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Local Communication in Repeated Games with Local Monitoring∗

M. Laclau†

VERY PRELIMINARY AND INCOMPLETE

Abstract

I consider repeated games with local monitoring: each player observes his neighbors’

moves only. Hence, monitoring is private and imperfect. I assume local and public com-

munication: communication is restricted to neighbors, and each player sends the same

message to each of his neighbors at each stage. Both communication and monitoring

structures are given by the network. The solution concept is perfect Bayesian equi-

librium. In the four-player case, a folk theorem holds if and only if the network is

2-connected. Some examples are given for games with more than four players.
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1 Introduction

Many papers on folk theorems with imperfect monitoring consider global communication

(Ben-Porath and Kahneman, [3]; Compte, [4]; Kandori and Matsushima, [11]; Obara, [18];

etc): players can send messages to all their opponents. However, it seems natural to consider

other kinds of communication. In this paper, I study a model where communication is local:

each player can communicate only with a subset of players, called the neighbors.

I study this model of communication in the context of repeated games with local moni-

toring: each player observes his neighbors’ moves only. This is modeled by a network: nodes

represent players, edges link neighbors. The monitoring structure is represented by the net-

work: monitoring is private and local. In addition, players can send costless messages at each

stage. This paper addresses the following question: for which networks does a full folk the-

orem hold, i.e. under which conditions are all feasible, strictly individually rational payoffs

are equilibrium payoffs in the repeated game with low discounting?

I study local and public communication: at each stage, each player can send costless

messages only to his neighbors (i.e. communication is local), and each player is constrained

to send the same message to all his neighbors (i.e. communication is public). Hence, com-

munication is restricted by the network structure. The solution concept is perfect Bayesian

equilibrium. In the four-player case, the main result is that a folk theorem holds if and only if

the network is 2-connected. With more than four players, I exhibit some preliminary results

and examples.

Application An application of interest is a partnership game (see [19]). Consider a part-

nership in which production is conducted by a team whose goal is to maintain a certain level

of individual effort by its members. Each member’s effort is observable only by his direct

colleagues (called the neighbors), and there is moral hazard (effort is costly). If a member

is reported by his direct colleagues, the group can punish him by reducing his share in the

total profit, which raises other members’ shares.

Agents may not be able to communicate with all the members in the group. If agents can

communicate publicly but only with their direct colleagues, I prove in the four-player case

(Theorem 3.1) that coordination can be sustained if and only if the network is 2-connected,

that is if the team’s structure takes one of the following forms (see Section 3.1):
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Related literature. The folk theorem was originally established for Nash equilibria ([2, 8,

23, 24]), and extended by Fudenberg and Maskin ([8, 9]) to subgame-perfect equilibria. A key

assumption is perfect monitoring. Lots of papers on folk theorems with imperfect monitoring

have focused on imperfect public monitoring (see [7]). The model of collusion by Green and

Porter ([10]) also considers imperfect public monitoring in that the market price serves as a

commonly observable signal. In the undiscounted case, Lehrer (see [15, 16]) provides a fairly

comprehensive study of the equilibrium payoff set for two-player games with imperfect private

monitoring. With more than two players, the difficulty relies on the necessity for the players

to coordinate their behavior to punish potential deviators. Under discounting, as assumed

here, much less is known. There is a large recent literature on imperfect private monitoring

and belief-free equilibria (see [17] for a general survey). Fudenberg and Levine ([6]) establish

a folk theorem with imperfect private monitoring without explicit communication. They

consider private random signals induced by the action profile of all other players.

With public and global communication, Compte ([4]), Kandori and Matsushima ([11]),

and Obara ([18]), provide sufficient conditions for a folk theorem to hold. Closer to my

setting, Ben-Porath and Kahneman ([3]) establish a folk theorem for the case in which each

player observes his neighbors’ moves. However, they maintain the assumption of public and

global communication.

With public and local communication, Renault and Tomala ([20]), and Tomala ([25]),

study repeated games with the same signals as here (i.e. each player observes his neighbors’

moves). Yet, they do not impose sequential rationality. In [21] and [22], Renault and Tomala

study local communication. The aim of both papers is to transmit information along a

network (with a single possible deviator in [21], extended to k deviators in [22]). Their

techniques prove useful for the case of public and local communication studied here. However,

they do not apply directly here, since they assume that the set of deviators is fixed through

time. On the contrary, since I impose sequential rationality here, all players may deviate

unilaterally.

Finally, there is a vast literature on information transmission in networks which consider

broadcast (i.e. public) or unicast (i.e. private) communication along networks (see for in-
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stance [5]). However, with very few exceptions (as [22] mentioned above), both rationality

and equilibrium are ignored. Deviant agents are not supposed to respond to incentives. The

focus is on properties of communication protocols, such as reliability, security, etc.

The paper is organized as follows. The setup is introduced in Section 2. Section 3

introduces the main results. Finally, I raise open questions in Section 4.

2 The setup

2.1 Preliminaries

Consider a repeated game described by the following data:

- a finite set N = {1, . . . , n} of players (n ≥ 2);

- For each player i ∈ N , a non-empty finite set Ai of actions (with ]Ai ≥ 2). Denote

A =
∏

i∈N A
i.

- An undirected graph G = (N,E) in which the nodes are the players and E ⊆ N × N
is a set of links. Let N (i) = {j 6= i : ij ∈ E} be the set of neighbors of player i. Since

G is undirected, the following holds: i ∈ N (j)⇔ j ∈ N (i).

- A payoff function for each player i in N : gi :
∏

j∈N A
j → R.

- Finally, a non-empty finite set M i of player i’s messages. The specification of the set

M i is described in the following sections. In particular, M i may be finite or infinite.

I use the following notations: AN (i) =
∏

j∈N (i)A
j, N−i = N \{i}, and g = (g1, . . . , gn) denote

the payoff vector. The repeated game unfolds as follows. At every stage t ∈ N∗:

(i) simultaneously, players choose actions in their action sets, and send costless messages

to their neighbors only. Communication is public in that each player sends the same

message to each neighbor. For each player i in N , let mi
t be player i’s message (to his

neighbors) at stage t.

(ii) Let at = (ait) be the action profile at stage t. At the end of stage t, each player i ∈ N
observes his neighbors’ moves (aj)j∈N (i).

Hence, the monitoring and communication possibilities are given by the network G. In

addition, I assume perfect recall, and that the whole description of the game is common

knowledge. For each stage t, denote by H i
t the set of private histories of player i up to stage

t, that is H i
t = (Ai × (M i)N

−i × (M j)j∈N−i × {gi} × AN (i))t, where {gi} is the range of gi
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(H i
0 is a singleton). An element of hit is called an i-history of length t. An action strategy for

player i is denoted by σi = (σit)t≥1 where for each stage t, σit is a mapping from H i
t−1 to ∆(Ai)

(where ∆(Ai) denotes the set of probability distributions over Ai). A communication strategy

for player i is denoted by φi = (φit)t≥1 where for each stage t, φit is a mapping from H i
t−1

to ∆((M i)N
−i

). Each player can deviate from σi or from φi, henceforth I shall distinguish

between action and communication deviations accordingly. I call a behavior strategy of a

player i the pair (σi, φi). Let Σi be the set of action strategies of player i and Φi his set of

communication strategies. I denote by σ = (σi)i∈N ∈
∏

i∈N Σi the joint action strategy of

the players and by φ = (φi)i∈N ∈
∏

i∈N Φi their joint communication strategy. Let Ht be

the set of histories of length t that consists of the sequences of actions, payoffs and messages

for t stages. Let H∞ be the set of all possible infinite histories. A profile (σ, φ) defines a

probability distribution, Pσ,φ, over the set of plays H∞, and I denote Eσ,φ the corresponding

expectation. I study the discounted infinitely repeated game, in which the overall payoff

function of each player i in N is the expected sum of discounted payoffs. That is, for each

player i in N :

γiδ(σ, φ) = Eσ,φ

[
(1− δ)

∞∑
t=1

δt−1git(a
i
t, a
N (i)
t )

]
,

where δ ∈ [0, 1) is a common discount factor.

Depending on the model considered, I will study belief-free equilibria or perfect Bayesian

equilibria (henceforth PBE) of the discounted repeated game (see definitions in Section ??).

Let Γδ(G, g) be the δ-discounted game, and EB
δ (G, g) (respectively EPBE

δ (G, g)) its associated

set of belief-free equilibrium payoffs (respectively PBE payoffs). For each a ∈ A, let g(a) =

(g1(a), . . . , gn(a)), and g(A) = {g(a) : a ∈ A}. The set of feasible payoffs is the convex hull

of g(A), denoted by co g(A) be the convex hull of g(A). The (independent) minmax level of

player i is defined by:

vi = min
(xj)j∈N−i∈

∏
j∈N−i ∆(Aj)

max
xi∈∆(Ai)

gi(xi, (xj)j∈N−i).

Henceforth, I shall normalize the payoffs of the game such that (v1, . . . , vn) = (0, . . . , 0).

I denote by IR∗(G, g) = {g = (g1, . . . , gn) ∈ Rn : ∀i ∈ N, gi > 0} the set of strictly

individually rational payoffs. Finally, let V ∗ = co g(A) ∩ IR∗(G, g) be the set of feasible and

strictly individually rational payoffs.

The aim of this paper is to characterize the networks G for which a folk theorem holds,

that is: each feasible and strictly individually rational payoff is an PBE payoff of the repeated

game, for a discount factor close enough to one. In the next section, I introduce and prove

the main result.
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3 Main results

I first study the four-player case. In Section 3.2, I give some examples with more than four

players.

3.1 Four-player case

I assume n = 4 throughout this section, and I prove the following theorem.

Theorem 3.1. Assume n = 4, and that communication is public and local. Then, the

following statements are equivalent.

(1) The network G is 2-connected.

(2) For any payoff function g such that the interior of V ∗ is nonempty, for every vector v

in V ∗, there exists δ̄ ∈ (0, 1) such that for all δ ∈ (δ̄, 1), v is a PBE vector payoff of the

δ-discounted game.

Renault and Tomala ([20]) show that 2-connectedness is necessary for a Nash folk theorem

to hold (for any n ≥ 3).

Remark 3.2. Theorem 3.1 is also true for n = 3 since the unique 2-connected network with

three nodes is the complete graph. (Notice that the complete-network case reduces to perfect

monitoring.) The 2-player case is also trivial: a folk theorem holds if and only if the graph

is connected.

Before proving Theorem 3.1, I set out the following lemma.

Lemma 3.3. Assume n = 4. Then, the network G is 2-connected if and only if G ∈
{G1, G2, G3} where:

Figure 2:

•

•

•

•

G1

•

•

•

•

G2

•

•

•

•

G3

Proof. First, it is obvious that G1, G2 and G3 are 2-connected. Assume now n = 4, let

N = {1, 2, 3, 4}. Furthermore, suppose that G is 2-connected, hence each player has at least
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two neighbors. Two cases are possible: either (i) each player has exactly two neighbors, or

(ii) there exists a player who has three neighbors.

(i) Consider the first case in which each player has two neighbors. Without loss of

generality, let N (1) = {2, 4}. It is neither possible to have 2 ∈ N (4) nor 4 ∈ N (2), since it

would imply that player 3 has no neighbor. Hence, N (3) = {2, 4} and the unique possible

network is G1.

(ii) Assume now that there exists a player who has three neighbors. Notice that
∑

i∈N ]N (i) =

2× ]E, where E is the set of edges in G. Hence, the total number of neighbors in G is even.

Therefore, either all players have three neighbors and G is complete (network G3); or, exactly

two players have three neighbors, say players 1 and 3. In the latter case, it must be the case

that: N (1) = {2, 3, 4} and N (3) = {2, 3, 4}. The unique possible network is then G2.

I now prove Theorem 3.1. As mentioned before, I only have to prove that (1) implies (2)

in Theorem 3.1. Assume that the network G is 2-connected. By Lemma 3.3, I need to prove

that a folk theorem holds for the networks G1, G2 and G3. The case of G3 reduces to perfect

monitoring, hence the proofs of Fudenberg and Maskin ([8, 9]) apply (and no communication

is required). In the next sections, I prove that a folk theorem holds for the networks G1

(Section 3.1.1) and G2 (Section 3.1.2).

3.1.1 Each player has exactly two neighbors

Throughout this section, assume n = 4, and that communication is public and local. Fur-

thermore, suppose that the game is played on the following network (G1):

Figure 3:

•
3

•4

•1

•2

G1

Now take a payoff function g such that intV ∗ is non-empty, and a vector v = (v1, . . . , vn)

in V ∗. To prove a folk theorem, I construct a PBE of the repeated game (σ∗, φ∗) with payoff

v for a discount factor close enough to one. More precisely, I construct a restriction of the

PBE strategy to a particular class of private histories; namely, the histories along which only
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unilateral deviations from (σ∗, φ∗), if any, have taken place. In addition, the construction has

the property that, after such histories, the specified play is optimal no matter what beliefs a

player holds about their opponents’ play, provided that the beliefs are such that: for every

player i ∈ N , if player i observes a private history compatible with a history along which

no deviation has taken place (respectively along which only unilateral deviations have taken

place), then player i believes that no deviation has taken place (respectively only unilateral

deviations have taken place). Plainly, this suffices to ensure optimality. Given that play after

other histories (i.e., histories that involve simultaneous deviations) is irrelevant, the partial

strategy and beliefs that I define can be completed in any arbitrary fashion. Details are given

in Section 3.1.1.

Formally, I denote by H i
t(U |(σ∗, φ∗)) the set of private histories for player i such that: ei-

ther no deviation (from (σ∗, φ∗)) has occurred, or only unilateral deviations have taken place.

That is to say, for every history in H i
t(U |(σ∗, φ∗)), no multilateral deviation has occurred.

Similarly, denote by Ht(U |(σ∗, φ∗)) the set of total histories along which only unilateral devi-

ations, if any, have taken place. I define now, for every history in Ht(U |(σ∗, φ∗)), a strategy

profile which can be decomposed into four phases. First, there is a stream of pure action

profiles that yields the desired payoff. This is how the game starts off and how it unfolds

as long as no player deviates. Second, there is a communication phase (the communication

protocol previously described) in case of a deviation, whose purpose is to inform the devia-

tor’s neighbors of the deviator’s identity. Third, there is a punishment phase, and finally, a

reward phase.

Phase I: equilibrium path

For each player i in N and each stage t > 0, choose āit ∈ Ai such that

(1− δ)
∞∑
t=1

δt−1git(āt) = vi.

This is possible when δ ≥ 1 − 1
n

(existence is proved by Sorin, Proposition 4 p.151 in [24]).

Moreover, Fudenberg and Maskin (1991) prove that for every ε > 0, there exists δε < 1 such

that for all δ ≥ δε and every v ∈ V ∗ such that vi ≥ vi for all i, the deterministic sequence of

pure actions āt can be constructed so that the continuation payoffs at each stage are within

ε of v (Lemma 2 p. 432 in [9]).1

Moreover, at every period t, player i should send the message mi
t = (1,∅, αit) to all his

1If it was not the case, some player would prefer to deviate from ā, even if doing so caused his opponents
to minmax him thereafter.

8



neighbors, where αit is uniformly drawn on [0, 1].2 The number 1 stands for a delay and

means “one stage before” (hence stage t− 1). The part ∅ of player i’s message means that

he neither deviated nor detected any action deviation at stage t−1.3 In addition, the number

αit can be seen as an encoding key, which is used during the communication phase (phase II).

Phase II: communication phase

This phase aims at identifying the deviator when a deviation occurs. Formally, the strategy

of phase II can be seen as a communication protocol: a specification of how players choose

their messages, the number of communication rounds and an output rule for each player.

Each player i ∈ N starts the communication protocol every time he detects any kind of

deviation from (σ∗, φ∗). For instance, when in phase I, player i enters phase II at the end of

stage t either if he observes a neighbor’s deviation (or if he deviates himself in action), or if

he receives a message in M –where M is the set of messages allowed by the protocol (see the

construction below)– different from m̄j
t = (1,∅, αjt ) from some neighbor j ∈ N (i) at stage t

(messages that are not in M are disregarded). Players may enter phase II at different stages.

Indeed, consider the situation in which there is an action deviation of some player k at stage

t. For instance, if k = 1, player 1’s neighbors start phase II at the end of stage t, whereas

player 4 does not start phase 2 before the end of stage t + 1. Moreover, players may start

a new communication protocol although a previous one has not ended yet. Therefore, there

can be several communication protocols running at the same time.

During phase II, players should stick to the action strategy according to the phase in

which the play is. For instance, if players are following the equilibrium path at stage t when

they enter phase II, they should keep playing ā when performing the protocol, until a possibly

previous protocol ends up and yields to a new phase of the game. This part of the strategy

is thereby purely communicative. In what follows, I construct the communication protocol

used by player i in phase II, denoted φ̃i.

COMMUNICATION PROTOCOL

The message space. All players communicate using the same infinite set M of mes-

sages. The messages in M take the following form:

2Hence, I assume that the message space M i of player i is uncountable here.
3Recall that, at each stage, messages are sent before observing stage payoffs. This assumption is not

crucial: with a slight modification, the strategy construction is still valid for the case in which messages are
sent after the observation of stage payoffs.
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- a delay s ∈ {1, 5}, where T = 5 is the length of the protocol. The delay s is interpreted

as “s stages before” and corresponds to the stage of the alleged deviation.

- An element x(s) in {∅}∪N which represents the name of the alleged (action) deviator

“s stages before”. Hence, the element (s, xt(s)) at stage s is interpreted as “player xt(s)

deviated in action at stage t− s.”

- An encoding key α drawn uniformly on [0, 1] (which implies that M is infinite).

- An element of F (s) = ∅ ∪
{

(s′, x, αx) : s′ ∈ {0, . . . , s − 1}, x ∈ N, αx ∈ [0, 1]
}

. The

interpretation of F (s) = (s′, x, αx) sent at stage t is: “player x deviated in communi-

cation at stage t− s′ when he transmitted information about what happened at stage

t− s, and the encoding key sent by player x at stage t− s′ was αx.” There are possibly

several such messages since several players might deviate in communication at consec-

utive stages, but the number of such messages is bounded by two (see the construction

of the strategy below). The message ∅ stands for the case in which no communication

deviation is detected.

With the previous notations, the set M is the following:

M =

{
(s, x(s), α, F (s)) : s ∈ {1, . . . , 5}, α ∈ [0, 1]

}
.

If there are several protocols running at the same time, then each player’s message is

a concatenation of each message in M corresponding to each deviation: different delays

correspond to different stages, thus to different protocols. In what follows, I denote by xit(s)

(respectively αit, F
i
t (s)) the element x(s) (respectively the number α ∈ [0, 1], the element

F (s)) sent by player i at stage t.

The strategy of player i. When he performs the protocol, player i sends some mes-

sages as a function of his observations, as follows:

(i) If player i detects an action deviation of some neighbor k ∈ N (i) at stage t, then for each

s ∈ {1, . . . , 5}, player i’s message at stage t + s contains (s, xit+s(s) = k, αit+s), where

αit+s is drawn uniformly on [0, 1].4 Moreover, F i
t+1(1) = F i

t+2(2) = ∅. Three cases are

then possible:

4Notice that player i’s message is not complete here, since F i
t+s(s) is not specified yet. Moreover, several

communication protocols might be running at the same time.
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• If player i receives F k
t+2(2) = (1, k1, αk

1

t+1) at stage t+ 2 from player k (recall that

player k is the stage t’s deviator), where k1 ∈ N (k) and k1 6= i, then player

i’s messages at stages t + 3, t + 4 and t + 5 contain F i
t+3(3) = (2, k1, αk

1

t+1),

F i
t+4(4) = (3, k1, αk

1

t+1) and F i
t+5(5) = (4, k1, αk

1

t+1) respectively. In other words,

player i transmits the stage t+1’s encoding key of player k1 that he received from

player k, after having updating the delay corresponding to stage t+ 1.

• If player i receives F k
t+2(2) = (1, i, αit+1) from player k, and if F k

t+4(4) = (1, k1, αk
1

t+3)

at stage t + 4, with k1 ∈ N (k) and k1 6= i, then F i
t+3(3) = F i

t+4(4) = ∅ and

F i
t+5(5) = (2, k1, αk

1

t+3).

• Otherwise, F i
t+s(s) = ∅ for each s ∈ 1, . . . , 5.

(ii) If player i deviates in action at stage t, then for each s ∈ {1, . . . , 5}, player i’s message

at stage t + s contains (s, xt+s(s) = i, αit+s), where αit+s is drawn uniformly on [0, 1].

Moreover, F i
t+1(1) = ∅, and:

• If one of his neighbors, say i1, does not report stage t’s deviation at stage t + 1,

i.e. either mi1

t+1 /∈M or xi
1

t+1(1) 6= i, then F i
t+2(2) = (1, i1, αi

1

t+1) (recall that player

i receives the value αi
1

t+1 at stage t+ 1) and F i
t+3(3) = ∅. In addition:

– If player i’s neighbor other than i1, denoted i2, does not report F i
t+2(2) cor-

rectly at stage t + 3, i.e. either mi2

t+3 /∈ M or F i2

t+3(3) 6= (2, i1, αi
1

t+1), then

F i
t+4(4) = (1, i2, αi

2

t+3) and F i
t+5(5) = ∅.

– Otherwise, F i
t+4(4) = ∅ and F i

t+5(5) = ∅.

• Otherwise, F i
t+2(2) = F i

t+3(3) = F i
t+4(4) = F i

t+5(5) = ∅.

(iii) Otherwise, i.e. if player i does not deviate nor does detect any action deviation at stage

t, then for each s ∈ {1, . . . , 5}, player i’s message at stage t + s contains = (s, xit+s =

∅, αit+s), where αit+s is drawn uniformly on [0, 1]. Moreover, F i
t+1(1) = ∅, and:

• If there is one of his neighbors, say i1, such that mi1

t+1 ∈ M and xi
1

t+1(1) = i

(i.e. player i1 lies about player i deviating in action at stage t), then F i
t+2(2) =

(1, i1, αi
1

t+1) (recall that player i receives the value αi
1

t+1 at stage t+1) and F i
t+3(3) =

∅. In addition:

– If player i’s neighbor other than i1, denoted i2, does not report F i
t+2(2) cor-

rectly at stage t + 3, i.e. either mi2

t+3 /∈ M or F i2

t+3(3) 6= (2, i1, αi
1

t+1), then

F i
t+4(4) = (1, i2, αi

2

t+3) and F i
t+5(5) = ∅.
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– Otherwise, F i
t+4(4) = ∅ and F i

t+5(5) = ∅.

• Otherwise, F i
t+2(2) = F i

t+3(3) = F i
t+4(4) = F i

t+5(5) = ∅.

The output rule. Let N (i) = {i1, i2} and k ∈ N (i1) ∩ N (i2) \ {i}. At each stage t,

player i computes his set of suspected players (regarding stage t− 5), denoted X i
t , as follows:

• if player i deviates in action at stage t− 5, then X i
t = {i};

• if player i1 (respectively player i2) deviates in action at stage t − 5, then X i
t = {i1}

(respectively X i
t = {i2});

• otherwise:

– if mi1

t−5+s ∈M , mi2

t−5+s ∈M and xi
1

t−5+s(s) = xi
2

t−5+s(s) = k for some stage t−5+s

with s ∈ {1, . . . , 5}, then X i
t = {k};

- if mi1

t−5+s ∈M , mi2

t−5+s ∈M and xi
1

t−5+s(s) = xi
2

t−5+s(s) = ∅ for some stage t−5−s
with s ∈ {1, . . . , 5}, then X i

t = ∅;

- if mi2

t−5+s /∈M and mi1

t−5+s ∈M , for some stage t− 5− s with s ∈ {1, . . . , 5}, then

X i
t = {xi1t−5+s(s)} (and symmetrically when exchanging the roles of player i1 and

i2);

- otherwise:

∗ if mi1

t−2 ∈ M with F i1

t−2(3) = (2, i2, αi
2

t−4) (where αi
2

t−4 is the correct value of

player i2’s encoding key received by player i at stage t− 4), and if mi1

t−4 ∈M ,

then X i
t = {xi1t−4(s)} (and symetrically when exchanging the roles of player i1

and i2);

∗ if mi1

t ∈M with F i1

t (5) = (2, i2, αi
2

t−2) (where αi
2

t−2 is the correct value of player

i2’s encoding key received by player i at stage t− 2), and if mi1

t−2 ∈ M , then

X i
t = {xi1t−2(s)} (and symetrically when exchanging the roles of player i1 and

i2);

∗ otherwise, X i
t = ∅ (history incompatible with unilateral deviations).

The number of rounds. The number of rounds of communication is equal to T = 5.

In the paragraph entitled “The equilibrium property” (page 15), I prove that the following

claims hold:

(1) If there is an action deviation of some player k at stage t, then X i
t+T = {k} almost

surely for each player i ∈ N ;
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(2) If there is no action deviation at stage t (but possibly a communication deviation),

then X i
t+T = ∅ almost surely for each player i ∈ N .

This ends the description of the communication protocol.

I now describe how transition from phase II to another phase is made. For each player

i ∈ N :

- if X i
t+T = ∅, then keep playing according to the current action phase and use the

corresponding communication strategy;

- if X i
t+T = {k}, then go to phase III in order to minmax player k;

- otherwise, play the coordinate of an arbitrary Nash equilibrium of the one-shot game

(history incompatible with unilateral deviations).

Phase III: punishment phase

For each player i ∈ N , if X i
t+5 = {k} for some player k in N , player i enters a punishment

at stage t + 6, whose goal is to minmax player k. Each player i 6= k first plays according to

his minmax strategy against k, denoted (P i(k)). Denote by P (k) = (P i(k))i∈N−k the profile

of minmax strategies against player k. For any strategy (σk, ψk) of player k:

γkδ (σk, P (k), ψk, (φi)i∈N−k) ≤
∞∑
t=1

(1− δ)δt−1vk

≤ 0,

where φi stands for any communication strategy of each minmaxing player i ∈ N−k. Player

k is compelled to play some pure action P k(k) at each stage during his punishment.5

In addition, at each stage s during the punishment phase, each player i in N , including

player k, keeps sending messages in M regarding stage s− 1. In particular, a player j ∈ N−k

who chooses an action which is not in the support of his minmax strategy is identified as a

deviator. The punishment phase lasts T (δ) stages (the length T (δ) has to be adapted, see

below).

5Otherwise, consider the situation in which some player i 6= k deviates by reporting to player k the
sequence of pure actions of his minmax strategy. If this minmax strategy were mixed, player k might benefit
from this information by randomizing among his pure actions. However, since player k is restricted to play
the same pure action during his punishment, player i’s deviation has no impact on player k’s punishment.
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Phase IV: reward phase

After the punishment phase, hence at stage t+5+T (δ), each player enters a reward phase,

whose goal is twofold:

(i) In order to provide each minmaxing player, who is not minmaxed himself, an incentive

to play his minmax strategy in phase III, a reward is added to the form of an additional

bonus ρ > 0 to his average payoff. If the discount factor is large enough, the potential

loss during the punishment is compensated by the future bonus.

(ii) Moreover, to induce each minmaxing player to draw his pure actions according to

the right distribution of his minmax strategy, I add a phase so that his payoff in the

continuation game varies with his realized payoff in a way that makes him indifferent

between the pure actions in the support of his minmax strategy. As in Fudenberg and

Maskin ([8, 9]), it is convenient to require that any feasible and strictly individually

rational continuation payoff must be exactly attained. Otherwise, a minmaxing player

might not be exactly indifferent between his pure actions in the support of his minmax

strategy.

The possibility of providing such rewards relies on the full dimensionality of the payoff set

(recall that intV ∗ 6= ∅). In addition, it is convenient to require that all players know the

sequences of pure actions played by each minmaxing player during the punishment phase.

For that reason, at the first stage of the reward phase (i.e. at stage t + 5 + T (δ)), each

player i ∈ N sends all the sequences of pure actions that his neighbors j ∈ N (i) played

(recall that each player observes his neighbors’ moves). The action of player i at this stage

is arbitrary. By replacing x(s) by the sequences of pure actions played by one’s neighbors in

the communication protocol of phase II, each player knows at the end of stage t+ 10 + T (δ)

all the sequences actually played by all players. Finally, the construction of the reward phase

as well as the specification of µ(δ) is the same as in Fudenberg and Maskin ([9]).

Specification of the beliefs

A belief assessment is a sequence µ = (µit)t≥1,i∈N with µit : H i
t → ∆(Ht): given a private

history hi of player i, µit(h
i) is the probability distribution representing the belief that player

i holds on the full history. An assessment is an element ((σ, φ), µ) where (σ, φ) is a strategy

profile and µ a belief assessment.

I consider a restricted set of beliefs, which is strictly included in the set of total histories

Ht. I call this set of beliefs B = (Bi)i∈N . Namely, for each player i in N , every belief in

Bi only assigns positive probability to histories that differ from equilibrium play, (σ∗, φ∗),

in as much as, and to the minimal extent which, their private history dictates that it does.
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Formally, for every player i in N and every history hit ∈ H i
t , I denote by Ht[h

i
t] ⊂ Ht the set

of total histories for which the projection on H i
t is hit. A total history ht in Ht[h

i
t] is said to

be compatible with private history hit of player i. Now, for every player i in N and every

history hit ∈ H i
t , let Ht[h

i
t](U |(σ∗, φ∗)) ⊆ Ht[h

i
t] be the set containing all the total histories

that are compatible with hit and included in Ht(U |(σ∗, φ∗)).6 Formally, for each player i in

N and every history hit ∈ H i
t :

Ht[h
i
t](U |(σ∗, φ∗)) = Ht[h

i
t] ∩Ht(U |(σ∗, φ∗)).

The set of beliefs Bi is then the following:

Bi =

{
(µit)t≥1 : ∀t ≥ 1, ∀hit ∈ H i

t , h
i
t ∈ H i

t(U |(σ∗, φ∗))⇒ suppµit(h
i
t) ⊆ Ht[h

i
t](U |(σ∗, φ∗))

}
,

where supp stands for the support of µit(h
i
t). In other words, the beliefs of the players are such

that, if they observe a history compatible with either no deviation or unilateral deviations,

then they assign probability one to the fact that the total history is in Ht(U |(σ∗, φ∗)) and is

compatible with hit.

In the next section, I show that for every µ ∈ B, ((σ∗, φ∗), µ) is a PBE with payoff v∗.

The equilibrium property

In this section I prove the following proposition.

Proposition 3.4. Assume n = 4, public and local communication, and G = G1. The

following statements hold.

(a) If player k deviates in action at stage t and if at all stages t+ s with s ∈ {1, . . . , 5}, at

least three players follow (σ∗, φ∗), then X i
t+5 = {k} almost surely.

(b) If there is no action deviation at stage t (but possibly an action deviation) and if at all

stages t + s with s ∈ {1, . . . , 5}, at least three players follow (σ∗, φ∗), then X i
t+5 = ∅

almost surely.

Proof of Proposition 3.4. Assume n = 4, public and local communication, and G = G1.

Recall that N = {1, 2, 3, 4} and N (1) = {2, 4}. I prove points (a) and (b).

(a) Assume without loss of generality that player 1 deviates in action at stage t and that

at least three players follow (σ∗, φ∗) at each stage, i.e. only unilateral deviations are allowed

6Recall that Ht(U |(σ∗, φ∗)) is the set of total histories along which only unilateral deviations, if any, have
taken place.
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at each stage. Players 2 and 4 observe player 1’s moves, hence X1
t+5 = X2

t+5 = X4
t+5 = {1}.

At stage t+ 1, three cases are possible.

First, if both players 2 and 4 send m2
t+1 ∈ M and m4

t+1 ∈ M , which both contain

(1, x(1) = 1), then by construction X3
t+5 = {1}.

Second, if m2
t+1 /∈ M , then player 4 plays according to φ̃4

t+1 under unilateral deviations,

hence m4
t+1 ∈ M and x4

t+1(1) = 1. Then by construction, X3
t+5 = {1}. (And symmetrically,

if m4
t+1 /∈M , then X3

t+5 = {1}.)

Finally, assume m2
t+1 ∈M , m4

t+1 ∈M and that x2
t+1(1) 6= 1.7 At stage t+ 2:

(i) either player 1 deviates, hence players 2 and 4 do not deviate and by construction they

both send a message in M containing (2, x(2) = 1): it follows that X3
t+5 = {1}.

(ii) Or player 1 does not deviate and sends m1
t+2 = (2, x(2) = 1, α2

t+2, F
1
t+2(2) = (1, 2, α2

t+1)).

At stage t+ 3, several cases are possible:

– either player 4 does not deviate, thus sends a message in M containing F 4
t+3(3) =

(2, 2, α2
t+1). Moreover, under unilateral deviations (recall that player 2 deviates

at stage t + 1), the following holds: m4
t+1 ∈ M and x4

t+1(1) = 1. Finally, the

probability that player 2 guesses α4
t+1 is zero since α4

t+1 is uniformly drawn on

[0, 1]. As a consequence, X3
t+5 = {1}.

– Or, player 4 deviates at stage t+3. Notice first that if m4
t+3 ∈M and x4

t+3(1) = 1,

the previous reasoning apply and X3
t+5 = {1}. Otherwise, player 1 sends at stage

t + 4 a message in M containing F 1
t+4(4) = (1, 4, α4

t+3). If player 1 deviates,

then both players 2 and 4 follow φ̃ and as before, X i
t+5 = {1}. Assume now

that player 1 does not deviate, then at stage t + 5, players 2 and 4 should send

F 2
t+5(5) = (2, 4, α4

t+3) and F 4
t+5(5) = (4, 2, α2

t+1) respectively. Moreover, under

unilateral deviations, the following holds: m4
t+1 ∈ M , (1, x(1) = 1) ∈ m4

t+1,

m2
t+3 ∈ M and (3, x(3) = 1) ∈ M . Finally, either player 2 or player 4 deviates,

but not both, hence by construction X3
t+5 = {1}.

Consequently, X3
t+5 = {1} almost surely. This concludes the proof of point (a).

(b) Assume now that there is no action deviation at stage t. Consider, without loss of

generality, player 3’s output at stage t + 5. By construction, 2, 3 and 4 are not in X3
t+5

7The same reasoning apply if x4t+1(1) 6= 1.
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since player 3 neither deviate nor observe any neighbor’s deviation at stage t. Moreover,

under unilateral deviations, there is no stage t+ s, with s ∈ {1, . . . , 5}, such that m2
t+s ∈M ,

m4
t+s ∈ M and x2

t+s(s) = x4
t+s(s) = 1). Hence, the only possibility for player 3 to output

X3
t+5 6= ∅ is that both following conditions are satisfied:

(1) player 2 (without loss of generality) sends at stage t+ 1 (respectively t+ 3) a message

in M containing (1, x(1) = 1) (respectively (3, x(3) = 1));

(2) player 2 announces correctly α4
t+1 at stage t+ 3 (respectively α4

t+3 at stage t+ 5).

The probability of guessing α4
t+1 (respectively α4

t+3) is zero. Hence, X3
t+5 = {1} is possible

only if player 1 deviate by announcing α4
t+1 (respectively α4

t+3) at stage t + 2 (respectively

t + 4). However, if player 1 deviates at stage t + 2 (respectively t + 4), then both players

2 and 4 send at stage t + 2 (respectively t + 4) a message in M containing (2, x(2) = ∅)

(respectively (4, x(4) = ∅)). As a consequence, X3
t+5 = ∅ almost surely.

By replacing x(s) by the sequences of pure actions played by one’s neighbors during the

punishment phase, it follows that the proof of Proposition 3.4 also shows that under (σ∗, φ∗),

all players know the sequences of pure actions played by others during the punishment phase

at stage t+ T (δ) + 10.

Finally, the proof that the strategy constructed is a PBE is a straightforward application

of the proof of Fudenberg and Maskin ([8, 9]).

Remark 3.5. Renault and Tomala ([21, 22]) already introduced encoding keys to transmit

information through a network. However in their setting, the set of deviators is fixed through-

out the repeated interaction, which is not the case here. In my model, the key difficulty is

that the set of deviators is not fixed, hence all players may deviate at some stage.

3.1.2 Exactly two players have three neighbors

Throughout this section, assume n = 4, and that communication is public and local. Fur-

thermore, suppose that the game is played on the following network (G2):
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Figure 4:
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The insights of the previous section 3.1.1 about uniformly distributed keys are not valid

anymore, since player 4 knows α2
t whether he deviates at stage t or not. Indeed, communi-

cation is public among neighbors, and player 4 receives player 2’s announcements.

However, a folk theorem still holds for this network. Indeed it is possible to extend the

insights of Ben-Porath and Kahneman ([3]) to prevent both players 2 and 4 from lying.8

The main idea is to lower by ε > 0 both players 2’s and 4’s continuation payoffs if their

announcements are incompatible at some stage (this is possible because intV ∗ 6= ∅).9 The

argument relies on the fact that communication is costless, hence my construction does not

require to minmax a liar who does not deviate in action, rather in communication only.

Moreover, incompatible announcements of players 2 and 4 are observed by all players.10

Hence, all players can start at the same stage the phase in which both players 2’s and 4’s

continuation payoffs are decreased.

Nevertheless, decreasing both players 2’s and 4’s continuation payoffs creates the following

issue: whenever player 2 (without loss of generality) is being minmaxed, he might have

an incentive to lie about player 1’s deviation in order to reach the state in which both

players 2’s and 4’s continuation payoffs are decreased. For that reason, if players 2’s and 4’s

announcements are incompatible in that player 2 reports player 1’s deviation while player 4

doesn’t, and if in addition player 2 is being minmaxed, then players start minmaxing player

2 again.

However, it might then be profitable for player 4 not to report player 1’s deviations –for

instance, player 4 may enjoy minmaxing player 2. To circumvent this issue, I require that

whenever player 4 is minmaxed, player 2 gets an additional bonus of ρ > 0 if he reports

player 1’s deviation.

8Recall that Ben-Porath and Kahneman consider public and global communication.
9Notice that the non-equivalent utilities condition introduced by Abreu, Dutta and Smith ([1]) is not

sufficient to ensure that this is possible.
10Notice that it would not be the case if G = G1.
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Notice also that players 2’s and 4’s moves are observed by all players, hence if one of them

deviates in action at some stage t, each player i ∈ N identifies the deviator at stage t.

Finally, to design the reward phase –following each punishment phase–, it is convenient

that all players know the sequences of pure actions played by all players during the punish-

ment phase.11 It is not an issue for players 2 and 4, whose actions are observed by all players.

Regarding the sequences of pure actions played by players 1 and 3, I add a subphase at the

beginning of the reward phase in which players 2 and 4 announce the sequences played by

players 1 and 3. Again, incompatible announcements are punished as before. The action is

arbitrary during this subphase.

This strategy is a PBE. The proof of the equilibrium property is a straightforward appli-

cation of Ben-Porath and Kahneman ([3]), and Fudenberg and Maskin ([8, 9]). Hence, a folk

theorem holds for the network G2 under public and local communication.

Remark 3.6. The proof does not require an infinite set of messages. As in [3], the proof of

the folk theorem is valid if I impose that M be finite.

Remark 3.7. Regarding the network G1 of the previous section, incompatible announcements

of players 2 and 4 are not observed by all players. Hence, the insights of Ben-Porath and

Kahneman do not apply to the network G1. Indeed, if G = G1, player 2 does not know if

player 4’s announcement is compatible with his own. One could imagine that players 1 and

4 can transmit this information, but again, the announcements of players 1 and 4 might be

incompatible, etc.

3.2 More than four players

With more than four players, it is an open question to characterize the networks for which

a folk theorem holds under public and local communication. In this section, I show a folk

theorem for a specific class of networks (Section 3.2.1), then I introduce an example (Section

3.2.2).

3.2.1 A class of networks

Proposition 3.8. Assume N = {x1, x2, . . . , xn}, with n ≥ 7, and that the network G satisfies

the following Condition C:

∀i, j ∈ {1, . . . , n}, i− j = −3,−2,−1, 1, 2, 3 [n]⇒ i ∈ N (j).

11The minmaxed player, say k, is compelled to play the same pure action P k during his punishment (see
footnote 7 page 13).

19



Then, for any payoff function g such that the interior of V ∗ is nonempty, for every vector

v in V ∗, there exists δ̄ ∈ (0, 1) such that for all δ ∈ (δ̄, 1), v is a PBE vector payoff of the

δ-discounted game.

The following network satisfies Condition C of Proposition 3.8:

Figure 5:
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Proof of Proposition 3.8. Assume public et local communication, n ≥ 7, and that the net-

work G satisfies Condition C of Theorem 3.8. Now take a payoff function g such that intV ∗

is non-empty, and a vector v = (v1, . . . , vn) in V ∗. To prove a folk theorem, I construct a

PBE of the repeated game (σ∗, φ∗) with payoff v for a discount factor close enough to one.

More precisely, I construct a restriction of the PBE strategy to a particular class of private

histories; namely, the histories along which only unilateral deviations from (σ∗, φ∗), if any,

have taken place. Given that play after other histories (i.e., histories that involve simultane-

ous deviations) is irrelevant, the partial strategy and beliefs that I define can be completed

in any arbitrary fashion.

Formally, I denote by H i
t(U |(σ∗, φ∗)) the set of private histories for player i such that:

either no deviation (from (σ∗, φ∗)) has occurred, or only unilateral deviations have taken

place. That is to say, for any history in H i
t(U |(σ∗, φ∗)), no multilateral deviation has occurred.

Similarly, denote by Ht(U |(σ∗, φ∗)) the set of total histories along which only unilateral

deviations, if any, have taken place. I define now, for every history in Ht(U |(σ∗, φ∗)), a

strategy profile which can be decomposed into four phases. First, there is a stream of pure

action profiles that yields the desired payoff. This is how the game starts off and how it unfolds

as long as no player deviates. Second, there is a communication phase (the communication

protocol previously described) in case of a deviation, whose purpose is to inform the deviator’s
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neighbors of the deviator’s identity. Third, there is a punishment phase, and finally, a reward

phase.

Phase I: equilibrium path

During this phase, each player i in N should play action āit at stage t defined as in the proof

of Theorem ??. Moreover, at every period t, player i should sends the message mi
t = (1,∅)

to all his neighbors. As before, (1,∅) of player i’s message means that he did not deviate

nor detected any action deviation at stage t− 1.12

Phase II: communication phase

Fix a player i ∈ N . If player i in N receives a message different from (1,∅) at some stage t,

or if player i observes a neighbor’s deviation, then player i starts a communication protocol,

described as follows:

• if a player i observes an action deviation of a neighbor k ∈ N (i) at stage t, then he

sends the message (1, k) at stage t+ 1;

• if a player i receives from two distinct neighbors, denoted i1 and i2, the messages

mi1

t = mi2

t = (s, k) for some k ∈ N and s ∈ {1, T}, where T is the length of the

protocol (see below for the specification of T ), then mi
t+1 = (s+ 1, k).

As in Section 3.1.1, several communication protocols may be running at the same time:

different delays refer to different stages, hence to different protocols.

At each stage t, player i computes his set of suspects regarding the alleged deviation stage

t− s for each s ∈ {0, . . . , T}, denoted X i
t(s), as follows:

• if player i deviates at stage t− s, then X i
t(s) = {i};

• if player i observes the action deviation of some neighbor k ∈ N (i) at stage s, then

X i
t(s) = {k};

• if there exists some s′ ∈ {1, . . . , T} such that there exists two distinct neighbors i1 and

i2 in N (i) such that mi1

t−s+s′ = mi2

t−s+s′ = (s′, k) for some k ∈ N , then X i
t(s) = {k}.

The number of rounds is T = bnc − 3, where bxc stands for the integer part of x. For

each player i ∈ N , the transition rule from phase II to another phase is then the following:

12Recall that, at each stage, messages are sent before observing stage payoffs. This assumption is not
crucial: with a slight modification, the strategy construction is still valid for the case in which messages are
sent after the observation of stage payoffs.
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- if X i
t(T ) = ∅, then keep playing according to the current action phase and use the

corresponding communication strategy;

- if X i
t(T ) = {k}, then go to phase III in order to minmax player k;

- otherwise, play the coordinate of an arbitrary Nash equilibrium of the one-shot game

(history incompatible with unilateral deviations).

Lemma 3.9. Assume public and local communication, n ≥ 7, and that G satisfies Condition

C. The following statements hold.

(a) If player k deviates in action at stage t, and if at all stages t + s with s ∈ {1, . . . , T},
at least n− 1 players follow (σ∗, φ∗), then X i

t+T = {k}.

(b) If there is no action deviation at stage t (but possibly an action deviation), and if at all

stages t+ s with s ∈ {1, . . . , T}, at least n− 1 players follow (σ∗, φ∗), then X i
t+T = ∅.

Proof of Lemma 3.9. Assume public and local communication, n ≥ 7, and that G satisfies

Condition C.

(a) Suppose first that some player k deviates in action at stage t, and denote by x2, x3, x4,

xn−2, xn−1, xn his neighbors. ThenX i
t(0) = {k} for each player i ∈ {k, x2, x3, x4, xn−2, xn−1, xn}.

Denote by x5 (respectively xn−3) the player such that x5 ∈ N (x1)∩N (x2)∩N (x3) and x5 6= k

(respectively xn−3 ∈ N (xn−2) ∩ N (xn−1) ∩ N (xn) and xn−3 6= k). Players x5 and xn−3 exist

because of Condition C of Proposition 3.8 (if n = 7, then x5 = xn−3). At stage t + 1, at

least two players among x2, x3 and x4 (respectively among xn−2, xn−1 and xn) send (1, k).

Hence Xx5

t+1(1) = {k}, and symmetrically Xxn−3

t+1 (1) = {k}. By induction, it is easy to see

that X i
t+T (T ) = {k} for each player in N .

(b) Assume now that there is no action deviation at stage t. It is easy to see that under

unilateral deviations, X i
t+T (T ) = ∅ for each player i ∈ N .

Phase III: punishment phase

For each player i ∈ N , if X i
t+T = {k} for some player k in N , player i enters a punishment

at stage t+ T + 1, whose goal is to minmax player k. Each player i 6= k first plays according

to his minmax strategy against k, denoted (P i(k)), defined as in Section 3.1.1. Player k is

compelled to play the same pure action P k(k) during his punishment (see footnote 5 page

13).

In addition, at each stage s during the punishment phase, each player i in N , including

player k, keeps sending messages in M regarding stage s− 1. In particular, a player j ∈ N−k

who chooses an action which is not in the support of his minmax strategy is identified as a
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deviator. The punishment phase lasts T (δ) stages (the length T (δ) has to be adapted, see

below).

Phase IV: reward phase

After the punishment phase, hence at stage t + T + T (δ), each player enters a reward

phase, whose goal is the same as in Section 3.1.1. The possibility of providing such rewards

relies on the full dimensionality of the payoff set (recall that intV ∗ 6= ∅). In addition, it

is convenient to require that all players know the sequences of pure actions played by each

minmaxing player during the punishment phase. For that reason, at the first stage of the

reward phase (i.e. at stage t+ T + T (δ)), each player i ∈ N sends all the sequences of pure

actions that his neighbors j ∈ N (i) played (recall that each player observes his neighbors’

moves). Then, players use the previous protocol but replace the name of the deviator k by

all the sequences of actions received. By induction, a majority rule at each stage proves that

each player knows at the end of stage t+ 2T +T (δ) all the sequences of pure actions actually

played by all players. Players choose āt at each stage t ∈ {t+T +T (δ), . . . , t+2T +T (δ)−1.

Then, players start the reward phase at stage t+ 2T + T (δ). The construction of the reward

phase as well as the specification of µ(δ) is the same as in Fudenberg and Maskin ([8, 9]).

Similar arguments can be found in [12] (Section 5.2.4). The specification of the beliefs is the

same as Section 3.1.1. The folk theorem directly follows.

3.2.2 An example

In the previous section, I show a folk theorem for a specific class of networks (see Figure

3.2.1). However, Condition C of Theorem 3.8 is not necessary for a folk theorem to hold with

more than four players. Consider the following network:

Figure 6:

•3 •5

•6

•1

•2

•
4

for which Condition C is not satisfied. Nevertheless, it is easy to see that a folk theorem holds

for this network under local and public communication. Indeed, the strategy constructed in

the proof of Proposition 3.8 is a PBE for this network too. Notice that if player 1 deviates
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in action at some stage t, then players 2, 4 and 6 know that the deviator is player 1, and

transmit this information at stage t + 1 to both players 3 and 5. A simple majority rule

implies that players 3 and 5 know who the deviator is at the end of stage t+ 1.

4 Concluding remarks

Under public and local communication, the characterization of the networks G for which a

folk theorem holds remains open if sequential rationality is imposed.

A conjecture is that a folk theorem holds for all circle networks. Indeed, I believe that

the strategy in Section 3.1.1 may be extended to more than n = 4 players. However, this

is still an open question, and the strategy in Section 3.1.1 needs main modifications to be

adapted to more than four players. Indeed, consider the following network:

Figure 7:

•3 •4

•5

•1

•2

The insights of Section 3.1.1 rely on the following observation: if the announcements of

players 2 and 5 regarding player 1’s action are incompatible, then one of them is lying, hence

player 1 is not, and player 1 thus transmits the liar’s encoding key. The key issue here is

that player 3 may not distinguish between the following histories: “the announcements of

players 2 and 5 are incompatible”, and “the announcements of players 2 and 5 are compatible,

but player 4 is lying about player 5’s announcement”. Hence, if player 3 receives player 2’s

encoding key α2
t from player 4, player 3 may not know if player 1 deviates at stage t+1 when

reporting player 2’s key, or if player 2 indeed lied at stage t. Indeed, since player 3 does not

know if the announcements of players 2 and 5 are compatible or not, he cannot concludes

that player 1 deviates or not when transmitting player 2’s encoding key. As a consequence,

the strategy constructed in Section 3.1.1 does not enable to identify the deviator in case of

a deviation.
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