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Abstract. The coiling process under traction is considered, with an incoming residual stress profile
(that can be sufficiently compressive to make the strip buckle): a flatness defect. This paper details
a 3D non-linear numerical simulation taking into account the contact of the strip on itself, with a
perfect contact law. The model relies on elastic behavior at finite strain because of large rotations.
Even though the behavior is elastic, the yield Von Mises criterion is computed and gives information
about flatness defects (plastic zones are approximated by zones where the yield stress is exceeded).
Furthermore, the paper aims at very short computation times. The modeling strategy relies (for each
time step) on two analytical sub-steps. Numerical minimization procedure is used in order apply weak
boundary conditions. Results are discussed with respect to a comprehensive Finite Element simulation
and good agreement is observed.

Introduction

This paper focuses on a numerical strategy for modeling efficiently the winding of the strip on itself.
The main purpose is to develop a fast tool that enables to develop coiling strategies that take into
account residual stress evolution. Classical winding defects detailed in [1] are not broached in this
contribution. Prior coiling models are overviewed in [2]. In addition a simple elastic modeling is
developed in [3]. Most winding models rely on the same assumptions and very similar methods are
detailed in [2] and [3]: layers are modeled as concentric rings loaded by internal pressure, thus stresses
induced by the curvature of the strip are not taken into account. Then elastic thin walled-theory is
used, therefore radial and tangential stress fields are homogeneous across the strip thickness. There
is no explicit contact formulation, which is taken into account as a post-processing of a linear elastic
calculation. In contrast, the winding model presented here does not rely on concentric rings. Radius
of curvature and contact length of the strip on itself vary all along each cycle and are determined
by mechanical computations. Thus, a spiral is described instead of concentric rings. Stresses induced
by the strip curvature are taken into account and multiplicative elasticity formalism (finite strain) is
used because of large rotations. The model is incremental and each time step is subdivided into two
different sub-steps. The first one consists in bending a flat incoming infinitesimal strip portion with
an unknown radius, the second sub-step consist in making contact with the rest of the coil underneath
with an unknown pressure. Both sub-steps are analytical and an explicit relationship between the
unknown radius of curvature and the unknown contact pressure is obtained with a perfect contact law
(i.e., without roughness, interpenetration of surfaces is not allowed). Therefore, the contact pressure is
determined as a function of the unknown radius of curvature, which is finally determined with weak
boundary conditions, which ensure that the resultant traction matches the imposed time-dependent
resultant traction. A minimization process performs the latter computation numerically.



Model description

Reference configuration. The Cartesian basis is denoted by (eX , eY , eZ) and the associated coordi-
nates are (X, Y, Z). The rolling direction is eX , the direction along the strip thickness is eY and the
direction along the strip width or the mandrel axis is eZ . L denotes the half width of the strip. The
observer is fixed to the mandrel. The latter does not rotate and the strip winds around the mandrel.
Polar coordinates (r, θ, z) are used for the description of the strip in the actual configuration, as shown
in Fig. 1. The part of the strip already wound is clearly defined by θ ∈ [0,−ωt] (where ω is the rotation
speed) and the remaining part is submitted to a rigid rotation. It should be noted that θ is negative and
strictly decreasing during the coiling process.

eY
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θer

eθ
Rigid rotation

eY

eX

eY
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Fig. 1: Actual configuration: observer fixed to the mandrel

Residual stress. Previous processes such as rolling process and run out table are responsible for sig-
nificant residual deformations which are not compatible, thus an elastic field is needed so that the
total deformation is compatible leading to residual stresses. In this paper it is assumed that the resid-
ual stress field is prevailing according to eX ⊗ eX and the other components are neglected. Thus the
residual stress tensor is introducedΠ(0) = Π

(0)
XX(X,Y, Z)eX ⊗ eX . For each section the equilibrium

is guaranteed. An elastic tensor E(0) is associated (via the isotropic elastic behavior) to the resid-
ual stress profile and E(0) = E0eX ⊗ eX + Ẽ0 (eY ⊗ eY + eZ ⊗ eZ) with J0 = 1 + Π

(0)
XX/(3k0),

Ẽ0 =
√
J0/E0 and where E0 is the only real root of E3

0 − E0J
5
3
0 Π

(0)
XX/µ0 − J0 = 0. Shear and bulk

moduli are denoted respectively by µ0 and k0.

Time as a space variable. Let Xmax : t 7→ Xmax(t) denote the maximal strip length in the reference
configuration, which is wound at instant t. The notationXmax is related to the value ofX such as θ =
−ωt. Time variable t can be substituted by a space variable Xmax(t). In the following, Xmax is used
instead of Xmax(t). So the wound part of the strip is described by X ∈ [0, Xmax]. The infinitesimal
strip portion being wound is described by X = Xmax and X + dX .

Assumptions. The model relies on some assumptions, which are specified here. A1: Once in contact,
slips between layers are not allowed. A2: Cross sections in the reference configuration are transformed
into cross sections of the actual configuration. (“X=Constant” transformed into “θ=Constant”). There-
fore, the angle representing a particle in the actual configuration depends only on X . A1 enables to
discard the time dependence and A2 enables to discard the Y and Z dependencies. A3: Plain strain
assumption is made. Planes ”Z=Constant” in the reference configuration are transformed in the actual
configuration in the same planes. A4: For each time step, the infinitesimal strip portion added to the
rest of the coil is assumed to have the same traction profiles at sections X and X + dX . Thus, this
model describes piecewise constant traction profiles according to theX variable. Therefore, for each
infinitesimal strip portion added to the coil, displacements are purely radial.

Modeling steps. As mentioned above, the present model is incremental and for each time step an
infinitesimal strip portion is curved and put in contact with the rest of the coil. The strategy consists
in dividing each time step in two different sub-steps. Since the problem is highly non linear (contact
problem and finite strain formalism), the deformation path matters and other modeling choices could
lead to different results. The infinitesimal strip portion at section X in the reference configuration



lying between sections X = Xmax and X + dX is considered. The model describes how the strip
portion is curved and then how the contact with the rest of the coil is performed.

Step 1. The infinitesimal strip portion is curved arbitrarily with a trial radius of curvature R∗(X) (Z-
independent). Thus, this step correspond to a global curvature of the strip portion regardless to the axial
position Z, which will be corrected in step 2. The trial radius R∗(X) will be determined by applying
weak boundary conditions in the end. This step involves large rotations and multiplicative elastic
formalism is used. The mid-plane of the infinitesimal strip portion is transformed into a cylindrical
cylinder of radius R∗(X). The transformation Φ(1)(X, Y, Z) = (R∗(X) + Y )er + ZeZ is imposed.
After the transformation Φ(1), the upper-plane has the radius R∗(X) + δ(Z) and the lower plane has
the radius R∗(X) − δ(Z). This is obtained mostly by applying bending moments at both sections X
and X + dX . These bending moments are due to traction profiles through the strip thickness (i.e.,
eY direction). In the following, the associated Cauchy stress tensor σ(1) is evaluated as a function of
radius R∗(X). Since the transformationΦ(1) is imposed, unwanted body forces fb are introduced and
calculated with div σ(1) = −fb. However, the radial stress σ

(1)
rr do not vanish at the upper and lower

surfaces of the strip portion, and the resultant force of unwanted body forces compensates the unwanted
resultant force of residual surface traction. Therefore, a global equilibrium is ensured through the strip
portion thickness.

Step 2. The contact between the curved strip portion at section X and the rest of the coil is modeled,
assuming a perfect no sliding contact. The strip portion is pressed against the coil upper surface at sec-
tion X− (defined implicitly by θ(X−) = θ(X) + 2π). The radius R∗(X)− δ(Z) of the lower surface
of the strip portion at sectionX at the end of step 1 and the radius rc(X−, Z) of the coil upper surface
at section X− are geometrically incompatible. Therefore the contact leading to the compatibility of
both radii imposes a pressure denoted by P ∗(X,Z) at the interface, which is small enough, so that
step 2 is an additive correction of step 1 under infinitesimal strains assumption. This pressure field is
parametrized by the trial radius of curvature R∗(X). Displacements associated to the contact pressure
P ∗(X,Z) that make radii compatibles should be calculated in order to establish a relationship between
P ∗(X,Z) and R∗(X). For each axial position Z, displacements of the infinitesimal strip portion for a
fixed section X can be computed easily analytically using A4 implying purely radial displacements.
The radial displacement of the strip portion for this step is denoted by U (2a)(X, Y, Z). Likewise, dis-
placements of the rest of the coil at sectionX− are purely radial and can be computed analytically and
are denoted by U (2b)(X,Z). Since displacements are purely radial the radius of curvature is changed
only for allX ′ aligned underneathX along the radial direction (i.e., θ(X ′) = θ(X)+2kπ with k ∈ N).
Hence the radius of the coil underneath the strip portion at the end of step 2: rc(X−, Z)+U (2b)(X,Z).

Contact law. In this paper a perfect contact is modeled. As explained above, the radius of the in-
finitesimal strip portion lower-surface R∗(X) − δ(Z) and the radius of the rest of the coil upper-
surface rc(X−, Z) are not compatible. The unknown pressure P ∗(X,Z) enables to make them com-
patible. Therefore the radii up-dated by the radial displacements due to P ∗(X,Z) should coincide if
P ∗(X,Z) ≥ 0. Thus the contact law can be written as follows:{

R∗(X)− δ(Z) + U (2a)(X,−δ(Z), Z) = rc(X−, Z) + U (2b)(X,Z) and P ∗(X,Z) ≥ 0
R∗(X)− δ(Z) ≥ rc(X−, Z) and P ∗(X,Z) = 0

(1)

The first equation of Eq. 1 is the compatibility (equality) of radii for positive pressures. The second
equation expresses the possibility of having no contact. Considering that both steps are solved analyt-
ically, the contact law enables to write the pressure field P ∗(X,Z) as an explicit analytical function
of R∗(X) (where R1 = R∗(X)− δ(Z) and R2 = R∗(X) + δ(Z)):

P ∗(X,Z) =


rc(X−,Z)−R1

rc(X−, Z)

2(λ0 + µ0)
+

1

2µ0

R2
1

R2
2 −R2

1

(
µ0

λ0 + µ0

R1 +
R2

2

R1

) if R1 ≤ rc(X−, Z)

0 if R1 ≥ rc(X−, Z)

(2)



Calculations. Simple calculations give the total stress field in the infinitesimal strip portion, denoted
by σ(1+2) = σ(1) + σ(2a) + σ(2b) (the additive formulation comes from the infinitesimal strains as-
sumption made for step 2) where J = (R∗(X) + Y )/R∗(X) and:

σ(1)
rr (X, Y, Z) =

µ0

3
(JJ0)

− 5
3

(
J0
E0

− (JE0)
2

)
+ k0(JJ0 − 1)

σ
(1)
θθ (X, Y, Z) =

µ0

3
(JJ0)

− 5
3

(
−2

J0
E0

+ 2 (JE0)
2

)
+ k0(JJ0 − 1)

σ(1)
zz (X, Y, Z) =

µ0

3
(JJ0)

− 5
3

(
J0
E0

− (JE0)
2

)
+ k0(JJ0 − 1)

and
σ(2a)
rr (X, Y, Z) = P ∗(X,Z)

R2
1

R2
2 −R2

1

(
1−

(
R2

R∗(X) + Y

)2
)

σ
(2a)
θθ (X, Y, Z) = P ∗(X,Z)

R2
1

R2
2 −R2

1

(
1 +

(
R2

R∗(X) + Y

)2
) (3)

In addition σ(2b) is the up-date of Cauchy stress in all previous layers under pressure P ∗(X,Z) then
for all X ′ such as θ(X ′) = θ(X) + 2kπ, σ(2b)

rr (X ′, Z) = σ
(2b)
θθ (X ′, Z) = −P ∗(X,Z). It should be

noted that a rather thin discretization is needed along the axial direction eZ (500 points in this paper),
in order to have accurate contact zone. There is no mesh along the Y direction because ifΠ(0)

XX is given
analytically all quantities are analytical with respect to Y .

Solution determination and boundary condition. By applying the contact law, the total stress field
is determined as a function of R∗(X). The trial radius of curvature R∗(X) should be determined
by adding some boundary conditions which are expressed in terms of resultant traction applied to
the section X of the infinitesimal strip portion and given by T ∗ =

∫ L

−L

∫ δ(Z)

−δ(Z)
σ
(1+2)
θθ (X,Y, Z)dY dZ.

Indeed the coiling process is motorized and a known nominal traction denoted by T a(X) is applied to
the strip. The radius of curvature R(X) solution of the problem is determined when equality between
T a and T ∗ is satisfied, which can be written as a minimization problem: R(X) = argmin

R∗(X)≥0

|T ∗ − T a|.

VonMises criterion. The yield Von Mises criterion is computed in order to give insights with respect
to plastic behavior of the strip, so that flatness defects evolution can be understood. Thus the yield Von
Mises criterion (without kinematic hardening) is given by:

√
3
2
s(1+2) : s(1+2), where the deviatoric

stress tensor is s(1+2) = σ(1+2) − (tr
(
σ(1+2)

)
/3)1. It should be compared with the yield stress σ0.

From purely elastic computations, the corresponding yield Von Mises criterion can be evaluated, and
plastic zones can be roughly approximated.

Validation

This section is an attempt to validate the presented method by FEM (using Abaqus). Simulation pa-
rameters are listed in Table 1b and mechanical properties are listed in Table 1a. The geometrical strip
profile is parabolic with 20 elements through the strip width. Perfect contact law is used. The applied
stress imposed on the strip is σT = 30 MPa. Furthermore, elastoplastic behavior without hardening
(isotropic or kinematic) is considered with yield stress σ0 = 500MPa. The flat strip is wound around
a rigid finite cylinder. Computation times being extremely long (around 2 weeks) for this highly non-
linear problem, only 4 cycles are modeled with only 50 elements along the rolling direction for each
cycle and 3 elements trough the thickness. Thus, stresses due to the curvature of the strip are not ac-
curate. The order of magnitude is far below common estimations of the theory of shells. However,
contact pressures and especially the effect of the geometrical profile of the strip are more accurate
because contact depends mainly on surface geometries which are correctly described. Therefore the
comparison between the Finite Element model and the presented model is done after shifting the ori-
gin of stress. Comparison of strip tension at Y = 1 for two angular positions θ = π/2 and θ = 3π/2
are presented for the four cycles in Fig. 2 and good agreement is observed.

First tests and results

This fast non-linear simulation can be tested with various input parameters such as strip geometrical
profile, applied traction, residual stress profile or mandrel’s radius. Coiling parameters are listed in



Table 1: Modeling parameters

(a) Mechanical properties

Young modulus E (MPa) 210000
Poisson ratio ν (-) 0.3
Shear modulus µ0 (MPa) 80769
Bulk modulus k0 (MPa) 175000

(b) Simulation parameters

Mandrel radius r0 (mm) 350
Strip half-width L (mm) 750
Strip thickness at Z = 0 mm t1 (mm) 2
Strip thickness at Z = ±750 mm t2 (mm) 1.94
Applied stress on the strip σT (MPa) 30

Fig. 2: FEM validation at Y = 1 with Abaqus

Tables 1b and 1a. The number of modeled cycles is fixed to 100 and computed in around 5 seconds
(time displayed by Scilab with a quadcore 2.8 GHz). Deformed geometry, contact length of the strip
on itself, stresses and strains are computed in the whole coil for each time step.

Influence of residual stress profile. A long edges defect is modeled with a parabolic residual stress
profile according to the axial direction eZ : Π

(0)
XX(X,Y, Z) = a + b

(
Z
L

)2, where parameters a and b
are zeros for Test 1 (no flatness defect) and a = 50 and b = −150 for Test 2 (long edges defect).
Total strip tension σ(1+2)

θθ is presented for a few cycles at Y = 0 for the last infinitesimal strip portion
(i.e., θ(X) = −2kπ with k ≥ 1) in Fig. 3. During winding, the contact length of the strip on itself
decreases and σ(1+2)

θθ increases so that the resultant force reaches the applied traction T a. Furthermore,
the residual stress profile is clearly identified where the contact is lost. At Y = 0, stresses due to
the curvature of the strip are negligible, however at Y = 1 one can see the effect of bending, which
decreases when the radius of curvature increases.

Influence of the applied traction. Contact lengths for the case without residual stress profile are
represented in Fig. 4 for three applied resultant forces corresponding to 10, 30 and 90 MPa. Details
are also given for the first cycles. It is clear that traction ensure a certain level of contact in the coil.

Conclusions

This paper presents a fast non-linear simulation of coiling process based on elasticity at finite strain.
The contact of the strip on itself is perfect with no slips. During each time step an infinitesimal strip
portion is wound on the coil. The model has been compared with a Finite Element simulation and
good agreement is obtained. Very short computation times (5 sec for 100 cycles: time displayed by
Scilab with a quadcore 2.8 GHz) enables extensive parametric studies. This study gives interesting
perspectives with respect to flatness control and coiling strategies.



Fig. 3: σ(1+2)
θθ profile along the axial direction

Fig. 4: Contact length as a function of the applied traction
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