as indicated in

Table 2. Once the sample sheared (point C), a permeability
test was carried out. As shown in Fig. 6, a decrease in shear

stress took place once the permeability test started. This

decrease can be related to the reactivation of shear bands
due to the application of 0.5 MPa excess pressure. Fig-

ure 8a, which presents both the inflow and outflow curves

with respect to time, shows no effect of the stress release
phase, with water expelled in the downstream PVC since

the beginning of the test. Figure 8b shows the sample

volume change during the permeability test. One observes
that the volume change calculated from LVDT measure-

ments is larger than that calculated from water exchanges

because LVDT measurements incorporate both the swel-
ling of the sample and the possible sliding of blocks along

Table 2 Effect of the shear loading and heating on COx claystone permeability (EST30734)

Qi (m
3/s) Qo (m

3/s) Qp ¼ QiþQo

2 Q'
p ¼

Qiþ4Qo

5
krp (m

2) k'rp (m2)

Before shearing, (B), 1st test 2.51 9 10-12 7.54 9 10-13 1.63 9 10-12 1.10 9 10-12 4.72 9 10-21 3.2 9 10-21

Before shearing, (B), 2nd test 1.73 9 10-12 1.71 9 10-12 1.72 9 10-12 1.72 9 10-12 4.98 9 10-21 4.97 9 10-21

After shearing, (C) 6.22 9 10-12 1.42 9 10-12 3.82 9 10-12 2.38 9 10-12 11.1 9 10-21 6.89 9 10-21

After shearing stress release, (D) 1.93 9 10-12 1.13 9 10-12 1.53 9 10-12 1.29 9 10-12 4.43 9 10-21 3.73 9 10-21

At 80 "C, (E) 3.54 9 10-12 1.73 9 10-12 2.63 9 10-12 2.09 9 10-12 3.04 9 10-21 2.42 9 10-21

After cooling, 25 "C, (F) 2.13 9 10-12 5.82 9 10-13 1.35 9 10-13 8.92 9 10-13 3.92 9 10-21 2.58 9 10-21
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some shear bands. Unlike in other permeability tests, no

satisfactory correspondence was observed between the
responses of axial and radial LVDTs (Fig. 8c, d), with in

particular opposite responses of the axial LVDTs. This

confirms the mobilisation of shear planes and the relative
movement of blocks during the permeability test.

Inspection of Fig. 8a shows that the outflow rate is

maximal at the beginning of the test to afterwards
decrease until the end of test at 18 h. There is no initial

inflow as observed previously, probably due to the pres-

ence of the recently developed shear bands that allow
some water flow at the beginning. The progressive

decrease of the outflow reflects the self-sealing behaviour

of the shear bands, with the global permeability pro-
gressively coming back to a value of 6.9 9 10-21 m2

quite comparable to that measured before shearing (3.2

and 5 9 10-21 m2).
Figure 9 shows the results of a permeability test that was

carried out after 2 days (point D). The response in terms of

inflow and outflow is comparable to that observed at initial
state with some effect of effective stress release at the

beginning. The calculated value of radial permeability with

n = 4 is 3.7 9 10-21 m2. These values are close to that of
the sample before shearing. The specimen volume changes

monitored by the water exchanges and LVDT measure-

ments (Fig. 9b) are in good agreement and comparable to
those obtained during the permeability test before shearing.

3.3 Heating Under Undrained Conditions (Path D–
E)

At the end of the constant effective mean stress shear test at
25 "C under (path C–D) and after the permeability test, the

shear stress q value is 7.3 MPa, the confining pressure

value is 6.6 MPa and the back pressure 1.0 MPa. From this
state, the vertical displacement of the piston was blocked

by closing valve V1 (Fig. 1c). The confining pressure was

kept constant at 6.6 MPa and the specimen was heated at a

rate of 1 "C/h under undrained conditions. Figure 10a

shows the change in shear stress with respect to tempera-
ture. The shear stress first decreased from 7.3 to 7.1 MPa at

25.6 "C and afterwards increased up to a peak (7.8 MPa) at

28.5 "C, followed by a progressive quasi-linear decrease to
5.3 MPa at 80 "C.

The changes in pore pressure during this path are pre-

sented in Fig. 10b (up to 60 "C because a leak then
occurred in the pressure transducers). One can observe that

the pore pressure quickly increased from 1.0 to 1.5 MPa

when the temperature increased from 25.0 to 28.5 "C, with
a mean rate of 0.14 MPa/"C. At temperature higher than

28.5 "C, the rate of pore pressure increase versus temper-

ature increase became lower (0.005 MPa/"C).
The changes in axial and radial strains with respect to

temperature are presented in Fig. 10c. Below 28.5 "C,
strains were negligible. Above 28.5 "C, the axial strain
increased while the radial strain decreases. Axial strain

data above 38 "C were unfortunately not monitored (no

further change due to friction effects in the LVDT).
Examination of the inflow and outflow curves at 80 "C

(Point E, Fig. 11a) evidences larger fluxes compared to

previous tests. However, the intrinsic permeability value is
equal to 2.4 9 10-21 m2, a value comparable to that pre-

viously obtained before and after shearing. This confirms

that the larger fluxes observed are due to the decrease in
water viscosity lw with temperature (from 8.90 9 10-4

Pa.s at 25 "C to 3.55 9 10-4 Pa.s at 80 "C) as already

observed in the Boom clay (Monfared et al. 2012).
Figure 11b shows the changes in sample volume during

the test with good correspondence between water exchan-

ges and LVDT measurements. A swelling of 0.087 % is
observed at the end of the test.

The subsequent cooling phase (path E–F) was per-

formed at constant confining pressure (r3 = 6.6 MPa).
During this phase, a leak in the application system of the

shear stress led to a decrease in shear stress down to

0 MPa. The sample was then submitted to the combined

67°

Shear band

Fig. 7 COx specimen at the
end of the test
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effect of temperature decrease followed by shear stress
release and it appeared difficult to analyse the resulting

response to this poorly controlled thermo-mechanical

stage.
The permeability test carried out at point F (25 "C)

provides a permeability value of 2.6 9 10-21 m2

(Fig. 12a). As in previous tests, a swelling of 0.05 %
occurred (Fig. 12b).

3.4 Isotropic Drained Heating of the Sheared
Sample (F–G)

From point F, the specimen was slowly heated up to 48 "C
with a heating rate of 0.5 "C/h, low enough to ensure

drained conditions (Sultan et al. 2002; Monfared et al.

2011b). The local axial, radial and volumetric strains
obtained from the LVDTs are presented in Fig. 13. Con-

traction of the sheared sample occurred from the beginning

of the test, with radial strains larger than axial strains,
showing some anisotropy in the thermal response. At

48 "C, the axial strain is equal to 0.007 % (characterised by

a slope CT\ = 0.28 9 10-5 "C-1) compared to 0.027 %
(CT|| = 1.26 9 10-5 "C-1) for the radial strain.

4 Discussion

The test carried out in this work was aimed at further
investigating some thermo–mechanical issues related to the

behaviour of the excavation damaged zone that develops

around galleries and repository cells excavated at great
depth into a claystone. To do so, the first stage of the test
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was aimed at mimicking the stress path followed during

excavation, by running a shear test at constant mean
effective stress up to failure. This first stage carried out in

drained conditions provided some insight into the shear

strength and failure properties of the Callovo-Oxfordian
claystone. As seen in Fig. 6 (path B–C–D), the curves

obtained are comparable to other data obtained on the COx

claystone, with axial strains (perpendicular to bedding)
larger than radial ones (e.g. Chiarelli et al. 2003; Homand

et al. 2003; Zhang and Rothfuchs 2004; Hu et al. 2014;

Menaceur et al. 2015).
The corresponding stress path plotted in a q–p0 diagram

presented in Fig. 14 exhibits some small perturbations at

the beginning of the test at low shear stress due to some
technical problems with the PVC controlling the confining

pressure, for q values smaller than 1.0 MPa. The mean

effective stress p0 afterwards stabilises at 7.9 MPa. The
Figure shows that failure is reached at a peak shear stress of

11 MPa (point C). This is a rather small value compared to

that obtained under comparable conditions by Zhang and
Rothfuchs (2004) and Hu et al. (2014). This confirms the

variability already observed in the failure criteria of the

COx clay, that depends on the specimen origin and of the
layer in which it has been excavated, together with other

technical parameters like the experimental procedures

followed (including the specimen size and shape, the
resaturation procedure followed and the drainage condi-

tions imposed). Visual observation made at the end of the

test on the sheared specimen (Fig. 7) evidenced a shear
network that obviously affected the post-peak response that

was characterised by the mobilisation of the shear planes

and the mutual sliding of blocks.
Particular attention was devoted to the changes in per-

meability along the various stages of the test to capture

possible effects of strain localisation and temperature ele-
vation on the overall response of the specimen. Perme-

ability tests were carried out by running constant head

steady state radial permeability tests in the hollow cylinder
specimen, by imposing a pore pressure increase

(Du = 0.5 MPa) on the outer face of the cylinder while

monitoring water exchanges using the pressure volume
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controllers. Unlike in standard triaxial testing on full
cylinders that only involves an axial flow of water through

the sample that may or may not be affected by a shear

plane, the hollow cylinder configuration does impose a
radial flow through the network of shear bands created at

failure, in a direction parallel to bedding. It is hence par-

ticularly adapted to capture the effects of shear bands on

the permeability. In this regard, this device usefully com-

pletes previous procedures carried out on sample in which

tensile cracks were created (Davy et al. 2007). Both pro-
cedures then cover the water transfer properties of both the

tensile and shear cracks that characterise the EDZ (Armand

et al. 2014), allowing better investigation of the self-sealing
properties of the claystone.

During permeability tests, the volume changes of the

specimen were monitored by both the amount of water
exchanges monitored by the PVC and the local strain

measurements provided by the LVDTs. Quite a good cor-

respondence was observed between these data in most
tests, providing good confidence in the permeability values

obtained. The combined effects of the effective stress

release (progressively induced when applying the pore
pressure increment of 0.5 MPa on the outer face), the

specimen hydration and the swelling induced, and the final

stabilisation of water flows could clearly be identified in
the curves of water exchanges provided by the PVC.

At the beginning of the test, a reference permeability

value just after resaturation under conditions close to in situ
stress (p = 9 MPa and u = 1 MPa, point B) of

3.2 9 10-21 m2 was obtained. This value is in the range of

magnitude of intrinsic permeability of the COx claystone,
estimated between 10-20 and 10-22 m2 (Escoffier et al.

2005; Delay et al. 2006; Mohajerani et al. 2011). Further

changes due to shearing and temperature elevation could
then be monitored by running similar tests at each stage of

the test.

The 0.5 MPa excess pore pressure applied on the
external face of the sheared sample induced a decrease in

shear stress down to 7.3 MPa (path C–D) related to the

reactivation of shear bands. The important conclusion
drawn from the permeability test after this stage was that,

in spite of the clear appearance of shear bands observed all

around the sample (with a total of 21 bands all around the
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sheared specimen, see Fig. 7), they were no decrease in

permeability at ambient temperature, confirming the good
self-sealing properties of the COx claystone.

After the shear stress release phase, the undrained

heating of the sheared sample exhibited a first stage up to a
temperature of 28.5 "C during which an increase in shear

stress up to a peak at 7.75 MPa was coupled to a fast

increase in pore pressure up to a maximal value of
1.49 MPa (Fig. 10a, b) with no change detected in the

LVDT measurements (Fig. 10c). During this stage in
which the specimen was stable with no mobilisation of the

shear planes, an estimation of the thermal pressurisation

coefficient can be made.
The total pore pressure change during undrained heating

is given from the water mass change equation (dMw = 0)

as follows:

du ¼ Bdpþ KdT ð6Þ

where B is the Skempton coefficient (Skempton 1954) and

K is the thermal pressurisation coefficient. Equation (2)
indicates that the total pore pressure change is due to a part

related to the total stress change (Bdp = B dq
3 ) and a part

related to temperature change (duT):

duT ¼ KdT ¼ du& B
dq

3
ð7Þ

The Skempton coefficient of saturated COx claystone

was found equal to 0.87 (Mohajerani et al. 2014) for a
saturated sample of same porosity (17.7 %) under in situ

stress conditions (p = 12 MPa, u = 4 MPa). Given the
poro-elastic expression of the B coefficient:

B ¼ Cd & Cs

Cd & Cs þ /ðCw & CsÞ
ð8Þ

in which / is the porosity and Cd, Cs and Cw are the

drained, solid and interstitial fluid compressibility,

respectively.
One can observe that a slight change in Biot effective stress

from 9.6 MPa (p = 12 MPa, u = 4 MPa with b = 0.6) to

8.4 MPa (p = 9 MPa, u = 1 MPa with b = 0.6) would
mainly affect the Cd drained compressibility coefficient.

Given that the term Cd is on top and bottom of the fraction,

slight changes inCd should not significantly affect theB value.
As a consequence, a B value of 0.87 is adopted here.

The pore pressure induced by the temperature increase

can be calculated using Eq. (3), providing a thermal pres-
surisation coefficient equal to 0.156 MPa/"C between 25

and 28.5 "C. This value is in agreement with the results of

Mohajerani et al. (2012) who observed that the thermal
pressurisation coefficient slightly decreased with increased

temperature, with a value of 0.145 MPa/"C at 32 "C.
Once the peak reached at 28.5 "C, the shear stress

started decreasing linearly while the increase in pore

pressure became smaller and less regular. During this

stage, the LVDT measurements evidenced a decrease in
specimen length combined to an increase in radius, cap-

turing the displacements resulting from the thermal reac-

tivation of the shear bands and the mutual sliding of the
blocks, in agreement with data obtained by Monfared et al.

(2012) on the Boom clay. This reactivation resulted in a

somewhat irregular response in pore pressure.
Due to thermal pore fluid pressurisation in the sheared

sample and to the resulting decrease in effective stress
during the undrained heating phase (D–F), the stress path

moved towards the left. A continuous decrease in q and p0

was afterwards observed in the plane q–p0 (Fig. 14) with a
constant ratio q/p0 equal to M = 0.97, that corresponded to

a friction angle /0 = arcsinð 3M
6þMÞ = 24.7". This value, that

is typical of a residual state in which a pre-sheared plane is

reactivated, is in good agreement with the results of Zhang
and Rothfuchs (2004) at ambient temperature on the COx

claystone. It would tend to indicate that the residual friction

angle is not temperature dependent.
The sheared sample submitted to drained heating

between 25 and 48 "C (path F–G, Fig. 13) exhibited a

thermal contraction. Contraction is larger in the direction
parallel to bedding than perpendicular to bedding, with an

anisotropy ratio of 4.5. This trend is not in agreement with
recent data of Monfared et al. (2011b, on the Opalinus

clay) and of Mohajerani et al. (2014, on the COx claystone)

who showed larger thermal contraction perpendicular to
bedding. It is suspected here that the radial thermal con-

traction could be enhanced by the subvertical cracks (with

an angle of 67 "C with respect to horizontal, see the photo
of the sheared specimen in Fig. 7) along which the smectite

phase is mobilised. Note also that some mobilisation of the

shear band could also intervene.
The permeability test run at 80 "C on the sheared

sample showed that the intrinsic permeability of COx

claystone was not dependent on temperature, with the
larger fluxes observed only related to the decrease in water

viscosity with temperature, in agreement with previous

results on intact Boom clay sample (Delage et al. 2000). As
already observed in the Boom clay and the Opalinus clay,

the good self-sealing properties of the COx claystone are

confirmed at elevated temperature.

5 Conclusion

An experimental programme was carried out in a new

hollow cylinder triaxial cell with a short drainage path
specially designed for low permeability rocks to investigate

some thermo-hydro-mechanical issues in the EDZ around

galleries excavated in claystones. The sample was first
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resaturated under a stress state close to in situ stress con-

ditions to minimise swelling and damage during
resaturation.

To complete the understanding of the response of the

EDZ around a gallery submitted to temperature elevation
like that induced by exothermic radioactive waste, a COx

specimen was submitted in the hollow cylinder triaxial

apparatus to a stress path close to that supported in the
close field during excavation, i.e. to shear at constant total

mean stress. Once the sample sheared and the post-peak
regime with shear bands reached, the shear stress was

released. Subsequent undrained thermal pressurisation led

to a decrease in mean effective stress that brought back the
sheared sample to failure.

The results of radial permeability tests on COx claystone

specimens showed an increase in the intrinsic permeability
by 2 just after shearing that resulted in the development of

a network of 21 shear bands around the sample. However,

the permeability was afterwards rapidly reduced to a value
comparable to the initial one, showing that shear bands did

not affect the sample permeability and confirming the

excellent self-sealing properties of the COx claystone. Like
in the case of other clays and claystones, self-sealing

properties are made possible thanks to the smectite fraction

of the clay matrix that is mobilised along shear bands. The
results of radial permeability test on heated samples

already sheared evidenced the mobilisation of larger fluxes

that were only due to the decrease in water viscosity with
temperature, with no significant change in the intrinsic

permeability. The results obtained here confirm the good

self-sealing properties the COx claystone and extend them
to elevated temperature.

Indeed, the presence of smectite minerals in the clays

and claystones presently considered in Europe for the deep
disposal of radioactive waste (the Boom clay in Belgium,

the Opalinus clay in Switzerland and the Callovo-Oxfor-

dian claystone in France) provide efficient self-sealing
properties that result in the fact that the overall perme-

ability of the EDZ is comparable to that of the intact rock.

This point already evidenced in tensile cracks is now
confirmed in shear cracks thanks to the special device used

here.
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interpretation. Géotechnique 57(2):207–228

Homand F, Chiarelli AS, Hoxha D (2003) Caractéristiques physiques
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