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The 4-parameter Compressible Packing Model (CPM) for 
sustainable concrete. 

G. Roquier1 
1 Laboratoire Navier, 77420 Champs-sur-Marne, France, gerard.roquier@laposte.net 

ABSTRACT: To reduce the environmental impact due to the CO2-emission, it is necessary to 
optimize the concrete mix-design by reducing the amount of cement. In this case, analytical 
packing models are necessary to predict the packing density of a pile of grains. A new version 
of the Compressible Packing Model (CPM) (de Larrard et al.), the 4-parameter CPM, is 
introduced to predict the solid fraction of maximally dense disordered packings of bidisperse 
particles. It is apt to account for the loosening effect on big particles by interstitial small ones, 
and for the wall effect within assemblies of small particles near a big one, with moderate size 
ratios. The new theory is based on a specific treatment of configurations of one secondary class 
particle surrounded by dominant class neighbours. It has four parameters : wall effect and 
loosening effect coefficients, critical cavity size ratio and compaction index. The model proves 
its efficiency when compared to 780 results on various tested materials. The correlation 
coefficients between predicted and measured packing densities are very high: 99% for 
frictionless glass beads, 98,7% for spherical particles numerically simulated, 97,8% for natural 
aggregates and 96,4% for crushed aggregates. To predict the viscosity of the same grains in a 
high concentrated suspension compound of spherical, inert and rigid particles suspended in a 
Newtonian fluid, we resort to the iterative approach advocated by Farris and to the Krieger-
Dougherty power-law relation for the relative viscosity. The theory was developed to highlight a 
new relation between relative viscosity and the solid volume fraction, compatible with Einstein's 
relation. 

1 INTRODUCTION. 

A sustainable concrete mix-design implies both the substitution of cement by various 
cementitious materials, the optimization of the aggregate skeleton to minimize the 
interparticular volume of voids to be filled with the cement paste and the reduction of the 
concrete quantity needed for a civil engineering structure by increasing its mechanical 
performance. The latter can be easily linked to the packing density which itself depends on the 
concrete formulation. This one is divided in two stages. In the first one, concrete can be 
considered as a high concentrated suspension that we want to maximize the packing density for 
a given workability. This one can be linked, on a simplified basis, to the viscosity. The second 
stage concerns the search of the best sustainability while ensuring that the concrete continues to 
meet requirements: reducing the environmental cost of the material while playing with the 
proportioning of superplasticizer to obtain the desired workability. This ambitious goal leads to 
use models. This article deals with the particle packing and the concrete rheology by calling 
upon the last generation of the Compressible Packing Model (CPM): the 4-parameter CPM. To 
achieve its sustainable revolution, the concrete calls upon science to become a high-tech 
material. 
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2 THE REFERENCE FRAME: THE COMPRESSIBLE PACKING MODEL (CPM). 

Introduced by the works of Stovall, de Larrard, Buil (1986) and Sedran, de Larrard, Angot 
(1994), the CPM, developed by de Larrard (2000), is a tool used to predict the packing density 
of multicomponent mixtures, while taking into account placing conditions. 

2.1 Virtual packing density of a binary mixture. 

The real packing density corresponds to that obtained for a randomly dense packing. It depends 
on process used to fill and to compact the material inside the mould. If we consider a perfect 
placing process where each particle is placed one by one in its ideal location, the compaction 
index tends to infinity and the packing density reaches the virtual packing density. For a binary 
mixture "without geometrical interaction", the latter is calculated by distinguishing two 
domains: "large grains dominant" and "small grains dominant". In the first case, the small 
component is fine and mobile enough to be introduced in small quantities in available cavities 
between large particles according to the insertion mechanism. In the second case, the method 
consists in substituting some fine particles forming the matrix by a small quantity of spread 
large particles: this is the substitution mechanism. For a binary mixture "with geometrical 
interactions", the virtual packing density γ obtained by the CPM can be written as follows: 
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where γ1 and γ2 are respectively virtual packing densities of the binary mixture in the case "large 
grains dominant" and in the case "small grains dominant", β1 and β2 the virtual packing 
densities of the large size class 1 and of the small size class 2, y1 and y2 their volume fractions 
by reference of the total solid volume, a12 the loosening effect coefficient, b21 the wall effect 
coefficient. When the size ratio x=d2/d1 (fine/large) is equal to 1, a total interaction occurs: 

b21 1( ) =1  and a12 1( ) =1 (2) 

2.2 Real packing density of a binary mixture: compaction index. 

The real packing density φ* is calculated by introducing the compaction index K: 

K =

y1
β1
1
φ*
−
1
γ1

+

y2
β2
1
φ*
−
1
γ2

 (3) 

Because K is a representative value of the placing process, the expression (3) is an implicit 
equation of φ*, with one and only one positive root. It can easily be solved numerically. 

3 WALL EFFECT, LOOSENING EFFECT, INTERFERENCE EFFECT. 

In figure 1 representative of "void ratio" (e=1/φ*-1) versus "volume fraction of small particles" 
for a binary mixture, the insertion mechanism is represented by the straight line AM and the 
substitution mechanism by the straight line FM. The wall effect is highlighted by FH section 
which is located above FO. Now, we are going to introduce the concept of interference effect 
wich is locally a loosening effect. 
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If we consider the "large grains dominant" area, the loosening effect is only localized around a 
particle insufficiently fine to insert into a cavity created by some touching larger particles. 
Interference effect is more global. If we consider the "small grains dominant" area, the effect of 
large particles is reduced to a wall effect if they are in small quantities troughout the matrix of 
fine elements. If their fraction increases, their relative position will have an influence: their 
walls will be too close to each other and they are going to interact on the arrangement of small 
particles. An interference will occur between the two components. Interference effect is 
materialized by the IKA section. It is locally called loosening effect in the AK section. 
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Figure 1. Illustration of wall effect, loosening effect, interference effect. 

4 WALL EFFECT THEORY FOR SPHERES. 

The wall effect has been the object of many experimental and theoretical studies: Ben Aim 
(1970), Stovall, de Larrard, Buil (1986), de Larrard (1988), de Larrard (2000). Ben Aim was a 
precursor in this domain. He considered that a planar wall effect is almost totally localized at the 
interface between the large and small spheres in a layer d/2 thickness (d: particle diameter). He 
generalises this way of reasoning to a curved wall. When he studies a large sphere of diameter 
d1 surrounded by small ones of diameter d2, he considers the wall effect disturbance in a portion 
delimited by two concentric spheres. The first one has a diameter d1. The second hypothetical 
one is chosen in such a way that contact points between each small sphere pressed against the 
wall are located on its surface area. However, the boundary condition b21(1)=1 is not respected. 
That's why we propose an adjustment of the Ben Aim reference cell: 

d1

d2

d1
 (1

+
2 

kP
2 
x)

1/
2

Compactness β'2 of
small spheres in the
disturbed area by
wall effect.

Delimitation of the
disturbed area by
wall effect.

x = d2

d1

 

Figure 2. Definition of the spherical reference cell for studying the wall effect. 
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The diameter of the sphere delimiting the disturbed volume by the wall effect around a large 
sphere is: 

dhyp = d1 1+ 2 kP2 x  (4) 

Let α2 be the real packing density of the fine class 2. We can deduce its virtual packing density 
β2 by involving the compaction index K: 

β2 = α2
1+ K( )
K

 (5) 

The number of small spheres against a large one is calculated from the spherical square model, 
not shown here, as part of the dense virtual packings: 

N12,SSM
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The packing density β'2 of the small particles in the disturbed volume by the wall effect is 
deduced from this expression: 
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In the case where β1=β2, the wall effect coefficient is expressed by: 

b21 x( ) =
β2 −β '2 x( )( )
1−β2( )

1+ 2 kP2 x( )
3
2 −1

#

$
%

&

'
(  (8) 

It remains to be determined kP2 by respecting the boundary condition b21(1)=1, leading to the 
numerical solution, by a spreadsheet program, or the analytical solution of the following 
equation: 

β2 − 6( ) 1+ 2 kP2( )
3
2 +
9
2
kP2
2 +18 kP2 + 5= 0  (9) 

The equation to be solved being of the 3rd degree, the value of kP2 which is coherent with those 
presented in the following table should be kept: 

Table 1. Values of kP as a function of the residual packing density β. 

β  0,65 0,66 0,67 0,68 0,69 0,70 0,71 0,72 0,73 0,734 

kP 0,4466 0,5854 0,6729 0,7543 0,8369 0,9253 1,0252 1,1476 1,3284 1,4729 

 

Here is a representative example of the wall effect coefficient b21 as a function of the size ratio 
x: 
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Figure 3. Representative example of the wall effect coefficient b21 for a real packing density of the fine 
class α2=0,641, a compaction index K=9 and a residual packing density β2=0,712. 

5 LOOSENING EFFECT AND INTERFERENCE EFFECT THEORY FOR SPHERES. 

Stovall, de Larrard, Buil (1986) introduced the concept of critical cavity size ratio x0: below this 
value, the intrusion of small quantities of smaller spheres does not disturb the bed of larger 
spheres; beyond this value, small spheres cannot be placed without disturbing this one. 
Furthermore, when x→1, all particles become identical: calculated packing densities in the 
frame of the "small grains dominant" and in the frame of the "large grains dominant" must be 
equal when volume fractions of fine and large particles are 0,5. In addition to these two 
hypothesis, the concept of local isotropic expansion (de Larrard (1988)) of the large particle 
skeleton around a small one is adopted when x>x0. But contrary to the original publication, a 
spherical reference cell is used for that, allowing to be consistent with the wall effect theory. 
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Delimitation of the
spherical reference cell:
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 = d2 (1 + 2 kP1/x)1/2

Calculation of the
compactness β''1 of large
spheres in the reference
cell. Deduction of the
compactness β'1 in a
more global interference
zone by taking into
account the critical cavity
size ratio.

x=
d2

d1

 

Figure 4. Definition of the spherical reference cell for studying the loosening effect. 

The diameter of the sphere delimiting the disturbed volume by the loosening effect is: 

dhyp = d2 1+
2 kP1
x

 (10) 

Let α1 be the real packing density of the large class 1. We can deduce its virtual packing density 
β1: 

β1 = α1
1+ K( )
K

 (11) 
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The number of large spheres against a small one is calculated from the spherical square model: 
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The packing density β''1 of the large spheres in the reference cell is: 
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The packing density of the large spheres in a more global interference zone is: 

β '1 x( ) =
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When x=x0, β’1(x0)/β1=1 : loosening effect and interference effect do not occur. When x=1, 
β’1(1)/β1=0,5 : the continuity between "large grains dominant" and "small grains dominant" is 
provided when their volume fractions are equal and when all particles become identical. The 
volume fraction of small particles at the "eutectic" point, corresponding to the crossing point 
into the "small grains dominant" area, is: 

φ2
* x( ) =β2 + 1−β2( ) 1− b21 x( )( ) −1( )β '1 x( )  (15) 

The loosening effect coefficient is deduced from this expression: 

a12 x( ) =
β1 −β '1 x( )
φ2
* x( )

if x ≥ x0 and a12 x( ) = 0 if x ≤ x0  (16) 

kP1 remains to be determined by respecting the boundary condition a12(1)=1 leading to solve the 
equation (9) by replacing kP2 by kP1 and β2 by β1. 
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Figure 5. Representative example of the loosening effect coefficient a12 for α1=0,641, K=9, β1=0,712 and 
critical cavity size ratios x0=0, x0=0,2 and x0=2x/5. 
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6 THE 4-PARAMETER COMPRESSIBLE PACKING MODEL (CPM). 

The compaction index K and the critical cavity size ratio x0 need now to be calibrated by an 
analysis of 780 values on binary mixtures. x0 is considered as a function of the type of 
aggregate, of its shape and of its finish surface. 

Table 2. Compaction index K. 

Packing processes Pouring Vibration Vibration + 
compression 

Optimized filling* + 
vibration + compression 

virtual 

K 4,7 5,6 9 15 ∞  

*The expression "optimized filling" corresponds to the use of a mixing chamber to fill the container by 
glass beads. 

Table 3. Critical cavity size ratios x0 (for natural aggregates, x: size ratio). 

Type of 
aggregate 

Crushed aggregate Round 
natural 

aggregate 

Frictionless 
glass beads Angular very rough Angular rough Angular 

x0 0 0,02 0,1 x0 = 2 x / 5 0,2** 

**This value is very close to 0,2247 obtained for a tetrahedral cavern (Ben Aim (1970)). 

Now, we are going to evaluate the 4-parameter CPM when compared to 780 results on binary 
mixtures. Data concerning glass beads come from the thesis of Ben Aim (1970) in which we can 
find results of Ben Aim; Mc Geary; Westman and Hugill; Tickell, Mechem and Mc Curdy; 
Naar, Wygal and Henderson; Yerazunis, Bartlett and Nissan and from experiments of Kwan, 
Chan, Wong (2013). Round natural aggregates are coming from the Loire (France) (de Larrard 
(2000)) and from the Seine (France): experimental results of Joisel given in the thesis of de 
Larrard (1988). Crushed aggregates are from the Pont-de-Colonne quarry at Arnay-le-Duc 
(France) (de Larrard (2000)), a soft limestone from Lorraine (France) (Lecomte and Zennir 
(1997)), a limestone aggregate from the northeast of Tlemcen (Algeria) (Hanini (2012)), a 
granite rock aggregate (Asia) (Kwan, Wong, Fung (2015)). Results of numerical simulation will 
be published in the thesis of Roquier at a later date. 

The 4-parameter CPM is evaluated by comparison of the original CPM and of the original 3-
parameter model (Kwan, Chan, Wong (2013)) or extended (Kwan, Wong, Fung (2015)). 

Table 4. Mean deviation ξ and correlation coefficient r on packing densities for various materials. 

Models / Materials 
Original CPM Original or extended 

3-parameter model 4-parameter CPM 

ξ  r ξ  r ξ  r 

Frictionless glass beads (300 
values) 0,012 0,9754 0,009 0,9863 0,007 0,9904 

Spherical particles 
numerically simulated (20 

values) 
0,012 0,8783 0,008 0,9598 0,006 0,9877 

Round natural aggregates 
(125 values) 0,009 0,9619 0,012 0,9534 0,007 0,9788 

Crushed aggregates (335 
values) 0,013 0,9408 0,013 0,9455 0,010 0,9642 
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Figure 6. Experimental data compared with the 4-parameter CPM for frictionless glass beads. 

7 VISCOSITY OF A BIDISPERSE SUSPENSION PREDICTED FROM THE 4-
PARAMETER CPM. 

A model intended to predict the viscosity of a bidisperse concentrated suspension with 
spherical, inert and rigid particles suspended in a Newtonian fluid is now presented. It takes into 
account geometrical and hydrodynamic interactions between particles. The fractal concept 
initially proposed by Farris (1968) is modified to include geometrical interactions used in the 4-
parameter CPM. We have chosen a power-law relation (Krieger-Dougherty type) for the relative 
viscosity (Pabst (2004)). In the case β1=β2=β (equal residual packing densities), the viscosity is 
calculated by: 
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η is the suspension viscosity of the bidisperse suspension and η0 the viscosity of the Newtonian 
suspending fluid. 
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φ is the volume fraction of the suspended spheres in a total volume unity, y1 and y2 the volume 
fraction of classes 1 and 2 by reference of the total solid volume, ψ2 the volume fraction of the 
class 2 in a total volume unity, ψ1 the volume fraction of the class 1 considering the presence of 
the finer class 2, ψ2

MAX the maximal volume fraction of the class 2 in a total volume unity, 
ψ1

MAX the maximal volume fraction of the class 1 considering the presence of the finer class 2, 
γ1 and γ2 respectively virtual packing densities of the binary mixture in the case "large grains 
dominant" and in the case "small grains dominant". CE is equal to 2,5 in agreement with 
Einstein's relation for dilute suspensions. 

This theory allows to highlight a new relation between relative viscosity and the volume fraction 
of the suspended spheres. When the latter reaches its critical value, the suspension is jammed 
and the mixture reaches the packing density of the solid skeleton. 

8 CONCLUSIONS. 

In twenty years, progress in basic and applied research has revolutionized concrete. The 4-
parameter CPM is now able to analyze the concrete constituents packing at the level of particles 
which can be the micro level for the silica fume. It represents a useful tool in order to improve 
performance concrete such as mechanical strength by organizing the components so as to 
produce a denser material and to increase durability. One of these strongest qualities is that it is 
the result of a progression leading to a new theory on the wall effect and on the loosening effect. 
It includes the introduction of a critical cavity size ratio depending on the type of materials. This 
reveals that there would not be a single curve for geometrical interactions. Limitations of the 
proposed model are of two types. Firstly, the loosening effect appears, strictly speaking, from a 
threshold volume fraction. Secondly, the interaction coefficients are determined by considering 
the same virtual packing density for each granular class. However, the results obtained suggest 
that efforts will not have been in vain. By introducing science in concrete, concrete has become 
a high-tech material. 
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